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Abstract

We present fully dynamic algorithms for maintaining 3- and 5-spanners
of undirected graphs under a sequence of update operations. For un-
weighted graphs we maintain a 3-spanner or a 5-spanner under inser-
tions and deletions of edges; on a graph with n vertices each operation
is performed in O(∆) amortized time over a sequence of Ω(n) updates,
where ∆ is the maximum degree of the original graph. The maintained
3-spanner (resp., 5-spanner) has O(n3/2) edges (resp., O(n4/3) edges),
which is known to be optimal. On weighted graphs with d different edge
cost values, we maintain a 3- or 5-spanner within the same amortized time
bounds over a sequence of Ω(d · n) updates. The maintained 3-spanner
(resp., 5-spanner) has O(d · n3/2) edges (resp., O(d · n4/3) edges). The
same approach can be extended to graphs with real-valued edge costs in
the range [1, C].

All our algorithms are deterministic and are substantially faster than
recomputing a spanner from scratch after each update.
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1 Introduction

Graph spanners arise in many applications, including communication networks,
computational biology, computational geometry, distributed computing, and
robotics ([1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15]). Intuitively, a spanner of a
graph is a subgraph that preserves approximate distances between all pairs of
vertices. More formally, given t ≥ 1, a t-spanner of a graph G is a subgraph
S of G such that for each pair of vertices the distance in S is at most t times
the distance in G; t is referred to as the stretch factor of the spanner. A

deterministic algorithm for computing a t-spanner of size O
(

t · n1+ 2
t+1

)

of a

weighted graph with n vertices and m edges has been given in [1]; the best known
implementation of this algorithm, given in [18], has running time O(n2+2/(t+1)).
Recently, a randomized algorithm running in O(m + n) time has been given
by Baswana and Sen [4]; a derandomization of this algorithm, still running in
O(m + n) worst case time, has been proposed in [16].

Small stretch spanners offer a good compromise between sparsity and dis-
tance stretch: maintaining a t-spanner may be practical in the case of very large
graphs, whose edges must be stored in external memory, while spanner edges
could fit into main memory. A graph with million vertices could need TeraBytes
of memory to store its edges, while the edges in its 3-spanner or 5-spanner only
need order of GigaBytes, at the cost of a limited distance stretch. This means
that algorithms for computing exact distances or shortest paths could be run
on the spanner in main memory, giving approximate distances for the original
graph. Applications related to computing distances on very large dense graphs
arise for instance in MultiProtocol Label Switching (MPLS) networks, where
a connection represents a tunnel between a pair of devices that crosses many
physical connections. In this scenario, MPLS networks can be very dense, even
close to a complete graph, although the original graph representing physical
connections is sparse.

While there has been a lot of progress in the area of dynamic graph problems,
to the best of our knowledge no fully dynamic algorithm for maintaining a t-
spanner of a graph under edge insertions and/or deletions is known, neither
for the unweighted case, and only partially dynamic solutions were announced
in [4]. A related direction of research is concerned with the maintenance of
approximate distances, i.e., a query on the distance between two vertices is
answered with a guaranteed approximation factor (see [17] for recent results
and references). These results are usually obtained using Ω(n2) space, while
in the case of t-spanners we are interested in representing a much sparser data
structure that still maintains approximate distances in the original graph.

In this paper, we contribute a first step towards the maintenance of dynamic
graph spanners by presenting a fully dynamic deterministic algorithm for main-
taining 3- and 5-spanners of unweighted graphs. Our algorithm supports an
intermixed sequence of Ω(n) edge insertions and deletions in O(∆) amortized
time per operation, where ∆ is the maximum degree of the original graph. The
maintained 3-spanner has O(n3/2) edges, while the 5-spanner has O(n4/3) edges.



G. Ausiello et al., Small Stretch Spanners, JGAA, 10(2) 365–385 (2006) 367

Wenger [19] shows how to build graphs with Θ(n3/2) edges having no cycles of
length less than 5, or with Θ(n4/3) edges having no cycles of length less than 7.
For such graphs, no proper subgraphs preserve distances within stretch factor 3
(resp., 5). This implies that the size of our spanners is asymptotically optimal.

The same approach can be extended to weighted graphs with d different edge
cost values. Over a sequence of Ω(d ·n) intermixed edge insertions and deletions
the amortized time per operation is still O(∆). The maintained 3-spanner has
O(d · n3/2) edges, while the 5-spanner has O(d · n4/3) edges. This is optimal for
constant d.

On graphs with real-valued edge costs in [1, C], for t > 3 we can maintain a
t-spanner with O(n3/2 · logt/3 C) edges in O(∆) amortized time per operation
over a sequence of Ω(n · logt/3 C) edge insertions and edge deletions. For t > 5,

a t-spanner with O(n4/3 · logt/5 C) edges can be maintained in O(∆) amortized
time per operation over a sequence of Ω(n · logt/5 C) edge insertions and edge
deletions.

Our algorithms require O(m) worst-case space (assuming that the origi-
nal graph is larger than the spanner, i.e., m = Ω(n3/2) for the 3-spanner and
m = Ω(n4/3) for the 5-spanner), are deterministic and are substantially faster
than recomputing a spanner from scratch. To achieve our results, we derive a
deterministic version of the randomized clustering technique of Baswana and
Sen [4], and find how to update the clustering under the deletion of edges. Our
algorithms use simple data structures, and thus seem amenable to practical
implementations.

The remainder of the paper is organized as follows. We present a determin-
istic clustering scheme in Section 2. In Section 3 we show a tight relationship
between this clustering and 3- and 5-spanners. Next, our dynamic algorithm
for unweighted graphs is presented in Section 4, where we show how to build
a clustering and the associated 3- or 5-spanner, and how a clustering and the
associated 3- or 5-spanner can be updated under edge deletions; the amortized
complexity over a sequence of edge deletions is discussed in Subsection 4.3. This
decremental algorithm is made fully dynamic in Section 5. In Section 6 we show
how the same approach can be extended to graphs with d different edge costs
and to graphs with positive real edge costs. Section 7 lists some concluding
remarks.

2 Definitions

2.1 Basic definitions

We assume that the reader is familiar with the standard graph terminology, as
presented for instance in [8]. Let G = (V,E) be an undirected graph, with V
being the set of vertices and E the set of edges. Throughout the paper, we
denote by n the number of vertices and by m the number of edges in the graph.
If the graph is weighted, there is a real-valued cost c(e) ≥ 0 associated with
each edge e ∈ E.
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Given a vertex x, its neighborhood is the set N(x) = {x} ∪ {y | (x, y) ∈ E}
(note that x ∈ N(x) by definition). The degree δ(x) of vertex x is the number
of edges incident on x; the maximum degree of vertices in V is denoted by ∆.
Given two vertices u, v ∈ V , a path π in G = (V,E) connecting vertex u to
vertex v is a sequence of vertices u = v0, v1, . . . , vℓ = v such that (vi−1, vi) ∈ E,
for 0 < i ≤ ℓ. We say that each edge (vi−1, vi) is in path π, for 0 < i ≤ ℓ. The
length of a path π is the number of edges in π. If the graph is weighted, the cost
of a path π is the sum of the costs of edges in π:

c(π) =

ℓ
∑

i=1

c(vi−1, vi) .

In the case of unweighted graphs the cost of a path is simply its length.
The distance distG(u, v) from u to v in G is given by the minimum cost of a

path in G from u to v (or +∞ if there is no such path). A shortest path from u
to v is then defined as any path π from u to v with c(π) = distG(u, v). A graph
G′ = (V ′, E′) is a subgraph of graph G = (V,E) if V ′ ⊆ V and E′ ⊆ E.

Given a graph G, a t-spanner S is a subgraph of G that preserves distances
up to a factor t (the stretch factor). More formally,

Definition 1 Let G = (V,E) be a weighted graph, and let t be a real value,
with t ≥ 1. A t-spanner of G is a graph S = (V,E′) with E′ ⊆ E such that the
following holds:

∀ u, v ∈ V distS(u, v) ≤ t · distG(u, v). (1)

The following lemma is due to Peleg and Shäffer [13]:

Lemma 1 [13] A subgraph S = (V,E′) of G = (V,E), is a t-spanner of G if
and only if the following holds:

∀ (x, y) ∈ E distS(x, y) ≤ t · c(x, y). (2)

2.2 Clustering

Definition 2 Let x1, x2, . . . , xk, with k ≥ 1, be distinct vertices in V , and let
Γ = {Cl(x1), Cl(x2), . . . , Cl(xk)} be a family of subsets of V . Given a real
number ℓ ≥ 1, Γ is an ℓ-clustering of G = (V,E) if the following properties
hold:

1. Cl(xi) ⊆ N(xi) for 1 ≤ i ≤ k;

2. Cl(xi) ∩ Cl(xj) = ∅, for each i 6= j;

3.
⋃k

i=1 Cl(xi) =
⋃k

i=1 N(xi);

4. |Cl(xi)| ≥ ℓ for 1 ≤ i ≤ k.

Each set Cl(xi) is called cluster, and xi is denoted as its center.
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Note that, according to the previous definition, the center xi of cluster Cl(xi)
may belong to another cluster Cl(xj), with i 6= j. As a special case, we define
an empty clustering to be a clustering with no clusters. We assume that the
empty clustering is an ℓ-clustering, for any ℓ. An example of a 5-clustering is
shown in Figure 1.

Given an ℓ-clustering, a vertex is called clustered if it belongs to a cluster,
and free otherwise; if vertex y is clustered, center(y) denotes the center of the
cluster containing y. For each v ∈ V , we define its free neighborhood FN(v) as

FN(v) = N(v) \
(

⋃k
i=1 Cl(xi)

)

.

Due to Properties 2 and 4 in Definition 2, an ℓ-clustering contains at most
n/ℓ clusters, each of size at least ℓ. We say that an ℓ-clustering is maximal if
|FN(v)| < 2ℓ, for each v ∈ V .

We remark that our definition of clustering is more strict that the one given
in [4]. In the case of unweighted graphs, the construction of spanners starting
from our definition of clustering is simpler and deterministic.

3 Clusterings and spanners

In this section we show how small stretch spanners of unweighted graphs can
be produced from an appropriate ℓ-clusterings. In particular, we describe how
to produce a 3-spanner from a n1/2-clustering, and a 5-spanner from a n1/3-
clustering.

3.1 Clusterings for 3-spanners

Definition 3 Given an ℓ-clustering Γ of G = (V,E), we say that a subgraph
G′ = (V,E′) of G is 3-compatible with Γ if E′ is the union of the following sets
of edges:

cluster edges: all edges (x, y) such that y is clustered and x = center(y);

free edges: all edges (x, y) ∈ E such that either x or y is a free vertex;

3-bridge edges: for each cluster Cl(xi) and each vertex y ∈ (Cl(xj) \ {xi}),
with xj 6= xi, one arbitrary edge (x, y) ∈ E such that x ∈ Cl(xi), if one
exists. We say that edge (x, y) connects vertex y to cluster Cl(xi).

Theorem 1 Given a graph G = (V,E) and an ℓ-clustering Γ, if G′ = (V,E′)
is a subgraph of G 3-compatible with Γ, then G′ is a 3-spanner of G.

Proof: We show that for any edge (a, b) ∈ E there is a path of length at most
3 from a to b in G′. There can be only 3 cases, depending on a and b.

• Both a and b belong to the same cluster: in this case one of the following
holds:

– one among a and b is the center of the cluster, thus (a, b) is a cluster
edge in G′;
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Figure 1: a 5-clustering of a graph and the associated 3-spanner and 5-spanner.
In the 3-spanner, 3-bridge edges are represented by arrows from a vertex to a
cluster.
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– a third vertex x is the center of the cluster, thus (a, x) and (x, b) are
cluster edges in G′.

• Vertices a and b belong to different clusters. Let a ∈ Cl(xi) and b ∈ Cl(xj):
in such a case there must be a 3-bridge edge (b, y), where y ∈ Cl(xi). If
y 6= a, then the cluster edges provide a path of length at most 2 from y to
a, thus giving a path of length at most 3 from a to b in G′.

• At least one among a and b is a free vertex: in this case (a, b) is a free
edge in G′.

2

Due to Theorem 1, we will refer to a subgraph of G 3-compatible with
an ℓ-clustering Γ as a 3-spanner associated with Γ. An example of 3-spanner
associated with a 5-clustering of a graph is shown in Figure 1.

If we choose ℓ = n1/2, and the n1/2-clustering is maximal, we can prove that
any associated 3-spanner is sparse:

Corollary 1 A 3-spanner G′ = (V,E′) associated to a maximal n1/2-clustering
contains O(n3/2) edges.

Proof: There are at most n cluster edges, since each vertex can be in at most
one cluster. There is at most one 3-bridge edge for each possible pair 〈x,Cl(xi)〉,
where x ∈ V and Cl(xi) ∈ Γ: since there are at most n1/2 clusters, there are at
most n3/2 3-bridge edges.

We finally bound the number of free edges. Let us partition the set of
free edges into two sets: FF containing edges with two free endpoints, and
FC containing edges between a free vertex and a clustered vertex. Since Γ is
maximal, each free vertex has at most 2 · n1/2 free adjacent vertices, and thus
|FF | ≤ n · 2n1/2.

We count edges in FC by looking at each clustered vertex v: since Γ is
maximal, there can be at most 2 ·n1/2 free edges incident to v, and thus |FC| ≤
n · 2n1/2. 2

3.2 Clusterings for 5-spanners

Definition 4 Given an ℓ-clustering Γ of G = (V,E), we say that a subgraph
G′ = (V,E′) of G is 5-compatible with Γ if E′ is the union of the following sets
of edges:

cluster edges: all edges (x, y) such that y is clustered and x = center(y);

free edges: all edges (x, y) ∈ E such that either x or y is a free vertex;

5-bridge edges: for each pair of clusters Cl(xi), Cl(xj), with xi 6= xj, one
arbitrary edge (x, y) ∈ E such that x ∈ Cl(xi) and y ∈ Cl(xj), if one
exists. We say that edge (x, y) connects clusters Cl(xi) and Cl(xj).
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We remark that the only difference with Definition 3 lies in the set of bridge
edges.

Theorem 2 Given a graph G = (V,E) and an ℓ-clustering Γ, if G′ = (V,E′)
is a subgraph of G 5-compatible with Γ, then G′ is a 5-spanner of G.

Proof: We show that for any edge (a, b) ∈ E there is a path of length at most
5 in G′. There can be only 3 cases, depending on a and b.

• Both a and b belong to the same cluster: in this case one of the following
holds:

– one among a and b is the center of the cluster, thus (a, b) is a cluster
edge in G′;

– a third vertex x is the center of the cluster, thus (a, x) and (x, b) are
cluster edges in G′.

• Vertices a and b belong to different clusters. Let a ∈ Cl(xi) and b ∈ Cl(xj):
in such a case there must be a 5-bridge edge (x, y), where x ∈ Cl(xi) and
y ∈ Cl(xj). Since cluster edges provide paths of length at most 2 from a
to x and from y to b, we have a path of length at most 5 from a to b in
G′.

• At least one among a and b is a free vertex: in this case (a, b) is a free
edge in G′.

2

Due to Theorem 2, we will refer to a subgraph of G 5-compatible with an
ℓ-clustering Γ as a 5-spanner associated with Γ. If we choose ℓ = n1/3 and
the n1/3-clustering is maximal, we can prove that any associated 5-spanner is
sparse:

Corollary 2 A 5-spanner G′ = (V,E′) associated to a maximal n1/3-clustering
contains O(n4/3) edges.

Proof: There are at most n cluster edges, since each vertex can be in at most
one cluster. There is at most one 5-bridge edge for each possible pair of clusters:
since there are at most n2/3 clusters, there are at most n4/3 5-bridge edges.

We finally bound the number of free edges. Let us partition the set of
free edges into two sets: FF containing edges with two free endpoints, and
FC containing edges between a free vertex and a clustered vertex. Since Γ is
maximal, each free vertex has at most 2 · n1/3 free adjacent vertices, and thus
|FF | ≤ n · 2n1/3.

We count edges in FC by looking at each clustered vertex v: since Γ is
maximal, there can be at most 2 ·n1/3 free edges incident to v, and thus |FC| ≤
n · 2n1/3. 2
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4 Construction and edge deletion in 3- and 5-

spanners

The main contribution of this paper is to provide a fully dynamic deterministic
algorithm for maintaining 3-spanners and 5-spanners of unweighted graphs.

In this section we first show how to build a maximal ℓ-clustering by means
of Procedure MaximalCluster (Figure 2). Starting from any ℓ-clustering, Pro-
cedure MaximalCluster obtains a maximal ℓ-clustering with a simple greedy
approach. When the starting clustering is empty, the same procedure may be
used to compute a maximal ℓ-clustering from scratch.

After that, we discuss how to update a clustering under edge deletions: it
may happen that, when an edge is deleted, the updated clustering is no longer
maximal. In this case procedure MaximalCluster is applied again. Finally, we
show how to modify 3-spanners and 5-spanners when the clustering is updated
under an edge deletion.

Procedure MaximalCluster
input: graph G = (V, E)

ℓ-clustering Γ

output: maximal ℓ-clustering Γ

1. while there is a vertex x with |FN(x)| ≥ 2 · ℓ
2. make x a center
3. make Cl(x) = FN(x)
4. add Cl(x) to Γ

Figure 2: Procedure MaximalCluster.

Lemma 2 Procedure MaximalCluster computes a maximal ℓ-clustering of G.

Proof: The fact that Procedure MaximalCluster computes an ℓ-clustering can
be easily seen by induction on the number of clusters added to Γ. We assume Γ
is an ℓ-clustering before applying the procedure. In particular, this is true for
the empty clustering. We now show that any time a new cluster Cl(x) is added
to Γ all the properties of Definition 2 are maintained:

• Property 1: Cl(x) = FN(x) ⊆ N(x) by the definition of the free neigh-
borhood;

• Property 2: Cl(x) only contains free vertices, hence it is disjoint from all
existing clusters;

• Property 3: all free vertices in N(x) are included in Cl(x);

• Property 4: Cl(x) has size at least 2 · ℓ.
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Moreover, Γ is maximal, since at the end there are no vertices having
|FN(x)| ≥ 2 · ℓ. 2

We show in Section 4.1 how to update a maximal n1/2-clustering and an asso-
ciated 3-spanner during a sequence of edge deletions only. Next, in Section 4.2,
we show how to maintain a 5-spanner during a sequence of edge deletions.

4.1 Construction and edge deletion in 3-spanners

Procedure MaximalCluster builds an ℓ-clustering Γ by adding one cluster at a
time. We now show how to maintain a 3-spanner associated with Γ when new
clusters are added, in the case ℓ = n1/2.

We maintain the following simple data structures, which represent the cur-
rent spanner plus some auxiliary information.

For each vertex x we maintain:

• The number |FN(x)| of free vertices in N(x).

• A flag indicating whether x is clustered. If x is clustered:

– a reference to the cluster containing x;

– a reference to center(x);

– the list of all 3-bridge edges (y, x) incident to x, connecting any vertex
y to the cluster containing x.

• A flag indicating whether x is a center. If x is a center:

– the list of vertices in Cl(x). This list implicitly represents all cluster
edges of Cl(x).

• The list of all edges incident to x.

• The list of all free edges incident to x.

Moreover, we maintain:

• A doubly linked list containing all vertices x having |FN(x)| ≥ 2 · n1/2.

• A matrix of candidate 3-bridge edges: more precisely, for each pair (x,C),
where C is a cluster and x 6∈ C is a vertex, we maintain a list CB(x,C)
containing all edges (x, y) in the graph, with y ∈ C. The first edge in
CB(x,C) is the 3-bridge edge connecting x to C in the spanner.

We associate to each cluster C a timestamp time(C), denoting the time
at which cluster C has been created. A timestamp time(CB(x,C)) is also
associated to each list CB(x,C), denoting the time at which CB(x,C)
has been created.
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Each cluster is identified by an integer label in the range [1, ⌈n1/2⌉], which is
used as an index to access the matrix of candidate bridge lists. Cluster labels
are reused: when a cluster is created, it gets one of the free labels, and when a
cluster is destroyed, its label becomes free.

When a cluster C having label y is destroyed, for the sake of efficiency, we do
not explicitly destroy its lists CB(x, y). When a new cluster C ′ is created, and
gets y as its label, we simply create the new lists CB(x, y) with the appropriate
timestamp, possibly overwriting some previous list.

Let C ′ be the current cluster having label y: if time(CB(x, y)) < time(C ′),
then the list CB(x, y) refers to a previously destroyed cluster C, and thus it
is considered empty; otherwise, if time(CB(x, y)) ≥ time(C ′), then the list
CB(x, y) refers to C ′ and thus it is considered valid. In the sequel, by empty
list we mean a list either with no entries or with mismatching timestamps.

Lemma 3 It is possible to maintain a 3-spanner associated with a n1/2-cluster-
ing under the addition of new clusters C1, C2, . . . , Ch, as described in Procedure
MaximalCluster, in a total of O(

∑h
i=1

∑

y∈Ci
|N(y)|) worst-case time.

Proof: Assume that cluster edges, free edges and candidate 3-bridge edges are
correct before adding clusters to Γ.

A vertex x having |FN(x)| ≥ 2n1/2 can be found in constant time. Any
time |FN(v)| crosses the value 2n1/2, v is inserted into/deleted from the doubly
linked list.

We now determine the cost of updating the spanner for the different classes
of spanner edges. Assume that a new cluster Cl(x) = FN(x) is added to Γ:

(i) cluster edges: we add all edges (x, y), with y ∈ Cl(x). This can be done
in O(|Cl(x)|) worst-case time by scanning the list of free edges incident to
x. These edges are removed from the list of free edges;

(ii) free edges: vertices in Cl(x) are no longer free. For each vertex y ∈
Cl(x) \ {x} we explore vertices in N(y): for each vertex z ∈ N(y) we
decrement |FN(z)|, moreover, if z is clustered we remove (z, y) from the

set of free edges. This can be done in O(
∑h

i=1

∑

y∈Ci
|N(y)|) worst-case

time by scanning the list of free edges incident to each y ∈ Cl(x) \ {x};

(iii) (candidate) 3-bridge edges: the lists of candidate 3-bridge edges can
be updated by scanning the list of edges incident to each y ∈ Cl(x). Since
cluster Cl(x) has been added to Γ, a new list CB(z, Cl(x)) must be created
for each z ∈ N(y), y ∈ Cl(x). The first edge in each non-empty list
is a 3-bridge edge. This can be done in O(

∑

y∈Cl(x) |N(y)|) worst-case

time by scanning the lists of edges incident to each vertex y ∈ Cl(x).
Note that, if we had to create explicitly an empty list CB(v, Cl(x)) for
each v 6∈ N(y) the cost would have been Ω(n); this is avoided by the
timestamping technique described above.

All the above operations can be implemented in O(
∑h

i=1

∑

y∈Ci
|N(y)|) total

worst-case time. 2
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Lemma 4 Given a graph G, Procedure MaximalCluster computes in O(m + n)
worst-case time a 3-spanner of G having O(n3/2) edges.

Proof: We apply Procedure MaximalCluster starting from Γ = ∅. At the
beginning, all vertices are free, there are no cluster edges and 3-bridge edges,
and the set of free edges is E.

By Theorem 1, Corollary 1, and Lemmas 2 and 3, we can state that a 3-
spanner is computed in O(m + n) worst-case time. 2

We now show how to deal with edge deletions. When an edge is deleted from
the graph we might have to update the clustering and the associated spanner.
We first show how the clustering can be updated, and then describe how to
update the associated spanner.

A clustering Γ is affected by the deletion of edge e = (x, y) only if e is a
cluster edge; without loss of generality assume that x is a center and y ∈ Cl(x).
In this case y can no longer be in Cl(x), due to Property 1 of Definition 2, and
y is removed from Cl(x). A more substantial change is required to preserve
Property 4 of Definition 2, in the case where, after removing y from Cl(x), this
set becomes too small to be a cluster: in this case Cl(x) is removed from Γ.
In both cases, in order to preserve Property 3 of Definition 2, we must add y
(resp., each vertex v ∈ Cl(x) in the case Cl(x) is removed from Γ) to some other
cluster in Γ, whenever possible. If there are no centers in N(y) (resp., in N(v)
for any vertex v ∈ Cl(x)) then y becomes a free vertex. The update algorithm
is described by Procedure DeleteClusterEdge, listed in Figure 3.

We now show how to update the associated spanner, after the deletion of an
edge e = (x, y). We distinguish four different cases, depending on the type of
edge being deleted:

e is not in the spanner: the spanner G′ = (V,E′) does not change. Since e
is not in the spanner, both x and y must be clustered vertices. Neither
FN(x) or FN(y) change their size. If x and y belong to different clusters
Cx and Cy, then e is removed from the lists of candidate 3-bridge edges
CB(x,Cy) and CB(y, Cx).

e is a free edge: at least one among x and y is free. Edge e is removed from
the lists of free edges incident to x and y. The sizes of FN(x) and/or
FN(y) are decremented accordingly. If either x or y is clustered, then e
is removed from the appropriate list of candidate 3-bridge edges.

e is a 3-bridge edge: without loss of generality, we assume that e connects y
to x ∈ Cl(z) (the case where e also connects x to y ∈ Cl(w) is dealt with
analogously): another edge f connecting y to Cl(z) (if it exists) can be
found in CB(y, Cl(z));

e is a cluster edge: assume that x is a center and y ∈ Cl(x), and that the
clustering is updated according to Procedure DeleteClusterEdge. The
spanner is updated as follows.
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Procedure DeleteClusterEdge
input: graph G = (V, E)

n1/2-clustering Γ of G = (V, E)
a cluster edge e = (x, y), where x = center(y)

output: n1/2-clustering Γ of G = (V, E \ {e})

1. if |Cl(x)| > n1/2

2. remove y from Cl(x)
3. if y is the center of a cluster in Γ
4. add y to Cl(y)
5. else if there exists a center c ∈ N(y) in Γ
6. add y to Cl(c)
7. else

8. // vertex x is no longer a center //
9. remove Cl(x) from Γ
10. for each v ∈ Cl(x)
11. if v is the center of a cluster in Γ
12. add v to Cl(v)
13. else if there exists a center c ∈ N(v) in Γ
14. add v to Cl(c)

Figure 3: Deleting a cluster edge

• If |Cl(x)| remains at least n1/2, Cl(x) is still a cluster, and vertex x
is still its center:

– e is no longer a cluster edge, and y is no longer in Cl(x). We
check whether there are candidate 3-bridge edges (y, z), with
z ∈ Cl(x), by scanning the list of edges incident to y and insert
them into CB(y, Cl(x)).

– replace each 3-bridge edge (z, y) connecting a vertex z to Cl(x)
via y by a new bridge, if one exists. To this aim, for each vertex
z ∈ N(y), we remove (z, y) from CB(z, Cl(x))). The next edge
in CB(z, Cl(x))), if it is not empty, is the new 3-bridge edge;

– if y is added to Cl(c) (where possibly c = y):

∗ (c, y) becomes a cluster edge (provided that c 6= y);

∗ each edge (y, z) is examined and, if z belongs to some clus-
ter, (y, z) is inserted into the appropriate candidate 3-bridge
edges list;

∗ for each w ∈ N(y), we add edge (w, y) to CB(w,Cl(c)).
If this list was empty (i.e., w was not connected to Cl(c),
because there were no edges (w, z) ∈ E with z ∈ Cl(c)),
edge (w, y) becomes the new 3-bridge edge connecting w to
Cl(c).

– in case y is now free, for each z ∈ N(y) we increase |FN(z)| and
add (z, y) to the set of free edges.
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• If |Cl(x)| drops below n1/2, Cl(x) can no longer be a cluster, and
thus vertex x can no longer be a center:

– remove all 3-bridge edges connecting vertices to Cl(x)—provided
that the same edge does not connect a vertex to any other cluster;

– for each v ∈ Cl(x) we do the following:

∗ we remove edge (x, v) from the set of cluster edges;

∗ if v is added to Cl(c) (where possibly c = v):

· (c, v) becomes a cluster edge (provided that c 6= v);

· for each w ∈ N(v), we add edge (w, v) to CB(w,Cl(c)). If
this list was empty — i.e., w was not connected to Cl(c),
because there were no edges (w, z) ∈ E with z ∈ Cl(c),
edge (w, v) becomes the new 3-bridge edge connecting v
to Cl(c).

∗ in case v is now free, for each z ∈ N(v) we increase |FN(z)|
and add (z, v) to the set of free edges.

This restores a 3-spanner associated to the n1/2-clustering Γ. After this,
in order to obtain a maximal n1/2-clustering, we apply Procedure Maxi-
malCluster.

Lemma 5 A n1/2-clustering of G is updated by Procedure DeleteClusterEdge
under the deletion of edge (x, y), and the associated 3-spanner is updated ac-
cordingly, in

• O(|N(x)| + |N(y)|) worst-case time, if no cluster is removed from Γ;

• O(
∑

v∈Cl(x) |N(v)|) worst-case time, if (x, y) is a cluster edge and cluster

Cl(x) is removed from Γ.

Proof: If e is not in the spanner or it is a free edge, the above algorithm requires
constant time. In the case (x, y) is a 3-bridge edge we need O(|N(x)|+ |N(y)|)
worst-case time for exploring N(x) and/or N(y). If (x, y) is a cluster edge, we
distinguish two cases: if Cl(x) is still a cluster, we only explore N(x) and N(y).
Otherwise, if Cl(x) is destroyed, we explore the neighborhood of all vertices in
Cl(x), in O(

∑

v∈Cl(x) |N(v)|) worst-case time. 2

We remark that Procedure DeleteClusterEdge does not produce a maximal
n1/2-clustering. To achieve this, Procedure MaximalCluster is applied as a final
step.

4.2 Construction and edge deletion in 5-spanners

In order to build and maintain 5-spanners, we need to maintain a n1/3-clustering.
With respect to Section 4.1, the only change in the data structures consists in
keeping track of 5-bridge edges instead of 3-bridge edges. More precisely, for
each vertex x we maintain:
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• The number |FN(x)| of free vertices in N(x).

• A flag indicating whether x is clustered. If x is clustered:

– a reference to the cluster containing x;

– a reference to center(x);

– the list of all 5-bridge edges (y, x) incident to x, connecting any clus-
ter to the cluster containing x.

• A flag indicating whether x is a center. If x is a center:

– the list of vertices in Cl(x). This list implicitly represents all cluster
edges of Cl(x).

• The list of all edges incident to x.

• The list of all free edges incident to x.

Moreover, we maintain:

• A doubly linked list containing all vertices x having |FN(x)| ≥ 2 · n1/3.

• A matrix of candidate 5-bridge edges: more precisely, for each pair of
clusters (Ci, Cj), we maintain a list CB(Ci, Cj) containing all edges (x, y)
in the graph, with x ∈ Ci and y ∈ Cj . The first edge in CB(Ci, Cj) is the
5-bridge edge connecting Ci to Cj in the spanner.

We associate to each cluster C a timestamp time(C), denoting the time at
which cluster C has been created. A timestamp time(CB(Ci, Cj)) is also
associated to each list CB(Ci, Cj), denoting the time at which CB(Ci, Cj)
has been created.

Each cluster is identified by an integer label in the range [1, ⌈n1/3⌉], which is
used as an index to access the matrix of candidate bridge lists. Cluster labels
and timestamps are used exactly as in the case of 3-spanners.

Lemma 6 It is possible to maintain a 5-spanner associated with a n1/3-cluster-
ing, under the addition of new clusters C1, C2, . . . , Ch as described in Procedure
MaximalCluster, in a total worst-case time O(

∑h
i=1

∑

y∈Ci
|N(y)|).

Proof: The proof proceeds as in Lemma 3, with the exception of bridge edges.
Any time a new cluster Cl(x) is added to Γ, at most n2/3 new sets of candidate 5-
bridges, one for each existing cluster, must be created. For each vertex v ∈ Cl(x)
we examine all y ∈ N(v). If y ∈ Cl(z) then edge (v, y) is added to the set of
candidate bridges for the pair Cl(x), Cl(z). All the updates can still be done in

a total of O(
∑h

i=1

∑

y∈Ci
|N(y)|). 2

The following lemma (analogous to Lemma 4) easily follows.

Lemma 7 Given a graph G, Procedure MaximalCluster computes in O(m + n)
worst-case time a 5-spanner of G having O(n4/3) edges.
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Let us briefly summarize how we deal with the deletion of edge e. If e is not
in the spanner, or it is a free edge, nothing changes with respect to the case of
3-spanners.

When e is a 5-bridge edge connecting Cl(xi) to Cl(xj), we replace it with
one of the candidate 5-bridge edges, if any, in the corresponding set. This can
be done in constant worst-case time.

If e is a cluster edge, the clustering is updated as in the case of 3-spanner.
The only difference with respect to the case of 3-spanners consists in maintaining
both the 5-bridge edges and the candidate 5-bridge edges incident to vertices
that enter into or exit from a cluster.

The next result, analogous to Lemma 5, thus follows:

Lemma 8 A n1/3-clustering of G is updated by Procedure DeleteClusterEdge
under the deletion of edge (x, y), and the associated 5-spanner is updated ac-
cordingly, in

• O(|N(x)| + |N(y)|) worst-case time, if no cluster is removed from Γ;

• O(
∑

v∈Cl(x) |N(v)|) worst-case time, if (x, y) is a cluster edge and cluster

Cl(x) is removed from Γ.

4.3 Amortized complexity of edge deletions

An edge deletion that does not modify the clustering is performed in O(∆) worst-
case time. If no cluster is destroyed by the update, the spanner is maintained
in O(∆) worst-case time (by Lemmas 5 and 8), plus possibly the time needed
to build a new cluster. The new cluster C can be built in O(

∑

y∈C δ(y)) time,
due to Lemmas 3 and 6.

An edge deletion that destroys cluster C is performed in O(
∑

y∈C δ(y))
worst-case time (by Lemmas 5 and 8), plus possibly the time needed to build
the new clusters. Since a cluster that is destroyed after an edge deletion has
exactly ℓ vertices, a new cluster centered in vertex v can contain at most those ℓ
vertices plus the vertices in FN(v), that were no more than 2 · ℓ−1. Thus, each
new cluster has size O(ℓ), and by Lemmas 3 and 6 the time needed is O(ℓ · ∆)
for each new cluster. Hence, for each edge deletion we need a total of O(∆)
time plus O(ℓ · ∆) time for each cluster that appears or disappears from the
clustering.

In order to bound the number of clusters that appear or disappear during a
sequence of edge deletions, we consider how the cluster sizes can be affected by
edge deletions. If the edge deletion does not destroy any cluster, then the size
of at most one cluster is decreased by one (this happens when a cluster edge
is deleted). Otherwise, only one cluster may be destroyed, and the size of the
other clusters does not decrease.

During a sequence of edge deletions, the set of destroyed clusters consists at
most of the initial clusters, plus some of the clusters created during the sequence
of edge deletions. The initial clusters are at most n/ℓ. The initial size of a cluster
C created during the sequence is at least 2 · ℓ, and C is destroyed only if its size
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decreases to less than ℓ during the update sequence. By the above arguments
at least ℓ deletions are needed in order to shrink C from its initial size (at least
2 · ℓ) to ℓ. In summary, if the update sequence has length σ, at most n/ℓ + σ/ℓ
clusters may be destroyed overall.

The number of clusters created during the sequence is at most the number of
clusters at the end of the sequence plus the number of destroyed clusters, that
is at most 2 · n/ℓ + σ/ℓ. By Lemmas 5 and 8, the total cost over the sequence
is thus O(σ · ∆ + (n/ℓ + σ/ℓ) · ℓ · ∆) = O((n + σ) · ∆). Hence, we can state the
following:

Theorem 3 A 3-spanner (resp., a 5-spanner) of an unweighted graph can be
maintained in O((n+σ) ·∆) total time over a sequence of σ edge deletions. The
spanner has O(n3/2) edges (resp., O(n4/3) edges). This gives O(∆) amortized
time per operation over a sequence of Ω(n) edge deletions.

5 Fully dynamic 3-spanners and 5-spanners for

unweighted graphs

To make the decremental algorithms of Section 4 fully dynamic, we deal with
edge insertions in a lazy fashion. Inserted edges are kept in a set E′′, and
our spanners consists of the edges induced by the clustering (see Definitions 3
and 4) plus the edges in E′′. When inserting an edge, we do not update the
clustering and the associated spanner. Only when the size of E′′ exceeds the size
of the spanner, i.e., n3/2 or n4/3, a new clustering and the associated spanner
are built from scratch using Procedure MaximalCluster starting from the empty
clustering, and E′′ is set to the empty set. This gives the following theorem:

Theorem 4 A 3-spanner and a 5-spanner of an unweighted graph can be main-
tained in O((n+σ)·∆) total time over a sequence of σ intermixed edge insertions
and edge deletions. This gives O(∆) amortized time per operation over a se-
quence of Ω(n) edge insertions and edge deletions.

Proof: If the sequence contains less than n3/2 edge insertions (resp., n4/3 for
the 5-spanner), then the spanner is never rebuilt from scratch, and the theorem
derives from Theorem 3. Otherwise, we must rebuild from scratch the spanner,
taking O(m + n) worst-case time (see Lemmas 4 and 7), but this cost can be
amortized over a sequence of length Ω(n3/2) (resp., Ω(n4/3) for the 5-spanner),
giving an amortized cost of O(m/n3/2) per operation (resp., O(m/n4/3) for
the 5-spanner). Since ∆ ≥ m/n ≥ m/n3/2 (resp., ∆ ≥ m/n ≥ m/n4/3), the
amortized time per operation is dominated by edge deletions (see Theorem 3),
giving the thesis. 2
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6 Fully dynamic t-spanners for general edge

costs

In this section we present extensions of the algorithm for unweighted graphs to
graphs whose edge costs may assume different values. For the sake of presenta-
tion, we first show how to deal with d different edge cost values, and then we
apply the same technique to deal with general positive edge costs. The exten-
sion is described in the case of 3-spanners, its application to 5-spanners being
similar.

In the case of d different edge cost values1 c1, c2, . . . , cd, with ci ≥ 0 for
i = 1, . . . , d, we maintain a 3-spanner as the union of S1, S2, . . . , Sd, where each
Si is a 3-spanner of the subgraph containing all the edges with cost ci.

A key observation is the following:

Lemma 9 Given ℓ subgraphs G1 = (V,E1), G2 = (V,E2), . . . , Gℓ = (V,Eℓ) of

a graph G = (V,E) such that
⋃ℓ

i=1 Ei = E, if S1, S2, . . . , Sℓ are respectively

t-spanners of G1, G2, . . . , Gℓ, then S =
⋃ℓ

i=1 Si is a t-spanner of G.

Proof: Given any edge e = (u, v) ∈ E, there exists at least one i such that
e ∈ Ei. Since Si is a t-spanner for Gi, by condition (2) in Lemma 1, we have
distSi

(u, v) ≤ c(e). But Si ⊆ S, thus distS(u, v) ≤ distSi
(u, v) ≤ c(e). So,

S =
⋃ℓ

i=1 Si fulfills condition (2) of Lemma 1, and thus S is a t-spanner of G.
2

Based on Lemma 9, we partition our edge set E into d disjoint subsets E1, E2,
. . . , Ed, where Ei contains all edges e ∈ E such that c(e) = ci, and apply the
same algorithms described in Sections 4 and 5 to each subgraph. Each edge
insertion or edge deletion concerns a single spanner Si.

Let σ be the total number of updates in the sequence, and let σi be the
number of updates concerning edges with cost ci. Clearly, σ =

∑d
i=1 σi. For

any i, 1 ≤ i ≤ d, the fully dynamic maintenance of 3-spanner Si requires time
O((n + σi) · ∆ + m · σi/n3/2), by Theorem 4. The total running time of the

algorithm is therefore
∑d

i=1 O
(

(n + σi) · ∆ + m · σi/n3/2
)

= O((d · n + σ) · ∆),
thus yielding the following:

Theorem 5 A 3-spanner and a 5-spanner of a graph with d different edge costs
can be maintained in O(∆) amortized time per operation over a sequence of
Ω(d ·n) edge insertions and deletions. The 3-spanner has O(d ·n3/2) edges, and
the 5-spanner has O(d · n4/3) edges.

The same algorithms can be applied to graphs with general positive edge
costs, where the number of different costs can be Θ(m). Let the edge costs in
graph G = (V,E) be real numbers in the interval [1, C]. We choose a real value
r > 1, and we define a new graph G′, in which each cost value is rounded to

1Note that, in the case of a constant number d of edge cost values the result holds also in

the presence of edges with cost 0.
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its nearest smaller power of r: for each edge e ∈ E there is an edge in G′ with
c′(e) = r⌊logr

c(e)⌋. Costs c′(·) may assume at most ⌈logr C⌉ different values.
The following relations hold between edge costs and distances in G and G′:

• c′(e) ≤ c(e) < r · c′(e);

• distS′(x, y) ≤ distS(x, y) < r · distS′(x, y) .

If S′ is a t-spanner of G′, with respect to edge costs c′(·), and S contains
the same edges of S′ but with the original costs c(·), then S is a (t · r)-spanner
of G (with respect to costs c(·)). In fact, the above relationships and Lemma 1
allow us to write that for any edge e = (x, y) in E:

distS(x, y) < r · distS′(x, y) ≤ t · r · c′(e) ≤ t · r · c(e) .

Thus, if we replace edge costs by integer powers of r, maintain the spanner on
logr C edge costs as in Theorem 5, and look back to the original edge costs, we
can maintain a (3·r)-spanner (resp. a (5·r)-spanner) of G having O(n3/2 ·logr C)
edges (resp. O(n4/3 · logr C) edges). When r = t

3 (resp. r = t
5 ), we obtain the

following theorem:

Theorem 6 For any t > 3 (resp., t > 5), a t-spanner of a graph with real-valued
edge costs in [1, C] can be maintained in O(∆) amortized time per operation
over a sequence of Ω(n · logt/3 C) (resp., Ω(n · logt/5 C)) edge insertions and

edge deletions. The spanner has O(n3/2 · logt/3 C) (resp., O(n4/3 · logt/5 C))
edges.

7 Conclusions

We have presented dynamic algorithms for maintaining both 3-spanners and
5-spanners of unweighted graphs under a sequence of updates. The same tech-
niques have been extended to deal with 3-spanners and 5-spanners of graphs
with d different edge weights and t-spanners of general weighted graphs for
small t. All our algorithms are deterministic and are substantially faster than
recomputing a spanner from scratch after each update by static algorithms. Un-
fortunately, our technique does not seem easy to extend to stretch factors other
than 3 or 5.

While the size of our 3-spanners and 5-spanners is optimal to within constant
factors for constant d, this is not the case for general d and for t > 3. The fully
dynamic maintenance of sparser spanners for general weighted graphs seems
thus worth of further investigation.

Acknowledgements

We are grateful to the anonymous referees for their careful reading and precious
suggestions.



G. Ausiello et al., Small Stretch Spanners, JGAA, 10(2) 365–385 (2006) 384

References

[1] I. Althofer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares. On sparse
spanners of weighted graphs. Discrete & Computational Geometry, 9:81–
100, 1993.

[2] B. Awerbuch. Complexity of network synchronization. Journal of the ACM,
32(4):804–823, Oct. 1985.

[3] H.-J. Bandelt and A. Dress. Reconstructing the shape of a tree from ob-
served dissimilarity data. Adv. Appl. Math., 7:309–343, 1986.

[4] S. Baswana and S. Sen. A simple linear time algorithm for computing (2k−
1)-spanner of O(n1+1/k) size for weighted graphs. In 30th International
Colloquium on Automata, Languages and Programming (ICALP), volume
2719 of LNCS, pages 384–396, Berlin, 2003. Springer.

[5] L. Cai. NP-completeness of minimum spanner problems. Discrete Ap-
plied Mathematics and Combinatorial Operations Research and Computer
Science, 48(2):187–194, 1994.

[6] L. Cai and J. M. Keil. Degree-bounded spanners. Parallel Processing
Letters, 3:457–468, 1993.

[7] L. P. Chew. There are planar graphs almost as good as the complete graph.
Journal of Computer and System Sciences, 39(2):205–219, Oct. 1989.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 2001.

[9] G. Das and D. Joseph. Which triangulations approximate the complete
graph? In H. Djidjev, editor, Proceedings of the International Sympo-
sium on Optimal Algorithms, volume 401 of LNCS, pages 168–192, Berlin,
May 29–June 2 1989. Springer.

[10] D. Dobkin, S. J. Friedman, and K. J. Supowit. Delaunay graphs are almost
as good as complete graphs. Discrete & Computational Geometry, 5:399–
407, 1990. See also 28th Symp. Found. Comp. Sci., 1987, pp. 20–26.

[11] A. L. Liestman and T. Shermer. Additive graph spanners. Networks: An
International Journal, 23:343–364, 1993.

[12] A. L. Liestman and T. Shermer. Grid spanners. Networks: An International
Journal, 23:122–133, 1993.
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