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Abstract

The upward planarity testing problem consists of testing if a digraph
admits a drawing Γ such that all edges in Γ are monotonically increasing
in the vertical direction and no edges in Γ cross. In this paper we reduce
the problem of testing a digraph for upward planarity to the problem of
testing if its blocks admit upward planar drawings with certain properties.
We also show how to test if a block of a digraph admits an upward planar
drawing with the aforementioned properties.
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1 Introduction

A digraph is said to be upward planar if it admits a drawing that is both upward
(i.e. all edges are monotonically increasing in the vertical direction) and planar
(i.e. no edges cross). Fig. 1(a) shows a planar, but not upward, drawing of
a digraph, Fig. 1(b) shows an upward, but not planar, drawing of a digraph,
and Fig. 1(c) is an example of an upward planar drawing of a digraph. The

(c)(a) (b)

Figure 1: A planar drawing (a); an upward drawing (b); an upward planar
drawing (c).

upward planarity of digraphs is a classical topic in the area of graph drawing.
The field of graph drawing is concerned with the construction of geometric
representations of graphs and is surveyed by Di Battista, Eades, Tamassia and
Tollis [6]. Graph drawing algorithms have uses in many areas including in the
design of layouts of printed circuit boards (PCB) and very large scale integration
(VLSI) and for visualising information. Hierarchical network structures such as
isa-hierarchies, PERT networks, family trees, call graphs and organisation charts
are naturally modeled by acyclic digraphs. For the purposes of visualisation,
acyclic digraphs are usually represented by upward drawings so as to reveal
the intrinsic (partial) order of their nodes. Planar drawings are also desirable
because it has been empirically shown that the presence of edge-crossings in a
drawing of a graph make it more difficult for a person to absorb the information
being modeled by the graph [21]. Thus, drawings which combine both these
properties (i.e. upward planar drawings), if possible, are an effective means of
visualising acyclic digraphs.

Whitney [24] has shown that a graph is planar if and only if its biconnected
components are planar. Although similar to the upward planarity testing prob-
lem, the planarity testing problem is in many ways an easier problem. For
instance planarity testing can be performed in linear time [16] while upward
planarity testing is an NP -complete problem [11]. Thus, it is not surprising
that the statement: “a digraph is upward planar if and only if its biconnected
components are upward planar”, is not in general true. For example, consider
the digraph H of Fig. 2: H is not upward planar even though its biconnected
components are upward planar. In this paper we convert the problem of testing
if a digraph is upward planar to the problem of testing if its biconnected com-
ponents have upward planar drawings with certain properties. We also describe
how to test if a biconnected digraph admits upward planar drawings with these
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properties. This decomposition strategy is a key component of a previously
described parameterised upward planarity testing algorithm [15].

(b)(a)

H
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v
v

Figure 2: H is not upward planar (a); but its blocks are upward planar (b).

This paper has the following structure. We begin by giving a synopsis of
previous work on the upward planarity testing problem in Section 2 followed
by preliminary definitions in Section 3. In Section 4 we present results (Theo-
rems 4–7) which show that G admits certain classes of upward planar drawing if
and only if the components of G with respect to any vertex v of G have certain
properties. A component of G with respect to v is formed from a connected
component G′ of G \ v by adding to G′ the vertex v and all edges between v
and G′. Using the results presented in Section 4 we describe a recursive upward
planarity testing algorithm in Section 5. Following this we present two worked
examples of this algorithm in Section 6 and conclude the paper in Section 7 by
discussing our results and suggesting open problems.
Note: The results presented in Section 4 are a more extensive treatment of a
paper presented by the authors at the 12th International Symposium on Graph
Drawing [13]. Theorem 4 is one of the main results of Section 4 and is con-
cerned with the conditions under which the union of an arbitrary number of
upward planar digraphs sharing exactly one vertex and no edges is upward pla-
nar. Following completion of that research work we learned that Chan [5] had
independently discovered a result similar to Theorem 4.

2 Review of Upward Planarity Testing Litera-

ture

An st-digraph is defined as an acyclic digraph with exactly one source, exactly
one sink, and with an edge from the source to the sink. Kelly [18] and Di Battista
and Tamassia [9] have both shown that a digraph is upward planar if and only
if it is a spanning subgraph of a planar st-digraph. Di Battista and Tamassia [9]
give an O(n′ log n′)-time algorithm for constructing an upward planar straight-
line drawing of a planar st-digraph with n′ nodes. Di Battista, Tamassia and
Tollis [10] have revealed a family Gn of upward planar digraphs such that Gn

has 2n + 2 nodes and any upward planar straight-line drawing of Gn has Ω(2n)
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area. Garg and Tamassia [11] have shown that upward planarity testing is NP -
complete for general digraphs. Consequently, research efforts have focused on
developing efficient algorithms for special classes of digraphs and parameterised
algorithms.

Di Battista, Liu, and Rival [8] have shown that a bipartite digraph is up-
ward planar if and only if it is planar. Thus a bipartite digraph can be tested
for upward planarity in linear time using any linear-time planarity testing al-
gorithm (e.g. [16]). Papakostas [19] has developed a quadratic-time algorithm
that tests if an outerplanar digraph is upward planar. Two efficient algorithms
are known for testing the upward planarity of an n-vertex single-source digraph.
Hutton and Lubiw [17] give an algorithm with O(n2) running time that utilises
Thomassen’s [23] characterisation of upward planar embedded single source di-
graphs. Bertolazzi, Di Battista, Mannino and Tamassia [3] have improved upon
this algorithm by developing a linear-time upward planarity testing algorithm
for single-source digraphs. Bertolazzi, Di Battista, Liotta and Mannino [2]
have presented a characterisation of upward planar embedded digraphs that
yields a quadratic-time algorithm for testing the upward planarity of embed-
ded digraphs. Bertolazzi, Di Battista and Didimo [1] have developed a branch
and bound algorithm for testing the upward planarity of biconnected digraphs.
Given a digraph G = (V,E) with n vertices, c cutvertices and t triconnected
components, Chan [5] has given a fixed parameter tractable algorithm for test-
ing if G is upward planar that runs in O(t! · 8t · n3 + 23·2c

· t3·2
c

· t! · 8t · n) time.
Healy and Lynch [15] improved on Chan’s algorithm with an O(2t · t! · n2)-time
upward planarity testing algorithm and have also presented an algorithm that
can test the upward planarity of G = (V,E) in O(n2 + k4(2k + 1)!) time, where
k = |E| − |V |. Di Battista and Liotta [7] have developed a linear-time veri-
fication algorithm, that is optimal both in terms of efficiency and in terms of
degree, for checking the upward planarity of drawings of a very significant fam-
ily of digraphs. Members of this family include rooted trees, planar st-digraphs
and upward planar single-source digraphs and most algorithms for constructing
upward planar drawings receive such digraphs as input.

3 Preliminaries

In this section we introduce terms and definitions which are used in later
sections. We assume a familiarity with basic graph theoretical notions such as
graph, digraph, subgraph, edge, and vertex and refer readers unacquainted with
such terms to one of the many introductory texts on the subject (e.g. [12]).

3.1 Standard Terminology

We believe that the terminology presented in this subsection will be familiar to
most readers but include it as it is necessary for the understanding of subsequent
sections. Let G be a digraph. We denote the vertex set of G by V (G) and the
edge set of G by E(G). The union of digraphs G and F , denoted G ∪ F , is the
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digraph with vertex set V (G ∪ F ) = V (G) ∪ V (F ) and edge set E(G ∪ F ) =
E(G) ∪ E(F ). Let e = 〈u, v〉 be an edge in G. We refer to the first vertex in
e as the tail of e, denoted tail(e), and to the last vertex in e as the head of e,
denoted head(e). A vertex of degree one is referred to as a leaf node. We shall
use the acronym wrt to represent with respect to. Given a real number y we use
abs(y) to represent the absolute value of y.

A walk w1 in G is an alternating sequence w1 = 〈v0, e1, v1, e2, . . . , vn−1, en, vn〉
of vertices and edges, such that ei equals either 〈vi, vi−1〉 or 〈vi−1, vi〉 for i =
1, . . . , n. A diwalk w2 in G is an alternating sequence w = 〈v0, e1, v1, e2, . . . , vn−1,
en, vn〉 of vertices and edges, such that ei = 〈vi−1, vi〉 for i = 1, . . . , n. A closed
walk in G is a walk in which the first vertex and the last vertex are identical. A
path p1 in G is a walk in which no vertex is repeated, except possibly the first
and last vertex. A dipath p2 in G is a diwalk in which no vertex is repeated,
except possibly the first and last vertex. A cycle is a path in which the first
vertex and last vertex are identical. A dicycle is a dipath in which the first
vertex and last vertex are identical. A digraph is said to be acyclic if it contains
no dicycle. A cutset of G is defined as a minimal set of vertices whose removal
increases the number of connected components of G. A cutset of size one is
called a cutvertex . A block of G is a maximal connected subgraph B of G such
that no vertex of B is a cutvertex of B.

A planar drawing of G is a drawing of G in which no two distinct edges
intersect. A digraph is said to be planar if it admits a planar drawing. An
upward drawing of G is a drawing of G in which all edges are monotonically
increasing in the vertical direction. An upward planar drawing of G is a drawing
of G which is both planar and upward. A digraph is said to be upward planar if
it admits an upward planar drawing. A straight-line drawing of G is a drawing
of G in which each edge is drawn as a straight line segment. An upward planar
straight-line (UPSL) drawing of G is a drawing of G which is both upward
planar and straight-line.

An embedded digraph Gφ is an equivalence class of planar drawings of digraph
G with the same clockwise orderings, φ, of the edges incident upon each node.
Such a choice φ for a clockwise ordering of the edges incident on each node
is called an embedding of G. Observe that two drawings of G with the same
embedding have the same set of faces, though they may have different external
faces. A strongly embedded digraph Gϕ is an equivalence class of planar drawings
of G with the same clockwise orderings of the edges incident upon each node
and the same external face. Such a choice, ϕ, for a clockwise ordering of the
edges incident on each node and of an external face is called a strong embedding
of G. We denote the set of faces in Gϕ by faces(Gϕ). If v is a vertex in Gϕ we
use ϕ(v) to denote the clockwise ordering of the edges incident on v in Gϕ. If
e is an edge incident on v we use ϕe(v) to denote the linear sequence of edges
with first edge e that is consistent with ϕ(v). A strongly embedded digraph is
said to be upward planar if it contains an upward planar drawing. A node v
of an embedded or strongly embedded digraph is bimodal if the outgoing (or
incoming) edges incident on v appear consecutively around v. If all the nodes
of an embedded (resp., strongly embedded) digraph are bimodal then it is said
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to be bimodal and such an embedding (resp., strong embedding) is said to be
a bimodal embedding (resp., bimodal strong embedding) of G. A digraph is said
to be bimodal planar if it allows a bimodal embedding.

A bipartite flow network N is a bipartite digraph in which

(i) each source (sink) has a nonnegative integer called its supply (demand)
associated with it;

(ii) each edge 〈u, v〉 has a positive integer cuv called its capacity associated
with it.

A flow fl in N is an assignment from the set of nonnegative integers to the
edges of N that satisfies the following two properties:

(i) for each edge 〈u, v〉 of N , fl (〈u, v〉) ≤ cuv;

(ii) for each source s (sink t) of N , the sum of the values assigned to the edges
incident on s (t) by fl is not more than the supply (demand) of s (t).

The value of a flow fl in N is equal to the sum of the values assigned to the
edges of N by fl. Let P be a path in N . An edge e in P is said to be a forward
edge if tail(e) appears before head(e) in P and a backward edge otherwise. The
path P is said to be a flow augmenting path if it starts at a source, ends at a
sink, each forward edge in P has a flow which is less than its capacity and each
backward edge has a positive flow.

3.2 Specialised and Novel Terminology

In this subsection we present more specialised and novel terminology.
Angles. The angles of a strongly embedded digraph Gϕ are ordered triples
〈a, v, b〉, where a and b are edges and v is a node incident with both a and b,
such that either a directly precedes b in ϕ(v) or v is a node of degree 1. An
angle 〈a, v, b〉 of Gϕ is said to be centred at v and v is said to be the centre
of 〈a, v, b〉. An angle 〈a, v, b〉 is said to be an S-angle (resp., T -angle) if both
a and b leave (resp., enter) v and an I-angle if one of the edges a, b leaves v
and the other enters v. The angles of Gϕ are mapped to geometric angles in an
UPSL drawing Γ of Gϕ. Let 〈a, v, b〉 be an angle of Γ. If a 6= b the size of the
corresponding geometric angle of 〈a, v, b〉 in Γ equals the number of radians one
has to rotate a in the clockwise direction around v in order to reach b. If a = b
the size of the corresponding geometric angle of 〈a, v, b〉 is 2π. An angle of Γ
is said to be large (resp., small) if its corresponding geometric angle is greater
(resp., smaller) than π. If v is a node we use La(v) to represent the number of
(large S-angles + large T -angles) centred at v. We are interested in five types
of angles, each of which we represent by a two letter code. We denote large
S-angles and T -angles by LS and LT respectively, small S-angles and T -angles
by SS and ST respectively, and I-angles by II.
Facial Boundary. Let f be a face of Gφ. We use the term facial boundary of
f to refer to the closed walk w defined by traversing the boundary of f such
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that w contains a subsequence 〈x, y, z〉, where x and z are edges and y is a node
if and only if 〈x, y, z〉 is an angle in Gφ. A face f is said to contain an edge,
angle, or node w if w is a subsequence of the facial boundary of f and w is said
to be contained by f . The ideas introduced
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Figure 3: Facial boundaries of
Gφ.

in this paragraph are illustrated in Fig. 3; the
facial boundary of f is 〈v2, e1, v1, e8, v8, e7,
v6, e6, v7, e6, v6, e5, v5, e4, v3, e3, v4, e3, v3,
e2〉, the S-angles f contains are 〈e6, v7, e6〉,
〈e4, v3, e3〉 and 〈e2, v2, e1〉, the T -angles f con-
tains are 〈e7, v6, e6〉, 〈e6, v6, e5〉 and 〈e3, v4, e3〉,
and the I-angles f contains are 〈e5, v5, e4〉,
〈e3, v3, e2〉, 〈e1, v1, e8〉, and 〈e8, v8, e7〉. We
use Sangs(f) (resp., La(f)) to represent the
number of S-angles (resp., (large S-angles +
large T -angles)) contained by f .
Cut Components. Let G be a connected
digraph with a vertex v. A component of G wrt v is formed from a connected
component H of G \ v by adding to H the vertex v and all edges between v and
H. Let C be a component of G wrt v. We use G \ C to denote the digraph
derived from G by deleting all the nodes in C \ v from G. C is said to be a
source-component, sink-component, or internal-component of G wrt v if v is a
source node, sink node or internal node respectively in C. Fig. 4 shows the
components of a digraph G wrt the vertex v. We use S(v), T (v), and I(v) to
refer to the subdigraph of G consisting of the union of all source-components,
sink-components, and internal-components of G wrt v, respectively.

(i) (ii) (iii) (iv)

v
v

v

v

G

Figure 4: A digraph G with a cutvertex v (i); a source-component of G wrt v
(ii); an internal-component of G wrt v (iii); a sink-component of G wrt v (iv).

Adding Two Strongly Embedded Digraphs. Definition 1 attempts to
formalise the intuitive operation of adding two strongly embedded digraphs by
identifying a vertex from one with a vertex from the other (see Fig. 5).

Definition 1 Let Aα and Bβ be strongly embedded digraphs such that V (A) ∩
V (B) = {u}, the external face ha of Aα contains the angle 〈a1, u, a2〉 and the
face fb of Bβ contains the angle 〈b1, u, b2〉. The result of adding Aα and Bβ

by inserting 〈a1, u, a2〉 within 〈b1, u, b2〉 is the strongly embedded digraph Gϕ,
defined as follows:
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1. G = A ∪ B,

2.

ϕ(v) =







α(v) for all v ∈ V (A) \ u,
β(v) for all v ∈ V (B) \ u,
〈αa2(v), βb2(v)〉 v = u.

3. The external face of Gϕ is the face whose facial boundary contains the
facial boundary of the external face of Bβ as a (not necessarily proper)
subsequence.

(ii) (iii)(i)

2

1

2
1

a

2
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h
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b
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a b

f

ub1u u

Figure 5: Aα (i); Bβ (ii); Gϕ (iii).

The facial boundary of fg is the concatenation of the facial boundaries of
ha and fb. That is, the facial boundary of fg equals 〈u, a2, ..., a1, u, b2, ..., b1〉,
where the list of nodes and edges from a2 to a1 concatenated with u is the facial
boundary of ha and the list of nodes and edges from b2 to b1 concatenated with
u is the facial boundary of fb. Property 1 follows. We refer to the faces ha, fb,
and fg as the merge-faces of Aα, Bβ , and Gϕ respectively.

Property 1 The face fg contains all the angles contained by ha except 〈a1, u, a2〉,
all the angles contained by fb except 〈b1, u, b2〉, and the “new” angles 〈b1, u, a2〉
and 〈a1, u, b2〉.

There is an obvious one-to-one correspondence ρ between the set of faces
faces(Aα) ∪ faces(Bβ) \ {fb, ha} and the set of faces faces(Gϕ) \ fg such that
if f is a face in faces(Aα) ∪ faces(Bβ) \ {fb, ha} then ρ(f) is the unique face
in faces(Gϕ) \ fg whose facial boundary is identical with the facial boundary
of f . Also if ρ(f) = f ′ then we say ρ−1(f ′) = f .

3.3 Known Properties of Upward Planar Digraphs

We now present previously published properties of upward planar digraphs that
are used in the proofs of many of our results. Theorem 1 is independently due
to Di Battista and Tamassia [9], as well as Kelly [18].
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Theorem 1 (Di Battista and Tamassia; Kelly) For any digraph G the fol-
lowing statements are equivalent.

1. G is upward planar.

2. G admits an UPSL drawing.

3. G is the spanning subgraph of a planar st-digraph.

The remainder of this subsection is concerned with Bertolazzi et al.’s [2] work
on upward planar embedded digraphs. Lemma 1 gives a formula representing
the number of large angles that a face of an UPSL drawing contains as well as
showing that the number of large angles with centre v depends only on whether
v is an internal vertex or not.

Lemma 1 (Bertolazzi et al. [2]) The following consistency properties hold
for any UPSL drawing Γ of a digraph G:

La(f) =

{

Sangs(f) + 1 if f is the external face of Γ,
Sangs(f) − 1 if f is an internal face of Γ.

La(v) =

{

0 if v is an internal node,
1 if v is a source node or a sink node.

Let Gϕ be a strongly embedded digraph. Consider an assignment M that
maps each source or sink v of Gϕ to a face M(v) of Gϕ which contains v. Such
an assignment M is said to be consistent if the number of nodes assigned to
the external face h of Gϕ equals Sangs(h)+1 and the number of nodes assigned
to each internal face f of Gϕ equals Sangs(f) − 1. For each face z in Gϕ we
use M−1(z) to denote the set of nodes assigned to z by M. Theorem 2 is a
characterisation of upward planar embedded digraphs [2].

Theorem 2 (Bertolazzi et al. [2]) A (strongly) embedded digraph is upward
planar if and only if it is acyclic, bimodal and admits a consistent assignment
of sources and sinks to its faces.

Corollary 1 A (strongly) embedded digraph is upward planar if and only if it
admits an UPSL drawing.

Although Corollary 1 is not explicitly stated by Bertolazzi et al. [2], they
do describe an algorithm for constructing an UPSL drawing of a (strongly)
embedded digraph that is acyclic, bimodal and admits a consistent assignment
of sinks and sources to its faces. Following from Theorem 1 and Corollary 1
in the remainder of this paper we restrict our attention to UPSL drawings.
Theorem 2 yields a quadratic-time algorithm for testing the upward planarity
of a (strongly) embedded digraph.

Theorem 3 (Bertolazzi et al. [2]) A (strongly) embedded digraph Gφ, with
n nodes can be tested for upward planarity in O(n2) time.
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4 The Characterisation

In this section we present necessary and sufficient conditions for when the union
of a set of digraphs Gi, i = 1, ..., l with exactly one common vertex u (i.e.
V (Ga) ∩ V (Gb) = {u} if 1 ≤ a, b ≤ l and a 6= b) admits an UPSL drawing, an
UPSL drawing whose external face contains a prescribed vertex and an UPSL
drawing whose external face contains a given class of angle with a prescribed
centre. The main results of this section are Theorems 4– 7.

4.1 Two Digraphs - Sufficient Conditions

In this subsection we define sufficient conditions for when the union of two
upward planar digraphs with exactly one common vertex is also an upward
planar digraph. Throughout this subsection let A and B be upward planar
digraphs such that V (A) ∩ V (B) = {u}. Let wa be a vertex in A such that
wa 6= u and let wb be a vertex in B such that wb 6= u. Let G = A∪B. We need
Property 2 in the proof of Lemmas 2 - 7.

Property 2 If G is the union of two distinct upward planar digraphs A and B
with exactly one common vertex u then G is acyclic.

Lemmas 2 - 7 are all concerned with sufficient conditions for merging two
upward planar strongly embedded digraphs that share exactly one vertex into an
upward planar strongly embedded digraph with certain properties. The proofs
of all five lemmas display a high amount of overlap and thus we only present
the proof of Lemma 2 here. The interested reader can obtain the proofs of
Lemmas 3-7 here [14]. In the following let X denote an arbitrary element of the
set {LS, LT, SS, ST, II}. Lemma 2 is concerned with the case when u is a source
in both A and B or a sink in both A and B and is illustrated by Fig. 6.

(i) (ii) (iii)

u

u
u

Figure 6: An illustration of Lemma 2, in the case when u is a source in both
A and B. Dashed (Solid) edges are used to represent A (B): Statement 2.1 (i);
Statement 2.2 (ii); Statement 2.3 (iii).

Lemma 2 If u is a source (sink) in both A and B, and A has an UPSL drawing
whose external face contains u then the following three statements hold.
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2.1 G is upward planar.

2.2 G admits an UPSL drawing whose external face contains u if B admits
an UPSL drawing whose external face contains u.

2.3 G admits an UPSL drawing whose external face contains a large angle
with centre u if A and B both admit UPSL drawings whose external face
contains a large angle with centre u.

Proof: Assume that u is a source in both A and B (the case when u is a sink
in both A and B follows by symmetry) and that A admits an UPSL drawing
A whose external face ha contains u. It follows that ha contains an angle with
centre u which we shall call 〈a1, u, a2〉. Also there exists a strong embedding α
of A such that Aα is bimodal, admits a consistent assignment Ma of the sinks
and sources of Aα to its faces, and A ∈ Aα (from Theorem 2). Let Ma(u) = fa.

Assume that B is upward planar. It follows that B admits an upward planar
strong embedding β. Let Mb denote a consistent assignment of the sinks and
sources of Bβ to the faces of Bβ and let Mb(u) = fb. Let B denote an UPSL
drawing of Bβ that corresponds to Mb and let 〈b1, u, b2〉 be the large angle with
centre u in B (observe that fb contains the angle 〈b1, u, b2〉).

Let Gϕ be the strongly embedded digraph that results from adding Aα and
Bβ by inserting 〈a1, u, a2〉 within 〈b1, u, b2〉. We will now show that Gϕ is acyclic,
bimodal and has a consistent assignment of sinks and sources to its faces (i.e.
that Gϕ satisfies the three sufficient conditions for upward planarity specified
by Theorem 2).

Acyclic. That G is acyclic follows directly from Property 2.

Bimodal. It follows from Definition 1 that ϕ(v) = α(v) for all v ∈ V (A) \ u
and that ϕ(v) = β(v) for all v ∈ V (B) \ u. But Aα and Bβ are both
bimodal. Therefore all nodes in V (G) \ u are bimodal. But u is also
bimodal (because u is a source). It follows that Gϕ is bimodal.

Consistent Assignment. The set of faces of Gϕ consists of all the faces of Aα

except ha, all the faces of Bβ except fb, and the “new” face fg. Consider
the assignment M of the sinks and sources of G to the faces of Gϕ which
is defined as follows:

P1. For each source or sink v ∈ V (G) ∩ V (A),

M(v) =

{

ρ(Ma(v)) if Ma(v) 6= ha,
fg if Ma(v) = ha.

P2. For each source or sink v ∈ V (G) ∩ V (B) \ {u},

M(v) =

{

ρ(Mb(v)) if Mb(v) 6= fb,
fg if Mb(v) = fb.
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(i) (ii) (iii)
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1 fb

a

2
0

h

0
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3

0

0

fg 3

Figure 7: Aα and the consistent assignment Ma (i); Bβ and the consistent
assignment Mb (ii); Gϕ and the consistent assignment M (iii). The small
squares are used to represent faces and a dashed line from a vertex x to a face
f indicates that vertex x is assigned to face f .

An example of each of the assignments Ma, Mb, and M is shown in
Fig. 7. We now show that the assignment M is consistent by showing
that

|M−1(f)| =

{

Sangs(f) + 1 if f is the external face of Gϕ,
Sangs(f) − 1 if f is an internal face of Gϕ.

We begin by showing that assignment M is consistent for each face f ∈
faces(Gϕ) \ fg. It follows from P1 that

∣

∣M−1(f)
∣

∣ =
∣

∣M−1
a

(

ρ−1 (f)
)∣

∣ ,
for each face f ∈ Gϕ \ fg such that ρ−1(f) ∈ faces(Aα). Also, since
Mb(u) = fb, it follows from P2 that

∣

∣M−1(f)
∣

∣ =
∣

∣M−1

b

(

ρ−1 (f)
)∣

∣ , for
each face f ∈ Gϕ \ fg such that ρ−1(f) ∈ faces(Bβ). But the number
of S-angles in each face f ∈ faces(Gϕ) \ fg is equal to the number of
S-angles in ρ−1(f) (because the facial boundary of f is identical to the
facial boundary of ρ−1(f)). It follows from the consistency of Ma and
Mb that the assignment M is consistent for each face f ∈ faces(Gϕ)\fg.

We now show that assignment M is consistent for fg. It follows from Prop-
erty 1 that fg contains all the S-angles contained by ha except 〈a1, u, a2〉,
all the S-angles contained by fb except 〈b1, u, b2〉, plus the two “new”
S-angles 〈b1, u, a2〉 and 〈a1, u, b2〉. Therefore,

Sangs(fg) = Sangs(ha) − 1 + Sangs(fb) − 1 + 2

= Sangs(ha) + Sangs(fb).

It follows from P1 and the consistency of Ma that the number of nodes
in V (A) ∩ V (G) that are assigned to fg by M equals Sangs(ha) + 1. The
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number of nodes in V (B)∩V (G)\u that are assigned to fg by M depends
on whether fb is an internal or external face of Bβ . We consider these two
cases separately.

Case 1. Assume that fb is an internal face of Bβ . It follows from Defini-
tion 1 that fg is an internal face of Gϕ. It follows from the consistency
of Mb and P2 that the number of nodes in V (B)∩V (G)\u that are
assigned to fg by M equals Sangs(fb) − 2. Therefore

|M−1(fg)| = Sangs(ha) + 1 + Sangs(fb) − 2

= Sangs(ha) + Sangs(fb) − 1

As Sangs(fg) = Sangs(ha)+Sangs(fb) it follows that if fb is an internal
face of Bβ then assignment M is consistent for fg.

Case 2. Assume that fb is the external face of Bβ . It follows from Def-
inition 1 that fg is the external face of Gϕ. It follows from the con-
sistency of Mb and P2 that the number of nodes in V (B)∩V (G)\u
that are assigned to fg by M equals Sangs(fb). Therefore

|M−1(fg)| = Sangs(ha) + Sangs(fb) + 1

As Sangs(fg) = Sangs(ha) + Sangs(fb) it follows that if fb is the
external face of Bβ that assignment M is consistent for fg.

Therefore M is a consistent assignment of nodes to the faces of Gϕ.

We have shown that Gϕ is acyclic, bimodal, and has a consistent assignment
of sinks and sources to its faces. It follows from Theorem 2 that Gϕ and G
are upward planar. We are now finished with the general part of the proof and
focus on the proof of the individual statements.

Statement 2.1 True, since we have shown Gϕ to be upward planar.

Statement 2.2 Suppose that B is an UPSL drawing whose external face con-
tains u. Thus the external face of Bβ contains u. It then follows directly
from Definition 1 that the external face of Gϕ also contains u. As we have
shown Gϕ to be upward planar Statement 2.2 is true.

Statement 2.3 Suppose that A and B are both UPSL drawings whose external
face contains a large angle centred at u. Therefore fb is the external face of
Bβ . Thus fg is the external face of Gϕ (from Definition 1). But it follows
from P1 that M(u) = fg. Therefore Gϕ has consistent assignment M of
sinks and sources to its faces in which u is assigned to its external face fg.
Therefore Gϕ and G have an UPSL drawing whose external face contains
the large angle centred at u.

2

Lemma 3 is concerned with the case when u is an internal node in both A
and B and is illustrated by Fig. 8.
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uu
wuu

(iii)(ii)(i) (iv)

b

Figure 8: An illustration of Lemma 3. Dashed (Solid) edges are used to represent
A (B): Statement 3.1 (i); Statement 3.2 (ii); Statement 3.3 (iii); Statement 3.5
(iv).

Lemma 3 If u is an internal node in both A and B and A has an UPSL
drawing whose external face contains an I-angle centred at u then the following
five statements hold.

3.1 G is upward planar.

3.2 G has an UPSL drawing whose external face contains an I-angle centred
at u if B has an UPSL drawing whose external face contains an I-angle
centred at u.

3.3 G has an UPSL drawing whose external face contains wb if B has an
UPSL drawing whose external face contains wb.

3.4 G has an UPSL drawing whose external face contains an edge that leaves
u if B has an UPSL drawing whose external face contains an edge that
leaves u.

3.5 G has an UPSL drawing whose external face contains an edge that enters
u if B has an UPSL drawing whose external face contains an edge that
enters u.

Lemma 4 is concerned with the case when u is a source in A and a sink in
B, or vice versa, and is illustrated by Fig. 9(i).

Lemma 4 If u is a source (sink) in A, a sink (source) in B, and A and B both
admit an UPSL drawing whose external face contains a large angle with centre
u then G admits an UPSL drawing whose external face contains an I-angle with
centre u.

Lemma 5, Lemma 6 and Lemma 7 are concerned with the case when u is
an internal node in exactly one of A or B and a source or sink in the other.
Lemma 5 is illustrated by Fig. 9(ii) and Fig. 9(iii). Lemma 6 and Lemma 7 are
illustrated by Fig. 10.
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u

(i) (ii) (iii)

u

u

w
b

Figure 9: An illustration of Lemma 4, in the case when u is a source (sink)
in A (B) (i); an illustration of Statement 1 of Lemma 5 (ii); an illustration of
Statement 2 of Lemma 5 (iii). Dashed (Solid) edges belong to A (B).

Lemma 5 If u is a source in A, an internal node in B, and A admits an
UPSL drawing whose external face contains the large angle with centre u then
the following statements hold.

5.1 G admits an UPSL drawing whose external face contains an edge that
enters u if B admits an UPSL drawing whose external face contains an
edge that enters u.

5.2 G admits an UPSL drawing whose external face contains an X angle with
centre wb if B admits an UPSL drawing whose external face contains an
X angle with centre wb.

(i) (ii) (iii)

u
u

u

Figure 10: An illustration of Lemma 6 (i); an illustration of Statement 1 of
Lemma 7 (ii); an illustration of Statement 2 of Lemma 7 (iii). Dashed (Solid)
edges are used to represent A (B).

Lemma 6 If u is an internal node in A, a source in B, A admits an UPSL
drawing whose external face contains an edge that leaves u and B admits an
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UPSL drawing whose external face contains u then G admits an UPSL drawing
whose external face contains an edge that leaves u.

Lemma 7 If u is a sink in A and an internal node in B then the following
statements hold.

7.1 G is upward planar if B admits an UPSL drawing whose external face
contains an edge which enters u.

7.2 G admits an UPSL drawing whose external face contains an edge that
leaves u if A admits an UPSL drawing whose external face contains a
large angle centred at u and B admits an UPSL drawing whose external
face contains an edge that leaves u.

4.2 Many Components - Sufficient Conditions

In this subsection we define sufficient conditions for when the union of an ar-
bitrary number of components have an UPSL drawing with certain properties.
Lemmas 8, 9 and 10 follow easily by induction from results in Subsection 4.1 and
their proofs are similar. Thus we only present the proof of Lemma 8. Fig. 11(i)
illustrates Lemma 8 in the case when u is a source in G.

Lemma 8 Let G be a digraph with a source (sink) u. G has an UPSL drawing
whose external face contains u if every component of G wrt u has an UPSL
drawing whose external face contains u.

Proof: Let Gi, i = 1, . . . , c be the components of G wrt u and let G∗
x =

⋃x
i=1

Gi.
Assume that every component of G wrt u has an UPSL drawing whose external
face contains u. Let k be an integer such that 1 ≤ k < c. Assume that G∗

k has
an UPSL drawing whose external face contains u. It follows from Statement
2 of Lemma 2 that G∗

k+1
= G∗

k ∪ Gk+1 has an UPSL drawing whose external
face contains u if Gk+1 has an UPSL drawing whose external face contains u.
But G∗

1 = G1 has an UPSL drawing whose external face contains u. Therefore
G∗

1, G
∗
2, . . . G

∗
c have UPSL drawings whose external face contains u. But G∗

c = G.
Thus G has an UPSL drawing whose external face contains u if every component
of G wrt u has an UPSL drawing whose external face contains u. 2

Lemma 9 and Lemma 10 can be proved using Statement 3 of Lemma 2
and Statement 2 of Lemma 3, respectively, along with an inductive argument
analogous to that used to prove Lemma 8. Fig. 11(ii) illustrates Lemma 9 in
the case when u is a source in G and Fig. 12(i) illustrates Lemma 10.

Lemma 9 Let G be a digraph with a source (sink) u. G has an UPSL drawing
whose external face contains the large angle centred at u if every component
of G wrt u has an UPSL drawing whose external face contains the large angle
centred at u.
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(ii)(i)

u

u

Figure 11: An illustration of Lemma 8 in the case when u is a source in G (i);
an illustration of Lemma 9 in the case when u is a source in G (ii).

Lemma 10 Let G be a digraph with a node u such that all components of G
wrt u are internal-components. G has an UPSL drawing whose external face
contains an I-angle centred at u if every component of G wrt u has an UPSL
drawing whose external face contains an I-angle centred at u.

(ii)(i)

u
u

Figure 12: An illustration of Lemma 10 (i); an illustration of Lemma 11 in the
case when an edge leaves u (ii).

Lemma 11 Let G be a digraph with a node u such that all components of G
wrt u are internal-components. G has an UPSL drawing whose external face
contains an edge that leaves (enters) u if the following two statements hold:

(i) All components of G wrt u admit an UPSL drawing whose external face
contains an edge that leaves (enters) u.

(ii) At most one component of G wrt u does not have an UPSL drawing whose
external face contains an I-angle centred at u.

Proof: Case 1. Suppose that all components of G wrt u have an UPSL drawing
whose external face contains an I-angle centred at u. Then G admits an UPSL
drawing Γ whose external face contains an I-angle centred at u (Lemma 10).
But an I-angle consists of an incoming edge and an outgoing edge. Thus the
external face of Γ contains an outgoing edge incident on u.
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Case 2. Suppose some component Gy of G wrt u does not admit an UPSL
drawing whose external face contains an I-angle centred at u, but does admit
an UPSL drawing whose external face contains an edge that leaves (enters) u.
If all the components of G \ Gy wrt u have an UPSL drawing whose external
face contains an I-angle centred at u then G \ Gy admits an UPSL drawing
whose external face contains an I-angle centred at u (Lemma 10). It follows
from Statement 4 (Statement 5) of Lemma 3 that G = Gy ∪ (G \Gy) admits an
UPSL drawing whose external face contains an edge that leaves (enters) u. 2

Fig. 12(ii) illustrates Lemma 11 in the case when an edge leaves u.

4.3 Two Components - Necessary Conditions

In this subsection we define necessary conditions for when two components can
be merged into an upward planar digraph. Let G be an upward planar digraph
with a node u such that there are exactly two components of G wrt u, which
we refer to as G1 and G2. Let G be an UPSL drawing of G and let G1 and G2

be the drawings induced on G1 and G2 by G, respectively.

Property 3 All of G1 (resp., G2) lies in a single face of G2 (resp., G1) and at
least one of G1 or G2 lies in the external face of the other.

Due to Property 3, in the remainder of this subsection we let f1 be the face
of G1 that contains G2 and we let f2 be the face of G2 that contains G1.

Lemma 12 If G1 and G2 are both internal-components then the faces f1 and
f2 both contain an I-angle centred at u.

Proof: Assume that G1 and G2 are both internal-components wrt u. The edges
incident on u in G1 (resp., G2) appear contiguously in the clockwise ordering
of the edges incident on u in G (because G1 lies entirely inside the face f2 of G2

and G2 lies entirely inside the face f1 of G1). Therefore exactly one edge, a1

(resp., a2) of G1 (resp., G2) directly precedes an

u

b1 a2

b2a1

Figure 13: Angles centred
at u.

edge b2 (resp., b1) of G2 (resp., G1) in the clock-
wise ordering of edges incident on u in G. Also
f1 (resp., f2) contains an angle formed from the
edges a1 and b1 (resp., a2 and b2) and u (see
Fig. 13). G1 and G2 both contain an edge which
enters u and an edge which leaves u (because G1

and G2 are both internal-components wrt u). If
a1 and b1 both enter (resp., leave) u then u is not
bimodal in G because edges which leave (resp.,
enter) u would occur in the clockwise sequence of

edges from a1 to b1 as well as the clockwise sequence of edges from b1 to a1. A
similar argument can be used to show that if a2 and b2 both enter (resp., leave)
u, then u is not bimodal in G. But G is an UPSL drawing only if it is bimodal
planar (Theorem 2). It follows that the set of edges {a1, b1} (resp., {a2, b2})
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consists of an edge which enters u and an edge which leaves u. Therefore f1

and f2 both contain an I-angle centred at u. 2

Lemma 13 If either G1 or G2 is a source-component and the other is a sink-
component then the faces f1 and f2 both contain a large angle centred at u.

Proof: Assume that G1 is a source-component and that G2 is a sink-component.
It follows from Lemma 1 that u is the centre of exactly one large angle in G1

and exactly one large angle in G2. But u is an internal node in G and therefore
is not centred at any large angles in G (Lemma 1). Thus both large angles are
“canceled out” in G. Therefore G1 (resp., G2) is drawn within the face of G2

(resp., G1) that contains the large angle centred at u. Therefore f1 and f2 each
contain a large angle centred at u. An analogous argument can be made if G2

is a source-component and that G1 is a sink-component. 2

Fig. 14(i) illustrates Lemma 13 and Fig. 14(ii) illustrates Lemma 14 in the case
when G1 is a source-component.

(i) (ii)

u

u

Figure 14: An illustration of Lemma 13 (i); an illustration of Lemma 14 in
the case when G1 is a source-component (ii). Solid (Dashed) edges are used to
represent G1 (G2).

Lemma 14 If G1 is a source-component (resp., sink-component) and G2 is an
internal-component then the face f1 contains a large angle centred at u and the
face f2 contains an outgoing (resp., incoming) edge incident on u.

Proof: Assume that G1 is a source-component and that G2 is an internal-
component. As u is a source in G1 but an internal node in G, u is centred at one
large angle in G1 but on no large angle in G (Lemma 1). Thus the large angle
centred at u in G1 is “canceled out” in G. Therefore G2 lies in the face of G1

that contains the large angle centred at u. Therefore f1 contains a large angle
centred at u. The edges incident on u in G1 (resp., G2) appear contiguously in
the clockwise ordering of the edges incident on u in G (because G1 lies entirely
inside the face f2 of G2 and G2 lies entirely inside the face f1 of G1). Thus f1

(and therefore G1) contains edges a1 and b1 and f2 (and therefore G2) contains
edges a2 and b2 such that the edge a1 (resp., b2) directly precedes the edge a2
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(resp., b1) in the clockwise ordering of edges incident on u in G. As all edge(s)
incident on u in G1 leave u, but G2 contains edge(s) which leave u and edge(s)
which enter u, it follows that u is bimodal in G only if b1 and/or b2 leave u. The
upward planarity of G implies that u is bimodal in G (Theorem 2). Therefore f2

contains an outgoing edge incident on u. An analogous argument can be made
if G2 is a source-component. 2

4.4 Many Components - Necessary Conditions

Lemma 15 Let Gi, i = 1, . . . , c be the components of a digraph G wrt a node u.
Let G be a drawing of G and let Gi be the sub-drawing induced on Gi, i = 1, . . . , c.
G is an UPSL drawing only if at least c− 1 of the sub-drawings Gi, i = 1, . . . , c,
are UPSL drawings whose external face contains u.

Proof: Clearly the lemma holds if c = 1. Henceforth we assume c > 1. Let
j and k be any two distinct integers such that 1 ≤ j, k ≤ c. Gj ∪ Gk is an
UPSL drawing only if both Gj and Gk are UPSL drawings and Gj ∪Gk is planar.
Suppose that Gj and Gk are both UPSL drawings whose external face is not
incident on u. Let Ej (resp., Ek) be the facial boundary of the external face of
Gj (resp., Gk). As u does not lie on Ej (resp., Ek), u must be a point in the
interior of some closed curve E′

j (resp., E′
k) which is a sub-drawing of Ej (resp.,

Ek). As E′
j and E′

k are both closed curves
Gj ∪ Gk is planar only if all of E′

j lies in the

k
j

k

j

E

E
u

p
p

Figure 15: u internal to Gj and
Gk.

interior of E′
k or vice versa. As Gj (resp., Gk)

is connected a path pj (resp., pk) exists from
u to a node contained by E′

j (resp., E′
k). But

if E′
j (resp., E′

k) is drawn inside E′
k (resp.,

E′
j) then pk (resp., pj) is a curve from a point

in the exterior of E′
j (resp., E′

k) to a point in
the interior of E′

j (resp., E′
k) and therefore

intersects E′
j (resp., E′

k) (see Fig. 15). Thus
Gj ∪ Gk is an UPSL drawing only if at least
one of Gj or Gk is an UPSL drawing whose
external face contains u. 2

Lemma 16 Let Gi, i = 1, . . . , c be the components of a digraph G wrt a node u.
Let G be a drawing of G and let Gi be the sub-drawing induced on Gi, i = 1, . . . , c.
G is an UPSL drawing whose external face contains u only if each Gi, i = 1, . . . , c,
is an UPSL drawing whose external face contains u.

Proof: Let x be any integer such that 1 ≤ x ≤ c. Suppose that Gx is an
UPSL drawing whose outer face Ex does not contain u. Therefore u is a point
in the interior of some closed curve E ′

x that is a sub-drawing of Ex. But E ′
x

is a sub-drawing of G. Therefore u is not contained by the external face of G.
Therefore G is an UPSL drawing whose external face contains u only if each Gi,
i = 1, . . . , c, is an UPSL drawing whose external face contains u. 2
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In the following X denotes an arbitrary element of the set {LS, LT, SS, ST,
II}. Lemma 17 is illustrated by Fig. 16.

Lemma 17 Let G be a digraph with a cutvertex u, let C be a component of G
wrt u, and let w 6= u be a vertex of C. Let Γ be a drawing of G and let ΓC

(resp., ΓG\C) be the sub-drawing induced on C (resp., G \ C) by Γ. If Γ is an
UPSL drawing whose external face contains an angle of type X centred at w then
the following three statements are true:

1. ΓC is an UPSL drawing whose external face contains an angle of type X

centred at w.

2. ΓC is drawn entirely within the external face of ΓG\C .

3. ΓG\C is an UPSL drawing whose external face contains u.

Proof: Statement 1. As ΓC can be obtained from Γ by deleting edges (none of
which are incident on w) and nodes (none of which are adjacent to w) it follows
that ΓC is an UPSL drawing and that the external face of ΓC contains an angle
of type X centred at w.

Statement 2. Using an argument analogous to that used in Property 3 it
can be shown that ΓC lies entirely within a face f of ΓG\C . As w is contained
by the external face of Γ, but w /∈ ΓG\C , it follows that f must be the external
face of ΓG\C .

Statement 3. There is a path from w to u containing only nodes and edges
of C. Thus if u is not contained by the external face of ΓG\C this path will cross
the boundary of the external face of Γ′′

G\C
, violating the planarity of Γ. 2

C u

G \ C

w

Figure 16: An illustration of Lemma 17. Dashed (Solid) edges belong to C
(G \ C).

4.5 Main Results

We are now ready to present the main results of this section.

Theorem 4 Let G be a digraph and let u be any vertex in G. G is upward
planar if and only if the following four statements are true.
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1. All components of G wrt u are upward planar.

2. At most one component of G wrt u does not admit an UPSL drawing
whose external face contains u.

3. At most one internal-component of G wrt u does not admit an UPSL
drawing whose external face contains an I-angle centred at u.

4. At least one of the following three statements is true:

(a) All source-components and sink-components of G wrt u have an UPSL
drawing whose external face contains a large angle centred at u.

(b) All source-components of G wrt u admit an UPSL drawing whose
external face contains a large angle with centre u and all internal-
components of G wrt u admit an UPSL drawing whose external face
contains an edge which enters u.

(c) All sink-components of G wrt u admit an UPSL drawing whose exter-
nal face contains a large angle centred at u and all internal-components
of G wrt u admit an UPSL drawing whose external face contains an
edge which leaves u.

Proof: Sufficiency. Assume that G contains at least one source-component,
at least one sink-component, and at least one internal-component wrt u. If the
conditions are sufficient for upward planarity when all three types of components
are present then they must also be sufficient for upward planarity if any of these
components are not present. Assume Statements 1, 2, and 3 are true.
Case 1. Assume Statement 4(a) is true. If Statement 4(a) is true then both
S(u) and T (u) admit UPSL drawings whose external face contains a large angle
centred at u (from Lemma 9). Therefore S(u)∪ T (u) admits an UPSL drawing
whose external face contains an I-angle centred at u (from Lemma 4).

We now consider I(u). It follows from the truth of Statement 3 that there
exists an internal-component Ci of G wrt u such that all internal-components
of G \ Ci wrt u admit an UPSL drawing whose external face contains an I-
angle centred at u. Therefore I(u)\Ci admits an UPSL drawing whose external
face contains an I-angle centred at u (from Lemma 10). Also it follows from the
truth of Statement 1 that Ci is upward planar. Therefore I(u) = (I(u)\Ci)∪Ci

is upward planar (Lemma 3.1). As S(u)∪T (u) admits an UPSL drawing whose
external face contains an I-angle centred at u and I(u) is upward planar it
follows from Lemma 3.1 that G is upward planar.
Case 2. Assume Statement 4(b) is true. If Statement 4(b) is true then S(u)
admits an UPSL drawing whose external face contains a large angle with centre
u (from Lemma 9). Also if Statement 3 and Statement 4.2 are both true then
I(u) admits an UPSL drawing whose external face contains an edge that enters
u (from Lemma 11). It then follows from Lemma 5.1 that I(u) ∪ S(u) admits
an UPSL drawing whose external face contains an edge that enters u.

Also it follows from the truth of Statement 2 that there exists a sink-
component Ct of G wrt u such that all sink-components of G \ Ct wrt u admit
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an UPSL drawing whose external face contains u. Therefore T (u)\Ct admits an
UPSL drawing whose external face contains u (from Lemma 8). But as State-
ment 1 is true Ct must be upward planar. Therefore T (u) = (T (u) \ Ct) ∪ Ct

is upward planar (Lemma 2.1). As S(u)∪ I(u) admits an UPSL drawing whose
external face contains an edge that enters u and T (u) is upward planar it follows
from Lemma 7.1 that G is upward planar.
Case 3. Assume Statement 4(c) is true. Follows by symmetry from Case 2.
Necessity.

1. A component of G wrt u is a subgraph of G. Thus G is upward planar only
if all components of G wrt u are upward planar. It follows that Statement
1 is necessary.

2. The necessity of Statement 2 follows directly from Lemma 15.

3. The necessity of Statement 3 follows directly from Lemma 12.

4. We now show the necessity of Statement 4. We will use the following four
statements.

A All components of S(u) wrt u admit an UPSL drawing whose external
face contains a large angle with centre u.

B All components of T (u) wrt u admit an UPSL drawing whose external
face contains a large angle with centre u.

C All components of I(u) wrt u admit an UPSL drawing whose external
face contains an edge that leaves u.

D All components of I(u) wrt u admit an UPSL drawing whose external
face contains an edge that enters u.

Suppose Statement A and Statement B are both false. Thus there exists a
component Gs of S(u) wrt u and a component Gt of T (u) wrt u such that
neither Gs nor Gt admits an UPSL drawing whose external face contains
the large angle centred at u. It follows from Lemma 13 that Gs∪Gt is not
upward planar. Therefore G is upward planar only if Statement A and/or
Statement B are/is true.

Suppose Statement A and Statement C are both false. Thus there exists
a component G′

s of S(u) wrt u such that G′
s does not admit an UPSL

drawing whose external face contains the large angle with centre u and
a component Gi of I(u) wrt u such that Gi does not admit an UPSL
drawing whose external face contains an edge that leaves u. It follows
from Lemma 14 that G′

s∪Gi is not upward planar. Therefore G is upward
planar only if Statement A and/or Statement C are/is true.

An analogous argument can be used to proof that G is upward planar only
if Statement B and/or Statement D are/is true.

Therefore G is upward planar only if at least one of the following state-
ments is true.
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(a) Statement A and Statement B are both true.

(b) Statement A and Statement D are both true.

(c) Statement B and Statement C are both true.

But these are equivalent to Statements 4(a), 4(b), and 4(c) respectively.
Thus Statement 4 is also necessary. Thus we have proved the necessity.

2

In the following three theorems we use X to denote an arbitrary element of
the set {LS, LT, SS, ST, II}.

Theorem 5 Let G be a digraph with a vertex u such that there is a source-
component C of G wrt u which contains a vertex w 6= u. G has an UPSL
drawing whose external face contains an X angle with centre w if and only if the
following five statements are true.

A1 C admits an UPSL drawing whose external face contains an X angle with
centre w.

A2 All source-components of G\C wrt u have an UPSL drawing whose external
face contains u.

A3 All sink-components of G wrt u admit an UPSL drawing whose external
face contains a large angle centred at u.

A4 All internal-components of G wrt u have an UPSL drawing whose external
face contains an edge which leaves u.

A5 At most one internal-component of G wrt u does not have an UPSL drawing
whose external face contains an I-angle centred at u.

Proof: We begin by proving the sufficiency for the case when there is at least
one source-component, at least one sink-component, and at least one internal-
component of G \ C wrt u. The sufficiency of all other cases follows from the
sufficiency of this case. Assume that Statements A1 - A5 are all true.

It follows from Lemma 9 and the truth of Statement A3 that T (u) admits
an UPSL drawing whose external face contains a large angle with centre u. It
follows from Lemma 11 and the truth of Statements A4 and A5 that I(u) admits
an UPSL drawing whose external face contains an edge that leaves u. Therefore
I(u)∪T (u) admits an UPSL drawing whose external face contains an edge that
leaves u (Lemma 7.2).

Let S′(u) denote the union of all source-components of G \ C wrt u. It
follows from Lemma 8 and the truth of Statement A2 that S′(u) admits an
UPSL drawing whose external face contains u. Therefore (I(u) ∪ T (u)) ∪ S′(u)
admits an UPSL drawing whose external face contains an edge that leaves u
(Lemma 6).

Thus G\C = (I(u)∪T (u))∪S′(u) admits an UPSL drawing whose external
face contains an edge that leaves u. It then follows from the truth of Statement
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A1 and Lemma 5.2 that G admits an UPSL drawing whose external face contains
an X angle centred at w.

We shall now prove the necessity.

A1 The necessity of Statement A1 follows from Lemma 17.

A2 The necessity of Statement A2 follows from Lemmas 17 and 16.

A3 Suppose that GT is a sink-component of G wrt u that does not admit an
UPSL drawing whose external face contains a large angle centred at u. Let
Γ be a drawing of GT ∪C and let ΓGT

(ΓC) be the sub-drawing induced on
GT (C) by Γ. It follows from Lemma 13 that if Γ is an UPSL drawing then
ΓC lies entirely within an internal face of ΓGT

and thus the external face
of Γ does not contain an X angle with centre w. But GT ∪C is a subgraph
of G. Therefore G does not admit an UPSL drawing whose external face
contains an X angle centred at w if Statement A3 is false.

A4 The necessity of Statement A4 can be shown with Lemma 14 and an argu-
ment analogous to that used to prove the necessity of Statement A3.

A5 The necessity of Statement A5 follows directly from Lemma 12.

2

Theorem 6 follows by symmetry from Theorem 5.

Theorem 6 Let G be a digraph with a vertex u such that there is a sink-
component C of G wrt u which contains a vertex w 6= u. G has an UPSL
drawing whose external face contains an X angle with centre w if and only if the
following five statements are true.

B1 C admits an UPSL drawing whose external face contains an X angle with
centre w.

B2 All sink-components of G\C wrt u admit an UPSL drawing whose external
face contains u.

B3 All source-components of G wrt u have an UPSL drawing whose external
face contains a large angle centred at u.

B4 All internal-components of G wrt u have an UPSL drawing whose external
face contains an edge which enters u.

B5 At most one internal-component of G wrt u does not have an UPSL drawing
whose external face contains an I-angle centred at u.

Theorem 7 Let G be a digraph with a vertex u such that there is an internal-
component C of G wrt u which contains a vertex w 6= u. G has an UPSL
drawing whose external face contains an X angle with centre w if and only if the
following three statements are true.
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C1 C admits an UPSL drawing whose external face contains an X angle centred
at w.

C2 All internal-components of G \ C wrt u admit an UPSL drawing whose
external face contains an I-angle centred at u.

C3 All source-components and sink-components of G wrt u admit an UPSL
drawing whose external face contains a large angle with centre u.

Proof: We will prove the sufficiency for the case when there is at least one
source-component, at least one sink-component, and at least one internal-component
of G \ C wrt u. The sufficiency of all other cases follows from this case. Let
I ′(u) denote the union of all internal-components of G\C wrt u. Assume State-
ments C1, C2 and C3 are all true. It follows from Lemma 9 and the truth of
Statement C3 that both S(u) and T (u) admit an UPSL drawing whose external
face contains a large angle centred at u. Therefore S(u)∪T (u) admits an UPSL
drawing whose external face contains an I-angle centred at u (Lemma 4). It
follows from Lemma 10 and the truth of Statement C2 that I ′(u) admits an
UPSL drawing whose external face contains an I-angle centred at u. Therefore
G \ C = (S (u) ∪ T (u)) ∪ I ′(u) admits an UPSL drawing whose external face
contains an I-angle centred at u (Lemma 3.2). It follows from Lemma 3.3 and
the truth of Statement C1 that G admits an UPSL drawing whose external face
contains an X angle centred at w.

We now prove the necessity of each statement.

C1 The necessity of Statement C1 follows from Lemma 17.

C2 The necessity of Statement C2 follows from Lemma 12 and an argument
analogous to that used to prove the necessity of Statement A3 in Theo-
rem 5.

C3 The necessity of Statement C3 can be shown with Lemma 14 and an ar-
gument analogous to that used to prove the necessity of Statement A3 in
Theorem 5.

2

5 The Algorithm

In this section we give a detailed description of an upward planarity testing
algorithm yielded by Theorems 4 – 7 in combination with Bertolazzi et al.’s
algorithm for testing the upward planarity of an embedded digraph [2]. In
Section 5.1 we introduce the concept of the rank of a digraph wrt to one of
its vertices and restate Theorems 4 – 7 using this concept. In Section 5.2 we
show how to compute the rank of a block wrt one of its vertices by tailoring
Bertolazzi et al.’s aforementioned algorithm. Following this, in Section 5.3 we
introduce a type of vertex that will play a central role in our testing algorithm.
Finally in Section 5.4 we present a description of the whole upward planarity
testing algorithm.
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5.1 The Rank of a Digraph

In this subsection we show that the classes of UPSL drawings that occur in
Theorems 4 – 7 can be ordered according to how “easily” digraphs admitting
such UPSL drawings can be merged with other upward planar digraphs in order
to form an upward planar digraph. For this purpose we introduce the concept
of the rank of a digraph wrt one of its vertices. We also restate Theorems 4 – 7
using the concept of rank.

Let A and B represent two distinct components of a digraph G wrt a vertex
u of G. Let H be the union of all remaining components of G wrt u (i.e.
H = G \ (A ∪ B)). Suppose that A and B are both source-components or
both sink-components of G wrt u. It follows from Theorems 4 – 7 that we
need to be able to test which, if any, of the following classes of drawings A and
B admit: an UPSL drawing, an UPSL drawing whose external face contains
u, an UPSL drawing whose external face contains a large angle centred at u.
Conveniently, the “flexibility” of source-components and sink-components of G
wrt u can be totally ordered according to which of these classes of drawings each
allows. Stated more precisely, we can assign an integer to A called the rank of
A wrt u and denoted by rank(A, u) such that:

(i) if rank(A, u) < rank(B, u) then H∪A is upward planar if H∪B is upward
planar;

(ii) if rank(A, u) = rank(B, u) then H ∪ A is upward planar if and only if
H ∪ B is upward planar.

The rank of A wrt u is defined as follows.

rank(A, u) = 1 if A admits an UPSL drawing whose external face contains a
large angle centred at u.

rank(A, u) = 2 if the previous case does not apply and A admits an UPSL
drawing whose external face contains u.

rank(A, u) = 10 if none of the previous cases apply and A admits an UPSL
drawing.

rank(A, u) = 99 if there is no UPSL drawing of A.

Suppose that A and B are both internal-components of G wrt to u. It follows
from Theorems 4 – 7 that we need to be able to test which, if any, of the following
classes of drawings each admits: an UPSL drawing, an UPSL drawing whose
external face contains an S-angle centred at u, an UPSL drawing whose external
face contains a T -angle centred at u, and an UPSL drawing whose external face
contains an I-angle centred at u. The “flexibility” of internal-components of u
can be partially ordered according to which of these classes of drawings each
allows. Stated more precisely, we can assign an integer to A called the rank of
A wrt u and denoted by rank(A, u) such that if:
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(i) if abs (rank (A, u)) < abs(rank(B, u)) then H ∪ A is upward planar if
H ∪ B is upward planar;

(ii) if rank(A, u) = rank(B, u) then H ∪ A is upward planar if and only if
H ∪ B is upward planar.

Note the use of the absolute value. The rank of A wrt u is defined as follows.

1. rank(A, u) = 1 if A admits an UPSL drawing whose external face contains
an I-angle centred at u.

2. rank(A, u) = 2 if the previous case does not apply and A admits an UPSL
drawing whose external face contains an S-angle centred at u as well as
an UPSL drawing whose external face contains a T -angle centred at u.

3. rank(A, u) = 3 if none of the previous cases applies and A admits an
UPSL drawing whose external face contains an S-angle centred at u.

4. rank(A, u) = −3 if none of the previous cases applies and A admits an
UPSL drawing whose external face contains a T -angle centred at u

5. rank(A, u) = 10 if none of the previous cases applies and A admits an
UPSL drawing.

6. rank(A, u) = 99 if no UPSL drawing of A exists.

No Angle

No Angle

Small Angle

Large Angle

S−Angle T−Angle

I−Angle

S−Angle
T−Angle

(b)(a)

+

Figure 17: An illustration of the total ordering of the classes of drawings of
source-components or sink-components (a); and the partial ordering of the
classes of drawings of internal-components (b).

We now restate Theorems 4 – 7 using the concept of rank. This restatement
is straight-forward because we have associated a rank with each class of drawing
that appears in these theorems. The correctness of our ordering of the classes
of drawings that occur in Theorems 4 – 7 follows from these restatements.
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Theorem 8 Let G be a digraph and let u be any vertex in G. G is upward
planar if and only if the following four statements are true.

1. No component of G wrt u has a rank of 99.

2. At most one component of G wrt u has a rank of 10.

3. At most one internal-component of G wrt u does not have a rank of 1.

4. At least one of the following three statements is true:

(a) All source-components and sink-components of G wrt u have a rank
of 1.

(b) All source-components of G wrt u have a rank of 1 and all internal-
components of G wrt u have a rank r such that r = −3 or abs(r) ≤ 2.

(c) All sink-components of G wrt u have a rank of 1 and all internal-
components of G wrt u have a rank r such that r = 3 or abs(r) ≤ 2.

Theorem 9 Let G be a digraph with a vertex u such that there is a source-
component C of G wrt u that contains a vertex w 6= u. G has a rank of x wrt
w if and only if the following five statements are true.

A1 C has a rank of x wrt w.

A2 All source-components of G \ C wrt u have a rank ≤ 2 wrt u.

A3 All sink-components of G wrt u have a rank of 1 wrt u.

A4 All internal-components of G wrt u have a rank r wrt u such that r = 3 or
abs(r) ≤ 2.

A5 At most one internal-component of G wrt u has a rank wrt u that is 6= 1.

Theorem 10 Let G be a digraph with a vertex u such that there is a sink-
component C of G wrt u that contains a vertex w 6= u. G has a rank of x wrt
w if and only if the following five statements are true.

B1 C has a rank of x wrt w.

B2 All sink-components of G \ C wrt u have a rank ≤ 2 wrt u.

B3 All source-components of G wrt u have a rank of 1 wrt u.

B4 All internal-components of G wrt u have a rank r wrt u such that r = −3
or abs(r) ≤ 2.

B5 At most one internal-component of G wrt u has a rank wrt u that is 6= 1.

Theorem 11 Let G be a digraph with a vertex u such that there is an internal-
component C of G wrt u that contains a vertex w 6= u. G has a rank of x wrt
w if and only if the following two statements are true.

C1 C has a rank of x wrt w.

C2 All components of G \ C wrt u have a rank of 1 wrt u.
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5.2 Determining Rank

Let B be a block of a digraph G. We now show how to determine the rank of B
wrt one of its vertices u, i.e. rank(B, u). B is either a biconnected digraph or its
underlying graph is K2. In the latter case u is either a sink or source in B and B
admits an UPSL drawing whose external face contains a large angle centred at
u (i.e. rank(B, u) = 1). Henceforth we assume that B is a biconnected digraph.
We present two algorithms for determining the rank of an embedded digraph wrt
one of its vertices: Algorithm 1 computes the rank of an embedded digraph wrt
an internal vertex and Algorithm 2 computes the rank of an embedded digraph
wrt a source or sink vertex. Using these algorithms as subroutines Algorithm 3
determines the rank of a block wrt one of its cutvertices.

Algorithm 1 Rank-Internal(Gφ, v)

Input: an acyclic embedded digraph Gφ with j nodes that are either sources or
sinks and an internal node v of Gφ

Output: the rank of Gφ wrt v
1: if φ is not bimodal then return 99.
2: Construct a bipartite flow network N which is defined as follows:

• the vertices of N are the sources, sinks and faces of Gφ; each source or
sink u ∈ V (G) has a supply of one unit and each face f ∈ faces(Gφ)
has a demand of Sangs(f) − 1 units;

• N contains an edge 〈u, f〉 with a capacity of one unit if and only if u
is a source or sink in V (G), f ∈ faces(Gφ) and u is contained by the
boundary of f .

3: if N does not admit a flow of value j − 2 then return 99.
4: Let F = ∅.
for each face f of Gφ do

Let N
f be the bipartite flow network formed from N by increasing the

demand of f by two. if N
f admits a flow of value j then F = F ∪ {f}.

end for
5: if a face in F contains an I-angle with centre v then return 1.
else if a face in F contains an S-angle with centre v and a face in F contains
a T -angle with centre v then return 2.
else if a face in F contains an S-angle with centre v then return 3.
else if a face in F contains a T -angle with centre v then return -3.
else if F 6= ∅ then return 10.
else return 99.

Suppose that an acyclic embedded digraph Gφ with n nodes and an internal
node v of Gφ are inputted to Algorithm 1. With the exception of Step 5 which
inspects the boundary of the successful external faces for angles centred at v
and the fact that we have assumed G to be acyclic, Algorithm 1 is identical to
Bertolazzi et al.’s [2] algorithm. The inspection performed in Step 5 takes O(n)
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time and Bertolazzi et al.’s [2] algorithm takes O(n2) time. Thus Algorithm 1
runs in O(n2) time.

Algorithm 2 Rank-Source-Sink(Gφ, v)

Input: an acyclic embedded digraph Gφ with j nodes that are either sources or
sinks and a source or sink v ∈ G

Output: the rank of Gφ wrt v
1: if φ is not bimodal then return 99.
2: Construct a bipartite flow network Nv which is defined as follows:

• the vertices of Nv are the sources, sinks and faces of Gφ; each source or
sink u 6= v has a supply of one, v has a supply of zero and each face f
has a demand of Sangs(f) − 1;

• Nv contains an edge 〈u, f〉 with a capacity of one if and only if u is
a source or sink in V (G), f ∈ faces(Gφ) and u is contained by the
boundary of f .

3: if Nv does not admit a flow fl of value j − 3 then return 99.
4: for each face f of Gφ that contains v do

Let N
f
v be the bipartite flow network formed from Nv by increasing the

demand of f by one. if N
f
v admits a flow of value j − 1 then return 1.

end for
5: Let N be the bipartite flow network formed from Nv by increasing the

supply of v by one.
6: if N does not admit a flow fl′ of value j − 2 then return 99.
7: Let F = ∅.

for each face f of Gφ do
Let N

f be the bipartite flow network formed from N by increasing the
demand of f by two. if N

f admits a flow of value j then F = F ∪ {f}
end for

8: if there is a face in F that contains v then return 2.
else if F 6= ∅ then return 10.
else return 99.

Algorithm 2 describes how to compute the rank of an embedded digraph Gφ

which has j source and sink nodes wrt a source or sink v of Gφ. The initial
bipartite flow network Nv constructed by Algorithm 2 differs from the initial
bipartite flow network constructed by Bertolazzi et al.’s algorithm [2] only in
the supply of v. This minor modification allows us to test if Gφ admits an UPSL
drawing whose external face contains a large angle with centre v. It follows from
Bertolazzi et al.’s algorithm [2] and the fact that v has a supply of zero that
Gφ is upward planar only if Nv admits a flow of value j − 3, which is checked
in Step 3. In Step 4 we test if Gφ admits an UPSL drawing whose external face
contains a large angle centred at v. In Step 5 we change the supply of v in Nv to
one and call the resulting bipartite flow network N . Bipartite flow network N
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is identical to the initial bipartite flow network that would be constructed if Gφ

is inputted to Bertolazzi et al.’s algorithm [2]. Finally Step 6, Step 7, and Step
8 are analogous to Step 3, Step 4, and Step 5 of Algorithm 1. We now consider
the running time of Algorithm 2. Let n denote the number of nodes in G. The
first three steps of Algorithm 2 can be carried out in O(n · j) time using the
same techniques used by Bertolazzi et al.’s algorithm [2]. Step 4 of Algorithm 2
runs in O(n2) time as up to two flow augmentations are performed per face of
Gφ at a cost of O(n) time each. Step 5 of Algorithm 2 can be performed in
constant time. As Step 6, Step 7, and Step 8 of Algorithm 2 are analogous to
Step 3, Step 4, and Step 5 of Algorithm 1 it follows that they also run in O(n2)
time. Thus the total running time of Algorithm 2 is O(n2).

We now present Algorithm 3 which follows easily from the previous two
algorithms. Algorithm 3 runs in O(#(B)·|V (B)|2) time, where #(B) represents
the number of embeddings of the inputted biconnected digraph B.

Algorithm 3 Rank-Block(B, v)

Input: a biconnected digraph B and a vertex v of B.
Output: an integer representing rank(B, v).
1: Test if B is acyclic and planar. If not return 99.
2: Build the SPQR-tree T of B.
3: Use T to generate the embeddings of B.
4: Depending on whether v is a source, sink or internal node use either Algo-

rithm 1 or Algorithm 2 to compute the rank of each embedding of B.
5: Return the integer with lowest absolute value that is calculated in Step 3.

5.3 Star-vertices

In this subsection we introduce a type of cutvertex called a star-vertex and prove
that a digraph contains a star-vertex if (and only if) it contains a cutvertex
(Lemma 18). Star-vertices will play an important role in the decomposition
strategy presented in Section 5.4. We begin by introducing some terminology.
A leaf block of a digraph G is a block of G that contains exactly one cutvertex.
A non-leaf block of G is a block of G that contains two or more cutvertices. A
star-vertex is a cutvertex that is contained by at most one non-leaf block. The
block-cutvertex tree of G, denoted T , is the tree with a vertex for every block and
cutvertex of G and an edge between a cutvertex and each block that contains
that cutvertex [20]. The vertices in T that correspond to blocks (cutvertices) in
G are referred to as the block-vertices (cutvertices) of T . The block-cutvertex
tree of the digraph in Fig. 18(i) is drawn in Fig 18(ii) with square nodes used
to represent the block-vertices of the tree.

Lemma 18 A digraph G has a star-vertex if and only if it has a cutvertex.

Proof: The necessity follows from the definition of a star-vertex as a cutver-
tex with certain properties. We now consider the sufficiency. Assume that G
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Figure 18: A digraph G (i); the block-cutvertex tree T of G (ii).

contains a cutvertex and let T denote the block-cutvertex tree of G. Let T 2

denote the tree that results from deleting all nodes of degree one from T . There
is a one-to-one correspondence between the leaf blocks of G and the nodes of
degree one in T . Thus all nodes of degree one or zero in T 2 are star-vertices
of G. As all cutvertices in T have a degree of two or more it follows that T 2

contains at least one node of degree one or zero. Thus G contains a star-vertex
if G contains a cutvertex. 2

5.4 Testing for Upward Planarity

We now describe Algorithm 4, the main algorithm of this paper, in full.

Algorithm 4 UP-Test(G)

Input: A connected planar acyclic digraph G.
Output: TRUE if G is upward planar. FALSE otherwise.

Let c be a star-vertex of G;
if all components of G wrt c are blocks then

for each component B of G wrt c do Rank-Block(B, c); end for
if G satisfies Theorem 8 then return TRUE; else return FALSE; end if

else
Let G′ be the multi-block component of G wrt c;
for each component B of G \ G′ wrt c do Rank-Block(B, c); end for
if Theorem 8 implies that G is not upward planar then return FALSE.
else if Theorem 8 implies that G is upward planar if and only if G′ is

upward planar then return UP-Test(G′).
else Theorem 8 implies that G is upward planar if and only if G′ admits

a drawing of rank r wrt c such that r = r′ or abs(r) < abs(r′) so
return UP-Test-Rank(G′, c, r′); end if

end if

Let G be a planar acyclic digraph that we wish to test for upward planarity.
Algorithm 4 processes G by splitting it into its components wrt a star-vertex
c of G (later in this subsection we will describe how to efficiently locate star-
vertices). There are two cases to consider: either all the components of G wrt
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c are blocks or there is one multi-block component of G wrt c which we denote
by G′. If all the components of G wrt c are blocks then the upward planarity of
G can be tested by using Algorithm 3 to calculate their ranks wrt c and then
checking if these ranks satisfy the conditions defined by Theorem 8. If there is
a multi-block component G′ of G wrt c then again using Algorithm 3 calculate
the rank of each block component of G wrt c as before. This rank information
is then used in conjunction with Theorem 8 to determine a rank r such that G
is upward planar if and only if G′ admits a drawing of rank r′ wrt c such that
r′ = r or abs(r′) < abs(r). The algorithm is then recursively applied to G′. If r
is less than 10 then Subroutine 1 (i.e. UP-Test-Rank(G′, c, r)) is called instead
of Algorithm 4 (i.e. UP-Test(G′)). UP-Test-Rank(G′, c, r) checks if G′ admits
a drawing of rank r′ wrt c such that r′ = r or abs(r′) < abs(r).

Subroutine 1 UP-Test-Rank(G, v, r)

Input: A connected planar acyclic digraph G, a vertex v of G, and a rank r.
Output: TRUE if G admits a drawing of rank r′ wrt v such that r′ = r or

abs(r′) < abs(r). Otherwise returns FALSE.

Let c be a star-vertex of G;
Let Gv be the component of G wrt c that contains v;
if all components of G wrt c are blocks then

if (Rank-Block(Gv, v) 6= r and abs(Rank-Block(Gv, v)) ≮ abs(r)) then
return FALSE; end if
for each component B of G \ Gv wrt c do Rank-Block(B, c); end for
if G \ Gv satisfies Theorems 9–11 then return TRUE;
else return FALSE; end if

else
Let G′ be the multi-block component of G wrt c;
if G′ = Gv then

if G \ Gv satisfies Theorems 9–11 then return UP-Test-Rank(Gv, v, r);
else return FALSE; end if

else
if (Rank-Block(Gv, v) 6= r and abs(Rank-Block(Gv, v)) ≮ abs(r)) then
return FALSE; end if
for each component B of G \ (Gv ∪ G′) wrt c do Rank-Block(B, c);
endfor
if G \ (Gv ∪ G′) does not satisfy Theorems 9–11 then

return FALSE;
else

Theorems 9–11 and the ranks of the components of G \ (Gv ∪ G′) wrt
c imply that UP-Test-Rank(G, v, r) is TRUE if and only if G′ admits
a drawing of rank r† wrt c such that r† = r∗ or abs(r†) < abs(r∗) so
return UP-Test-Rank(G′, c, r∗);

end if
end if

end if
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Subroutine 1 or UP-Test-Rank(G, v, r) tests if G admits a drawing of rank
r′ wrt v such that r′ = r or abs(r′) < abs(r). Like Algorithm 4, Subroutine 1
processes G by splitting it into its components wrt a star-vertex c of G. Let Gv

be the component of G wrt c that contains v. Subroutine 1 considers three cases:
all the components of G wrt c are blocks, Gv is the multi-block component of G
wrt c and the multi-block component of G wrt c is not Gv. If all the components
of G wrt c are blocks then Subroutine 1 uses Algorithm 3 to calculate the rank
of Gv wrt v and the ranks of the components of G\Gv wrt c, and checks if these
ranks satisfy the conditions defined by Theorems 9–11. If Gv is the multi-block
component of G wrt c then again using Algorithm 3 we check if the components
of G\Gv wrt c satisfy the conditions defined by Theorems 9–11. If they do then
Subroutine 1 is recursively applied to Gv, v and r (i.e. UP-Test-Rank(Gv, v, r)
is called). If they don’t then Subroutine 1 returns FALSE. Recall the third case
of Subroutine 1 is when there is a multi-block component G′ of G wrt c such
that G′ 6= Gv. In this case we also use Algorithm 3 to calculate the rank of the
components of G \ (Gv ∪G′) wrt c, and the rank of Gv wrt v. If these ranks do
not satisfy Theorems 9–11 then Subroutine 1 returns FALSE. If these ranks do
satisfy Theorems 9–11 then, there exists a rank r∗ such that UP-Test-Rank(G,
v, r) is TRUE if and only if G′ admits a drawing of rank r† wrt c such that
r† = r∗ or abs(r†) < abs(r∗) (i.e. UP-Test-Rank(G′, c, r∗) is called).

We now analyse the running time of Algorithm 4. Suppose that G contains
n vertices and b blocks which are labeled B1, . . . , Bb. Let ki represent the
number of embeddings of Bi, for i = 1, . . . , b. Three main factors contribute
to the running time of Algorithm 4, the most significant of which is detecting
the ranks of the blocks of G (wrt their vertices). Algorithm 4 determines the
rank of Bi wrt at most one vertex of Bi, for i = 1, . . . , b. In total this takes

O
(

∑b
i=1

ki · |V (Bi)|
2

)

time.

The second factor that contributes to the running time of Algorithm 4 is
the identification of star-vertices. The star-vertices of G can be identified by
running Algorithm 5 as a preprocessing step to Algorithm 4. A node in G is
either initially a star-vertex or becomes a star-vertex at a latter stage of the
decomposition of G by Algorithm 4 (and Subroutine 1) if and only if it is a
cutvertex in G. Thus Algorithm 5 orders the cutvertices of G so that if the
decomposition of G by Algorithm 4 (and Subroutine 1) is consistent with this
order then each cutvertex is a star-vertex of the subgraph of G that remains
at that point. We now analyse the running time of Algorithm 5. The block-
cutvertex tree T of G can be built in O(n) time using depth first search [22].
Also observe that once the degree of all nodes in T has been calculated (which
takes linear time) each node in T can be processed in O(1) time by the while
loop of Algorithm 5. As |V (T )| = O(n) the while loop contributes O(n) time in
total to the running time of Algorithm 5. Thus Algorithm 5 runs in O(n) time.

A third factor that contributes to the running time of Algorithm 4 is check-
ing if the ranks of the single block components of G wrt c satisfy the conditions
imposed by Theorem 8 (or Theorems 9 – 11), for each star-vertex c at which G is
decomposed. In order to do this Algorithm 4 counts the number of single block



Healy and Lynch, Blocks and Upward Planarity , JGAA, 11(1) 3–44 (2007) 38

Algorithm 5 Star-V ertices(G)

Input: A connected digraph G with c ≥ 1 cutvertices.
Output: An ordered list PG = 〈v1, . . . , vc〉 of the cutvertices of G such that, vj

is a star-vertex in Gj , for j = 1, . . . , c (where G1 = G and Gi is the digraph
formed by deleting all leaf-blocks of vi−1 in Gi−1, for i = 2, . . . , c).

1: Let PG be the empty list and let T be the block-cutvertex tree of G;
2: while T contains at least one block-vertex do
3: Let T ′ be the digraph formed by deleting all nodes of degree one from T ;
4: if T ′ consists of a single node then
5: Add this cutvertex to the end of PG and let T = T ′;
6: else
7: Add all nodes of degree one in T ′ to the end of PG (in any order);
8: T = the digraph formed by deleting all nodes of degree one in T ′;
9: end if

10: end while
11: return PG;

components of G wrt c of each type (i.e. source-component, sink-component,
or internal-component) and rank and checks if their quantities satisfy the con-
ditions imposed by Theorem 8 (or Theorems 9 – 11). As G contains O(n)
blocks, in total it takes O(n) time to count the single block components for all
decomposition points of G. Therefore the total running time of Algorithm 4 is

O
(

n +
∑b

i=1
ki · |V (Bi)|

2

)

time

6 A Couple of Worked Examples

In this section we present two examples that illustrate the workings of Algo-
rithm 4 (and Subroutine 1). In the first example, Example 1, we describe how
Algorithm 4 would process an upward planar digraph G1 while in the second
example, Example 2, we describe how Algorithm 4 would process a digraph,
G2, which is not upward planar. In both examples we assume that Algorithm 5,
which looks after the identification of star-vertices, has been run as a prepro-
cessing step.

6.1 Example 1 - An Upward Planar Digraph

In this example we consider how Algorithm 4 would process the upward planar
digraph G1 which is shown in Fig. 19(i). Let 〈c3, c2〉 denote the ordering of the
cutvertices returned by Algorithm 5 when inputted G1. Thus c3 is a star-vertex
of G1. There are two components of G1 wrt c3: the single block component B2

and the multi-block component B1 ∪B3 ∪B4 ∪B5 which we denote by G′
1 (see

Fig. 19(ii)). Using Algorithm 3 we can calculate the rank of B2 wrt c3. B2 is a
sink-component of G1 wrt c3 and, as shown in Fig. 20(ii), B2 admits an UPSL
drawing whose external face contains a large angle with centre c3. Thus B2 has



Healy and Lynch, Blocks and Upward Planarity , JGAA, 11(1) 3–44 (2007) 39

a rank of 1 wrt c3. It follows from Theorem 8 that there are no restrictions on
the number of components of rank 1 wrt a cutvertex and so G1 is upward planar
if and only if G′

1 is upward planar. Thus the next step is to apply Algorithm 4
to G′

1.

2
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3
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3

5 1 1
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B

B
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B

BB
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Figure 19: An upward planar digraph G1 (i); the multi-block component of G1

wrt c3 (ii).

(v)(iv)(iii)(ii)(i)
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2

2

3
2c

c

c

c

c

Figure 20: UPSL drawings of B1 (i), B2 (ii), B3 (iii), B4 (iv) and B5 (v).

6.1.1 Testing G′
1 for Upward Planarity

The second vertex in the ordering of the cutvertices of G1 returned by Algo-
rithm 5, 〈c3, c2〉, is c2. Thus c2 is a star-vertex of G′

1. There are four components
of G′

1 wrt c2. These are B1, B3, B4 and B5. As all are blocks we have reached
the base case. Using Algorithm 3 we calculate the ranks of each of these four
blocks wrt c2. It can be seen from Fig. 20(i), (iii), (iv) and (v) that all four
blocks have a rank of 1 wrt c2. As there is no restriction on the number of
components of rank 1 in Theorem 8 it follows that G′

1, and therefore G1, is
upward planar.



Healy and Lynch, Blocks and Upward Planarity , JGAA, 11(1) 3–44 (2007) 40

6.2 Example 2 - A Digraph which is not Upward Planar

In this example we describe how Algorithm 4 would process the non-upward
planar digraph G2 shown in Fig. 21. Let 〈c3, c2〉 denote the ordering of the
cutvertices returned by Algorithm 5 when inputted G2. Thus c3 is a star-vertex
of G2.

B
B

c

c

3

2

3

2
1

B

Figure 21: A digraph G2 which is not upward planar.

There are two components of G2 wrt c3. These are the single block compo-
nent B1 and the multi-block component B2 ∪B3 which we denote by G′

2. Using
Algorithm 3 we can calculate the rank of B1 wrt c3. B1 is an internal-component
of G1 wrt c3 and has a rank of 3 wrt c3. Thus B1 admits an UPSL drawing
whose external face contains an S-angle with centre c3 (see Fig. 22(i)). It is
clear from Theorem 8 that only one internal-component with a rank not equal
to 1 is allowed. As G′

2 is also an internal-component of G2 wrt c3 it follows
that G2 is upward planar if and only if G′

2 has a rank of 1 wrt c3. Thus we
recursively apply Subroutine 1 to test if G′

2 has a rank of 1 wrt c3.

(i) (ii) (iii)

c2

3

3 cc
2

c

Figure 22: UPSL drawings of B1 (i), B2 (ii) and B3 (iii).

6.2.1 Testing the rank of G′
2.

The second vertex in the ordering of the cutvertices of G2 returned by Algo-
rithm 5, 〈c3, c2〉, is c2. Thus c2 is a star-vertex of G′

2. G′
2 is shown in Fig. 23.

There are two components, B2 and B3, of G′
2 wrt c2. As both components are

blocks we have reached the base case. Using Algorithm 3 we calculate the rank
of B2 wrt c3 and B3 wrt c2. B2 has a rank of 3 wrt to c3 (see Fig. 22(ii)). It
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B

c2

2

c3

3
B

Figure 23: G′
2.

follows from Theorems 9–11 that G′
2 does not admit an UPSL drawing of rank

1 wrt c3. Therefore G2 is not upward planar, even though all its blocks are
upward planar (see Fig. 22).

7 Conclusions

Let G be a planar digraph with b blocks B1, . . . , Bb and n vertices. Let ki

represent the number of embeddings of Bi, for i = 1, . . . , b. In this paper we
have presented an upward planarity testing algorithm that can process G in

O
(

n +
∑b

i=1
ki · |V (Bi)|2

)

time. Although this running time is acceptable for

digraphs whose blocks have few embeddings (e.g. digraphs with a high similarity
to trees or digraphs whose blocks are triconnected digraphs) in general it is too
high to be of practical use. Thus we see the main contribution of this paper as
reducing the problem of testing if a digraph is upward planar to that of testing if
its biconnected components admit UPSL drawings with certain properties. We
believe that this is an important step towards the development of a practically
useful upward planarity testing algorithm.

Currently, all suggested algorithms for testing the upward planarity of gen-
eral digraphs use one of two high level strategies. The first strategy consists
of algorithms which, using Bertolazzi, Di Battista, Liotta and Mannino’s algo-
rithm [2] for testing the upward planarity of embedded digraphs as a subroutine,
try to examine as few embeddings as possible in order to discern whether or not
a given digraph is upward planar [5, 15]. The second strategy for testing the
upward planarity of a digraph involves testing if it is a spanning subgraph of
a planar st-digraph [9, 18]. Both strategies can be tailored to test biconnected
digraphs for the properties stated in our characterisation (we showed how to
tailor the first strategy to test for these properties in Section 5.2). Thus the
running time of algorithms based on both strategies can be improved by dividing
a digraph into its blocks and testing each block for the relevant properties. This
reduction in running time is not only due to the fact that we are testing sub-
problems with a smaller input size. Because we are now testing digraphs that
are biconnected there is a significant reduction on the number of embeddings
that they allow. This can be seen from the following formula that represents
the number of embeddings of G [4].
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Theorem 12 (Cai [4]) Let C be the set of cut vertices of G. For each cutver-
tex c ∈ C let Bc be the set of biconnected components sharing c and let dc be the
degree of c. For each c ∈ C and for each x ∈ Bc let mc,x represent the number
of edges in x that are incident on c. Then the total number of embeddings of G
is

b
∏

i=1

ki ·
∏

c∈C

(
∏

x∈Bc

mc,x

|Bc|−2
∏

j=1

(dc − j)).

By treating the biconnected components of G separately at most
∑b

i=1
ki em-

beddings need be considered. Clearly this is a significant reduction.
The effectiveness of the decomposition strategy presented in this paper was

displayed by the authors when it was invoked in a parameterised algorithm that
can test the upward planarity of G in O(2t ·t!·n2) time [15], where the parameter
t represents the number of triconnected components in G. This improves on
the previous best algorithm for this parameter which had a running time of

O(t! · 8t · n3 + 23·2k

· t3·2
k

· t! · 8t · n) [5], where k is the number of cutvertices in
G.

Bertolazzi, Di Battista and Didimo [1] have developed a branch and bound
algorithm for testing the upward planarity of biconnected digraphs. Their al-
gorithm uses the first of the high level strategies mentioned previously (i.e. it
examines only a subset of the set of embeddings of a biconnected digraph) and
thus it should be possible to tailor their algorithm to test for the properties
stated in our characterisation. We suggest as an open problem that of devis-
ing an upward planarity testing algorithm for biconnected digraphs that works
by testing if its triconnected components admit UPSL drawings with certain
properties.
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