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Abstract

The task of finding the largest subset of vertices of a graph that induces
a planar subgraph is known as the Maximum Induced Planar Subgraph
problem (MIPS). In this paper, some new approximation algorithms for
MIPS are introduced. The results of an extensive study of the performance
of these and existing MIPS approximation algorithms on randomly gener-
ated graphs are presented. Efficient algorithms for finding large induced
outerplanar graphs are also given. One of these algorithms is shown to
find an induced outerplanar subgraph with at least 3n/(d + 5/3) vertices
for graphs of n vertices with maximum degree at most d. The results
presented in this paper indicate that most existing algorithms perform
substantially better than the existing lower bounds indicate.
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1 Introduction

The Maximum Induced Planar Subgraph problem (MIPS) is the task of find-
ing the size of the largest subset of vertices in a graph that induces a planar
subgraph. This problem is known to be NP-hard [19]. A similar problem is the
Maximum Planar Subgraph problem, which is the task of finding the largest
subset of edges in a graph that forms a planar subgraph. A comprehensive sur-
vey of the latter problem, with brief discussion of MIPS, is provided by Liebers
[14].

Planarity of graphs has applications in areas such as graph drawing, circuit
design and facility layout [4, 13, 12]. Many graph drawing applications find a
large planar subgraph as the initial step in determining a layout of a graph.
Jünger and Mutzel [13] discuss the use of MPS in the use of applications for
graph layout. MIPS was little studied until Edwards and Farr [6, 8, 9] showed
that the MIPS is useful in determining the fragmentability of classes of graphs.
Fragmentability provides a measure of how susceptible graphs are to being bro-
ken into components of bounded size by the removal of a small proportion of
vertices. A planar graph can be partitioned into such components by remov-
ing a small proportion of the vertices in linear time (Lipton and Tarjan [15]).
Edwards and Farr show that a bound on their measure of the fragmentability
of non-planar classes of graphs can be obtained from bounds on the proportion
of vertices that need to be removed in order to produce a maximum induced
planar subgraph [6].

In this paper, several new approximation algorithms for MIPS are presented.
These include two new algorithms for finding large induced outerplanar sub-
graphs. An experimental analysis of both the new algorithms and the existing
algorithms is provided. Algorithms for other subclasses of planar graphs are
also considered for comparative purposes. These include maximal independent
set and maximal induced forest.

Both new and existing algorithms were implemented. Their behaviour in
terms of performance and running time was observed on over 12,000 randomly
generated graphs of up to 10,000 vertices and on GDT-test-suite-CU 1, a graph
set of about 10,000 graphs extracted from the ALF graph base used in [5].
Experimental results indicated that most algorithms performed substantially
better than the best known lower bounds. In the experiments undertaken, the
approximation algorithms for finding large induced outerplanar subgraphs pro-
duced larger subgraphs than those produced by many of the existing algorithms
for MIPS. A mathematical analysis of one of the algorithms for finding an in-
duced outerplanar subgraph shows that it finds one with at least 3n/(d + 5/3)
vertices for graphs of n vertices with maximum degree at most d, which is close
to the best known lower bound of 3n/(d + 1) for MIPS.

All graphs are simple, containing no multiple edges or loops. In this paper n
denotes the number of vertices and m denotes the number of edges in a graph.
We write P for the vertex set of an induced planar subgraph 〈P 〉 of a graph G

1Downloaded from the GDTToolKit homepage (www.graphdrawing.org) on 4 January,
2007
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and R = V (G) \ P . The neighbours of a vertex v that lie in a set of vertices
X is denoted by NX(v) and the number of neighbours of v in X is denoted by
dX(v).

2 Existing Algorithms for MIPS

There are few existing approximation algorithms for MIPS. In this section three
of these algorithms are discussed. Algorithms for finding a maximal independent
set and maximal induced forest are also considered. The subgraphs produced by
these algorithms are planar (although not maximally so). These algorithms are
examined in order to provide some comparison between these simpler approaches
and more sophisticated methods.

2.1 The Halldórsson-Lau Algorithm

Halldórsson and Lau [11] give a linear time algorithm for graphs of maximum
degree at most d with a performance ratio of 1/⌈(d + 1)/3⌉. They use a result
of Lovász [16], who showed that for any graph of maximum degree d there
exists a partition of the vertex set of the graph into α parts such that the parts
induce subgraphs G1, G2, ..., Gα with each subgraph Gi having maximum degree
at most di, and Σα

i=1di = d − α + 1. Hence the number of parts required to
ensure each subgraph has at most degree 2 is ⌈(d + 1)/3⌉. Halldórsson and
Lau’s algorithm creates such a partition. A largest part is selected as the planar
subgraph. As the subgraph produced has maximum degree at most two, this
subgraph is unlikely to be a maximal planar subgraph.

2.2 The Vertex Addition Algorithm

Another algorithm for finding induced planar subgraphs for graphs of maximum
degree at most d was presented by Edwards and Farr [7] based on a proof in
[6]. In this paper, this algorithm will be referred to as the Vertex Addition
algorithm. This algorithm has time complexity O(mn) and finds an induced
planar subgraph of at least 3n/(d+1) vertices, which implies a performance ratio
of at least 3/(d+1). This performance ratio improves on that of the Halldórsson-
Lau algorithm for cases where d 6≡ 2 (mod 3). Furthermore, the subgraphs
produced by Edwards and Farr are not constrained to having maximum degree
at most two. This algorithm partitions V = V (G) into two sets, P (the vertices
in the induced planar subgraph) and R = V \P . Initially P is empty and R = V .
Vertices are incrementally added to P (and removed from R) whilst maintaining
the planarity of 〈P 〉. In some cases a vertex in P is interchanged with a vertex
in R. The restrictions on selection of vertices for inclusion into P are stricter
than required to maintain planarity, but allow certain properties in the graph to
be maintained which enable the performance of the algorithm to be analysed.
See [6, 7] for further information.
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The subgraphs produced by this algorithm are not necessarily maximal. The
authors note that in some cases after the algorithm has stopped, it is possible
to add some additional vertex to P whilst maintaining planarity [7]. Edwards
and Farr comment that although it is clear that their lower bound is not tight,
the difference between it and the actual value is unknown.

2.3 The Vertex Removal Algorithm

Edwards and Farr [8, 9] also provided another algorithm for finding large induced
planar subgraphs for a wider class of graphs, namely those of average degree
at most d̄. This algorithm will be referred to as the Vertex Removal algorithm.
It finds an induced subgraph of at least 3n/(d̄ + 1) vertices for a graph with
average degree at most d̄ ≥ 4 or a graph that is connected and has average
degree at most d̄ ≥ 2. This algorithm also partitions the vertices into two sets,
P and R, but in this case initially P = V and R = ∅.

The graph is reduced by either removing any vertex of degree at most one,
or by removing any vertex v of degree two and its incident edges, uv and vw,
and inserting a single edge uw if such an edge is not already in the graph. These
operations are performed iteratively until neither operation can be applied to
the graph. This process is said to produce a reduced graph. At each iteration (a)
a vertex of highest degree in the reduced graph is removed and (b) all possible
reductions are performed on the graph 〈P 〉. To avoid the cost of planarity
testing at each iteration, Edwards and Farr use a loop condition that a vertex
is to be removed from the reduced graph while the number of removed vertices
is less than a value ρ which they calculate to be an upper bound on the size of
the smallest set X of vertices of G such that G − X is planar.

Faria, Figueiredo, Gravier, Mendonça and Stolfi [10] have presented an al-
gorithm similar to the Vertex Removal algorithm. However, this algorithm is
limited to graphs of maximum degree (and thus average degree) at most 3. The
performance ratio of this algorithm is 3/4 which is the same as that achieved
by the Vertex Removal algorithm for graphs of average degree at most 3.

2.3.1 The Vertex Subset Removal Algorithm

A modification of the Vertex Removal algorithm called the Vertex Subset Re-
moval algorithm was also implemented. This algorithm was based on private
communication from Edwards and Farr. Their algorithm was modified to select
the vertex v ∈ P with the largest number of neighbours of degree lower than the
degree of v in the reduced graph. This is the first MIPS algorithm to consider
ordering of selection of vertices. Liebers [14] comments that there is no known
investigation of the impact of different vertex orderings on the size of subgraph
produced. The comparison of the behaviour of the Vertex Removal and the
Vertex Subset Removal algorithms provides some indication of the desirability
of such a strategy.
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2.4 Other Algorithms

With NP-hard problems there is usually a trade-off between quality of solu-
tion and time taken to produce the solution. Sometimes naive algorithms can
provide a reasonable solution in less time than a more sophisticated algorithm.
In the experiments undertaken two such algorithms were implemented: one to
find a maximal independent set and the other to find a maximal induced for-
est. A comparison of the time taken and the size of subgraph produced by these
algorithms with those produced by the approximation algorithms for MIPS pro-
vides an indication of what is gained by using more sophisticated methods and
at what cost in terms of time.

By Turán’s theorem [2, p.81], a maximal independent set has size at least
n/(d+1), which is 1/3 of the best known lower bound on the size of an induced
planar subgraph. In our experiments we use a standard sequential algorithm
that finds a maximal independent set. Initially, the vertices are sorted into
ascending order of degree. Using bucket sort with at most n − 1 buckets this
can be done in O(n) time. Each vertex is examined and added to P if it is not
adjacent to any vertex in P . Thus, a maximal independent set can be found in
time O(n).

Alon, Mubayi and Thomas [1] showed that a graph of average degree d̄ has a
maximal induced forest of size at least 2n/(d̄+1), which is 2/3 of the best known
lower bound for MIPS. The algorithm implemented to find a maximal induced
forest selects vertices in increasing order of degree. Initially, the vertices are
sorted into ascending order of degree, which can be done in O(n) time. Each
vertex is examined and added to P if it has at most one neighbour in any
component in 〈P 〉. If d is the maximum degree of the graph, this takes time
O(nd). Thus the total time taken to determine which vertices can be added
to P and update the components of 〈P 〉 is at most O(nd). Thus, a maximal
induced forest can be found in O(nd) time.

3 New Algorithms

In this section some new algorithms for finding a large induced planar subgraph
are introduced, including algorithms for finding a large induced outerplanar
subgraph. The performance of one of these algorithms is analysed mathemati-
cally, and a lower bound of 3n/(d+5/3) on its performance ratio is established.
This is close to the bound of 3n/(d + 1) for the existing algorithms [7, 8, 9] for
MIPS. Furthermore, at least one additional vertex can be added to an induced
outerplanar subgraph whilst maintaining planarity (unless the original graph is
outerplanar). In most cases the size of a maximum induced planar subgraph is
larger than the size of a maximum induced outerplanar subgraph. However, in
the experiments performed the size of the induced outerplanar subgraph found
was close to the largest induced subgraph found by any of the MIPS algorithms.

Our first two algorithms form an outerplanar subgraph from a maximal
induced forest. They both incrementally add vertices whilst maintaining out-
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erplanarity. In the second algorithm a vertex in the planar set is sometimes
interchanged with a vertex in the non-planar set. This algorithm allows the size
of the outerplanar subgraph produced to be analysed more easily.

A third algorithm is presented that produces induced planar subgraphs with
a more restricted structure which we call a palm tree.

None of the existing algorithms, or the algorithms discussed so far in this
section, add vertices that introduce K4 minors into the induced subgraphs.
Furthermore these algorithms usually only add vertices with few neighbours in
P . An algorithm for an operation that identifies some of the vertices whose
addition may produce an induced planar subgraph containing a K4 minor was
also designed (see Section 3.3). In our experiments, the effects of combining this
operation with some of the existing MIPS algorithms were observed.

3.1 Algorithms for Finding Large Induced Outerplanar

Subgraphs

In this section two algorithms for finding a large induced outerplanar subgraph
are introduced. The second of these algorithms can be shown to find an induced
outerplanar subgraph containing at least 3n/(d + 5/3) vertices. An analysis of
the time complexities of these algorithms is included. This analysis assumes
the use of the most efficient data structures and sorting/searching algorithms.
These may not be those used in the actual implementation of the algorithms.

In Section 4.2 the performance of these algorithms is compared to that of
the previous algorithms. The comparison of size of subgraph produced by these
algorithms gives some indication of the improvement in size of subgraph achieved
by using an algorithm to find a planar subgraph in comparison to an algorithm
that finds an outerplanar subgraph.

3.1.1 Outerplanar Algorithm 1 (OP1)

The OP1 algorithm (see Algorithm 1) initially finds a maximal induced forest.
It then identifies certain vertices with at most two neighbours in any component
in 〈P 〉 that can be added to P whilst maintaining outerplanarity.

A block is a maximal connected subgraph containing no cutvertex. Propo-
sition 2 uses the following fact about outerplanar graphs:

Fact 1 A graph G is outerplanar if and only if all blocks of G are outerplanar.

Proposition 2 Algorithm OP1 finds an induced outerplanar subgraph.

Proof: Initially, the algorithm finds a maximal induced forest, which is an
outerplanar subgraph. At each loop, Algorithm OP1 adds a vertex v which
has at most two neighbours in any single component to P . If vertex v has at
most one neighbour in any component of an outerplanar graph 〈P 〉, then it is
plain that 〈P ∪ {v}〉 is outerplanar. Thus it suffices to show that if 〈X〉 is an
outerplanar component of 〈P 〉, and v has two neighbours in X, then 〈X ∪ {v}〉
is outerplanar.
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Input: A graph G = (V,E) of maximum degree at most d
P := ∅,
R := V .
Find a maximal induced forest F : P := V (F ), R := V \ P .
while ∃v ∈ R satisfying the following criteria:
• Vertex v has at most two neighbours in any single component in 〈P 〉
• In each component 〈X〉 of P in which v has two neighbours, w1 and
w2, there exists a w1–w2 path T , such that at most one edge of T belongs
to a cycle of 〈P 〉, and such an edge (if it exists) belongs to only one cycle
of 〈P 〉
do

Select the vertex v ∈ R having the lowest dV (v) satisfying the above
criteria;
P := P ∪ {v};
R := R \ {v};

end
Output: P

Algorithm 1: Outerplanar Algorithm 1 (OP1)

Let w1 and w2 be the neighbours of v in X, and let T be a w1–w2 path in
〈X〉.

Now 〈X〉 is an outerplanar graph, so its blocks are outerplanar (see Fact 1).
Consider the blocks of 〈X ∪ {v}〉.

If T contains no edge that belongs to any cycle in 〈X〉, then the blocks in
〈X ∪ {v}〉 are the block B = (T ∪ {v}) + vw1 + vw2 and all the blocks of 〈X〉
that are not just edges of T . The block B is outerplanar as it is a cycle, and all
the blocks of 〈X〉 are outerplanar, so 〈X ∪ {v}〉 is outerplanar.

Alternatively, suppose T contains an edge e that belongs to a cycle C. Since
e belongs to no other cycle of 〈X〉, C is in fact a block of 〈X〉. Then the blocks
in 〈X ∪ {v}〉 are the block B + C, formed from B and C, and all the blocks of
〈X〉 that are not just edges of T . The block B + C is a theta graph, that is,
a graph consisting of three internally disjoint paths with the same two distinct
endpoints. One of these three paths is a single edge in the block B + C, so it is
outerplanar.

As all blocks in 〈X ∪ {v}〉 are outerplanar, 〈X ∪ {v}〉 is outerplanar. 2

Proposition 3 Algorithm OP1 has time complexity O(mn).

Proof: Let d be the maximum degree of the input graph.
Algorithm OP1 consists of two phases. In the first phase a maximal induced

forest is found in time O(nd) (see Section 2.4).
The loop in Algorithm OP1 then adds vertices to P whilst maintaining out-

erplanarity. There are at most n(d− 1)/(d + 1) vertices in R at the commence-
ment of the loop. At each iteration the algorithm checks if a path satisfying
the criteria in the algorithm exists. The path is found by a modified depth first
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search technique. A valid path contains at most one edge belonging to a cycle
in 〈P 〉. If in any branch of the search tree a second edge belonging to a cycle is
encountered, no further edges in this branch are examined. Thus, no edge can
be examined more than once. Thus the search takes O(m) time and the loop
takes O(mn) time.

As m > d, the total time taken by the algorithm is O(mn). 2

3.1.2 Outerplanar Algorithm 2 (OP2)

Algorithm OP2 (see Algorithm 2) also initially finds a maximal induced forest.
It then identifies additional vertices that can then be added whilst maintaining
outerplanarity. However, Algorithm OP2 also interchanges some vertices in P
and R in order to ensure that when the algorithm stops, all vertices in R have
at least three neighbours in components of size at least three in 〈P 〉. This
enables a lower bound on the size of subgraph produced by this algorithm to be
determined, but incurs an additional running cost of identifying such vertices
for removal.

Proposition 4 Algorithm OP2 finds an induced outerplanar subgraph.

Proof: Initially P is the vertex set of a maximal induced forest, so 〈P 〉 is
outerplanar. In the first loop of Algorithm OP2, a vertex v is added if, in each
component in 〈P 〉, the neighbours of v lie on a unique path. It is sufficient
to show that such a vertex can be added to a single component in 〈P 〉 whilst
maintaining outerplanarity.

As a vertex v with at most one neighbour in any component can easily be
added to P and maintain outerplanarity, we will consider the case where v has
at least two neighbours in component 〈X〉 where X ⊆ P .

Let T be the path containing the neighbours w1, w2, . . . wk of v in 〈X〉.
Now 〈X〉 is an outerplanar graph. As no two vertices in T are connected by

any other path, T contains no edge that forms part of a cycle in 〈X〉. Thus the
blocks in 〈X ∪{v}〉 are the block B = (T ∪{v})+ vw1 + vw2 + . . .+ vwk and all
the blocks of 〈X〉 that are not just edges of T . It is clear that B is outerplanar.
Thus all the blocks of 〈X ∪ {v}〉 are outerplanar.

Thus, when the first loop of Algorithm OP2 is completed, 〈P 〉 is outerplanar.
The second loop in Algorithm OP2 deals with vertices in R that have at

most two neighbours in Q. It is clear that a vertex with at most one neighbour
in any non-tree component and at most two neighbours in any tree component
can be added to P whilst maintaining outerplanarity. We need only show that
a vertex v with two neighbours, say w1 and w2, in some non-tree component
〈X〉 can be added to the component whilst maintaining outerplanarity.

We showed in the proof of Proposition 2 that if there exists a unique w1–
w2 path in 〈X〉, then v can be added to this component whilst maintaining
outerplanarity. It remains to prove that v can be added to X when the w1–w2

path S is not unique.
Suppose for one of the neighbours of v in X, say w1, there exists a path

w1, . . . , x that is disjoint from S except for the endpoints. If w1 is removed from
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Input: A graph G = (V,E)
P := ∅,
R := V .
Find a maximal induced forest F : P := V (F ), R := V \ P .
while ∃v ∈ R such that for each component 〈X〉, where X ⊆ P , either v
has no neighbours in 〈X〉, or the neighbours of v in 〈X〉 lie along a
unique path T in 〈X〉 (i.e., there is no other path connecting any two
vertices in this path) do

P := P ∪ {v}; R := R \ {v};
end
Let Q ⊆ P denote the set of vertices belonging to components of size at
least three in 〈P 〉.
while ∃v ∈ R such that v has at most two neighbours in 〈Q〉 do

if vertex v has at most one neighbour in 〈Q〉 then
P := P ∪ {v}; R := R \ {v};

else if v has two neighbours, w1, w2, in some non-tree component
〈X〉 of 〈Q〉 (and the other neighbours of v in P are in components of
size at most 2) then

Let S be a w1–w2 path in 〈X〉.
if S is the unique w1–w2 path in 〈P 〉 then

P := P ∪ {v}; R := R \ {v};
else

Then there exists a w–x path in 〈P 〉 that is disjoint from S
except for the endpoints w and x.
if such a path exists with w1 as an endpoint then

w = w1

else if such a path exists with w2 as an endpoint then
w = w2

else
Let w be the first vertex on S for which such a path exists

end
P := (P ∪ {v}) \ {w};
R := (R ∪ {w}) \ {v};

end

else if v has at most one neighbour in any non-tree component and at
most two neighbours in the tree components in 〈Q〉 then

P := P ∪ {v}; R := R \ {v};
end

end
Output: P

Algorithm 2: Outerplanar Algorithm 2 (OP2)
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X, 〈X −{w1}〉 is outerplanar. Furthermore, vertex v has only one neighbour in
X \ {w1} and so 〈X \ {w1} ∪ {v}〉 is outerplanar.

Alternatively suppose that w is the first vertex on S such that a w–x
path exists in 〈X〉 which is disjoint from S except for the endpoints. Let
w1, . . . , wi, w, . . . , w2 be this w1–w2 path. As no path exists from any vertex
in {w1, . . . , wi} to any vertex in {w, . . . , w2}, 〈X \ {w}〉 has two components.
As vertex v has one neighbour in each of these components, v can be added to
X \ {w} whilst maintaining outerplanarity.

Thus if the two neighbours, w1 and w2, of v in component 〈X〉 lie on a
non-unique w1–w2 path, there exists a vertex w ∈ X such that 〈X \ {w} ∪ {v}〉
is outerplanar.

Thus Algorithm OP2 finds an induced outerplanar subgraph. 2

Proposition 5 Algorithm OP2 has time complexity O(m2n).

Proof: Let d be the maximum degree of the input graph.
Algorithm OP2 initially finds a maximal induced forest, which can be found

in time O(nd) (see Section 2.4).
In the first loop each of the vertices in R are examined and those that satisfy

the criteria are added to P . There are at most n(d − 1)/(d + 1) vertices in R.
A path containing the neighbours of v ∈ R in a component 〈X〉 is found by
initially having a path of length one consisting of a single neighbour of v. The
path is then extended (at either end) including additional neighbours of v when
possible until all the neighbours are in the path. This can be done in time
O(m). Suppose the path T cannot be extended to include all the neighbours
of v, but there exists a path S that does contain all the neighbours of v. As T
and S differ in at least one subpath, there exists at least two vertices in S that
are connected by more than one path. Thus the neighbours of v do not lie on
a unique path (in the sense required by the loop condition). Thus if the path
cannot be extended to include all the neighbours of v then either no such path
exists, or the path containing the neighbours of v is not unique.

If a path containing all the neighbours of v is found it may not be unique. In
order to show that the path T is not unique (in the sense demanded by the first
loop), another path that is not a subpath of T must be found that connects two
vertices belonging to the path. For each edge wiwi+1 on the path, the algorithm
attempts to find an alternative path in 〈X〉 \ {wiwi+1} from wi to a vertex that
occurs further along the path T . If such a path exists, then T is not unique.
As there are at most m edges in T and for each edge an alternative path, if one
exists, can be found in time O(m), the total time to check if an alternative path
exists is O(m2). For each of the at most n vertices in R the first loop finds a
path in O(m) time, then searches for an alternative path in O(m2) time. Thus
the first loop takes time O(m2n).

Let Q ⊆ P be the set of vertices belonging to components of size at least
three in 〈P 〉. At each iteration of the second loop a vertex v with at most two
neighbours in Q is added to P , and in some cases a vertex w with at least three
neighbours in Q is removed from P . Thus, each iteration decreases the number
of vertices in R with at most two neighbours in Q.
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A path S connecting the two neighbours of v in Q, w1 and w2, must be found
at each iteration. In the worst case, this involves checking at most |E(〈P 〉)| < m
edges. The algorithm then determines if another w1–w2 path can be found. For
each e of the m edges on the path S the algorithm finds, if one exists, an
alternative w1–w2 path in 〈X〉 \{e} in time O(m). Thus for each of the at most
n vertices in R the algorithm finds a path S in time O(m) and an alternative
path in time O(m2). Thus, the second loop takes time O(m2n).

Thus the total time taken by Algorithm OP2 is O(m2n). 2

Theorem 6 For any graph of n vertices and maximum degree at most d ≥ 2,
Algorithm OP2 finds an induced outerplanar subgraph of ≥ 3n/(d+5/3) vertices.

Proof: Let P be the set of vertices that induce the subgraph produced by the
OP2 algorithm. When the algorithm is completed, every v ∈ R has at least
three neighbours in some component of size at least three, otherwise it would
have been added to P .

Let Q ⊆ P where Q consists of all vertices belonging to a component of size
at least three in 〈P 〉. Let n1 = |P | and let KQ be the set of components of 〈Q〉.

For all v ∈ R, we have dQ(v) ≥ 3, so

|E(Q,R)| ≥ 3|R| = 3(n − n1) (1)

Each component of size k in 〈Q〉 contains at least k − 1 edges, so

|E(〈Q〉)| ≥ (
∑

Hi∈KQ

(|V (Hi)| − 1) = |Q| − |KQ|. (2)

As all components in Q have size at least three, |KQ| ≤ |Q|/3. So

|E(〈Q〉)| ≥ |Q| − |Q|/3 = 2|Q|/3. (3)

Now,

|E(Q,R)| =
∑

v∈Q

dQ∪R(v) − 2|E(〈Q〉)|

≤ d|Q| − 2|E(〈Q〉)|

≤ (d − 4/3)|Q| by (3)

≤ (d − 4/3)|P |. (4)

From (1) and (4),

(d − 4/3)n1 ≥ 3(n − n1).

Therefore

(d + 5/3)n1 ≥ 3n.

So

n1 ≥ 3n/(d + 5/3).

2
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3.2 Palm Trees

In the previous section algorithms for finding large induced outerplanar sub-
graphs were considered. In this section an algorithm that produces a tree-like
structure is considered.

A palm tree is a connected graph which is either a cycle or can be constructed
from the union of a tree T with an independent set X by joining each vertex in
v ∈ X to two adjacent vertices in T (these two vertices need not be the same
for all v ∈ X). A palm forest is a graph all of whose components are palm trees.

If 〈P 〉 is a maximal forest in G, then every vertex in R has at least two
neighbours in some forest component in 〈P 〉, otherwise P is not maximal. Thus,
for all v ∈ R, dP (v) ≥ 3 or dP (v) = 2 and the neighbours in P are in a single
component of 〈P 〉. All of the existing MIPS algorithms discussed in Section 2,
except for the Halldórsson-Lau algorithm, guarantee that for all v ∈ R, dP (v) ≥
3 when the algorithm ceases. On termination the Palm Tree algorithm also
guarantees this condition, but the subgraph produced has a similar structure to
a tree.

The Palm Tree Algorithm (see Algorithm 3) initially finds a maximal induced
forest 〈P 〉. It then considers all vertices v ∈ R with dP (v) = 2 and neighbours
w1, w2 ∈ P . If w1 and w2 are adjacent, then the subgraph induced by {v, w1, w2}
is a cycle of length three. Any such vertex can always be added to P whilst
maintaining planarity. If the neighbours of v are not adjacent then there exists
a w1–w2 path S connecting these vertices in 〈P 〉. (If no such path exists,
vertex v has degree 2 and is adjacent to two components, which contradicts the
maximality of the induced forest.) Now, if the component in 〈P 〉 containing the
neighbours of v consists solely of the path S, then vertex v can be added to P and
the resulting component is a cycle. If this is not the case, (S ∪{v})+vw1 +vw2

is a cycle of length at least four containing at least one vertex with at least three
neighbours in P ∪ {v}.

If one of the neighbours of v, say w1, has at least two neighbours in 〈P 〉, then
w1 will have at least three neighbours in (P ∪{v})\{w1}. Alternatively, if both
the neighbours of v have only one neighbour in 〈P 〉 and the component does not
consist solely of a path, then there exists some vertex along the path S that has
at least three neighbours in P . Thus, a vertex exists in the component that can
be interchanged with v whilst maintaining the planarity of 〈P 〉. Interchanging
vertex v with such a vertex decreases the number of vertices with dP (v) ≤ 2 in
R. Thus when the Palm Tree algorithm terminates, all vertices in R have at
least three neighbours in components of size at least three in 〈P 〉.

Proposition 7 The Palm Tree Algorithm has time complexity O(n2).

Proof: The Palm Tree Algorithm initially finds a maximal induced forest in
time O(nd) (see Section 2.4). Each vertex v ∈ R with two neighbours in P is
then added to P . In some cases a vertex is removed from P when v is added.
The removed vertex w has at least three neighbours in P ∪ {v} \ {w}. Thus
each iteration reduces the number of vertices in R with degree at most two.
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Input: A graph G = (V,E)
P := ∅,
R := V .
Find a maximal induced forest F : P := V (F ), R := V \ P .
while ∃v ∈ R such that dP (v) = 2 do

while ∃v ∈ R such that dP (v) = 2, and the addition of v to P creates
a cycle of length three do

P := P ∪ {v}; R := R\{v};
end
while ∃v ∈ R such that dP (v) = 2 and the addition of v to P
creates a component that is a cycle do

P := P ∪ {v}; R := R\{v};
end
while ∃v ∈ R such that dP (v) = 2 and the addition of v to P creates
a cycle of length at least four that contains at least one vertex of
degree at least three in 〈P ∪ {v}〉 do

Let w1 and w2 be the two vertices adjacent to v in P .
if dP (w1) ≥ 2 then

P := (P\{w1}) ∪ {v};
R := (R\{v}) ∪ {w1};

else if dP (w2) ≥ 2 then
P := (P\{w2}) ∪ {v};
R := (R\{v}) ∪ {w2};

else
Find the first vertex w with dP (w) ≥ 3 on the path w1, ..., w2

in 〈P 〉.
P := (P\{w}) ∪ {v};
R := (R\{v}) ∪ {w};

end
while ∃v1 ∈ R with at most one neighbour in each component of
size at least three in 〈P 〉 do

P := P ∪ {v1}; R := R\{v1};
end

end
while ∃v ∈ R such that v is adjacent only to components of size at
most two do

P := P ∪ {v}; R := R\{v};
end

end
Output: P

Algorithm 3: Palm Tree Algorithm (PT)
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In the worst case, all vertices in R with two neighbours in P require a vertex
to be removed from P to enable them to be added. This requires the path
connecting the neighbours of v in P to be examined to find a candidate vertex
for removal. There are at most |E(〈P 〉)| ≤ m ≤ 3|P | ≤ 3n edges in such a path.
Thus the main (outer) loop in the Palm Tree algorithm takes time O(n2).

When this loop is completed, any vertex adjacent to only components of
size at most two is added to P . This loop takes O(|R|) steps. Thus the time
complexity of the Palm Tree Algorithm is O(n2). 2

3.3 Finding more complex planar subgraphs

Each of the above algorithms finds an induced planar subgraph with no K4

minor. A simple example is the induced planar subgraphs of the graph K5

found by the various algorithms. Both algorithms by Edwards and Farr and the
algorithm by Halldórsson and Lau find an induced planar subgraph of size three
(the same subgraph found by the algorithms for finding an induced outerplanar
subgraph), rather than the maximum induced planar subgraph K4.

Input: A graph G = (V,E)
Let G′ = (V ′, E′) where: V ′ = {V1, V2, . . . , Vn}; Vi = {vi} for 1 ≤ i ≤ n;
E′ = E.
while G′ can be reduced do

if there exist a vertex Vi ∈ V ′ with one neighbour Vj in G′ then
Vj = Vi ∪ Vj ;
V ′ = V ′ \ Vi;
E′ = E′ \ {ViVj};
else if there exist a vertex Vi ∈ V ′ with exactly two neighbours, Vj

and Vk, in G′ and VjVk 6∈ E′ then
Vj = Vi ∪ Vj ;
Vk = Vi ∪ Vk;
V ′ = V ′ \ Vi;
E′ = (E′ ∪ {VjVk}) \ {VjVi, ViVk}

end

end
Output: G′ = (V ′, E′)

Algorithm 4: Reduce Graph

We designed an algorithm that added some vertices, in some cases, to the
induced planar subgraph. If in each component X containing neighbours of a
vertex v, the neighbours of v lie on some face of some embedding of X, then
〈P ∪ {v}〉 is planar. Our algorithm, which we call the Enlarge Planar Subgraph
(EPS) operation (see Algorithm 6), detects some (but not all) situations of this
kind, and adds v to P .

Algorithm 4 reduces the induced subgraph, 〈P 〉, using a subset of the re-
duction operations discussed in Section 2.3. The operation that we omit here
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Input: A graph G = (V,E), a set of vertices V ′ ⊆ V to be included in
the path, and a set of edges E′ ⊆ E to be included in the path.

T := ∅;
if V ′ = ∅ then

Output: T
else

Let w ∈ V ′;
T = {w} ; V ′ = V ′ \ {w};

end
while V ′ 6= ∅ do

Let w1 be the first vertex in T and let w2 be the last vertex in T ;
if ∃uw1 ∈ E′ and u 6∈ T then

Prepend u to T ; V ′ = V ′ \ {u};
else if ∃uw2 ∈ E′ and u 6∈ T then

Append u to T ; V ′ = V ′ \ {u};
else if ∃u ∈ V ′ adjacent to w1 then

Prepend u to T ; V ′ = V ′ \ {u};
else if ∃u ∈ V ′ adjacent to w2 then

Append u to T ; V ′ = V ′ \ {u};
else if ∃u ∈ V, u 6∈ T adjacent to w1 then

Prepend u to T ;
else if ∃u ∈ V, u 6∈ T adjacent to w2 then

Append u to T ;
else

Output: ∅
end

end
Output: T

Algorithm 5: Find Path
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Input: A graph G = (V,E) and P ⊆ V such that 〈P 〉 is planar.
R := V \ P .
〈P ′〉 = Reduce Graph(〈P 〉);
foreach v ∈ R do

foreach Component 〈X〉 in 〈P ′〉 do
Let NX(v) be the neighbours of v in X;
Let M be the set of mandatory edges. M = {ViVj : ∃w ∈ NP (v)
such that w ∈ Vi

⋂

Vj};
T = Find Path (〈X〉, NX(v), M);
if T 6= ∅ then

if T has length at most one then
/* 〈X ∪ {v}〉 is planar */

continue ;
else if T has length two and the internal vertex has at most
three neighbours in X then

/* 〈X ∪ {v}〉 is planar */

continue ;
else

Let I = {1, . . . , |V (T )|} and let S be the sequence
(si : i ∈ I) where si = dX(ti);
i=2;
while i ≤ |V (T ) − 1| do

if si = 2 then
Remove si from S;
Decrement the values si−1 and si+1 by 1;

end
i=i+1;

end
if the sequence S (excluding its first and last elements)
contains at most one 3 and all other values are 2 then

/* 〈X ∪ {v}〉 is planar */

continue;
else

reject v (so it is not included in P );
break;

end

end

else
reject v (so it is not included in P );
break;

end
P := P ∪ {v};
R := R \ {v};
〈P ′〉 = Reduce Graph(〈P 〉);

end

end
Output: P

Algorithm 6: EPS Algorithm
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is the one that removes a vertex v of degree two and its incident edges, uv and
vw, when the edge uw is already in the graph. Note that the reduction opera-
tions we retain here do not change the number of cycles in the graph, while the
omitted operation reduces the number of cycles. Suppose 〈P ′〉 is formed from
〈P 〉 by applying reduction operations from this subset. Then 〈P ′〉 preserves the
cycle structure of 〈P 〉 in the sense that every cycle in 〈P 〉 is a subdivision of
a cycle in 〈P ′〉. Each vertex Vi in the reduced graph 〈P ′〉 consists of a set of
vertices in the original graph 〈P 〉 that have been combined by the reductions.

At each iteration Algorithm 6 reduces the induced subgraph 〈P 〉 to 〈P ′〉
using Algorithm 4. The neighbourhood NP ′(v) in P ′ of a vertex v ∈ R is the
set of Vi ∈ P ′ that contain the neighbours of v in P . For each component 〈X〉
in 〈P ′〉, NX(v) ⊆ NP ′(v) contains the neighbours of v in component X. At each
iteration (i.e. for each v ∈ R), for each component 〈X〉 of 〈P ′〉 the algorithm
tries to find a path T containing these neighbours of v with the added constraint
that if any neighbour of v in P is included in two vertex sets in P ′, say Vi and
Vj , then T must contain the edge ViVj (which we call mandatory). In order to
minimize the cost of searching for such a path, the EPS operation uses a simple
local search strategy (see 5). At each iteration of the Find Path algorithm, a
vertex in NX(v) is added to the path if possible, with preference given to any
vertex whose addition adds one of the mandatory edges to T . If no vertex in
NX(v) can be added to either end of the path, then if possible a vertex in P ′

that is not a neighbour of v can be added to an end of T . Note that this process
might not find a path T containing all NX(v), even if one exists. If a path
containing all NX(v) is not formed by this process, we continue with the next
vertex in R.

As 〈P ′〉 preserves the cycle structure of 〈P 〉, 〈P ∪ {v}〉 is planar if and only
if 〈P ′ ∪ {v}〉 is planar. Suppose each edge of T belongs to at most one triangle
of 〈P ′〉, and that every such triangle contains a vertex of degree 2. Suppose
further that at most one edge outside these triangles meets an internal vertex
of T , and (if such an edge exists) meets only one such vertex. Then 〈P ′ ∪ {v}〉
is planar, and so is 〈P ∪{v}〉. If a path T is found that satisfies these conditions
for each component X, the EPS operation adds the vertex v to P .

The EPS operation was combined with the PT, OP1 and Vertex Subset
Removal algorithms, by running it on the induced planar subgraphs found by
those algorithms, in order to draw some conclusions about the subgraphs found
by those algorithms.

4 Experimental Results

4.1 Method

The behaviour of the algorithms was observed on d-regular graphs and graphs
of expected average degree d̄. Graphs of n = 20, 40, 60, 80, 100, 200, 300, 400,
500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000
and 10000 vertices were generated. For each such n, random graphs of expected
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average degree 3, 4, 5, 6, 7, 8 and 9 and random regular graphs of these same
degrees were produced. Experiments were performed on 50 graphs of each type
for n ≤ 1000, and on 20 graphs of each type for n > 1000.

The classical method as described in [2, p.143] was used to produce random
graphs of expected average degree d̄ (so edge probability p = d̄/(n − 1)). The
random d-regular graphs were produced by both the Bollobás [3] and Steger-
Wormald [17] algorithms. While Bollobás’ method generates graphs randomly
with a uniform probability distribution, the Steger-Wormald method has a dis-
tribution that is approximately uniform and tends to uniform as n → ∞. As a
single iteration of the Bollobás method produces a d-regular simple graph with
probability e(1−d2)/4 (see [18]), it was not feasible to use this method to pro-
duce large numbers of graphs. Thus in the experiments undertaken, the Bollobás
method was used to produce graphs only for smaller values of n. In contrast
the Steger-Wormald method generates d-regular graphs quickly. A comparison
of the results on regular graphs of the same size and degree but generated by
these different methods produced extremely close results. The closeness of these
two results gives support to the validity of using the Steger-Wormald generated
graphs for the larger sized graphs and those of higher degree, and using the
results to draw conclusions about the behaviour of induced planar subgraph
algorithms on random regular graphs.

Each induced planar subgraph algorithm was run on a series of graphs. For
each combination of size, degree and graph generation method, the average size
of subgraph produced and the average time taken was recorded. The algorithms
were also run on the graphs from the GDT-test-suite-CU. As this suite contains
sets of graphs of varying maximum degree of order 10 to 100, the average pro-
portion of vertices in the planar subgraph for each n was recorded, and the
average proportion of vertices in the planar subgraph for a given average degree
within an interval of 0.1. Details about the computer on which all tests were
run are listed in Table 1. The Halldórsson-Lau and Vertex Addition algorithms
are designed to be used on graphs of maximum degree at most d. However, the
experimental results also contain observations of their behaviour on graphs of
expected average degree d. When considering these results, it should be noted
that such graphs are likely to have maximum degree greater than d.

Computer: Dell Inspiron 9300 Laptop
Processor: Intel Pentium M processor 2.00 GHz
Speed: 1.95 GHz
Memory (RAM): 1024 MB
Operating System: Linux Mandrake 9.2
Compiler: gcc 3.3
Random Number Generator drand48 (stdlib)

Table 1: Details of computer used for running algorithms in tests
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4.2 Discussion of Results

A complete set of all results is available at
http://www.csse.monash.edu.au/~kmorgan/MIPS.html. Tables containing the
average proportion of vertices in the induced planar subgraph, the average size
of induced planar subgraph and the average elapsed time taken are provided.
The standard deviation is included in parentheses for each average size (or time)
given. Table 2 provides a list of abbreviations used for MIPS algorithms.

Abbreviation Algorithm

IS Maximal Independent Set
T Maximal Induced Forest
HL Halldórsson-Lau Algorithm [11]
OP1 Outerplanar Algorithm 1
OP2 Outerplanar Algorithm 2
PT Palm Trees Algorithm
VA Vertex Addition Algorithm [7]
VR Vertex Removal Algorithm [8, 9]
VSR Vertex Subset Removal Algorithm
OP1+EPS Outerplanar Algorithm 1

combined with EPS operation
PT+EPS Palm Tree Algorithm

combined with EPS operation
VSR+EPS Vertex Subset Removal Algorithm

combined with EPS operation

Rows in bold type indicate algorithms designed by the authors. Rows in
italics indicate algorithms based on modifications of (or combinations that

include) existing algorithms.

Table 2: Key to abbreviations for algorithm names

4.2.1 Size of Subgraph

In this section the behaviour of the algorithms in terms of the size of induced
planar subgraph produced will be considered.

Standard Deviation The standard deviation of the size of subgraph found
for random d-regular graphs is remarkably small, usually less than 1%. The
standard deviation was higher for subgraphs of graphs produced by the classical
method, but still well under 1% for large graphs except for the results of the
HL algorithm where the standard deviation was as high as 8%. The results
of the tests on the graphs of average degree from the GDT-test-suite-CU also
exhibited a small standard deviation, usually less than 4%.
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Figure 1: Proportion of vertices in induced planar subgraphs of random graphs
of 10,000 vertices produced by (a) the Steger-Wormald method (d-regular
graphs) and (b) the classical method (graphs with expected average degree d̄)
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The Performance of the MIPS Algorithms Figure 1(a) displays the per-
formance of the algorithms as d varies when run on d-regular graphs of 10,000
vertices. The HL algorithm produced subgraphs with average size close to this
algorithm’s worst case lower bound from [11], namely n/2 for 3 ≤ d ≤ 5, n/3 for
6 ≤ d ≤ 8 and n/4 for d = 9. The only algorithm producing a smaller average
size subgraph was the IS algorithm.
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Figure 2: Proportion of vertices in induced planar subgraphs found in
graphs from GDT-test-suite-CU. The average degree is given for intervals
[1.75, 1.85), [1.85, 1.95), . . . , [3.65, 3.75).

The behaviour of the other algorithms as d increases in terms of the reduc-
tion in proportion of vertices in the induced subgraph is remarkably similar as
can be seen in Figures 1 and 2. In Table 3 the proportion of vertices in the
subgraphs found for graphs of 10,000 vertices are displayed. As n increases, the
proportions of vertices in the subgraphs found by the various MIPS algorithms
quickly converge to these proportions. This is typical of the behaviour of the
algorithms on both d-regular graphs and graphs of expected average degree d̄.
For a fixed d, as n increases, the values rapidly converge to within 5% of the
proportion found for n =10,000. Each of the algorithms converges, in this sense,
on or before n = 200, except for the HL algorithm on graphs of expected average
degree d̄. The proportions of vertices in the subgraphs found by each of these
algorithms differ by only a few percent in smaller graphs, but as n becomes large
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only by a fraction of a percent (see Table 3). The fact that the average sizes of
subgraph produced by these algorithms are so similar even though the classes of
induced subgraphs produced are not all the same may suggest that there may
be some fundamental limit on the performance of algorithms for finding induced
subgraphs with many hereditary properties.

Algorithm 6-regular graphs Graphs with expected average degree 6

IS 0.2764 0.3671
(0.0014) (0.0021)

T 0.5289 0.6272
(0.0012) (0.0022)

HL 0.3353 0.1933
(0.0014) (0.0074)

OP1 0.5436 0.6547
(0.0009) (0.0024)

OP2 0.5343 0.6405
(0.0028) (0.0021)

PT 0.5289 0.6311
(0.0011) (0.0023)

VA 0.5209 0.6164
(0.0010) (0.0020)

VR 0.5397 0.6532
(0.0007) (0.0020)

VSR 0.5580 0.6579
(0.0006) (0.0020)

OP1+EPS 0.5436 0.6547
(0.0009) (0.0024)

PT+EPS 0.5327 0.6382
(0.0012) (0.0023)

VSR+EPS 0.5589 0.6587
(0.0006) (0.0020)

Table 3: Average proportion of vertices in induced planar subgraph found in
randomly generated graphs of 10,000 vertices. (Standard deviations in paren-
theses.)

The average proportion of vertices in a subgraph found in a graph of given n
and degree was larger for the graphs of expected average degree d̄. These graphs
are likely to contain some vertices with degree less than 3, which contribute to
the size of subgraph produced, but do not present any obstacle to planarity.

The VSR algorithm usually produced the largest subgraphs of all MIPS
algorithms (excluding algorithms combined with the EPS operation). However,
the VSR+EPS algorithm usually found a larger subgraph.

In Figure 3 the results in terms of average size subgraph for a fixed number
of vertices is shown for the tests on graphs from GDT-test-suite-CU. In this
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test suite there is no fixed maximum (or average) degree for any given n. These
results also show that the algorithms combined with the EPS operation usually
find a larger induced subgraph than the other algorithms.
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Figure 3: Proportion of vertices in induced planar subgraphs found in graphs
from GDT-test-suite-CU.

Comparison between Algorithm T and other MIPS Algorithms Al-
though the lower bound for the size of induced planar subgraph produced by the
algorithm T for finding a maximal induced forest is only 2/3 of the best known
lower bounds for MIPS, in practice the subgraphs produced by T and the other
algorithms (VSR, VR, VA, PT, OP1 and OP2) are very close in size. The HL
algorithm [11] produces an induced subgraph consisting of disjoint cycles and
paths. Such a subgraph could be regarded as not much more than a linear forest:
it may just have some additional vertices (and their incident edges) added to
create cycle components. Yet the lower bound on the size of subgraph produced
by this algorithm is considerably better than the lower bound of T (although in
practice the subgraphs produced by the HL algorithm are small in comparison
to the size of a maximal induced forest).

Most of the subgraphs found by the VA algorithm (see Figure 1) were smaller
than the subgraphs found by the T algorithm. This may suggest the simple
approach of finding a maximal induced forest provides a reasonable solution to
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MIPS for the types of random graphs we considered. On the other hand it may
indicate that the current algorithms are finding little more than a forest with
a few additional vertices. This latter suggestion is supported by the similarity
between the size of subgraph found by the MIPS algorithms and those found
by algorithms for finding simpler structures such as outerplanar subgraphs and
palm trees. The fact that the EPS operation is usually able to find additional
vertices to add to subgraphs produced by these algorithms indicates that the
subgraphs found are usually not maximal.

Conjectured Average Case Lower Bounds - Graphs of Maximum De-
gree d The maximum proportion of vertices in the induced subgraphs pro-
duced by the algorithms for d-regular graphs as d increases appears to be close
to the sequence: 3/4, 6/9, 9/15, 12/22, 15/30, 18/39, 21/49, . . . . From this se-
quence it appears that the proportion of vertices in the subgraph produced for a
given d by these algorithms is at least 3(d−2)/((d+1)(d+2)/2−6) = 6/(d+5).
Now 3/(d + 1) ≤ 6/(d + 5) when d ≥ 3, so this proposed bound would exceed
the existing lower bound of 3n/(d + 1). Note that this proposed bound can-
not apply to all d-regular graphs, since (for example) K31 contains an induced
planar subgraph of size at least six. However, 6n/(d + 5) appears to provide a
reasonable guide to the proportion of vertices included in the subgraph on av-
erage, for random d-regular graphs. We conjecture that the actual lower bound
for all d-regular graphs is close to (3+((d−3)/d))/(d+1). This proposed lower
bound suggests a subgraph of at least four vertices should be obtained from a
graph of degree at most 30, so it works for K31.

Conjectured Average Case Lower Bounds - Graphs of Average De-
gree d̄ The maximum proportion of vertices in the induced planar subgraphs
produced by the algorithms on graphs of expected average degree d̄ as d̄ in-
creases appears to be close to the following sequence:

√

3/4,
√

3/5,
√

3/6,
√

3/7,
√

3/8,
√

3/9,
√

3/10, . . .. From this sequence it appears that the pro-
portion of vertices in the subgraph produced for a given d̄ by these algorithms
is at least (3/(d̄ + 1))1/2. (A slightly closer estimated lower bound may be
(3/(d̄ + 1 + (d̄ − 3)/d̄)))1/2.) Although this lower bound does not hold for d-
regular graphs, graphs of average (but not maximum) degree d̄ contain some
vertices of lower degree which are more likely to be included in the induced
planar subgraph. Thus, it is not surprising that the size of the induced planar
subgraph is larger than that found in a d-regular graph.

4.2.2 Running Time of Algorithms

Algorithms such as the VA and OP2 performed worst in terms of running time
on graphs of maximum degree d (see Figures 4(a) and 5). This reflects the
cost of determining if a vertex should be removed when a vertex is added to
the planar subset. The running time required by many of the algorithms for
d-regular graphs with some fixed number n of vertices decreases as d increases.
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Figure 4: Average Elapsed Time (microseconds) taken by algorithms on random
graphs of 10,000 vertices produced by (a) the Steger-Wormald method (d-regular
graphs) and (b) the classical method (graphs with expected average degree d̄)
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In some cases this may be due to there being fewer vertices that can be added
when the degree is high. The VA algorithm shows this behaviour. By contrast
the VSR algorithm shows a slight increase in running time as d increases. As
d increases for a fixed size graph, the graph will become denser and thus is less
likely to reduce as quickly as a less dense graph. Thus the location of a vertex
for removal requires searching a larger reduced graph which may increase the
processing time.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

T
im

e 
(M

ic
ro

se
co

nd
s)

Number of Vertices

OP2
VA

PT+EPS
VSR+EPS
OP1+EPS

OP1
VSR

PT
T

VR
IS

HL

Figure 5: Average time taken by algorithms on random 6-regular graphs pro-
duced by Steger-Wormald method (elapsed time (microseconds)).

The algorithms behaved quite differently on graphs of expected average de-
gree d̄ (see Figure 4(b)). While the running times tended to decrease as d
increased in the experiments on d-regular graphs, the running times remained
more constant in the case of the graphs of expected average degree d̄ (except in
the case of the OP2 algorithm where the running times increased for 3 ≤ d ≤ 8
and the VA algorithm for d < 6). It should be noted that the actual running
times were lower than those for d-regular graphs.

The simpler algorithms such as IS and HL exhibit linear average time. Al-
gorithms such as those using the EPS operation and the VA algorithm that
include some searching for paths exhibit approximately quadratic complexity.
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5 Conclusion and Further Work

Several new algorithms for the Maximum Induced Planar Subgraph and Maxi-
mum Induced Outerplanar Subgraph problems were designed. New and existing
algorithms were implemented and an extensive experimental study of the be-
haviour of these algorithms on randomly generated graphs was undertaken. As
most of the existing algorithms had not previously been implemented, the im-
plementation of these algorithms provided new insights into how they perform
in practice.

The connections between these problems and two related problems, namely
Maximal Induced Forest and Maximal Independent Set, were also investigated.
It was found that in practice the size of subgraph produced by existing algo-
rithms on random graphs was similar to that produced by algorithms for finding
a maximal induced forest.

One of our algorithms for finding large induced outerplanar subgraphs was
analysed and shown to produce subgraphs of size at least 3n/(d+5/3) for graphs
of maximum degree at most d. Although this lower bound is slightly less than
the existing lower bound of 3n/(d+1) for induced planar subgraphs, experiments
showed that for large n the size of the induced outerplanar subgraphs found were
often larger than those produced by the existing algorithms for MIPS.

Although the observed results were close to the lower bound of 3n/(d + 1)
for d = 3, as d increased the lower bound was increasingly loose. The results for
average proportion of vertices in the induced subgraph suggests that the lower
bound on size of induced subgraph may be closer to (3 + (d − 3)/d)/(d + 1).
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