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Abstract

In this paper, we propose a new layout algorithm that draws the sec-
ondary structure of a Ribonucleic Acid (RNA) automatically according
to some of the biologists’ aesthetic criteria. Such layout insures that two
equivalent structures (or sub-structures) are drawn in a same and planar
way. In order to allow a visual comparison of two RNAs, we use an heuris-
tic that places the biggest similar part of the two structures in the same
position and orientation.
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1 Introduction

Ribonucleic Acid (RNA) is an important molecule, which performs a wide range
of functions in biological systems. Some RNA is found in the nucleus (where it is
synthesized), and in the cytoplasm, as messenger RNA or mRNA (which carries
the genetic information out of the nucleus), transfer RNA or tRNA (which
decodes the information), ribosomal RNA or rRNA (which was found in the
ribosome of cells). These forms of RNA are involved in the protein synthesis.

RNAs recently became the center of much attention because of its catalytic
properties, leading to an increased interest in obtaining structural information.
For example, RNA contains genetic information of viruses such as HIV and
therefore regulates the functions of such viruses.

An RNA is characterized by its base sequence and higher order structural
constraints. It can be considered at three levels of detail :

• its linear sequence of monomers is the primary structure,

• its secondary structure is a two dimensional drawing that reflects major
links acting in the RNA,

• its tertiary structure is the three dimensional view where the positions of
atoms are obtained using crystallographic method.

The RNA tertiary structure is often much more highly conserved than the se-
quence during evolution. In addition, secondary and tertiary structural features
of RNAs are important in the molecular mechanism involving their functions.
The biologists assume that, for a given RNA, a common function to several
species corresponds to a preserved molecular conformation of their RNA and,
thus, to a preserved secondary and tertiary structure.

Thus, knowledge of RNA secondary structure is increasingly becoming im-
portant in molecular phylogenetic studies, particularly in assisting accurate se-
quence alignment [22] that is detecting similar parts between two linear se-
quences. Automatic alignment methods that use only primary sequences may
misalign RNA sequences [17] while alignments that take secondary structure
into consideration can generate improved phylogenetic trees [22].

Therefore the ability to draw and visually compare RNA structures is useful.
Figure 1 shows an example of hand-drawn RNA secondary structure coming
from a biologic data base [6]. It refers to structural motifs such as stems,
hairpins, bulges, interior loops and multi-branch loops. The goal to achieve is
to perform an automatic drawing that respects the biologists’ habit: there are
no crossing edges (planar graph), the structural patterns appear clearly.

In the past ten years, many interactive programs allowing interaction with
the RNA drawing were developed. The more recent programs RNAView [32]
and RNAViz [26] offer many functionalities such as editing, energy computa-
tion, and even three dimensional representation. None of them produces an
automatic planar drawing of an RNA secondary structure that corresponds to
the biologists’ practice. As a consequence, in these programs, the layout is
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changed manually and thus, even if two RNAs are similar to each other, the
drawing can be very different because it is user dependant.

Figure 1: Drawing of a RNA coming from a biological data base.

In this paper, we propose an algorithm that partially solves the automatic
RNA drawing respecting the biologists’ habit. This algorithm is based upon
the association of the RNA secondary structure with a tree [29](see Figure 3).
This tree encodes the structural motifs of RNA. Note that recently an efficient
alignment program RNAForester [18] has appeared, which is based on this asso-
ciation. Due to the underlying tree, it is stable in the sense that small changes
on an RNA primary structure will not drastically change the drawing.
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Efficient comparison must allow the user to visually compare two RNA sec-
ondary structures. One important requirement to facilitate visual comparison
of structures is to automatically detect parts of the structure that have the same
shape and to place them at the same position and in the same orientation in
the final drawing.
This is useful for the user because it will give him reference marks when he
will compare the structures. Thus, in order to present the biologist face to two
RNAs with the same orientation on the screen, we use an heuristic based on
quasi-isomorphic subtrees in a tree. This heuristic has been successfully used at
the Infovis’03 contest[3] and is briefly described here. It allows us to place the
largest similar part of two RNAs in a similar position on a portion of the screen
(for example at a same relative position from the upper left corner).

In what follows, we first describe the biological background. Then, we de-
scribe the drawing algorithm and the heuristic for presenting two RNAs. Finally,
we conclude with future work to be done in order to match the requirements of
biologists.

2 RNA background

An RNA molecule is a linear polymer in which the monomers - (ribo)nucleotides
- are linked together by means of phosphodiester bridges, or bonds. Each nu-
cleotide contains a base: the four different bases are Adenine (A), Cytosine (C),
Guanine (G) and Uracil (U). An RNA sequence R of n nucleotides can be rep-
resented as a word of length n on the alphabet {A, C, G, U}: R = r1.r2 . . . rn

where ri is the i-th (ribo)nucleotide belonging to the alphabet. We will refer to
i as the ith base of the sequence.
Although each RNA molecule has only a single polynucleotide chain, it is not
a smooth linear structure. It has extensive regions of base pairs. The com-
plementary bases, A-U and G-C form stable base pairs with each other through
the creation of hydrogen bonds between donor and acceptor sites on the bases.
These are called Watson-Crick base pairs whereas the weaker base pair G-U is
the wobble pair. All of these are called canonical base pairs. Other non canonical
base pairs occur (e.g. A-C and U-U), some of which are stable.

Thus, the secondary structure of an RNA molecule can be viewed as the list
of base pairs that occur in its three dimensional structure. In what follows, we
will consider a secondary structure on R as a set P of ordered pairs (i, j), 1 ≤
i < j ≤ n, satisfying:

• j − i > 3

• if (i, j) and (k, l) are two base pairs, (assuming without loss of generality
that i ≤ k ), then either:

– i = k and j = l (they are the same base pair),

– i < j < k < l that is (i, j) precedes (k, l), or

– i < k < l < j that is (i, j) includes (k, l).
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Note that the last condition excludes base pairs (i, j) and (k, l) such that
i < k < j < l, that is when the two base pairs overlap. A set of base pairs
((i+k, j−k))0≤k≤m overlaping a pair (k, l) is called pseudo-knot. Pseudo-knots
are often considered as belonging to tertiary structure. However, pseudo-knots
are real and important structural features.

A hairpin

An interior loop

A bulge

A stem

A multibranch loop

A pseudo-knot

Figure 2: Motifs in a secondary structure.

The RNA secondary structure refers to structural motifs such as stems(S),
hairpins(H), bulges (B), interior loops (I) and multi-branch loops(M). RNA
stems are self-complementary base-paired regions (A-U, U-A, G-C, C-G), whereas
hairpins and bulges are regions with unpaired bases; RNA junctions (interior
and multi-branch loops) are the place where two or more stems meet, and they
contain unmatched bases. The overall molecular architecture of the secondary
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structure is mainly stabilized by the canonical base pairs A-U, G-C, and G-U. See
Figure 2.

Following [21], a consequence is that an RNA secondary structure without
pseudo-knots can be represented as an ordered tree in which each node is labeled
and the left to right order among the sibling nodes is significant. The labels of
the nodes can represent:

• either structural motifs,

• or nucleotides A, C, G, U, Watson-Crick pairs, wobble pairs, . . .

Represented below are (see Figure 3):

1. on the left, an RNA secondary structure, the vertices represent the nu-
cleotides,

2. in the center, a relatively rough tree representation of this structure where
the labels refer to its structural motifs,

3. on the right, a coding of the same structure, the tree with appropriate
labeling of the nodes that makes it possible to come back to the secondary
structure [29, 27].

H

H

H

S

S

S

S S

S

B

I

M

Figure 3: A secondary structure and its tree representations.

Note that this tree representation can be rough (case 2) or refined (case 3).
Since the RNA secondary structure appears as a tree-like structure, there

exist works comparing them using tree comparison. Many measures have been
proposed for the similarity of two trees, e.g. tree edit distance, constrained edit
distance and alignment of trees [9, 10, 21, 23, 34].

Other related measures can be found in [20, 24, 30]. Alignment of trees is a
straightforward extension of sequence alignment that was proved to be different
from tree edit distance [21].
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An important requirement in a drawing process is to use the knowledge
of users in order to have no conflict with existing representation of the data
in the mind of the users. In this particular case, biologists have a long habit
of a standard representation of such structures. The drawing of the secondary
structure must be planar, the loops (bulges, hairpins, interior and multi-branch)
in the structure should be drawn on circles, and the stems should be drawn on a
straight line. Furthermore, the edge length should be constant. Figure 1 shows
a hand drawing of a secondary structure made by a biologist. These criteria are
equivalent to minimizing three well-known graph drawing criteria which are: the
angular resolution, the standard deviation of the edge length, and the number
of crossings. For more information about graph drawing aesthetic criteria one
can refer to [8]. Classical planar drawing algorithms such as the one proposed
in [16] do not correspond to the intuitive representation of biologists.
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Figure 4: Drawing the Agrobacterium tumefaciens with Vienna RNA software.
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Other representations can be found in RNA visualization programs [26, 32],
however, even if these representations are closer to the biologists’ requirements,
some important criteria such as the size of the drawing and the number of
crossings are not properly taken into account. Figure 4 shows the result of the
layout proposed by one of the latest program, the Vienna package. On this
drawing, one can see that there are crossings and that loops are not always
drawn on a circle. Thus RNAViz has some tools allowing the user to edit the
drawing.

3 Drawing RNA secondary structure

In order to highlight our algorithm, we have labelled by X, Y and Z the
three main multibranch loops on the RNA hand-drawing (see Figure 5). As
described in section 2, secondary structure of RNA is a chain of nucleotides n1,
n2, · · · , nk−1, nk where all ni, ni+1 are linked together and where several links
can exist between ni, nj with j 6= i+1. Figure 6 shows a sequence of nucleotides
and links. We call Plink (primary structure) the links belonging to the sequence
(horizontal links), Slink (secondary structure) the links that form stems and
Tlink (tertiary structure) the links that create crossings. In Figure 6, the set of
Plinks are the horizontal edges, Slink = 2, 3, 5, 6 and Tlink = 1, 4. If one looks
to the structure of RNAs, one can see that the set of nucleotides lie on the
outer face of the graph. Thus, the union of Plink and Slink is an outer-planar
biconnected graph. Outer-planar graphs are planar graphs where all vertices
lies on a same face (here the external one). One of the nice properties of such
a graph is that one can extract a tree as shown in paragraph 2. Thus, after
transforming the graph in an outer planar graph (building of the Tlink set) our
algorithm uses that property in order to reduce the problem of RNA drawing
to a problem of tree drawing with a specific set of aesthetic criteria. In what
follows, we detail the steps of the algorithm.

3.1 Outer-planarization

In the first step, we remove the edges (Tlink) in order to get an outer-planar
graph. This can be done using the biologic data basis which point out pseudo-
knots or using RNAView. But, knowing that the Plink set forms a Hamiltonian
path in the graph, we can deduce that this path must be the outer-face of the
outer-planar graph. Thus, the problem is transformed to the problem of finding
a minimum set of edges that enables us to draw the graph without crossing.
In Figure 6 one can see the drawing of a graph on one page (that is each edge
is drawn up the sequence). Finding this minimum set consists of building a
conflict graph. In this graph a node represents an edge and an edge represents
a conflict in the one page drawing. We say that an edge e1 is in conflict with
another edge e2 if and only if e1 intersects e2 in the one page drawing.

If the conflict graph is bipartite, one can compute Tlink easily. Let S1 and
S2 be the sets of vertices such that for all vertices u ∈ S1, there exists a vertex
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X

Y

Z

Figure 5: The three main multibranch loops.

v ∈ S2 such that u crosses v. We obtain Tlink by choosing the smallest set. If
the conflict graph is not bipartite the problem of finding a maximum induced
bipartite subgraph is NP-complete. In order to solve this problem one can use
the heuristic proposed in [2].

Figure 6 shows a conflict graph. From this graph, we remove the edges 1 and
4 (Tlink = {1, 4}). One can see in Figure 7 that if the user wants to visualize
pseudo-knots (Tlink), these edges can be placed using the third dimension after
the execution of the drawing algorithm.

After removing the Tlink edges one can compute the tree representation
shown on the right of the figure 3. In what follows, we explain how to draw this
tree in order to obtain a layout that respects biologist aesthetic criteria. During
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Figure 6: One page drawing and its conflict graph.

Figure 7: Visualization of pseudo-knots.

our experimentation with data coming from biological data base, the conflict
graph was always bipartite and moreover our algorithm agrees in all cases with
biological data basis on the pseudo-knots.

3.2 Tree drawing

The tree drawing algorithm we have designed is recursive. At each step we first
layout all the sub-trees induced by the children of a node. Then, we place all
these subtrees drawings on a circle. Literature about similar drawing algorithms
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can be found in [7, 14]. In our approach, instead of using a circle hull, we use a
packing method inspired by Reingold and Tilford [25] for an efficient hierarchical
tree drawing. However, in our case, the packing is more complex because it is a
circular drawing and not a hierarchical one. The main problem is to determine
a first coarse radius r of the circle on which one places the subtree drawings.
In order to compute this radius, we compute the circumference of the circle on
which the sub-trees are placed. To find the circumference, we first pack the
sub-drawing as a hierarchical drawing does. Then, the width of the bounding
box gives this first circumference. This circumference can be used to obtain the
drawing. However a lot of space is lost because changing from a line to a circle
gives more space to use (see Figure 8). Figure 9 shows the result of the packing
at the root level and the result on the drawing of the RNA of Figure 1.

Space left

Space left

Space left

Figure 8: Lost space in a simple packing.

Figure 9: Simple packing.

To take this free space into account, we then pack the sub-drawing on a circle
instead of a line. This operation can be done using the same method of packing
but with a transformation from Cartesian coordinates to polar coordinates.
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At some level, the drawing can be seen as a sequence of trees whose basis is
on a line (see Figure 10 left). For each motif, we compute the real occupied
sector in order to deform the motif. Let us consider the two points M(xM , 0)
and N(xN , 0) which are on the basis of a motif. Let I(xI , 0) the middle of
the segment [M,N ]. For each point P (xP , yp) that delimitates the motif, we
compute the transformed point TP (xTP , yTP ) by

xTP = r∗arcsin((xI −x)/(yTP +r))+xI , yTP =
√

(xI − xP )2 + (yP + r)2−r.

One can see in Figure 10 right the effect of the transformation. This transfor-
mation then allows to compute a new bounding box that gives in turn a new
radius rT which is smaller than r. We then pack the transformated motifs and
apply this method until a stable circumference is obtained. Figure 11 shows
the packing of the tree and the result on the entire structure. To obtain an
efficient solution we have implemented this packing algorithm with a scan line
algorithm which enables us to obtain drawings of the biggest RNA structures
in a few seconds.
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Figure 10: Polar transformation.

To prevent overlapping in the final drawing one must force sub-trees to be
drawn outside of the circle. This restriction introduces a lot of long edges in
the final drawing but is necessary in order to have a good angular resolution
in the drawing. In Figure 12 one can see this phenomena on two stems. In
order to obtain a drawing that matches the aesthetic criteria of the biologist
one must make a trade-off between these two aesthetic criteria (edge length,
angular resolution). We obtain this trade-off by forcing the drawing of the sub-
tree to be on a semi circle. This is done by adding in the packing algorithm two
sub-trees (or shape) at the left and at the right. This way also take into account
the particular case of sub-trees composed of one node. In Figure 12 one can see
these two shapes in black at the left and at right of the drawing. Even if the
semi circle seems to be the best solution according to our experimentation one
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Figure 11: Polar packing.

can use this as a parameter to choose the trade-off between the edge length and
the angular resolution.

Inserted shapes

Figure 12: (left) Shape insertion, (right) Bad edge length.

3.3 Final drawing

In Figure 13, the tree is displayed in blue and the sequences in red. One can see
that several nodes are shared between the tree and the sequence (green), thus
to obtain the final drawing we have to set coordinates for the nodes that form
stems (red). Knowing that each of these nodes is associated with a node η of
the tree (grey box), we can compute the position of these nodes by placing them
on a line orthogonal to the line formed by the coordinates of η and father(η).
This operation is straightforward using a cross product. The main problem now
is to determine the distance between the node and η. In order to prevent the
nodes from overlaping, we set the size of η three times bigger (one node, a space
and one node) in the tree drawing algorithm. Thus, we are sure that if a node



D. Auber et al., RNA secondary structure, JGAA, 10(2) 329–351 (2006) 342

is at distance 3

2
from η, no overlapping will occur. Figure 14 shows the result of

our algorithm on the graph of the Figure 1 and the Figure 15 shows both side
by side. Note that it would be easy now to deforme the circles in order to fit
the hand drawing.

Figure 13: Sets of nodes.

4 RNAs pairwise Placement

In this section, we use a combination of metrics in order to predict common
parts in several RNAs in order to help the user in the alignment process. We
have shown in section 2 that the secondary structure of an RNA is associated
with a tree. At the Infovis’03 Conference contest [12] on pairwise comparison
of trees, an assigned task was to find similar subtrees that have moved :

• the subtrees are not in the same place in the hierarchy,

• slight changes occure between the two subtrees

First note that “finding isomorphic subtrees in a tree” or “common subtrees
in several trees” are one and the same task. In the last case, one just needs to
construct a tree with a vertex (its root), which has subtrees that are the trees
to be compared. Thus, using the underlying tree of two RNAs, “find similar
parts on RNAs” can be turned to “find similar subtrees in a tree”. Works has
already been done based on vertices degrees by Zemlyachenko [33] and then by
Dinitz et al. [31]. These algorithms give a partition of subtrees into isomorphism
equivalence classes. They are proved to be linear. However, they only detect
isomorphism and do not provide a measure of similarity for subtrees. More
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Figure 14: Drawing Agrobacterium tumefaciens with our algorithm

recently, Gupta et al. [15] gave a nice algorithm for determining the largest tree
embeddable in two trees. It would be usable in our context but the complexity
of their algorithm is O(n2) for non parallel computer. In our case, we want a
faster algorithm because the RNA placement is computed on data bases (several
thousands of RNAs) and this algorithm must also work on a personal computer.
Moreover, we do not want the largest one but mainly the largest similar one,
which means that we accept some slight changes. In order to give a response to
the Infovis’03 task, we have designed an heuristic [3] that can suggest by colors
meaning similar parts in a tree (similar subtrees have same colors). Thus, we are
able to use the graph drawing algorithm of section 3 to automatically display
two RNAs and (using our heuristic) to color them in order to suggest to the user
which parts of the RNAs are similar. The last task is to present the final images
of the two RNAs such that the user can easily identify the common parts. We
decided to place the center of the biggest (in term of nodes of the underlying
subtrees) similar parts at the same coordinate. If there are several choices then
we choose one at random. Thus we apply a rotation to the drawing. Below, we
briefly describe the heuristic. Let s be a vertex. We compute the four following
metrics :

• the degree of the vertex denoted by δ(s),



D. Auber et al., RNA secondary structure, JGAA, 10(2) 329–351 (2006) 344

Z

X

Y

Z

X

Y

X

Y

Z

X

Y

Z

Figure 15: Hand drawing and automatic drawing.

• the number of nodes of the subtree with root s denoted by ν(s),

• the height of the subtree with root s denoted by η(s)

• the so-called Strahler number of a vertex denotes by σ(s).

We briefly explain this last metric. The Strahler number σb has first been
introduced on binary trees in some work about the morphological structure of
rivers [19, 28]. A generalization on planar trees has been set up [4] using the nice
interpretation by Ershov [11]. He proved that the Strahler number of the root
of the binary tree incremented by one is exactly the minimal number of registers
needed to compute an arithmetical expression given by the tree output by the
syntactical analysis. Following this interpretation, for each internal vertex s
having k + 1 subtrees whose roots are {si}0≤i≤k such that if i ≤ j then σ(si) ≥
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σ(sj), the Strahler number σ(s) is given by :

σ(s) =











1 if s is a leaf

Max(σ(si) + i)
0≤i≤k

if s has k + 1 subtrees with root si

Of course, these four metrics are not in the same scale, thus we map them to
the range [0..1] by a linear normalization. We will denoted by α, ν, η and σ the
normalized metrics. The heuristic is now in two steps. The first one consists in
classifying roughly the vertices of the tree on the basis of a function of the four
metrics. Let ǫ be a real positive number. Two vertices s and s′ are in the same
ǫ-class if

(

δ(s) − δ(s′)
)2

+ (ν(s) − ν(s′))
2

+ (η(s) − η(s′))
2

+ (σ(s) − σ(s′))
2 ≤ ε

Note that this is not an equivalence relation. All the leaves are in the same
ǫ-class. Thus, in the algorithm we omit them. If ǫ is enough small, the ǫ-class of
the root is reduced to itself. The second step aggregates the ǫ-classes of vertices
that are part of similar subtrees. In order to do this, we construct a new integer
metric π such that if two subtrees have quasi-similar parts then all the vertices
s of these parts have the same value π(s). The strategy consists in a top-down
traversal on subtrees that stops as soon as there is no π valuation possible. Let
(Ki)0≤i≤p be the set of all ǫ-classes not reduced to one element. Assume that

∀i ∈ [0..p],Ki = si1 , si2 , . . . , sipi
with σ(si1) ≥ σ(si2) ≥ . . . ≥ σ(sipi

).

First, we define the τ -sets between two sets of vertices S and S ′. Let τ be a
positive integer threshold, the τ -sets are given by the following algorithm.

Function τ-sets(S, S ′):two sets of vertices

S1 = ∅
S2 = ∅
for i in [0..p]

S ′
1 = S ∩ Ki

S ′
2 = S ′ ∩ Ki

if |S ′
1| − |S ′

2| ≤ τ
S1 = S1 ∪ S ′

1

S2 = S2 ∪ S ′
2

return (S1,S2)

If τ is small enough then this function consists in selecting the vertices which
have a same distribution of K-indices over the ǫ-classes. In what follows,we de-
note by C(s) the set of children of a vertex s. Now, the next part of the agorithm
consists from a τ -sets to evaluate π according to a given value α. In order to
speed up the process in the last part of the algorithm the π metric is initialised
to 0 for all vertices.
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Function π-prolongation(S, S ′,α):void
for s in S ∪ S ′

π(s) = α
endfor

S1 = (
⋃

s∈S C(s))
S2 = (

⋃

s∈S′ C(s))
(S1,S2) = τ − sets(S1,S2)
if (S1,S2) 6= (∅, ∅)

π-prolongation(S1,S2,α)

Now, the general algorithm consist for each pair of vertices belonging to the
same ǫ-classes to compute the τ -sets of their children and then to evaluate π.

Function π-evaluation:void
α = 0
for i in [0..p]
for j in [i1..ipi−1

]
if π(sj) 6= 0
α = α + 1
π(sj) = α
for k in [j + 1..ipi

]
if π(sk) 6= 0
(S1,S2) = τ − sets(C(sj), C(sk))
if (S1,S2) 6= (∅, ∅)
π-prolongation(S1,S2,α)

In Figure 16 are displayed a Bacillus subtilis W D26185 and a Listeria grayi

X92948M. In this example, one can visually detect common patterns to both
structures and one of the biggest (dash boxes).

In Figure 17, one can see the result of the rotation. One can compare to
Figure 16 to perceive the help that automatic placement procures.

5 Conclusion

In order to check the efficiency, we have drawn about 1100 RNAs [5]. They
were presented at the meeting of the ARENA french project [1] that involved
biologists and bioinformatics french researchers focussed on RNA studies. About
40 persons were there. The community was split in two parts. Half agreed
with the drawing because of its stability under small changes in the secondary
structure. Half were less convinced because of their habits. The main criticism
invoked was that on circles the edges between the nucleotids do not all have the
same length as it is usually done by other interactive programs. In a certain
sense, the reason of this problem is intrinsic to our algorithm. Usually, biologists
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Figure 16: Two RNAs before rotation.

Figure 17: Two RNAs after rotation.
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deform the circles manually in order to get such a result. The deformations
are progressively from ellipse to rectangle. Our algorithm uses a method for
packing parts of the RNA. Mixing forms in such a process is extremely difficult.
They had thought that their habits were primordial but anyway looking to our
drawing they can recognize the RNA in a blind process (that is they did not
know the title of the RNA).

In parallel, we have developed a software system called ARNA [13] which
includes the classical alignment method based on Levenshtein distance. Then,
we have done a first user experiment with some biologists involved in research
on RNA. The next step will be to compare the motifs that can be visually
extracted on some well-known RNA pairs in order to check the exact efficiency
of the presentation. This work is continuing with the “Institut Europen de
Chimie et Biologie” in Bordeaux.

6 Acknowledgment
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