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Abstract

A set of edges of a hypergraph H is an algebraic set if its characteristic
vector can be expressed as a linear combination of rows of the (node-edge)
incidence matrix of H. Recently it was proven that deciding whether or
not a given edge-set of H contains a non-empty algebraic set is an NP -
complete problem. In this paper we give a linear time algorithm to decide
if a given edge-set contains a non-empty algebraic set when the hypergraph
is a graph.
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1 Introduction

Let G be a graph with edge set E(G) and node set V (G). Let M be the node-
edge incidence matrix of G, that is the binary |V (G)| × |E(G)| matrix where
each element mv,e of M is given by

mv,e =

{

1 if v ∈ e
0 otherwise

v ∈ V (G) and e ∈ E(G)

Let F be a non-empty subset of E(G) and let f be the characteristic vector of
F , that is

f(e) =

{

1 if e ∈ F
0 if e /∈ F

We call F an algebraic [16, 21, 24] set if its characteristic vector can be expressed
as a linear combination of rows of M. In other words F is an algebraic set if
there exist real coefficients (cv)v∈V (G) such that

f =
∑

v∈V (G)

cvmv (1)

where mv is a row of M, for v ∈ V (G). In this paper we address the problem to
decide if a subset F of edges of E(G) contains a proper non-empty algebraic set.
We refer to this problem as the NAS problem. Recently it was proven that the
NAS problem is NP -complete when G is a hypergraph [19], that is, when M is
an arbitrary binary matrix. In this paper we will show that the NAS problem
can be solved in polynomial time when G is a graph by giving a linear time
algorithm to find (if any) a non-empty algebraic subset of a given edge set of G.

The NAS problem arises in the context of the inference problem of summary
data (SD). An SD [3, 4, 5, 6, 10, 19] is a triple [sum(S), C, t] where S is a
numerical attributes (such as SALARY or COST), C is a Boolean condition
made up using qualitative attributes, t is a numerical value given by the sum of
the values of the numerical attribute S over the category of individuals qualified
by C. The term sum(S) is called the summary attribute of an SD. For example
an SD can be [sum(COST), “PRODUCT=computers”, t] where t is taken to
be the sum of the cost of all products in the database that fall in the category
“computers”.

The inference problem is to decide whether or not an SD of interest (whose
numerical value is unknown) can be evaluated (i.e., computed) from a given set
of SD with the same summary attribute, whose domain, say Φ, is either the set
of reals (R) or the set of integers (Z) or the set of non negative reals (R+) or
the set of non negative integers (Z+).

The information content of the input SD set is modelled by a linear equation
system whose variables are constrained to take their values from Φ and where
the coefficient matrix of the system is a binary matrix M [5, 15, 19, 20, 22]. In
this context we associate with an SD δ of interest a binary vector f . When f
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can be expressed as a linear combination of rows of M, i.e. f is algebraic, we
have that δ is evaluable for any choice of Φ.

If the SD of interest is not evaluable or is computationally hard to evaluate
(as in the case where Φ = Z+ [15, 19]), we search for a nontrivial evaluable SD
whose category is maximally contained in the category of individuals of interest.
It was shown in [19] that in order to solve this problem we need to solve the
NAS problem for an arbitrary binary matrix.

The inference problem arises also in the field of privacy protection in sta-
tistical database systems [1, 12, 13, 14, 15, 20, 23]. In this case one wants to
determine if (exact or approximate) confidential information can be implicitly
inferred from a set of released SDs. Since in this case the information content of
the set of SD, can be represented by a system of linear equation where the coef-
ficient matrix is the node-edge incidence matrix of a graph [17, 18, 20, 24], the
solution of the NAS problem for graphs could find here a natural application.

The outline of this paper is as follows. From section 2 through section
5 we will go into the mathematical details needed to solve the NAS problem
for graphs. In section 2 we give the basic definitions and some properties of
algebraic sets. In section 3 we introduce the key concept of the kernel of a set
F of edges. The kernel of a set F is a key concept because it contains all the
algebraic subsets of F . In section 4 we give the algorithm to solve the NAS
problem for graphs. In section 5 we discuss the computational aspects of the
algorithm. Finally, in section 6, we give some closing remarks.

2 Algebraic sets

Let G = (V (G), E(G)) be a graph without parallel edges where loops may exist.
An edge is a link if it is not a loop. If U and W are two non-empty subsets of
V (G), we denote by [U,W ] all the edges of E(G) with one end point in U and
the other in W . A subgraph of graph G is a graph H with V (H) ⊆ V (G) and
E(H) ⊆ E(G). An edge in E(G)−E(H) having exactly one endpoint in V (H)
is said to be attached to H.

A graph G is bipartite if it contains no odd cycle. If G is bipartite and
V (G) is not a singleton, then there exists a bipartition (U, V ) of V (G) such that
[U,U ] = [V, V ] = ∅. We call U and V sides of G.

A star of a node v of G, denoted by star(v), is the set of the edges incident
to v. If W is a set of nodes then the union of the stars of the nodes of W is
called a starset, denoted by S(W ); furthermore, if W is a stable set (i.e. the set
of nodes in W are pairwise non-adjacent), then S(W ) is called an open starset.
Now we introduce two fundamental classes of algebraic sets (see also [12, 13,
14, 16, 21]). An open-flower set is an open starset or the proper difference of
two open starsets S(W1) and S(W2) where S(W2) ⊆ S(W1) and W1 ∩ W2 = ∅
(see Fig. 1). An open-flower set is an algebraic set since its characteristic vector
can be written as

∑

v∈W1

mv −
∑

v∈W2

mv
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Let G be a loopless, non-bipartite graph. A closed-flower set is the proper
difference of two starsets S(W1) and S(W2) where (W1,W2) is a partition of
V (G) and S(W2) is an open starset or is empty. Note that if A is a closed-
flower set then G − A is a bipartite graph. Also note that a closed-flower set is
an algebraic set since its characteristic vector can be written as (see Fig. 2)

1

2
(

∑

v∈W1

mv −
∑

v∈W2

mv)

Without loss of generality, henceforth G is assumed to be connected, since
it is easily proven that the intersection of an algebraic set with the edge set of
a connected component of G is an algebraic set, too.

W1

W2

W1

W2

W1

W2

Figure 1: The bold edges form open-flower sets.

Given a real-valued vector (cv)v∈V (G), the signed support [2] of c is the couple
(P,N) where P = {v : v ∈ V (G), cv > 0} and N = {v : v ∈ V (G), cv < 0} and
the support of c is the set P ∪ N .

W1

W2

Figure 2: The bold edges form a closed-flower set.
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Let A be an algebraic set, a its characteristic vector and c a solution of (1).
Let (P,N) be the signed support of c. Since each equation of (1) is in the form

a((v, u)) = cv + cu if (u, v) ∈ E(G)
a((v, v)) = cv if (v, v) ∈ E(G)

then it’s easily seen that
[N,V (G) − P ] = ∅

and
[P, V (G) − N ] ⊆ A ⊆ [P, V (G)]

Moreover if (v1, . . . , vk) is a simple path in G, then

cvi+1
= a((vi, vi+1)) − cvi

i = 1, . . . , k − 1

so that
cvk

= (−1)k−1cv1
+ π (2)

where π is an integer [22]. Therefore since G is connected given two nodes u
and v of G, either both cu and cv are integers or neither is an integer. In fact
we can state the following (the proof of which can be found in Lemma (4) of
[21]):

Lemma 1 [21] Let G be a connected graph and A be a non-empty algebraic set.
Let (P,N) be the signed support of a solution of (1). If P ∪ N 6= V (G) and
[P, P ] is not empty then [P, P ] is a set of loops. If P ∪ N = V (G) and [P, P ] is
not empty then either contains all loops of G or it contains only links.

The following theorem shows the importance of closed-flower and open-flower
sets.

Theorem 1 Every non-empty algebraic set of a connected graph contains either
an open-flower or a closed-flower set.

Proof: By definition, both open-flower and closed-flower sets are algebraic sets.
If G is a bipartite graph, then it is known [12, 16] that a non-empty subset of
E(G) is an algebraic set if and only if it is a disjoint union of open-flower sets.
Assume that G is non-bipartite. Let (P,N) be the signed support of a solution
of (1). We can distinguish two cases depending on whether or not P∪N = V (G).

Case 1 : P ∪ N = V (G). First note that [P, P ] cannot be empty, for other-
wise G would be bipartite. By Lemma (1), [P, P ] either is a set of loops or is a
set of links. In the first case [P, P ] is an open-flower set and in the second case
is a closed-flower set.
Case 2 : P ∪N 6= V (G). First note that at least [P, V (G)−P ∪N ] is not empty
otherwise G would be disconnected. By Lemma (1), if [P, P ] is not empty then
it is a set of loops. Therefore the edge set [P, V (G) − N ] is an open-flower set.

2
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3 The kernel of an edge set

In this section we introduce a particular subset of a given edge set F that we call
the kernel of F , which has the property of containing all the algebraic subsets
of F . This will be proved in the Theorem (2). Lemma (2), Lemma (3) and
Lemma (4) are technical lemmas about the kernel needed for the rest of the
paper. Consider the following linear system

M x = b (3)

where b = (bv)v∈V (G) is obtained as follows

bv = |star(v) − F | v ∈ V (G) (4)

A solution of system (3) is given by the vector x∗ with

x∗(e) =

{

0 if e ∈ F
1 otherwise

The general solution of system (3) is given by

x = x∗ + y

where y is a solution of the homogeneous system

M y = 0 (5)

The set of solutions of (5) is called the null space of M. According to the termi-
nology introduced in [19] if X is the (non-empty) set of non negative solutions
of (3), the set

K = {e : x(e) = 0,∀x ∈ X}

will be referred to as the kernel of F . Clearly since F = {e : x∗(e) = 0}, then
K is definitely a subset of F . The next theorem clarifies the importance of the
kernel of a set F .

Theorem 2 Let F be a non-empty edge set of a graph and K the kernel of F .
An algebraic set is a subset of F if and only if it is a subset of K.

Proof: (if ) Trivially every algebraic subset of K is an algebraic subset of F
since K ⊆ F .
(only if ) Let A be an algebraic subset of F . We first show that

∑

e∈A x(e) takes
on the same value for every non negative solution x of (3). In fact let a be the
characteristic vector of A. By definition a is a vector of the row space of M.
Therefore a is orthogonal to the null space of M. Now if x1 and x2 are any
two non negative solutions of (3), then x1 − x2 is a solution of (5). Therefore,
∑

e∈E(G) a(e)[x1(e) − x2(e)] = 0 and then
∑

e∈A x1(e) =
∑

e∈A x2(e).

Since x∗ is a non negative solution of (3) then
∑

e∈A x(e) =
∑

e∈A x∗(e) = 0
because A ⊆ F . By the non negativity of x we have that x(e) = 0, ∀e ∈ A, and
for any non negative solution x of (3). It follows that A ⊆ K. 2
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By definition of kernel, for every edge e of F −K, there exists a non negative
solution x# of (3) such that x#(e) > 0. It follows that there exists a solution
y = x# − x∗ of system (5) such that y(e) > 0. More generally we have the
following

Lemma 2 Let K be the kernel of an edge set. Then there exists a non negative
solution x′ of (3) such that x′(e) > 0 for every e ∈ E(G) − K.

Proof: Let F be an edge set and K its kernel. If F −K is empty we have done
since we take x′ = x∗. Let F − K = {e1, . . . , ep} 6= ∅. By definition of kernel,
there exists a solution yi of (5) such that yi(ei) > 0 and x∗ +yi ≥ 0, i=1,. . . ,p.
Let y =

∑

i=1,...,p yi and let

0 < ϕ < min{x∗(e)/|y(e)| : y(e) < 0 and e ∈ E(G) − F}

We have that
x′ = x∗ + ϕy ≥ 0

and
x′(e) > 0 ∀e ∈ E(G) − K

in fact, by definition, for all the edges e ∈ K we have yi(e) = 0 and hence
y(e) = 0. It follows that x′(e) = 0. Consider now any edge e in F − K. First
we see that y(e) ≥ 0. In fact if e ∈ F − K then

0 ≤ x∗(e) + yi(e) = yi(e) for i = 1, . . . , p

and then
y(e) =

∑

i=1,...,p

yi(e) ≥ 0

Moreover since yi(ei) > 0 we have that y(ei) > 0 for all ei ∈ F − K. In this
case x′(ei) > 0. Finally consider any edge e in E(G) − F . If e ∈ E(G) − F and
y(e) ≥ 0, then clearly, x′(e) > 0, otherwise if y(e) < 0 since

x∗(e)/|y(e)| > ϕ

we have that x∗(e) − ϕ|y(e)| > 0, that is x∗(e) + ϕy(e) > 0. 2

We now state a useful property of the edges of the kernel of F (see also [9, 17]).

Lemma 3 If C is an even cycle of G then either C ∩ K = ∅ or |C ∩ K| > 1
and at least two edges of C ∩ K are at odd distance each other in C.

Proof: Suppose for contradiction that there exists an even cycle C = {e0, . . . , ep}
such that either |C ∩ K| = 1 or |C ∩ K| > 1 and all the edges of C ∩ K are at
even distance each other. Suppose without loss of generality, that e0 ∈ K. By
Lemma (2), there exists a non negative solution x′ of (3) such that x′(e) > 0
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for every e ∈ E(G) − K. Now let 0 < ǫ < min{x′(e) : x′(e) > 0} and let
y = (y(e))e∈E(G) be defined as follows

y(e) =







0 if e /∈ C
+ǫ if e has an even position in C
−ǫ if e has an odd position in C

Clearly y is a solution of system (5). But then we have that x′ + y is a non
negative solution of (3) and x′(e) + y(e) = +ǫ > 0 for all edges of C ∩ K,
contradicting the fact that they are in the kernel of F . 2

Finally we state another useful property of the kernel which can be also obtained
as a corollary of Lemma (2) of [20].

Lemma 4 Let K be the kernel of F . Then there always exists a real valued
solution c to the following system of linear constraints

∑

v∈V (G)

cvmv =

{

> 0 if e ∈ K
= 0 if e /∈ K

(6)

The proof of this Lemma will be given in the section 5, where we will give an
algorithm that given a set F , computes a solution of (6) for the kernel of F .
Let (P,N) be the signed support of a solution of (6). Since each equation of (6)
is in either form

cv + cu ≥ 0 if (u, v) ∈ E(G)
cv ≥ 0 if (v, v) ∈ E(G)

we have that [N,V (G)−P ] = ∅ and that [N,V (G)−P ] ⊆ K ⊆ [P, V (G)]. Also
if Z = V (G) − (P ∪ N) then K ∩ [Z,Z] = ∅

Example 1 In the graph of Fig. 3(a) the edges of a subset F of E(G) are
shown in bold. Fig. 3(b) shows the edges of the kernel K along with a solution
of (6).

 
(a) (b) 

+2 +2 

- 2 -2 

+1 +1 

- 1 - 1 

0 0 

0 0 

Figure 3: Example of a support for the kernel.
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4 Finding a non-empty algebraic subset of the

kernel

By Theorem (2) all the algebraic subsets of a set F are contained in the kernel
of F . By Theorem (1), there is a non-empty algebraic subset of K if and only
if K contains an open-flower or a closed-flower set. The following two lemmas
show how to find a closed-flower or an open-flower set contained in K. Thus
giving a solution for the NAS problem.

 P 

N 

Z 

Z 

(a) (b) 

+2 +2 +1 +1 0 0 

- 2 - 2 - 1 - 1 0 0 

P 

N 

P ′ 

N ′ 
 

Figure 4: (a) a solution of (6). (b) a closed-flower set contained in K

Lemma 5 Let G be a non-bipartite and loopless graph. An edge set F with
kernel K contains a closed-flower set if and only if G − K is bipartite.

Proof: (only if ) Let A be a closed-flower subset of F . By Theorem (2), A is
a subset of K. By definition of closed-flower set, G − A is bipartite and, then,
G − K must be bipartite too.
(if ) Let G be non-bipartite and loopless. Let (P,N) be the signed support of a
solution of system (6). Let Z = V (G)−P ∪N . If Z is empty clearly [P, P ] is a
closed-flower set. Otherwise, since G−K is bipartite, the subgraph induced by
Z is bipartite too because K ∩ [Z,Z] = ∅. Now if P ′ and N ′ are two sides of the
subgraph induced by Z, then let A = [P ∪P ′, P ∪P ′]. Since [N,V (G)−P ] = ∅,
we have that G−A is bipartite too. Note that A cannot be empty for otherwise
G would be bipartite. Clearly A is a closed-flower set. 2

Example 1 (contd) Fig. 4(a) highlights the signed support of a solution of (6).
Fig. 4(b) [P ∪P ′, P ∪P ′] is the set of bold edges. Note that G−K is a bipartite
graph. 2

Lemma 6 Let G be a connected graph and F a subset of E(G). The kernel K
of F contains an open-flower set if and only if G−K has a bipartite component
B∗ such that

(i) each edge in K with both endpoints in V (B∗) is a loop
(ii) no two edges in K are attached to opposite sides of B∗
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Proof: (if ) The subset of K formed by the edges that are attached to B∗ is an
open-flower set.
(only if ) Let A be an open-flower set contained in K and (P,N) the signed
support of a solution of (1). Let B be the subgraph induced by [P,N ]. If B
contains no edge of K then the statement is trivially true since we can take
B∗ = B. Otherwise let B1, . . . , Bp be the bipartite connected components of
B − K. Recall that (P,N) is the bipartition of B such that all the edges of A
are attached to P. Also let (Pi, Ni) be the bipartition of Bi such that Pi ⊆ P
and Ni ⊆ N , i = 1, . . . , p.
Suppose by contradiction that for every component Bi of B − K there always
exists at least one edge of K attached to Pi and at least one edge of K attached
to Ni. Take the component Bi = Bi1 . If, for contradiction, an edge of K has
both endpoints in the same component Bi clearly it closes an even cycle C such
that |C ∩K| = 1, which contradicts Lemma (3). Then since [N,V (G)− P ] = ∅
every edge of K attached to Ni1 has the other end point attached to some other
component B′ of {B1, . . . , Bp} − {Bi1}.
Let ei1 be one of such edges attached to Bi1 and also attached to B′ = Bi2 .
Repeating this argument we obtain a sequence Bi1 , ei1 , Bi2 , . . . , eik−1

, Bik
of

components of B − K and edges eij
of K (see Fig. 5(a)). Let Bik

be the first
component in the above sequence such that Bik

= Bih
for some 1 ≤ h < k

(see Fig. 5(b)). Let (vij
, uij

) = eij
such that vij

∈ Nij
and uij

∈ Pij+1
.

Consider now the sequence Bih
, eih

, Bih+1
, eih+1

, . . . , Bik−1
, eik−1

. Let pij
be

a simple path through Bij
from uij−1

to vij
and let pih

be a simple path
through Bih

from uih−1
to vih

. Clearly, we have obtained an even cycle C =
pih

, eih
, pih+1

, eih+1
, . . . , pik−1

, eik−1
. It is not difficult to see that all the edges

of C ∩ K have an even distance each other in C. But, then, by Lemma (3), all
the edges eih

, eih+1
, . . . , eik−1

are not in the kernel, a contradiction. 2

To sum up we have the following algorithm to find an algebraic subset of F .

FIND ALGEBRAIC SUBSET
input: Graph G and an edge set F
output: A non-empty algebraic subset of F if any

begin

find the kernel K of F ;
if G is not bipartite and loopless and G − K is bipartite then begin

compute the signed support (P,N) of a solution of (6);
let (P ′, N ′) be a bipartition of the subgraph of G induced by
V (G) − (P ∪ N);
output [P ∪ P ′, P ∪ P ′] and EXIT;

else begin

for each bipartite component B of G − K do begin

let A∗ = {e : e ∈ K and e is attached to B};
if condition (i) and (ii) of Lemma (6) are satisfied for A∗ then

output A∗;
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B1 Bih
Bik-1Bij

B1 Bi2
BikBij

(a)

(b)

ei1
ei2 eij

Figure 5: The connected bipartite components of B − K and some edges of K
connecting those bipartite components.

end

end

end

Theorem 3 Algorithm FIND ALGEBRAIC SUBSET correctly finds a non-
empty algebraic subset of a given edge set.

Proof: The correctness of the algorithm follows from Lemma (5) and Lemma
(6). 2

5 Computational aspects

In this section we show how to solve efficiently the tasks of algorithm FIND
ALGEBRAIC SUBSET : finding the kernel of F , finding a solution of system
(6) and checking the condition (i) and (ii) of Lemma (6) for an edge set.
Gusfield [9] gave an algorithm to find the kernel of a set F in the case of bipartite
graphs. Let (P,N) be a bipartition of G. Direct all the edges of F from P to
N thus obtaining a mixed graph G′. The algorithm is based on the following
proposition

Proposition 1 [9]. All the edges not in any strongly connected component of
G′ are in the kernel of F .
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By Proposition (1), in a bipartite graph the kernel of an edge set can be found
using the following algorithm [9]:

FIND KERNEL
input: A bipartite connected graph G and a subset F of E(G)
output: The kernel K of F
begin

Let (P,N) be a bipartition of G;
Direct all the edges e∈F from P to N . We thus obtain a mixed
graph G′;
Compute the strongly connected components of G′;
Output the set of directed edges joining distinct strongly connected
components of G′;

end

In order to prove Lemma (4) we give an algorithm that given a set F finds a
solution of (6) for the kernel of F . First we see how to find a solution of (6),
when the graph is bipartite. Next we extend the algorithm to non-bipartite
graphs. We will use the concept of the superstructure [8] of a directed graph.
If G is a directed graph its superstructure H is the directed graph where the
node set is the set of strongly connected components of G and the edge set
E(H) = {(u, v) : there exists in G at least one directed edge from component u
to component v}

COMPUTE SUPPORT
input: A bipartite connected graph G and a subset F of E(G)
output: A solution of (6) for the kernel of F

begin

Let (P,N) be a bipartition of G;
Direct all the edges e ∈ F from P to N . We thus obtain a mixed
graph G′;
Find the strongly connected components of G′ ;
Let H be the superstructure of G′;
Let (B1, B2, . . . , Bh) be a topological sort of H where Bi is a
strongly connected component of G′;
Let (Pi, Ni) be the bipartition of Bi such that Pi ⊆ P and Ni ⊆ N ,
i = 1, . . . , h.;
Set

cv =

{

h − i if v ∈ Pi

−h + i if v ∈ Ni

Output (cv)v∈V (G);
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end

Lemma 7 The algorithm COMPUTE SUPPORT correctly finds a solution of
(6).

Proof: Let (cv)v∈V (G) be the output of algorithm COMPUTE SUPPORT and
let k =

∑

v∈V (G) cvmv. Let (B1, B2, . . . , Bh) be a topological sort of H where

Bi is a strongly connected component of G′. First note that if e = (u, v) is in a
strongly connected component Bi then cu + cv = 0. Therefore k(e) = 0 if and
only if e = (u, v) is in a strongly connected component, and this is correct since,
by Proposition (1), e is not in the kernel of F .
Now let (u, v) be an edge not in any strongly connected component of G′.
Suppose that u ∈ P and v ∈ N . Thus (u, v) is directed from u to v. If Bi is the
component containing u and Bj the component containing v then Bi is before
Bj in the topological sort of H, that is, i < j. Since cu = h− i and cv = −h+ j,
then k((u, v)) = cu + cv = h − i − h + j = j − i > 0 as supposed to be. 2

Algorithms FIND KERNEL and COMPUTE SUPPORT apply to bipartite
graphs. In the case of non-bipartite graphs we can use what is called in [17] the
bipartite transform of G which is a bipartite graph (this trasformation is also
called monotonization in [11]). Then we can apply the above two algorithms to
the bipartite transform to find both the kernel and a solution of (6). Here the
details.

Let V ′ and V ′′ two copies of V (G). If u is a node of V (G) with u′ and u′′ we
denote the copy of u in V ′ and V ′′ respectively. Then the bipartite transform
of G is the graph H where V (H) = V ′ ∪ V ′′ and

E(H) = {(u′, v′′) : (u, v) ∈ E(G), u′ ∈ V ′, v′′ ∈ V ′′}∪
∪{(u′′, v′) : (u, v) ∈ E(G), u′′ ∈ V ′′, v′ ∈ V ′}

where for every edge (u, v), with u 6= v, of G we denote with (u′, v′′) and (u′′, v′)
the two edges of the bipartite graph H in correspondence to (u, v). If (u, v) is
a loop, that is u = v, then (u′, v′′) = (u′′, v′) = (u′, u′′) and there is one single
edge of H in correspondence to (u, v). Therefore the set

D = {(u′, v′′) : (u, v) ∈ F, u′ ∈ V ′, v′′ ∈ V ′′}∪
∪{(u′′, v′) : (u, v) ∈ F, u′′ ∈ V ′′, v′ ∈ V ′}

is the subset of E(H) in correspondence of F . Note that H is bipartite with
bipartition (V ′, V ′′). Now let N be the incidence matrix of H and consider the
following system of linear equations

Nz = d (7)

where du′ := du′′ := bu for all u ∈ V (G) where bu was defined in equation (4).
Note that if x∗ is a non negative solution of (3) then

z∗((u′, v′′)) := z∗((u′′, v′)) := x∗((u, v)) (u, v) ∈ E(G)
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is a non negative solution of (7). The following proposition shows the relation
between the graph G and its bipartite transform.

Proposition 2 [17, 11] Let x be a non negative solution of (3) and z be a non
negative solution of (7). Then

z#((u′, v′′)) := z#((u′′, v′)) := x((u, v)) (u, v) ∈ E(G)

is a non negative solution of (7) and

x#((u, v)) =
1

2
[z((u′, v′′)) + z((u′′, v′))] (u, v) ∈ E(G)

is a non negative solution of (3).

Note that H is a symmetric graph in the sense that, given a non negative solution
z of (7), if we take z#((u′, v′′)) := z((u′′, v′)) and z#((u′′, v′)) := z((u′, v′′)) for
all (u, v) ∈ E(G) then we obtain again a non negative solution z# of (7). It
follows that the kernel K ′ of D is also symmetric, i.e. (u′, v′′) ∈ K ′ if and only
if (u′′, v′) ∈ K ′. Therefore, by Proposition (2), we have the following

Proposition 3 [17] The kernel of F is the set

K = {(u, v) : (u, v) ∈ E(G), (u′, v′′) ∈ K ′ and (u′′, v′) ∈ K ′}

where K ′ is the kernel of D.

The following Lemma gives a method to find a solution of (6) when G is a
non-bipartite graph. It shows how to obtain from a solution of (6) for the kernel
of D, a solution of (6) for the kernel of F . The solution of (6) for the kernel
of D can be obtained using the algorithm COMPUTE SUPPORT since H is a
bipartite graph.

Lemma 8 If (gv)v∈V (H) is a solution of (6) for the kernel of D then

(gv′ + gv′′)v∈V (G)

is a solution of (6) for the kernel of F .

Proof: For every node v of V (G) let cv = gv′ + gv′′ . Let K ′ be the kernel of D.
If (u′, v′′) ∈ K ′ then (u′′, v′) ∈ K ′, gu′ + gv′′ > 0 and gu′′ + gv′ > 0 . Therefore
(u, v) ∈ K and

cu + cv = gv′ + gv′′ + gu′ + gu′′ > 0

Also if (u′, v′′) /∈ K ′ then (u′′, v′) /∈ K ′, gu′ + gv′′ = 0 and gu′′ + gv′ = 0 .
Therefore (u, v) /∈ K and

cu + cv = gv′ + gv′′ + gu′ + gu′′ = 0

To sum up (cv)v∈V (G) is a solution of (6) for the kernel of F . 2

The strongly connected components and a topological sort of a graph can
be found using standard graph algorithms [7] and all take time linear in the size
of the graph.



M. Mezzini, Nonempty Algebraic Subsets, JGAA, 11(1) 239–257 (2007) 253

Remark 1 The time complexity of COMPUTE SUPPORT and FIND KERNEL
is linear in the size of the graph G.

Example 2 Consider the graph G of Fig. 6. Let F be the set of bold edges.
We have that K = F . Fig. 7 shows the bipartite transform H of G where
the zero-weighted edges of D are directed. There are six strongly connected
components of H. They are ordered from left to right. The coefficients of a
solution of (6) are c1 = +5, c2 = −5, c3 = +3, c4 = −3, c5 = +1 and c6 = −1
as it is easily checked using algorithm COMPUTE SUPPORT and Lemma 8.2

2 6

3

4

51

Figure 6: A graph and, in bold, a subset F of edges.

2 6

3′

4

5′1′ 4′6′ 2′

15 3

+5

-5

+4

-4

+3

-3

+2

-2

+1

-1

0

0

Figure 7: The bipartite transform H of the graph of Fig. 6. The edges of H in
correspondence of F are directed from the upper part to the lower part.

In order to decide whether there exists a bipartite component of G−K that
satisfies the conditions (i) and (ii) of Lemma (6), we can proceed as follows.
Let B1, . . . , Bh be the bipartite connected components of G − K. Suppose we
have for each node v of Bi, i = 1, . . . , h the following
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cn(v) ∈ {1, . . . , h} the number i of the bipartite component Bi

containing v
side(v) ∈ {1, 2} one of the two sides of the bipartite component

Bi containing v

and set

ATj(B) =







1 if at least one edge of K is attached to side j of Bi

2 if an edge of K has both end point attached to side j of Bi

0 otherwise;

for j ∈ {1, 2}. For each link e = (u1, u2) of K, if side(u1) = side(u2) and
cn(u1) = cn(u2) then we set ATside(u1)(Bi) := 2. Otherwise if uj , j = 1, 2
is attached to the side k of Bi then we set ATk(Bi) := 1. Finally for each
component Bi we check if AT1(Bi) + AT2(Bi) = 1. In this case conditions (i)
and (ii) of Lemma (6) are satisfied. Since all those tasks take time linear in the
size of the graph and by Remark 1, we have the following

Theorem 4 Algorithm FIND ALGEBRAIC SUBSET has time complexity lin-
ear in the size of the graph.

By Theorem (4), if M is the incidence matrix of a graph G we have a linear
time algorithm to find a non-empty algebraic subset (if any) of a given edge set
F . Moreover we can use the algorithm FIND ALGEBRAIC SUBSET to find a
maximal algebraic subset of F as follows

MAXIMALLY
input: a graph G and a subset F of edges
output: a maximal algebraic subset of F

begin

M := ∅;
while A:= FIND ALGEBRAIC SUBSET (G, F ) is not empty do

begin

M := M ∪ A;
F := F − A;

end

output M ;
end

The time complexity of the algorithm MAXIMALLY is at most |F | times
the time complexity of FIND ALGEBRAIC SUBSET. Therefore MAXIMALLY
takes at most quadratic time in the size of G.

6 Closing remarks

The NAS problem was first studied in the context of the inference problem of
summary data. The NAS problem was proven to be NP -complete in the general
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case [19], i.e. when M is an arbitrary binary matrix. In this paper we showed
that the NAS problem can be solved in linear time when M is the node-edge
incidence matrix of a graph. If the edge set of the graph is algebraic, we can use
the same algorithm to find a proper subset of E(G) (if any) that is algebraic
and contains a given edge set F . In fact if we find an algebraic subset A of
E(G)−F then it is not difficult to check that E(G)−A is an algebraic superset
of F when E(G) is algebraic. Note that the edge set of every loopless graph is
algebraic. At this point it is an open problem how to find an algebraic superset
of a given edge set when the graph contains loops. Another open question is
that of determining if there exists a polynomial time algorithm to solve the
problem of finding a maximum algebraic subset of an edge set.
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