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Abstract

A d-dimensional grid graph G is the graph on a finite subset in the
integer lattice Zd in which a vertex x = (x1, x2, · · · , xn) is joined to
another vertex y = (y1, y2, · · · , yn) if for some i we have |xi − yi| = 1
and xj = yj for all j 6= i. G is hyper-rectangular if its set of vertices
forms [K1] × [K2] × · · · × [Kd], where each Ki is a nonnegative integer,
[Ki] = {0, 1, · · · , Ki−1}. The surface area of G is the number of edges be-
tween G and its complement in the integer grid Zd. We consider the Mini-
mum Surface Area problem, MSA(G, V ), of partitioning G into subsets of
cardinality V so that the total surface area of the subgraphs corresponding
to these subsets is a minimum. We present an equi-partitioning algorithm
for higher dimensional hyper-rectangles and establish related asymptotic
optimality properties. Our algorithm generalizes the two dimensional al-
gorithm due to Martin [8]. It runs in linear time in the number of nodes
(O(n), n = |G|) when each Ki is O(n1/d). Utilizing a result due to Bol-
labas and Leader [3], we derive a useful lower bound for the surface area
of an equi-partition. Our computational results either achieve this lower
bound (i.e., are optimal) or stay within a few percent of the bound.
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Figure 1: An equi-partition for MSA([5]3, 5) with bound gap 0.04%. Only com-
ponent A does not have minimum surface area.

1 Introduction

Grid graph equi-partition arises in the context of minimizing interprocessor
communication subject to load balancing in parallel computation for a vari-
ety of problem classes including the solution of PDEs using finite difference
schemes [11], computer vision [10], and database applications [7]. Similar to the
general graph partitioning problem [6], arbitrary grid graph partitioning prob-
lem is NP-complete [14], and at present one has to depend on effective heuristic
algorithms.

In this paper, we focus on partitioning graph analogs of hyper-rectangles and
hereafter call our problem the Minimum Surface Area problem for rectilinear
grid graphs, denoted by MSA(G,V ), in which the d-dimensional grid graph
G = [K1] × [K2] . . . × [Kd] is partitioned into subgraphs of cardinality V so
that the total surface area of the subgraphs is a minimum. We assume that
V divides K1K2 . . . Kd. Figure 1 shows a 25-component equi-partition for the
MSA([5]3, 5) problem generated by our equi-partitioning algorithm presented
in Section 4. Since the surface area of this partition does not equal the lower
bound derived in Section 3, its optimality is not guaranteed but its relative
optimality gap [[area-lower bound](=2)/lower bound(=500)] is 0.04%, and only
one component allows any possibility for surface area improvement.

Several effective algorithms for partitioning a 2-dimensional grid graph are
available in the literature [2, 4, 5, 8, 15]. Our algorithm generalizes the fast two
dimensional algorithm due to Martin [8]. With this generalization, we reduce
the problem to several integer knapsack problems (as defined in [12]) and use
dynamic programming to solve them.

Those grid graphs that meet the minimum surface area for a given number
of vertices draw special interest from research in Combinatorics (i.e., study of
Polyominoes) [1], and in Physics (i.e., study of the metastable behavior of the
stochastic ising model) [9]. In 1991, Bollabas and Leader [3] derived a class of
grid graphs with minimum surface area. In Section 3, utilizing their result, we
provide a formula for the minimum surface area for grid graphs with a given
cardinality and use this result to find a lower bound for the surface area of a
given equi-partition. We present our equi-partitioning algorithm in Section 4
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and give computational results in Section 5 for some 3 and 4-dimensional equi-
partitions. We also compare our results with the lower bound given in Section
3.

2 Preliminaries

We follow the notation and definitions given in [3]. For the readers’ convenience,
we restate them here. A d-dimensional grid graph is the graph on a finite
subset in the integer lattice Zd in which x = (x1, x2, · · · , xn) is joined to y =
(y1, y2, · · · , yn) if for some i we have |xi − yi| = 1 and xj = yj for all j 6= i.
Since grid graphs are determined by their nodes, in much of the discussion
below we identify the graph with its nodes. Let P([n]) be the power set of
[n] = {0, 1, · · · , n − 1}. The binary order on P([n]) is a total order on P([n])’s
2n elements such that for some S, T ∈ P, S < T if and only if the greatest
element of [n] which is in one of S and T but not the other is actually in T
(i.e., max(S∆T ) ∈ T ). This is equivalent to a lexicographical ordering(based on
right most differing elements) defined on an indicator mapping in Bn (the set of
binary n-tuples) of elements of P([n])). The cube order on [k]n is a total order
such that for some x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn), x < y if and
only if for some s ∈ [k], {i : xi = s} < {i : yi = s} in the binary order on P([n])
with {i|xi = t} = {i|yi = t} for all t > s. For S ⊆ [k]n, the cube order on S
is the restriction to S of the cube order on [k]n. We write x + [k] to represent
{x, x + 1, . . . , x + k − 1}.

Let G be a grid graph and E be the set of edges in Zn. The edge-boundary of
G, denoted by σ(G), is the set {(x, y) ∈ E|x ∈ G, y 6∈ G} and the edge-interior
of G, denoted by int(G), is the set {(x, y) ∈ E|x, y ∈ G}. The surface area of
G, denoted by A(G), is the cardinality of σ(G) (|σ(G)|) (In three dimensional
space this matches the “exposed” surface area of the set of unit hypercubes
with centers at the nodes of G.). In [3], for a given positive integer m, bounds
have been derived for two optimization problems, minimize {A(G)||G| = m} and
maximize {|int(G)|||G| = m}, when G ⊆ [k]n. In [k]n, k ≥ 3, these two problems
are not equivalent [3]. Since our underlying domain, Zn, is regular, these two
problems are equivalent. Our focus on Zn is justified by the applications to
database, computer vision, and domain decomposition for partial differential
equations [7, 10, 11]. The following proposition states that the cube order may
be used to create graphs with minimum surface area. This is a direct corollary
to Theorem 15 in [3]. Other versions of proofs of this result can be found in [9],
[1] (d = 3), and [13].

Proposition 1 Let G be a d-dimensional grid graph such that G ⊆ [k]d for
some large enough positive integer k, and J be the set of first |G| elements in
the cube order on [k]d. Then A(G) ≥ A(J).

Let d be a positive integer and nd be a nonnegative integer. Let kd be the
unique integer such that kd

d ≤ nd < (kd + 1)d. Thus, kd
d is the largest cube

whose volume does not exceed nd. Let md be the unique integer in [d] such
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that (kd + 1)mdkd−md

d ≤ nd < (kd + 1)md+1(kd)
d−md−1. Thus, md characterizes

a “largest near-cube” which is a hyper-rectangle whose dimensions differ by at
most 1. Observe that k1 = n1 and m1 = 0. For an integer nd, we define the
following special grid graph, called the quasi-cube recursively, and we show in
Section 3 that quasi-cubes are generated by the cube order.

Definition 1 (Quasi-Cube) The d−dimensional quasi-cube corresponding to
nd is denoted by Cd(nd). For d = 1, C1(n1) = [n1]. For d > 1, Cd(nd) is
the set

[kd + 1]md × [kd]
d−md ∪ P (Cd−1(nd−1)),

where kd and md are unique nonnegative integers as mentioned above, nd−1 =
nd − (kd + 1)md(kd)

d−md , and P (Cd−1(nd−1)) is the set of points,
(x1, x2, · · · , xmd

, kd, xmd+1, · · · , xd−1), such that (x1, · · · , xd−1) ∈ Cd−1(nd−1).

Essentially the quasi-cube, Cd(nd), is obtained by first extracting the“largest
possible” d−dimensional near-cube, then recursively applying the extraction to
the residual volumes in successively lower dimensions. (See three dimensional
figures in [1].) Since ki and mi(d ≥ i ≥ 1) are unique integers, Cd(nd) is uniquely
defined.

3 A Lower Bound for the Total Surface Area of
an Equi-partition

We use the quasi-cube to obtain our results in this section. The following lemmas
describe some of the properties of the quasi-cube.

Lemma 1 The quasi-cube has the properties:

(a) |Cd(nd)| = nd =

d
∑

r=1

(kr + 1)mrkr−mr
r .

(b) A(Cd(nd)) = 2

d
∑

r=1

[(r −mr)(kr + 1)mrkr−mr−1
r + mr(kr + 1)mr−1kr−mr

r ].

Proof: By Definition 1, Cd(nd) = Sd∪P (Cd−1(nd−1)) where Sd = [kd +1]md ×
[kd]

d−md . According to their definitions, Sd and P (Cd−1(nd−1)) are disjoint and
|P (Cd−1(nd−1))| = |Cd−1(nd−1)|. So we have |Cd(nd)| = |Sd| + |Cd−1(nd−1)|,
and get (a) by applying induction on d.

To prove (b), we consider the surface area of Cd(nd). We have A(Cd(nd)) =
A(Sd)+A(P (Cd−1(nd−1)))− 2|σ(Sd)∩σ(P (Cd−1(nd−1))|. Since kd−1 ≤ kd, we
get σ(P (Cd−1(nd−1))) ⊆ σ(Sd). Using A(Sd) = 2(d−md)(kd + 1)mdkd−md−1

d +

2md(kd + 1)md−1kd−md

d , A(P (Cd−1(nd−1))) = A(Cd−1(nd−1)) + 2|Cd−1(nd−1)|,
and |σ(Sd) ∩ σ(P (Cd−1(nd−1))| = |Cd−1(nd−1)|, we get the recurrence rela-
tion A(Cd(nd)) = A(Cd−1(nd−1)) + 2(d −md)(kd + 1)mdkd−md−1

d + 2md(kd +
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1)md−1kd−md

d , and the initial condition A(C1(n1)) = 2 if n1 > 0 and, 0 if n1 = 0.
It is straightforward to solve this recurrence relation and get our result in (b).

2

Lemma 2 The quasi-cube, Cd(nd), has the minimum surface area among the
d-dimensional grid graphs with nd vertices.

Proof: First we prove that the quasi-cube Cd(nd) forms an initial segment of the
cube order in dimension d. We prove this by induction on d. Clearly C1(n1) =
[n1] is an initial segment of the cube order. Assume Cd−1(nd−1) is an initial
segment of the cube order. By the definition, Cd(nd) = Sd ∪ P (Cd−1(nd−1))
where Sd = [kd]

md × [kd + 1]d−md . Let x̄ = (x1, x2, · · · , xd), where xi = kd − 1
if i ≤ md and xi = kd if i > md. Clearly x̄ ∈ Sd and any element y in the
cube order such that y < x̄ is in Sd. Since there are |Sd| elements which are less
than or equal to x̄ in cube order, Sd is an initial segment of the cube order. We
may assume that Cd−1(nd−1) 6= φ. Otherwise Cd(nd) = Sd is an initial segment
of the cube order. Let y be the element in the cube order such that y > x̄
and there is no other element between x̄ and y. Then yi = 0 for i 6= md + 1,
ymd+1 = kd. Clearly y is the lowest element in P (Cd−1(nd−1)) in the cube
order. Our assumption that Cd−1(nd−1) is an initial segment of the cube order
guarantees that P (Cd−1(nd−1)) forms a complete segment of the cube order
starting from y. Therefore Cd(nd) is an initial segment of the cube order. By
Proposition 1, we obtain the result. 2

Theorem 1 Let C be a d-dimensional grid graph with n vertices and nd be a
positive integer such that nd divides n. Then the total surface area of an equi-
partition of C into subgraphs of cardinality nd is at least

2n

nd

d
∑

r=1

[(r −mr)(kr + 1)mrkr−mr−1
r + mr(kr + 1)mr−1kr−mr

r ]

where ki and mi, i = 1, 2, · · · , d are calculated as mentioned in the definition of
the quasi cube.

Proof: Since the equi-partition has n/nd grid graphs and each graph is having
nd vertices, the result follows from Lemma 1 and Lemma 2. 2

4 Equi-partitioning Algorithm

Let K1,K2, ...,Kd, V be positive integers and V divides K1K2...Kd. Here we
present a heuristic algorithm for MSA([K1] × [K2] × . . . × [Kd], V ) problem.
The key idea of the algorithm is to decompose the given hyper-rectangle into a
collection of well chosen “towers” of the form [k1]× [k2]× ...× [kd−1]× [Kd], in
which the tower “bases” [k1]× [k2]× ...× [kd−1] tile the [K1]× [K2]× ...× [Kd−1]
base of the given hyper-rectangle. Associated with each tower is the area of a
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particular equi-partition of the tower. In theory, one could construct an “op-
timal” tiling of the given base by minimizing the total of the surface areas of
the corresponding towers, but this problem is comparable in difficulty to the
original problem. Our heuristic builds up the base tiling via easily computed
partitions of lower dimensions. The main task of the algorithm involves solving
1 + K1 + K1K2 + ... + K1...Kd−2, d ≥ 2 integer knapsack problems that repre-
sent total areas associated with “tilings” by towers. For d = 2, there is only one
knapsack problem and this case was considered by Martin [8]. The algorithm is
implemented in d + 1 phases.

In Phase-0, we partition each hyper-rectangle, [k1]× [k2]× ...× [kd−1]× [Kd]
where ki ∈ [Ki] (1 ≤ i ≤ d − 1), into components of size V and calculate
the total surface area for the partition. If V < k1k2 . . . kd−1 (in which case a
component created by the algorithm would be “badly shaped” by having size
1 in dimension d) or V does not divide k1k2 . . . kd−1Kd, we will consider the
component as an invalid component and assign∞ as the surface area. Otherwise
we calculate the area of the partition of the tower assuming the vertices of
each component are assigned by the lexicographical order on Zd which can be
described as follows. Let x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) be two
d-tuples in [k1] × [k2] × ... × [kd−1] × [Kd]. We say x > y if j = max{i :
xi − yi 6= 0} and xj − yj > 0. If x > y then we assign y before x. If the
component size is V , we may assign the first V cells in the above total order
to the first component and the next V cells to the second component and carry
on the process until we fill the targeted region. In Figure 1, the component “A”
represents a [1]× [1]× [5] tower with an area equal to 22. The components “V”,
“W”, “X,” and “Y” represent a [2]× [2]× [5] tower with a total area equal to 80.

For a “tall” tower whose base is appropriately chosen, lexicographic assign-
ment generates components that are good approximations to quasi-cubes and
hence near-optimal surface areas are obtained. This property is addressed in the
following two theorems. Theorem 2 presents an expression that may be used to
compute the total surface area resulting from lexicographic assignment of the
nodes in a tower under the assumptions that the tower has an integral number
of components and that each component has a “height” of at least one. The-
orem 3 establishes under some mild assumptions that the average surface area
of the components produced by lexicographic assignment of nodes in “tall” tow-
ers with “well-chosen” bases asymptotically approaches minimum surface area.
The computational results presented in Section 5 demonstrate this asymptotic
optimality property of lexicographic assignment.

Theorem 2 (Total area for lexicographic assignment) Assume that V divides
k1k2 . . . kd−1Kd, V ≥ k1k2 . . . kd−1, and let p ≥ 1 be the number of components
of cardinality V in the d-dimensional region [k1]× [k2]× ...× [kd−1]× [Kd]. Let
sj = k1k2 . . . kj where 1 ≤ j ≤ d − 1. Let rij be the j-dimensional remainder
of the ith component which is calculated by rij = iV mod sj, where 1 ≤ i ≤
p − 1, and 1 ≤ j ≤ d − 1. Then the total surface area of an equi-partition of
[k1] × [k2] × ... × [kd−1] × [Kd] into p components of cardinality V using the
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lexicographical order is

2[psd−1 +

d−1
∑

j=1

sd−1

kj
Kd +

p−1
∑

i=1

d−1
∑

j=1

aij ], (1)

where aij is calculated as follows.

ai1 =

{

1 if ri1 6= 0,
0 otherwise.

When j > 1,

aij =















0 if kj = 1,
rij if kj > 1 and rij < sj−1,
sj − rij if kj > 1 and sj − rij < sj−1,
sj−1 otherwise.

Proof: It is clear that the outer surface area of the grid graph [k1]× [k2]× ...×

[kd−1]×[Kd] is 2[sd−1+
∑d−1

j=1
sd−1

kj
Kd]. To find the area of the inner boundaries,

we need to add the area between the ith component and the (i+1)th component
for each 1 ≤ i ≤ p− 1. Since V >= sd−1, there are p− 1 inner boundaries and
each boundary is shared by exactly 2 components. So the total area of the
projections of the inner boundaries of the components in the dth direction is
2(p− 1)sd−1. For 1 ≤ j ≤ d− 1, let aij be the common boundary area between
ith component and the (i + 1)th component in the jth direction. The possible
cases for aij are mentioned in the statement of Theorem 2. Here we explain two
cases and leave the more straightforward cases for the reader’s verification. We
can visualize [k1]× [k2]× . . .× [kj ] as kj cross sections of [k1]× [k2]× . . .× [kj−1]
in the jth direction. These cross sections are assigned to the ith component in
increasing order of j. When rij < sj−1, the ith component is assigned rij vertices
from the first [k1]×[k2]×. . .×[kj−1] cross section in the jth direction, and hence
aij = rij . When sj − rij < sj−1, the ith component is assigned rij vertices from
the last [k1] × [k2] × . . . × [kj−1] cross section in the jth direction, and hence
aij = sj − rij . Summing up the contributions in each direction, we get the area

between the ith component and the (i + 1)th component as 2
∑d−1

j=1 aij . So the

total surface area of inner boundaries is equal to 2(p−1)sd−1+2
∑p−1

i=1

∑d−1
j=1 aij .

Adding the outer and inner boundary areas gives us our result. 2

Theorem 3 Consider the family of d-dimensional towers T (N) of the form
[k1(N)] × [k2(N)] × . . . × [kd−1(N)] × [Kd(N)], where |ki(N) − N | ≤ C for
some constant C for 1 ≤ i ≤ d− 1 and all N = 1, 2, . . . and Kd(N) = Nz where
z > 1. Let V = Nd and let al(N

d) be the average surface area of the components
of T (N) generated lexicographically under the assumptions of Theorem 2. Then
the average surface area al(N

d) asymptotically approaches the minimum surface
area (for volumes of size Nd), i.e.,

lim
N→∞

al(N
d)

a∗(Nd)
= 1
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where a∗(Nd) = 2dNd−1 is the minimum surface area for volume V .

Proof: By Theorem 2,

al(N
d) = 2sd−1(N)+ 2

p(N) [
∑d−1

j=1
sd−1(N)
kj(N) Kd(N)+

∑p(N)−1
i=1

∑d−1
j=1 aij(N)] where

sd−1(N) = k1(N)k2(N) . . . kd−1(N) and p(N) = sd−1(N) × Nz/Nd. Since
z > 1, note that p(N) → ∞ when N → ∞. For sufficiently large N , it is

easily verified that al(N
d) ≤ 2(N +C)d−1 +2

∑d−1
j=1 [ Nd

N−C +d(N +C)d−2]. Thus

lim supN→∞

al(N
d)

a∗(Nd)
≤ 1, but since al(N

d)
a∗(Nd)

≥ 1 for all N , the conclusion follows.2

4.1 Phase-0 (Surface area computation for towers)

Surface area computations using formula (1) are performed for all “valid”towers.

begin {Phase-0 }
Define a (d− 1)-dimensional array Ad−1[K1][K2] . . . [Kd−1] of surface areas
as follows:
V ← the cardinality of a component.
for k1 = 1 to K1

for k2 = 1 to K2
...
for kd−1 = 1 to Kd−1

begin
if V does not divide k1k2 . . . kd−1Kd or V < k1k2...kd−1

Ad−1[k1][k2] . . . [kd−1] ← INFINITY
else
Ad−1[k1][k2] . . . [kd−1] ← The total surface area given by (1) for
the partition of k1 × k2 × . . .× kd−1Kd into components of
cardinality V using the lexicographical order

end if
end

end for
...

end for
end for

end {Phase-0 }.

4.2 Phase-i (1 ≤ i ≤ d − 1) (Determine optimal base de-
compositions in successively higher dimensions)

In the ith (1 ≤ i ≤ d − 1) phase, we solve K0K1K2...Kd−i−1 ( where K0 = 1)
integer knapsack problems using dynamic programming. For each ki ∈ [Ki], We
define the k1k2 . . . kd−i−1th integer knapsack problem as follows.
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minimize
∑Kd−i

j=1 cjxj

subject to
∑Kd−i

j=1 hjxj = Kd−i

where each xj is a nonnegative integer variable, hj = j, and cj = Ad−i[k1][k2]
. . . [kd−i−1][j] (where Ad−i is a (d−i)-dimensional matrix (i.e., i = 1 case is used
in Phase-0)) contains the optimal objective value of the (k1k2 . . . kd−i−1j)th
integer knapsack problem when i > 1, and the area of the equi-partition of
subdomain [k1]× [k2]× . . .× [kd−i−1]× [j]× [Kd] when i=1 (from Phase-0).

The above integer knapsack problem determines the combination of hyper-
rectangular subdomain heights in direction (d − i) that minimizes the total
surface area as expressed by the objective function. The value of xj represents
how many sub domains of height j in the (d− i) direction (i.e., [k1]× [k2]× . . .×
[kd−i−1]× [j]× [Kd−i+1]× . . .× [Kd]) are in the optimal solution. The reader can
observe that Phase-i knapsack problems use the results of Phase-(i−1) knapsack
problems as their area measure objective coefficients cj . Initially, Phase-0 area
values are used as cj values for Phase-1. In Figure 1, the towers {A}, {B,C},
and {D,E} represent a solution to a Phase-1 knapsack problem which partitions
a [2]× [1]× [5] hyper-rectangle. These Phase-1 solutions have produced the final
Phase-2 solution.

begin { Phase-i (1 ≤ i ≤ d− 1)}
if(i= d-1) (i.e. the final knapsack problem)
A0 ← The solution of the final knapsack problem (i.e. the optimal
objective value and a corresponding solution {(hj , xj)|xj 6= 0})
call Phase-d
return

else
Define a d− i− 1 dimensional array Ad−i−1[K1][K2] . . . [Kd−i−1].
for k1 = 1 to K1

for k2 = 1 to K2
...
for kd−i−1 = 1 to Kd−i−1

begin
Ad−i−1[k1][k2] . . . [kd−i−1] ← The solution of the (k1k2...kd−i−1)th
Knapsack problem (i.e. the optimal objective value and a
corresponding solution {(hj , xj)|xj 6= 0})

end
end for

...
end for

end for
end if

end { Phase-i }
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Our equi-partitioning algorithm is feasible when the above Phase-(d− 1) al-
gorithm which solves the last integer knapsack problem is feasible. The following
theorem guarantees the feasibility of Phase-(d− 1) integer knapsack problem.

Theorem 4 If V divides K1K2 . . . Kd then Phase-(d−1) integer knapsack prob-
lem is feasible.

Proof: Since V divides K1K2 . . . Kd, we can find positive integers pi (1 ≤
i ≤ d) such that pi divides Ki and V = p1p2 . . . pd (i.e., use the fundamental
theorem of algebra). Now we can write [Ki] = ∪ni

j=0(jpi + [pi]), where ni =
(Ki/pi) − 1. We consider the (p1p2 . . . pd−i−1)th knapsack problem in Phase-i
(i < d − 1) where cj = Ad−i[p1][p2] . . . [pd−i−1][j]. This problem has a feasible
solution xpd−i

= nd−i, and xj = 0 if j 6= pd−i with the objective value cpd−i
nd−i

if cpd−i
is finite. Now we show that cpd−i

= Ad−i[p1][p2] . . . [pd−i−1][pd−i] is
finite for each i (1 ≤ i ≤ d − 1) by induction on i. In our base case (i = 1),
since V divides p1p2 . . . pd−1Kd and p1p2 . . . pd−1 ≤ V , we get a finite value for
cpd−1

= Ad−1[p1][p2] . . . [pd−1] (from Phase-0) which is the total surface area of
the partition of the hyper-rectangle [p1]× [p2]× . . . [pd−1]×Kd. We assume cpd−i

is finite for (i < d − 1). Then (p1p2 . . . pd−i−1)th knapsack problem in Phase-i
(i < d − 1) is feasible as mentioned before and cpd−i−1

gets its finite optimal
objective value. Therefore, by induction, cpd−i

is finite for all i (1 ≤ i ≤ d− 1).
Since cp1

is finite, Phase-(d − 1) knapsack problem is feasible with a feasible
solution of xp1

= n1, and xj = 0 if j 6= p1 with the objective value cp1
n1. 2

4.3 Phase-d (Assignment)

Let x = (x1, x2, . . . , xnj
) and h = (h1, h2, . . . , hnj

) represent the solution of a
knapsack problem that partitions the jth direction such that

∑nj

i=1 hixi = Kj

and each xi > 0. Now we can partition [Kj ] such that [Kj ] = ∪
mj

i=1(kji + [Hji])

where mj =
∑nj

i=1 xi, kji =
∑q−1

p=1 xphp + (i − 1)hq and Hji = hq if i satisfies

1 +
∑q−1

p=1 xi ≤ i ≤
∑q

p=1 xi.

begin {Phase-d }
count← 0
proc← 1
for id = 0 to Kd − 1
begin
Select the solution (x, h) stored in A0 from Phase-(d−1) which partitions
[K1]
for i1 = 1 to m1

begin
Select the solution (x, h) stored in A1[H1i1 ] from Phase-(d− 2) which
partitions [K2]
for i2 = 1 to m2

begin
...
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Select the solution (x, h) stored in Ad−2[H1i1 ][H2i2 ] . . . [H(d−2)i(d−2)
]

from Phase-1 which partitions [Kd−1]
for id−1 = 1 to md−1

begin {assignment }
for jd = 0 to Kd − 1
for jd−1 = k(d−1)i(d−1)

to k(d−1)i(d−1)
+ H(d−1)i(d−1)

− 1
...
for j1 = k1i1 to k1i1 + H1i1 − 1
grid[j1][j2] . . . [jd]← proc
count = count + 1
if (count = V ) then
proc← proc + 1
count← 0

end if
end for {j1}
...

end for {jd−1}
end for {jd}

end {assignment}
end for {id−1}
...

end
end for {i2}

end
end for {i1}

end
end for {id}

end {Phase-d}

4.4 Analysis of the Equi-partitioning Algorithm

First we show that our algorithm solves the MSA([K1]× [K2]× . . .× [Kd], V )
problem in O(n) (n = K1K2 . . . Kd)) time if each Ki is in O(n1/d). In Phase-0,
we do n/Kd assignments and each assigned value takes at most O(n1/d) time to
calculate (Theorem 2). Since Kd = O(n1/d), we need O(n) time for Phase-0. In
Phase-i (0 ≤ i ≤ d− 1), we solve K0K1 . . . Kd−i−1, (K0 = 1), integer knapsack
problems using dynamic programming which takes O(K2

d−i) = O(n2/d) time for

each problem [12]. Hence we solve Phase-i in O(n(d−i+1)/d) time with the worst
case i = 1 giving O(n). It is clear that the final assignment phase (Phase-d)
also takes O(n) time. Therefore the algorithm runs in O(n) time when each Ki

is O(n1/d).
Let us define a gap of a feasible solution for the MSA problem as the

difference between a lower bound and an upper bound for the total area of
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the partition. The percent gap (gap%) is the gap as a percentage of the given
lower bound. Although the above algorithm is always feasible when V divides
K1K2 . . . Kd, there are examples where the algorithm may not perform well
(i.e., large gap%). For example, consider MSA([P ]4, P 2) problem where P is a
prime. In this problem every valid domain in Phase-0, [k1] × [k2] × [k3] × [P ],
has exactly one of k1, k2 or k3 equal to P . So the area of each component is
Ω(P 4/3). The lower bound given in Theorem 3.2 for the area of a component is
O(P ). Hence gap% is Ω(P 1/3) which is undesirable for large P . We can modify
Phase-0 and Phase-d of our algorithm to avoid these undesirable gaps. In Phase-
0, when V does not divide k1k2 . . . kd−1Kd (i.e., partition contains a partial
component), the approach of Theorem 2 can be used to obtain an upper bound
for the area of the partition. Instead of assigning ∞ to Ad−1[k1][k2] . . . [kd−1],
we assign U +2sd−1 where U is the total area expression in Theorem 2 assuming
p = ⌈k1k2 . . . kd−1Kd/V ⌉. In the final phase, Phase-d, we first assign labels for
the full components and then work with the remaining partial components. We
get at most one inner boundary inside a partial component justifying our upper
bound U + 2sd−1 in Phase-0.

5 Computational Results

The algorithms were coded in C and ran in 3.0GHz PCs with Linux OS.
We present computational results for selected three and four dimensional

problems. Figure 2 shows the results for MSA([M ]3,M) (1 ≤M ≤ 1000). The
percentage of solutions that are at the lower bound (i.e., optimal solutions) is
10.3%, and within 4% of gap is 95.3%. Figure 3 shows the execution times for
the cases given in Figure 2. Due to memory limitation for larger problems, we
have excluded the final assignment phase. So the running times in the graph
are for obtaining the solutions without actual assignments.

Figure 4 shows the results for MSA([M ]4,M2) (1 ≤M ≤ 400). The percent-
age of solutions that are at the lower bound (i.e., optimal solutions) is 15.0%,
and within 4% of gap is 77.75%. Here we used the modified algorithm as men-
tioned in Section 4.4. Figure 5 shows the execution times for the cases given in
Figure 4.

6 Conclusions and Future Research

We have developed a heuristic that runs in linear time in the size of the graph
(for well shaped hyper-rectangles) that generates asymptotically optimal equi-
partitions of hyper-rectangles, and demonstrated this performance for graphs of
size up to 1010.

When the area of an equi-partition does not meet the lower bound, it is very
challenging to decide whether the partition is optimal. As an example, one may
consider the equi-partition for the MSA([5]3, 5) problem shown in Figure 1 which
is the smallest non trivial problem in this family. This partition has a surface
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Figure 2: Gap% versus the number of vertices (M3) for MSA([M ]3,M) (1 ≤
M ≤ 1000)
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Figure 3: Execution time versus the number of vertices (M3) for MSA([M ]3,M)
(1 ≤M ≤ 1000)
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Figure 4: Gap% versus the number of vertices (M4) for MSA([M ]4,M2) (1 ≤
M ≤ 400)
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Figure 5: Execution time versus the number of vertices (M3) for
MSA([M ]4,M2) (1 ≤M ≤ 400)
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area of 502, bound gap of 2, and with only one non-optimal component which is
shown with the letter ‘A’. Is this an optimal solution? Constraint programming
may allow optimality verification for smaller problems such as this.

Other interesting extensions to this research include relaxing the divisibility
assumptions (i.e., modified algorithm), and improving the assignments obtained
by more complex procedures for bad components as suggested in [5] for the two-
dimensional case.
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