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Abstract

We consider the problem of finding a planar straight-line embedding

of a graph with a prescribed Euclidean length on every edge. There has

been substantial previous work on the problem without the planarity re-

strictions, which has close connections to rigidity theory, and where it is

easy to see that the problem is NP-hard. In contrast, we show that the

problem is tractable—indeed, solvable in linear time on a real RAM—for

straight-line embeddings of planar 3-connected triangulations, even if the

outer face is not a triangle. This result is essentially tight: the prob-

lem becomes NP-hard if we consider instead straight-line embeddings of

planar 3-connected infinitesimally rigid graphs with unit edge lengths, a

natural relaxation of triangulations in this context.
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1 Introduction

Given a graph and a prescribed length for each of its edges, can we make a
straight-line drawing of the graph where the length of each edge is the prescribed
length? When is this drawing unique? Can we recognize realizable length
assignments? These three problems have an extensive history, having been
studied in the fields of computational geometry [9, 15, 27, 29], rigidity theory [8,
17, 19], sensor networks [6, 26], and structural analysis of molecules [1, 10, 18].
This reconstruction problem arises frequently when only distance information
is known about a given structure, such as the atoms in a protein [1, 10, 18] or
the nodes in an ad-hoc wireless network [6, 25, 26]. A reconstruction is always
unique and easy-to-compute for a complete graph of (exact) distances, or any
graph that can be “shelled” by incrementally locating nodes according to the
distances to three noncollinear located neighbors (Figure 1). More interesting is
that visibility graphs [9] and segment visibility graphs [15] can be incrementally
“shelled”. In general, however, the reconstruction problem is NP-hard [29], even
in the strong sense [27]. The uniqueness of a reconstruction in the generic case
(in 2D) was shown to be testable in polynomial time by a simple characterization
related to generic rigidity [17, 19], but this result has not yet lead to efficient
algorithms for actual reconstruction in the generic case.

Figure 1: Locating a vertex from the distances to three located neighbors.

Planar embeddings. We consider a variation on this basic problem of re-
construction from distances: the graph is planar and the planar straight-line
drawing must be a planar embedding (edges not incident in the graph should
not be incident in the drawing). Our problem is then, given a planar graph with
prescribed lengths on the edges, to construct a planar straight-line embedding
of the graph that adheres to the specified edge lengths, and determine whether
this embedding is unique, or determine that no such embedding exists.

Applications. The restriction to planar embeddings makes sense in many
applications, for example when the underlying structure we want to reconstruct
is known to be planar. Another application specifically in the context of graph
drawing is the generation of linear cartograms. A cartogram is a map in which
the size of each entity is proportional to some value associated with the entity
[5]. Area cartograms are the most common example, in which the area of each
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region is proportional to some function of the region, e.g., its population. In
linear cartograms, we want to display a network in such a way that the length
of a connection is related to some characteristic of the connection. In common
maps, this length is correlated (through a planar projection of the sphere) with
the length of the connection in the real world. However, we may be interested
in showing, e.g., the traveling time for each connection, or the traffic on each
connection. The construction of such a map can be modeled by defining the
length of each edge appropriately and trying to realize the graph with these edge
lengths. In real-life applications, we would also like to keep some resemblance
with the original network, and so we may restrict where the vertices of the graph
can be embedded. However, as we will see, the problem is already hard without
this restriction.

Our results. We prove the following main results:

1. Even for planar 3-connected graphs, deciding planar straight-line embed-
dability with unit edge lengths is strongly NP-hard, even when the em-
beddings are guaranteed to be infinitesimally rigid.1 This improves upon
results in [28], where weak hardness was shown for (2-connected) pla-
nar linkages, and upon [14], where the strong hardness is shown for 2-
connected graphs with unit edge lengths and for 3-connected graphs with
arbitrary edge lengths. Another (aesthetic) difference with respect to [14]
is that our reduction is directly from planar 3-SAT, rather than using a
synthetic problem as a bridge. See Section 3.

2. For planar 3-connected graphs, we can decide in O(|V |) time whether there
is a planar straight-line embedding with specified edge lengths in which
only the outer face is not a triangle. Furthermore, such an embedding
is always unique up to rigid motions (translations, rotations, and reflec-
tions), and can be constructed in O(|V |) time. More generally, we can
find planar straight-line embeddings in which the triangular faces form
a connected family of cells and the nontriangular faces form a forest of
cells. This extends the results in [12], where under the assumption that
the graph is triangulated and the outer face is convex, the authors can test
embeddability in linear time, but without providing an actual embedding.
See Section 2.

These results give a fairly precise division between tractable and intractable
forms of planar straight-line embedding with specified edge lengths. To our sur-
prise, triangles seem to play a more fundamental role than other rigid structures,
despite the close connections between rigidity and embedding with specified edge
lengths [8, 17, 19]. Other than visibility graphs [9, 15] and dense graphs [1], our
results are the first positive results for efficient embeddings of (special) graphs
with specified edge lengths.

1Infinitesimal rigidity is a strong form of rigidity, stating that no first-order motion of the
vertices preserves the lengths of the edges to the first order. See e.g. [16] for formal definitions.
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Model of computation. Even the simple task of describing a straight-line
embedding of a triangle with given side lengths involves square roots. Thus,
we do not know whether our embedding problems belong to NP, and for our
algorithmic results we have to assume the real RAM model of computation [24]
which supports constant-time exact arithmetic operations (+, −, ×, ÷,

√
) on

real numbers. The real RAM model is customary in computational geometry.
However, this model is unrealistic in practice, since we assume that we can
handle arbitrarily long algebraic expressions in constant time. On the other
hand, our NP-hardness result is in the standard Turing machine model because
we construct a graph with a polynomial number of edges.

2 Triangulated Graphs

Let G be a 3-connected planar graph. By Whitney’s Theorem, the faces in any
planar embedding of G are always induced by the same cycles 2 [13, Chapter 6]
[23, Chapter 2]. In particular, all embeddings of G have the same dual graph
G∗, and once we have fixed the outer face, the topological embedding into the
plane is completely determined. This is the basic ingredient for the following
result:

Theorem 1 Given a planar 3-connected graph G = (V,E) and a prescribed
length for each of its edges, we can decide in O(|V |) time on a real RAM whether
there is a planar straight-line embedding with the specified edge lengths such that
all faces are triangles, with the possible exception of the outer face.

Proof: Consider any planar embedding of G, which can be computed in O(|V |)
time. If two or more faces are not triangles, then we can decide that the desired
realization is not possible because of Whitney’s theorem. If exactly one face is
not a triangle, that face must be the outer face in the desired realization. If all
faces are triangles, any longest edge has to be part of the outer face, which gives
us at most two candidates T and T ′ for the outer face. If T is the outer face,
then T ′ must fit inside T while sharing the common edge, and vice versa. This
test leaves us with at most one candidate for the outer face fext.

All nodes in G∗ \ f∗

ext are dual of triangular faces. For each triangular face
we check if the specified lengths for its edges satisfy the triangular inequality,
that is, if the length of each edge is smaller than the sum of the lengths of the
other two. If the test fails for any face, we can conclude that the desired planar
straight-line embedding does not exist. We pick a node f∗

0
in G∗ \ f∗

ext, and
compute coordinates for the vertices of its dual triangle f0 that realize the edge
lengths. Now we visit all nodes in G∗ \ f∗

ext using breadth-first search from f∗

0
.

When visiting a node f∗

i , two options arise:

1. If all vertices of the dual face fi have already been assigned coordinates,
we check that all the edges in fi have the specified edge lengths.

2This result holds for arbitrary planar embeddings, where edges do not need to be straight-
line segments.
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Figure 2: These examples show that we need to check that the drawings are
indeed embeddings.

2. If some vertex of the dual face fi has not been assigned coordinates, we
know that the other two vertices u, v of fi participate in another face fj

whose dual node f∗

j that has been already visited, and so they have already
been assigned coordinates. We can compute the coordinates of the third
vertex using the specified edge lengths and the restriction that fi and
fj must lie on opposite sides of the line segment uv due to Whitney’s
Theorem.

At the end, every edge in the graph has been checked whether it satisfies the
specified edge length, including the lengths of the edges of the outer face fext.
In the process, we visited each face once, and we spent constant time per face,
so, overall, the process takes O(|V |) time.

We need to check that the drawing that we constructed is indeed an em-
bedding, to avoid situations like the ones depicted in Figure 2. A simple plane
sweep would do this in O(|V | log |V |) time. To get linear time, we first construct
a triangulation of the whole plane: We enclose all points in a large triangle T
and triangulate the area between T and the boundary of the outer face fext.
To do this, we insert an edge from an extreme vertex of V to a corner of T
and triangulate the resulting simple polygon in linear time [7]. Under the as-
sumption that the original embedding was planar, we obtain a graph which is a
triangulation of T and is embedded in the plane without crossings. On the other
hand, if the original embedding contains crossings, the triangulation algorithm
will either (i) terminate in error, or (ii) it will produce a subdivision of T which
is topologically consistent but whose drawing contains crossings. Topological
consistency means that the two triangle faces incident to an edge are embedded
on different sides of the edge, except for the edges of T where the other triangle
is embedded inside T . The existence of crossings (ii) for a convex subdivision
can be tested in linear time [11]. �

Observe that, in the proof of the Theorem 1, we have only used that the
coordinates of the vertices can be computed by considering the triangular faces
in an appropriate order. To get this property, we only need that each vertex
of G is incident to a triangular face, and that the set of nodes dual to the
triangular faces is connected in the dual graph G∗. Therefore, we can weaken
the hypothesis on G as follows: the subgraph of G∗ induced by nodes of degree
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3 is connected, and the subgraph of G∗ induced by nodes of degree larger than
3 is a forest. Once we have fixed the outer face, these hypotheses would be
enough to prove the result.

This result extends the one in [12] in two ways. Firstly, we do not need to
assume that the outer face is convex, although for this we have to use linear
time triangulation [7]. To avoid using the result in [7], a checker for non-convex
subdivisions should be developed, but this problem remains elusive [2, Problem
30]. Secondly, we do not need to assume that the outer face is fixed, which
becomes relevant when all the faces of the graph are triangles.

When all faces are triangles and we only want to test embeddability without
constructing coordinates, we can detect the outer face T in linear time like we did
in the previous proof, and then use the result by Di Battista and Vismara [12]:
the graph G admits a planar realization if and only if, the lengths of the edges
of each face satisfy the triangular inequality and, for all vertices v /∈ T , the sum
of the angles that are incident to v (computed from the prescribed edge lengths
using the cosine law) is 360 degrees.

This condition can be trivially tested in a real RAM model. However, if we
restrict ourselves to a Turing machine model, we can decide this condition as
follows. The cosine of an angle incident to v can be described by an algebraic
expression on the edge lengths incident to it because of the cosine law. The
cosine and sine of a sum of angles can be expressed as a polynomial on the
cosines and sines of the angles. Therefore, the condition that the sum of the
angles that are incident to v is 360 degrees can be reduced to an evaluation
of polynomials: starting from an angle, we consider the sine and cosine of the
clockwise partial sums of angles. Studying their signs, we can make sure that
the partial sums do not exceed 360 degrees, and then the sum of the angles
is 360 degrees if an only if the cosine and the sine of the sum are 1 and 0,
respectively.

The maximum degree of the polynomials that we evaluate depends on the
degree of the vertices. For graphs of bounded degree, the polynomials have
bounded degree, and the condition can be tested in polynomial time in the
classical Turing machine model, with rational edge lengths as inputs, using
separation bounds for algebraic computations; see [3, 4, 21]. We may also allow
square roots of rationals as inputs. (Otherwise, it will be difficult to come up
with interesting examples of realizable graphs with rational edge lengths.) For
general graphs, this algorithm is singly-exponential in the degree.

3 NP-Hardness

To show the NP-hardness of our problem, we reduce from the P3-SAT (planar
3-satisfiability) problem, which is strongly NP-complete [22]. In an instance
of P3-SAT, we are given a planar bipartite graph whose nodes on one class
of the bipartition represent the variables v1, . . . , vn, and whose nodes on the
other class represent the clauses C1, . . . , Cm, and edges connect each clause to
the three variables it contains. Moreover, the variables can be arranged on a
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. . .v1 v2 v3 v4 v5 vn

. . .v1 v2 v3 v4 v5 vn

Figure 3: Top: example of a planar 3-satisfiability instance. The variables
can be arranged on a straight line, and the clauses are represented as a vertex
with three orthogonal edges leaving from it and at most one bend in each edge.
Bottom: High-level sketch of NP-hardness reduction. Each line will be replaced
by a rigid 3-connected structure.

horizontal line, and the three-legged clauses be drawn such that all edges lie
either above or below this line; and the graph can be drawn on a rectangular
grid of polynomial size as shown in Figure 3, top [20].

The high-level workings of the reduction are as follows. We slant the grid
into a hexagonal grid to get angles that are multiples of 60 degrees. This slant
will allow us to make all lengths one. Furthermore, we modify the drawing so
that all the corners have angles of 120 degrees, and the three edges arriving at
a clause form angles of 120 degrees; see Figure 3, bottom. We make a rigid
structure that will leave a tunnel for each edge connecting a variable with a
clause. This rigid structure is realized in an hexagonal grid. A variable will be
represented by a rigid structure that has two different realizations, representing
the truth assignment of the variable. The value of the literal will be transmitted
to the clause through the tunnel corresponding to the edge, and we will represent
the clause by a structure that can be realized if and only if at least one of the
literals is true. Furthermore, each of the lines in the figure will be represented
by a rigid 3-connected bar, like a “thick” line. This will be the basic trick to
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Figure 4: Assume that the grey regions are rigid and fixed. A. The segments
p1p2 and q1q2 are parallel in any realization. B. How to make rotations while
keeping 3-connectedness. C. The vertex q can only be realized in two positions.

make the whole graph 3-connected as well.
The construction relies on three basic rigid structures that are depicted in

Figure 4. In all cases, the grey regions represent 3-connected, rigid structures
which are fixed. Firstly, in Figure 4A, the edges p1q1 and p2q2 have the same
length, and so do p1p2 and q1q2. Under these conditions, in any realization
of this structure, the edges p1p2 and q1q2 have to be parallel. Secondly, in
Figure 4B, there is a 3-connected structure that allows q to rotate around p.
Finally, in Figure 4C, if the vertices p1 and p2, marked with squares, are fixed,
then the vertex marked with a circle has two possible positions, q and q′. This is
so because the distance between this vertex and p1 and p2 is fixed, and therefore
it has to be placed at the intersection of two circles C1 and C2 centered at p1

and p2, respectively. The circles C1 and C2 intersect at point q by construction,
and by symmetry with respect to the vertical line through their centers p1, p2,
they must also intersect at the symmetric point q′.

Theorem 2 Deciding planar straight-line embeddability of planar 3-connected
graphs with unit edge lengths is NP-hard.

Proof: We have already described the general idea, so it only remains to de-
scribe the gadgets that are used. For the tunnels, we need a holder gadget that
allows us to fix the relative positions of both sides of the tunnel, while trans-
mitting the value of the literal through the tunnel. The value will be either true
or false, so we need a gadget that allows two realizations.

In Figure 5A the holder gadget is shown. Consider the upper half of it.
Observe that the two points that are marked with big dots, p1, p2, and the two
points that are marked with squares, q1, q2, represent a situation like shown
in Figure 4A. Therefore, the bar that supports q1, q2 is always parallel to the
one that supports p1, p2, and the point q2 is always vertically above point q.
The points q, q2 and p2, implement the idea shown in Figure 4C, and so p2 has
only two possible placements with respect to q, q2. Overall, this implies that
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the upper half of Figure 5A can be realized in two ways. The lower half of the
holder is a mirrored copy of upper half, and so it also has two realizations.

The holder gadget can be realized in four different ways: two of them keep
the relative position of both sides of the tunnel (Figure 5A and 5B), while two
of them would move them (Figure 6A and 6B). We can concatenate two of
these gadgets with one bend, as shown in Figure 6C, in such a way that the
realizations in Figure 6A and 6B are not possible. Thus, the two sides of the
tunnel are connected in a (globally) rigid way. We define the transmitter to
be the bar that is inside the tunnel, because it will transmit the truth value of
the literal from the variable to the clause. Observe that in one of the possible
realizations of the holder, the transmitter is shifted four units with respect to
the other possible realization. Below we will discuss the meaning of the possible
realizations of the transmitter.

The structure that we have described is 3-connected, and so we can construct
a rigid 3-connected structure, as shown in Figure 3, bottom, where the distance
between the upper and the lower part will be defined later on by the height of
the variables. The sides of the tunnels taken together form a rigid structure
in which the transmitters and the variables can move: If a tunnel contains a
bend, its two sides can be connected rigidly by two holders, as in Figure 6C.
One can check that the sides of a tunnel without a bend are always connected to
a tunnel with a bend, and therefore are also immobile. (Or we could introduce
two bends in a zigzag way to make an otherwise straight tunnel rigid in its own
right.) Note that in any realization of this rigid structure, the vertices and edges
lie on a hexagonal grid because we are joining equilateral triangles.

We still have to discuss how the variables, the transmitter, and the clauses
work.

For each variable we repeat the structure of the upper half of the holder
gadget, but with a thicker bar (variable-bar) inside; see Figure 7. Consider the
realization of the structure assigned to true. On the sides of the variable-bar
that are facing the tunnels, for each literal that is not negated, we place an
indentation on it that prolongates the tunnel of the literal. For the literals that
are negated, we place such an indentation on the part of the variable bar that
faces the tunnel in the “false” realization of the structure; see Figure 7. We
have to make the variable-bar large enough that tunnels for all occurrences of
each variable can be accommodated on its sides. (In Figure 7, there are three
tunnels on each side.)

The graph that we have constructed so far is 3-connected and rigid. Fur-
thermore, whenever a literal is true, the transmitter bar inside the tunnel can
be pushed towards the variable-bar. Furthermore, we can transmit this “push-
ing information”, or pressure, through the tunnel, and also through the corners
using Figure 6C, so that it can be used at the clause.

Our next goal is to design a clause checker that is realizable if and only if
one of the three transmitters can be pushed towards its variable. It turns out to
be easier to solve the reverse problem: a clause checker that is realizable if and
only if at least one of the three transmitters can be pushed towards the clause.
Therefore, we design a pushing-inverter which we place on each tunnel just
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q1
q2

q

A

Figure 5: A. The holder gadget. A–B. Two possible realizations of the holder.
In B, the transmitter is four units to the right with respect to its position in A.
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BA

C

Figure 6: A–B. Two other possible realizations of the holder. C. We avoid these
realizations connecting by a bend two consecutive holders. This rigidly connects
the sides of the tunnel.

before the clause. It is described in Figure 8, where its two possible realizations
are displayed. In particular, the top two thick dots correspond to the possible
positions of a vertex depending on whether the pressure is towards the clause
or the variable. The inverter gadget changes pressure towards the clause into
pressure towards the variable, and vice versa. We can make it 3-connected by
putting a holder gadget just before it, and another holder gadget immediately
after it.

Finally, a clause is described in Figure 9, with its relevant realizations. The
big dots in each literal are at four units apart, and they indicate the two possible
positions for the end of the transmitter. The one that is closer to the center
indicates that the literal is true (pushing towards the clause). In all cases, the
position of the big dot in the center is completely determined by the values of li
and lj . When all li, lj , lk are false, then the big dot in the center is too far from
lk to be realizable; see Figure 9A. In the other cases, it is always realizable; see
Figure 9B–9D for some cases.
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vi ≡ false

vi ¬vivi

vi vi¬vi

vi ≡ true

vi ¬vivi

vi vi¬vi

Figure 7: A variable assigned to true (top) and false (bottom). The transmitter
can be pushed towards the variable only when the literal is true.

A small example showing all the gadgets at work is in Figure 10. To conclude,
we summarize the argument why a realization of the graph corresponds to a
satisfying truth assignment. The clause checker can be realized if and only if
at least one transmitter is at the position closer to the clause checker. This
can only be the case if, at the variable side of the corresponding inverter, the
transmitter is pushed away from the clause checker. This pushing is transmitted
through all bends and holders to the variable wheels. It follows that the literal
must be true.

Placing holders at each transmitter immediately before the clause-gadget and
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A B C

Figure 8: An inverter. A–B are realizable, but C is not.

connecting the rigid structures from different transmitters, as done in Figure 10,
we ensure that the construction is 3-connected. Our gadgets only use edges of
length one: for any edge e in any gadget, there is at least one realization of
the gadget such that e lies on a hexagonal grid. The graph that we construct
has a polynomial number of edges because the graph representing the P3-SAT
instance was in a grid of polynomial size, and hence the reduction can be done
in polynomial time. �

Observe that when the graph is realizable, the realization is infinitesimally
rigid. In other words, its vertices cannot be infinitesimally perturbed in a way
that preserves the edge lengths to the first order. This condition is stronger
than rigidity, and implies that the underlying graph is generically rigid [16].
Therefore, the problem remains NP-hard even when we know that the graph is
generically rigid.

The 3-SAT problem is NP-hard even if each variable occurs at most 6 times,
and this property is maintained in the reduction from 3-SAT to P3-SAT [22]. If
a variable needs to accommodate at most six tunnels, then a variable is formed
by a bounded number of edges and the faces that participate in the variable
gadget have bounded degree. By filling the free space between the tunnels, we
can make sure that all the faces have bounded degree. Therefore, the problem
remains NP-hard for unit lengths even if we assume bounded face degree, except
for the outer face. If we do not require unit lengths, then we can also triangulate
the outer face, and we obtain an NP-hardness proof for bounded face degree.
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lk ≡ true

li ≡ true

lj ≡ true

lk ≡ false

li ≡ true

lj ≡ false

lk ≡ true

li ≡ false

lj ≡ false

A B

DC

the same

lk ≡ false

li ≡ false

lj ≡ false

Figure 9: A clause checker. The situation in A is not realizable, but the ones in
B–D are realizable.
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Figure 10: Small example showing all the gadgets together.
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