
Journal of Graph Algorithms and Applications
http://www.cs.brown.edu/publications/jgaa/

vol. 3, no. 2, pp. 1–23 (1999)

Experimental Comparison of Graph Drawing
Algorithms for Cubic Graphs

Tiziana Calamoneri Simone Jannelli Rossella Petreschi

Dipartimento di Scienze dell’Informazione
Universitá di Roma “La Sapienza”

{ calamo,petreschi }@dsi.uniroma1.it
Abstract

We report on the results of an experimental study in which we have
compared the performances of three algorithms for drawing general cubic
graphs on the bidimensional orthogonal grid. The comparison works on
18,000 randomly generated graphs with up to 300 vertices and analyzes
the number of bends and crossings, the area, the edge length and the
running time.

Communicated by R. Tamassia: submitted May 1997; revised May 1999.

The first author is supported by the Italian Research Council – CNR.

T. Calamoneri et al., Experimental Comparison..., JGAA, 3(2) 1–23 (1999) 2

1 Introduction

An orthogonal grid drawing of a graph is a drawing such that the edges are
polygonal chains consisting of horizontal and vertical segments and the vertices
have integer coordinates. The graphs that admit such a drawing must have
maximum degree 4. Among these graphs, cubic graphs (i.e. regular graphs
of degree 3) and at most cubic graphs (i.e. graphs having bounded degree
3), constitute interesting and complex classes of graphs, despite their apparent
simplicity. Indeed, cubic graphs are a natural model for a large number of
real systems that interest many scientific fields such as Psychology, Probability,
Economy, Physics, Geometry, and Computer Science. More in detail, some
concrete examples are the study of the interaction of quantistic charged particles
of high energy [4] and the study of flowgraphs to design hierarchical software
metrics [21], see Figs. 1 and 2.

x(t)

y(t)

x2(t 2)

y2(t 2)

x1(t 1) y1(t 1)

Figure 1: Interaction between two particles.

Furthermore, cubic graphs have been widely studied by many researchers,
since they seem to be a threshold class of graphs, in the sense that they are
the simplest graphs for which several fundamental problems are as difficult as
in the general case [5, 14].

Several results on orthogonal drawing of cubic graphs have been presented
[2, 6, 7, 11, 17, 18, 19, 20, 22]. However, none of the cited papers provides exper-
imental results, although the interest in experimentally testing the performance
of graph drawing algorithms has increased in the last years [8, 9, 10, 15, 16].
This paper tries to bridge this gap by presenting an experimental comparison
of three orthogonal drawing algorithms for cubic graphs. The three selected al-
gorithms are as follows: the first one, by Biedl and Kant [2], is a specialization
of an algorithm for graphs with bounded degree 4; the second and third ones,
by Calamoneri and Petreschi [6] and by Papakostas and Tollis [19], respectively,
are specifically designed for cubic graphs.

T. Calamoneri et al., Experimental Comparison..., JGAA, 3(2) 1–23 (1999) 3

a

b

c

Figure 2: From a flowgraph to the underlying (undirected) cubic graph.

We have chosen these algorithms because they are homogeneous with respect
to the input, the output and the leading idea. In particular, in our experimenta-
tion, no restriction on the input is required: neither planarity nor biconnectivity,
nor a preliminary layout. This is the main reason why we have decided not to
include in our experimentation algorithms such as those presented in [3, 17, 22],
which deal with planar and/or triconnected graphs only. For what concerns the
output, it is accepted to be non plane, even if the input graph is planar. The
chosen algorithms add one vertex at a time according to an st-numbering [13];
therefore, the algorithm described in [20] has not been considered because it
works on pairs of vertices. All the algorithms first work on biconnected compo-
nents and then splice the drawings of the components to form a drawing of the
entire graph. Thus, the results of our experiments are reported in two series
of diagrams, one for biconnected graphs and the other for simply connected
graphs.

Observe that the algorithm by Biedl and Kant is the only algorithm, among
the chosen ones, not to be explicitly designed for cubic graphs. We have included
this algorithm in the experimentation also to check if designing a drawing algo-

T. Calamoneri et al., Experimental Comparison..., JGAA, 3(2) 1–23 (1999) 4

rithm specifically for cubic graphs can improve its performance. The answer to
this question is discussed in Section 5. Finally, the chosen algorithms achieve
the best theoretical results known in the literature for a general at most cubic
graph in minimizing the area, the total number of bends and the running time.

The rest of this paper is organized as follows: in Section 2, some basic
definitions are given. In Section 3, the three analyzed drawing algorithms are
sketched outlining the similarities and underlining the differences. Section 4
contains the results of the experiments (summarized in twelve diagrams) and a
comparative analysis of the performance of the algorithms. Finally, in Section 5,
we show drawings of the same graph generated by the three algorithms and offer
concluding remarks.

2 Basic Definitions

In this section we introduce some preliminary concepts related to the topics
dealt in this paper.

Definition 1 Let G = (V, E) be a graph, n = |V | and m = |E|. An orthogonal
drawing of G is a drawing of G in the plane such that all edges are drawn as
sequences of horizontal and vertical segments. The edges are not allowed to
overlap for any distance (although a vertical segment may cross a horizontal
one). In addition, the edges cannot cross vertices that are not their extremes.
A point where the drawing of an edge changes its direction is called a bend of
this edge. This drawing is said to be a drawing in the (rectangular) grid if all
vertices and bends are at integer coordinates.

In the following the four directions on the grid with respect to each vertex
are distinguished and a direction is called free with respect to a vertex if no edge
is present on it.

Definition 2 Let k be a non negative integer. A k-bend drawing of a graph G
is a grid drawing of G in which every edge contains at most k bends.

Definition 3 [1] Let G be a connected graph. A vertex a is said to be an ar-
ticulation vertex of G if there exist vertices v and w such that v, w and a are
distinct, and every path between v and w contains vertex a. A connected graph
G is said to be biconnected if for every distinct triplet of vertices v, w, a, there
exists a path between v and w and not containing a. Thus, a connected graph is
biconnected if and only if it has no articulation vertex.

Observe that a nontrivial biconnected graph cannot have any vertex of de-
gree 1. When we deal with biconnected graphs, we will assume that the input
graph is cubic. Indeed, if it is at most cubic, we can first eliminate each ver-
tex of degree 2 by merging its incident edges. After drawing the resulting cubic

T. Calamoneri et al., Experimental Comparison..., JGAA, 3(2) 1–23 (1999) 5

i

j

x

i

j

i

j

i

j

x

Figure 3: Transformation from biconnected at most cubic graph to cubic graph
and vice-versa.

graph, we can reinsert a vertex of degree 2 adjacent to vertices i and j by simply
placing a “dot” along the drawing of edge (i, j) (see Fig. 3).

Definition 4 [13] Given any edge {s, t} of a biconnected graph G = (V, E),
a function g : V → {1, 2, . . . , n} is called an st-numbering if the following
conditions hold:

• g(u) 6= g(v) for u 6= v

• g(s) = 1

• g(t) = |V | = n

• for every v ∈ V −{s, t} there are vertices u and w such that g(u) < g(v) <
g(w) and {u, v}, {w, v} ∈ E.

From now on, we shall refer to the vertices of a biconnected st-numbered
cubic graph G = (V, E) by their st-numbers.

3 The Algorithms Under Evaluation

In order to make this paper self-contained, we shall briefly describe the three
algorithms we compare in the following and we will refer to them by means of
the first letters of their authors, i.e. BK[2], CP[6] and PT[19], respectively.

To make easier the reading of this section, we deal only with the key aspects
of the algorithms and we skip technical details. Furthermore, we present the
common characteristics and the differences between the algorithms.

• The input of these algorithms is a general simple loopless at most cubic
graph G (neither planarity nor 2- or 3-connectivity are required). Since

T. Calamoneri et al., Experimental Comparison..., JGAA, 3(2) 1–23 (1999) 6

n

Figure 4: Insertion of vertex n in Algorithm PT.

Algorithm PT is presented in [19] only for biconnected graphs, in our com-
parisons we added to PT a second phase able to handle separated bicon-
nected components and to splice them. Namely, we utilize the procedure
detailed by Algorithm CP to assemble the biconnected components.

• In order to obtain better upper bounds for the optimization functions, the
algorithms do not guarantee the output to be plane even if the input is
planar. Actually, Algorithm BK has a behavior different from the other
two since it gets a plane drawing if a plane layout of G is given as input.
For the sake of uniformity, we have not considered this case.

• With respect to the number of bends per edge, all three algorithms reach
a constant value, either 1 or 2. In particular, the output of algorithm CP
is exactly a 1-bend drawing of G; the output of PT is 1-bend except at
most one edge incident to n (Fig. 4) while the output of BK is 2-bend.
Notice that the introduction of 2 bends per edge arises from the fact that
this algorithm has been designed for graphs with bounded degree 4.

• Both Algorithm CP and PT use the concept of movement of bends, al-
ready introduced in [18]. The movement of a bend consists of moving
a vertex k along an edge in order to change its free directions (Fig. 5).
This has also the effect of changing the position of a bend, while the total
number of bends stays the same.

In Algorithm CP it is possible to change the free directions of a vertex
also through a rotation. This operation does not guarantee the invariance
of the number of bends; in Fig. 6 a possible rotation is shown.

• All the algorithms divide the input graph into its biconnected components
and run a pre-processing phase computing an st-numbering. Then, one
by one, each biconnected component is drawn; finally, the whole draw-
ing of the graph is obtained by connecting the drawings of the different
components.

T. Calamoneri et al., Experimental Comparison..., JGAA, 3(2) 1–23 (1999) 7

k

i

j

k

i

j

Figure 5: Movement of a bend.

k

i

j

k

i

j

Figure 6: Rotation of a vertex.

• The basic idea of the first phase consists of adding the vertices to the draw-
ing one at a time ordered according to an st-numbering. This construction
is made for each biconnected component and it is based on the existence,
in an st-numbered graph, of edges {1, 2}, {n − 1, n} and, for each vertex
j (where j 6= 1, n), of edges {j, i} and {j, l} such that i < j < l.

Let Gk = (Vk, Ek) be the subgraph induced by the first k vertices in the st-
numbering (Vk = {1, 2, . . . , k}) and Dk a drawing for Gk. During the k-th
step, vertex k and the edges {i, k}, with i < k, are added to Dk−1. Each
author has his/her own rules to lay vertex k out, and they constitute the
main reason of the difference between the three algorithms. In particular,
Algorithm BK, at each step, associates with a free direction of k an edge
incident to k that will be drawn in a successive step (Fig. 7).

Algorithms CP and PT draw k in such a way that at least one and at
most two edges do not introduce any bend.

• The final difference we want to highlight is the addition of vertex n to
Dn−1. Algorithm CP places vertex n and its edges on the grid as a comb
graph (Fig. 8) after having possibly operated a rotation or a movement of
some bends.

Beside the comb graph, Algorithm PT must accept also the configuration
of Fig. 4 for n because this algorithm does not provide any rotation.

T. Calamoneri et al., Experimental Comparison..., JGAA, 3(2) 1–23 (1999) 8

1 2

Figure 7: Insertion of vertices 1 and 2 in Algorithm BK.

n

Figure 8: A comb graph.

Finally, in Algorithm BK the addition of vertex n induces the drawing of
the last three edges dotted in the previous steps. Then, the insertion of n
and its edges induces a comb graph-like structure in which the teeth are
not connected to the n’s adjacent vertices but to their dotted edges.

• The second phase of the algorithms deals with general at most cubic graphs
and uses a decomposition into biconnected components.

The common idea is to draw separately each component and then to join
the drawings of the components through their connections. In this step,
both Algorithms BK and CP work in a recursive way, but they use differ-
ent methods. The main difference is that in BK the bridges (separating
edges) are removed, while in CP the articulation vertices are deleted.
This difference is reflected in the way the biconnected components are
later spliced together. Indeed, in BK only edges whose endpoints are al-
ready drawn must be added, but this requires that at least one of these
endpoints be on the boundary of the drawing of its biconnected compo-
nent. In CP the articulation vertices and their incident edges are added
and no constraint is required for their adjacent vertices. However, some
directions towards the boundary of the current drawing are always left
free (either directly, or after a movement of a bend, or after a rotation).

We conclude this section summarizing the worst-case theoretical results
achieved by the three algorithms.

T. Calamoneri et al., Experimental Comparison..., JGAA, 3(2) 1–23 (1999) 9

• Regarding the area of the drawing, for BK it is (n
2 + 2) × (n − 2) if the

input is biconnected and 3
4n × 3

4n otherwise. In CP and PT the area
is n

2 × n
2 and (n

2 + 1) × n
2 , respectively, both for biconnected and simply

connected graphs.

• Regarding the total number of bends, Algorithm BK achieves n+1 and n
for biconnected and simply connected graphs, respectively. In Algorithm
CP the bound is n

2 + 1 in the biconnected case and it is improved by 1 in
the connected case. Finally, Algorithm PT draws a graph with at most
n
2 + 3 bends.

• CP constructs a 1-bend drawing PT constructs a 2-bend drawing except
for one edge with two bends, and BK constructs a 2-bend drawing.

• All three algorithms run in linear time.

Notice that for BK we have indicated better bounds than those reported in
[2] since we consider only almost cubic graphs.

4 Analysis of the Experimental Results

4.1 Performance Indicators

The experiments provide a detailed quantitative evaluation of the performance
of the three algorithms, both from an “aesthetic” point of view (area, number
of crossings, number of bends, edge length) and from a computational one.
Namely, the considered performance indicators for each algorithm are:

• Area: area of the smallest rectangle with horizontal and vertical sides
covering the drawing;

• Bends: total number of bends;

• Crossings: total number of edge-crossings;

• MaxEdgeLen: maximum length of any edge;

• TotalEdgeLen: total edge length;

• Time: CPU time (measured in milliseconds) to compute the geometry
of the drawing, including the st-numbering computation but excluding
both the graph generation time and the time for drawing on screen. The
resolution is 0.2 ms.

Observe that we do not consider MaxEdgeBends (maximum number of
bends on any edge) because of the discussed theoretical results of the algorithms.

T. Calamoneri et al., Experimental Comparison..., JGAA, 3(2) 1–23 (1999) 10

4.2 Experimental Setting

In order to compare the performance of the three algorithms outlined in Sec-
tion 3, we have tested them on 18,000 randomly generated graphs with with
number of vertices in the range 10 . . .300. The results of the experimentation
are presented in graphical form and reported in Figs. 10–21. We produced
the statistics by grouping the graphs by number of vertices. We decided not
to group the graphs by the number of edges since all at most cubic graphs are
sparse and all our sample graphs have more or less the same number of edges
for the same number of vertices. Therefore, data points in the diagrams are
averages over 300 graphs with the same number of vertices. Moreover, we give
two separate series of diagrams, one for biconnected graphs and one for simply
connected graphs.

Biconnected graphs were generated by adding, one at a time, an edge be-
tween two randomly chosen vertices with degree less than three. The generation
procedure ends when the graph becomes connected and the number m of in-
serted edges is such that 2.75n/2 ≤ m ≤ 3n/2. At the end of the procedure,
if the graph is biconnected it is added to the experimental suite, otherwise it
is discarded. Observe that this naive method to impose biconnectivity is not
computationally expensive because almost all at most cubic graphs with more
than 2.75n/2 edges are biconnected.

Simply connected graphs were generated by merging biconnected compo-
nents: the number of biconnected components is randomly chosen in the range
2 . . . n/20 and, accordingly, their size is randomly decided. The biconnected
components are generated using the previous procedure and then they are
merged together avoiding the creation of cycles.

4.3 Implementation

The algorithms have been implemented in C and have been run on a computer
with a Pentium MMX 166 MHz processor.

A technical problem faced during the implementation of all three algorithms
is the maintenance of the vertex coordinates during the incremental construction
of the drawing. Indeed, when adding a new row or column to the drawing to
accommodate the placement of the next vertex, the coordinates of many vertices
and bends may need to be updated. This implies that it is not possible to
compute the final coordinates of each vertex as it is added to the drawing.

By representing the “virtual” coordinates by means of two sorted lists, this
problem is reduced to the problem of maintaining order in a list, for which an
optimal linear-time solution using sophisticated techniques is given by Dietz and
Sleator [12]. In our implementation we have opted instead for a simple linear-
time method that experimentally works very well but that is not guaranteed to
always give correct results, although it never failed in our experimentations.

Our method uses temporary floating-point coordinates for the vertices during

T. Calamoneri et al., Experimental Comparison..., JGAA, 3(2) 1–23 (1999) 11

the execution of the algorithm. Namely, consider the insertion of a new vertex
k on a new row (column) between the rows (columns) where its two adjacent
vertices i and j lie. W.l.o.g., suppose that yj < yi (xj < xi) and let yb (xb) be
the first occupied row (column) in the range [yj , yi] ([xj , xi]) after yj (xj). This
is the value immediately following yj (xj) in the sorted list of y (x) coordinates.
We assign to vertex k y- (x-)coordinate equal to the average of yj and yb (xj and
xb) and update the sorted list by inserting yk(xk) is after yj(xj) and before yb

(xb). At the end of the construction of the drawing we transform the temporary
floating-point coordinates into final integer coordinates in linear time, with a
simple prefix sum algorithm.

The above algorithm may yield incorrect results if there is a long succession
of vertices k1, . . . , ks with the following property:

• k1 lies between i and j;

• kr (r = 2, . . . , s) lies between kr−1 and i.

For typical processors, errors occur if s ≥ 36, an event that never occurred in
our experiments.

Another minor problem was that our implementation of Algorithm PT failed
on some input graphs. This is due to the fact that the original description of the
algorithm does not mention how to deal with certain special cases (see Fig. 9).

i

j

k

Figure 9: Example of ignored configuration in Algorithm PT.

4.4 Analysis

In this section, we discuss the results of the experiments and analyze in detail
the various performance indicators.

• The observed practical behavior of the algorithms is consistent with their
theoretical properties. Actually, the experimental results for some perfor-
mance indicators, such as the number of bends for connected graphs, are
slightly better than the theoretical worst-case bounds.

T. Calamoneri et al., Experimental Comparison..., JGAA, 3(2) 1–23 (1999) 12

• There is no significant difference between the results for biconnected and
simply connected graphs on the area, maximum edge length and running
time. On the contrary, there is a wide gap between the results for con-
nected and biconnected graphs on the number of bends, the number of
crossings and the total edge length. Justifications of this behavior are
given in the following.

• From a computational point of view, drawing cubic graphs is a well solved
problem: even the slowest algorithm takes only 6.8 ms to draw the largest
graphs (300 vertices).

We now discuss in detail each performance indicator.

• Area: (Figs. 10 and 11) Algorithm PT yields average area very close to
the theoretical bound of n2/4 + o(n2), both in the connected and in the
biconnected case.

The area of drawings computed by Algorithm BK is n2/2 both in the con-
nected and biconnected case. But, while this value matches the theoretical
value of the area for biconnected graphs, it is slightly better than 9n2/16,
which is the theoretical bound for connected graphs. This suggests that
the configurations leading to the larger theoretical value for the area in
the connected case are rare.

Finally, since Algorithm CP tries to draw vertices without adding new
bends and therefore without adding new rows and columns, it reaches a
slightly better area bound (about n2/4.88 instead of n2/4) both in the
connected and in the biconnected case.

• Bends: (Figs. 12 and 13) For what concerns the total number of bends, it
is clear from the diagrams that all three algorithms generate fewer bends
in the simply connected case than in the biconnected one.

Namely, BK generates a total number of bends that is close to n for
biconnected graphs and close to n/1.25 for connected graphs. Algorithm
PT approaches n/2 and n/2.5 in the biconnected and connected case,
respectively. Algorithm CP works better from this point of view, since it
generates about n/2.44 and n/3 bends if the input graph is biconnected
and connected, respectively. Also, the ratio between the averages of the
numbers of bends in the biconnected and connected case is about 1.22 in
all algorithms: the better results in the biconnected case can be justified
by the lower number of edges on average.

• Crossings: (Figs. 14 and 15) The total number of crossings does not
appear to be an increasing function of the number of vertices because
the number of crossings is highly random. Since edges connecting the
biconnected components are always drawn without crossings, their number

T. Calamoneri et al., Experimental Comparison..., JGAA, 3(2) 1–23 (1999) 13

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 3000

5000

10000

15000

20000

25000

30000

35000

40000

Area Number of vertices

BK PT CP

Figure 10: Area versus number of vertices for simply connected graphs.

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 3000

5000

10000

15000

20000

25000

30000

35000

40000

Area
Number of vertices

BK PT CP

Figure 11: Area versus number of vertices for biconnected graphs.

T. Calamoneri et al., Experimental Comparison..., JGAA, 3(2) 1–23 (1999) 14

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
0

40

80

120

160

200

240

number
of bends number of vertices

BK PT CP

Figure 12: Total number of bends versus number of vertices for simply connected
graphs.

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
0

40

80

120

160

200

240

number
of bends number of vertices

BK PT CP

280

320

Figure 13: Total number of bends versus number of vertices for biconnected
graphs.

T. Calamoneri et al., Experimental Comparison..., JGAA, 3(2) 1–23 (1999) 15

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
0

200

400

600

800

1000

number of vertices

BK PT CP

number of
crossings

Figure 14: Crossings versus number of vertices for simply connected graphs.

0

1000

2000

3000

4000

5000

number of
crossings

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

number of vertices

BK PT CP

200

400

600

800

1200

1400

1600

1800

2200

2400

2600

2800

3200

3400

3600

3800

4200

4400

4600

4800

A
A

Figure 15: Crossings versus number of vertices for biconnected graphs.

T. Calamoneri et al., Experimental Comparison..., JGAA, 3(2) 1–23 (1999) 16

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
0

100

200

300

number of vertices

BK PT CP

400

Max Edge
Length

Figure 16: Maximum edge length versus number of vertices for simply connected
graphs.

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
0

100

200

300

number of vertices

BK PT CP

400

Max Edge
Length

Figure 17: Maximum edge length versus number of vertices for biconnected
graphs.

T. Calamoneri et al., Experimental Comparison..., JGAA, 3(2) 1–23 (1999) 17

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
0

2000

4000

6000

Total Edge
Length

number of
verticesBK PT CP

8000

10000

12000

14000

Figure 18: Total edge length versus number of vertices for simply connected
graphs.

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
0

2000

4000

6000

Total Edge
Length

number of
vertices

BK PT CP

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

Figure 19: Total edge length versus number of vertices for biconnected graphs.

T. Calamoneri et al., Experimental Comparison..., JGAA, 3(2) 1–23 (1999) 18

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
0

1

2

3

4

5

computational
time

number of vertices

6

7

BK PT CP

Figure 20: Computational time (in ms) versus number of vertices for simply
connected graphs.

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
0

1

2

3

4

5

computational
time

number of vertices

6

7

BK PT CP

Figure 21: Computational time (in ms) versus number of vertices for biconnected
graphs.

T. Calamoneri et al., Experimental Comparison..., JGAA, 3(2) 1–23 (1999) 19

is consistently smaller when the graphs are simply connected rather than
when they are biconnected. The average values in the biconnected case are
n2/33, n2/25.8 and n2/17.6 for Algorithms BK, CP and PT, respectively.
The good result of BK can be explained as a consequence of the fact that
it is designed to support the drawing of planar graphs without crossings,
and therefore its number of crossings is lower, to the detriment of the area.

• MaxEdgeLen: (Figs. 16 and 17) and TotEdgeLen: (Figs. 18 and 19)
The experimental values of the maximum edge length are 1.4n, 0.5n and
0.6n in the connected case and 1.36n, 0.77n and 0.88n in the biconnected
case for Algorithms BK, CP and PT, respectively. The values of the
total edge length are 1/4n2, 1/13n2 and 1/12n2 in the connected case and
2/7n2, 1/6n2 and 1/5n2 in the biconnected case for Algorithms BK, CP
and PT, respectively.

We have no theoretical bounds to compare these results to, but we ob-
serve that all the algorithms have considerably worse performance in the
biconnected case. This is because when two biconnected components are
merged, some edges are lengthened and influence these performance indi-
cators.

• Computational time: (Figs. 20 and 21) All three algorithms are very
fast: PT runs in n/54 and n/50 ms on connected and biconnected graphs,
respectively; BK and CP need n/48(n/47) and n/47(n/44) ms to draw
an n vertex connected and biconnected cubic graph, respectively.

5 Conclusions

Following the trend of comparing the theoretical properties of graph drawing
algorithms with experimental results and of estimating performance indicators,
in this paper we analyze three algorithms for constructing orthogonal grid draw-
ings of cubic graphs. The main conclusion of our work is that this problem is
well solved both from a theoretical and an experimental point of view.

Analyzing more in detail the results of the experimentation, we see that the
best algorithm depends on the criteria used. If the most important objective is
either the area or the maximum number of bends or the edge length, the best
algorithm is CP. According to the computational time PT beats the other two.
A partial justification of why BK performs best only regarding the number of
crossings lies in its goals: to draw graphs with maximum degree 4 and to focus
on planar graphs.

To conclude, we give an example of the layouts produced by the three algo-
rithms by running them on the graph of Fig. 22. Figs. 23, 24 and 25 show the
drawings generated by Algorithms BK, CP and PT, respectively.

T. Calamoneri et al., Experimental Comparison..., JGAA, 3(2) 1–23 (1999) 20

Figure 22: A graph with 30 vertices.

Figure 23: Graph of Fig. 22 drawn by Algorithm BK.

T. Calamoneri et al., Experimental Comparison..., JGAA, 3(2) 1–23 (1999) 21

Figure 24: Graph of Fig 22 drawn by Algorithm CP.

Figure 25: Graph of Fig 22 drawn by Algorithm PT.

T. Calamoneri et al., Experimental Comparison..., JGAA, 3(2) 1–23 (1999) 22

References

[1] A. Aho, J. K.Hopcroft, and J.D. Ullman. The design and analysis of com-
puter algorithms. Addison Wesley, Reading, MA, 1973.

[2] T. Biedl, and G. Kant. A Better Heuristic for Orthogonal Graph Drawings.
Comput. Geom. Theory Appl., 9:159–180, 1998. Also in Proc. European
Symposium on Algorithms (ESA ’94), Lectures Notes in Computer Science
855, Springer-Verlag, pages 24–35, 1994.

[3] T. Biedl. Optimal plane orthogonal drawings for triconnected graphs. In
Proc. Scandinavian Workshop on Algorithm Theory (SWAT’96), Lectures
Notes in Computer Science 1097, Springer-Verlag, pages 333–344, 1996.

[4] J.D. Bjorken, and S.D. Drell. Relativistic Quantum Fields. Mc-Graw Hill,
New York, 1965.

[5] T. Calamoneri. Does Cubicity Help to Solve Problems? Ph.D. Thesis, Uni-
versity of Rome “La Sapienza”,XI-2-97, 1997.

[6] T. Calamoneri, and R. Petreschi. An Efficient Orthogonal Grid Drawing
Algorithm for Cubic Graphs. In Proc. First Annual International Confer-
ence on Computing and Combinatorics (COCOON ’95), Lectures Notes in
Computer Science 959, Springer-Verlag, pages 31–40, 1995.

[7] T. Calamoneri, and R. Petreschi. Orthogonal Drawing Cubic Graphs in Par-
allel. J. Parallel and Distr. Comput., 55:94–108, 1998.

[8] G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu.
An Experimental Comparison of Three Graph Drawing Algorithms. In
ACM Symposium on Computational Geometry, ACM, pages 306–315, 1995.

[9] G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu.
An Experimental Comparison of Four Graph Drawing Algorithms. Comp.
Geom., 7(5-6):303–325, 1997.

[10] G. Di Battista, A. Garg, G. Liotta, A. Parise, R. Tamassia, and E.Tassinari.
Drawing Directed Acyclic Graphs: An Experimental Study. In Proc. Graph
Drawing (GD’96), Lectures Notes in Computer Science 1190, Springer-
Verlag, pages 76–91, 1996.

[11] G. Di Battista, G. Liotta, and F. Vargiu. Spirality and Optimal Orthogonal
Drawings. SIAM J. Comput., 27(6):1764–1811, 1998.

[12] P.F. Dietz, and D. D. Sleator. Two algorithms for maintaining order in a
list. In Proc. 19th ACM Symp. on Theor. Comp. Sci. (STOC ’87), 2, pages
436–441, 1976.

T. Calamoneri et al., Experimental Comparison..., JGAA, 3(2) 1–23 (1999) 23

[13] S. Even, and R. E. Tarjan. Computing an st-numbering. Theoret. Comp.
Sci., 365–372, 1987.

[14] R. Greenlaw, and R. Petreschi. Cubic graphs. ACM Computing Surveys, 27
(4):471–495, 1995.

[15] M. Himsolt. Comparing and evaluating layout algorithms within GraphEd.
J. Visual Lang. Comput. (special issue on Graph Visualization), 6(3):255-
273, 1995.

[16] S. Jones, P. Eades, A. Moran, N. Ward, G. Delott, and R. Tamassia. A note
on planar graph drawing algorithms. Tech. Rep. 216, Department of Com-
puter Science, University of Queensland, 1991.

[17] G. Kant. Drawing Planar Graphs Using the canonical ordering. In Proc.
33th Ann. IEEE Symp. on Found. of Comp. Science (FOCS ’92), pages
101–110, 1992. Also in Algorithmica - Special Issue on Graph Drawing, 16:
4–32, 1996.

[18] Y. Liu, P.Marchioro, and R. Petreschi. At most single bend embedding of
cubic graphs. Tech. Rep. SI 92/01 Dept. of Comp. Science University of
Rome “La Sapienza”, 1992. Also in Applied Mathematics (Chin. Journ.),
9/B/2,127–142, 1994.

[19] A. Papakostas, and I.G. Tollis. Improved Algorithms and Bounds for Or-
thogonal Drawings. In Proc.Graph Drawing (GD’94), Lectures Notes in
Computer Science 894, Springer-Verlag, pages 40–51, 1994.

[20] A. Papakostas, and I.G. Tollis. Algorithms for Area-Efficient Orthogonal
Drawings. Comput. Geom. Theory Appl., 9:83–110, 1998.

[21] R.E.Prather. Design and Analysis of Hierarchical Software Metrics. ACM
Computing Surveys, 27 (4):497–518, 1995.

[22] M. S. Rahman, S. Nakano, and T. Nishizeki. A Linear-Time Algorithm for
Orthogonal Drawings of Triconnected Cubic Plane Graphs with the Mini-
mum Number of Bends. In Proc. Graph Drawing (GD’97), Lectures Notes
in Computer Science 1353, Springer-Verlag , pages 99–110, 1997.

