Journal of Graph Algorithms and Applications

http://www.cs.brown.edu/publications/jgaa/

vol. 3, no. 1, pp. 1–18 (1999)

Edge-Coloring and *f*-Coloring for Various Classes of Graphs

Xiao Zhou

Graduate School of Information Sciences Tohoku University Aoba-yama 05, Sendai 980-8579, Japan zhou@ecei.tohoku.ac.jp

Takao Nishizeki

Graduate School of Information Sciences Tohoku University Aoba-yama 05, Sendai 980-8579, Japan nishi@ecei.tohoku.ac.jp

In an ordinary edge-coloring of a graph each color appears at each vertex at most once. An *f*-coloring is a generalized edge-coloring in which each color appears at each vertex v at most f(v) times where f(v) is a positive integer assigned to v. This paper gives efficient sequential and parallel algorithms to find ordinary edge-colorings and *f*-colorings for various classes of graphs such as bipartite graphs, planar graphs, and graphs having fixed degeneracy, tree-width, genus, arboricity, unicyclic index or thickness.

Communicated by M. Kaufmann: submitted October 1997; revised September 14, 1998.

1 Introduction

This paper deals with a simple graph G which has no multiple edges or selfloops. An *edge-coloring* of a graph G is to color all the edges of G so that no two adjacent edges are colored with the same color. The minimum number of colors needed for an edge-coloring is called the *chromatic index* of G and denoted by $\chi'(G)$. In this paper the maximum degree of a graph G is denoted by $\Delta(G)$ or simply by Δ . Vizing showed that $\chi'(G) = \Delta$ or $\Delta + 1$ for any simple graph G [10, 30]. The edge-coloring problem is to find an edge-coloring of G with $\chi'(G)$ colors. Let f be a function which assigns a positive integer f(v) to each vertex $v \in V$. Then an *f*-coloring of G is to color all the edges of G so that, for each vertex $v \in V$, at most f(v) edges incident to v are colored with the same color. Thus an f-coloring of G is a decomposition of G to edge-disjoint spanning subgraphs in each of which vertex degrees are bounded above by f. An ordinary edge-coloring is a special case of an f-coloring for which f(v) = 1 for every vertex $v \in V$. The minimum number of colors needed for an f-coloring is called the *f*-chromatic index of G and denoted by $\chi'_f(G)$. The *f*-coloring problem is to find an *f*-coloring of G with $\chi'_f(G)$ colors. Let $\Delta_f(G) = \max_{v \in V} \lceil d(v)/f(v) \rceil$ where d(v) is the degree of vertex v, then $\chi'_f(G) = \Delta_f$ or $\Delta_f + 1$ for any simple graph G [13].

The edge-coloring and f-coloring have applications to scheduling problems like the file transfer problem in a computer network [5, 24, 25]. In the model a vertex of a graph G represents a computer, and an edge does a file which one wishes to transfer between the two computers corresponding to its ends. The integer f(v) is the number of communication ports available at a computer v. The edges colored with the same color represent files that can be transferred in the network simultaneously. Thus an f-coloring of G with $\chi'_f(G)$ colors corresponds to a scheduling of file transfers with the minimum finishing time.

Since the ordinary edge-coloring problem is NP-complete [15], the *f*-coloring problem is also NP-complete in general. Therefore it is very unlikely that there exists an exact algorithm which solves the ordinary edge-coloring problem or the *f*-coloring problem in polynomial time. However, the following approximate algorithms are known. Any simple graph *G* can be edge-colored with $\Delta + 1$ colors in polynomial time [27, 29]; the best known algorithm takes time $O(\min\{n\Delta \log n, m\sqrt{n\log n}\})$ [12], where we denote by *n* the number of the vertices and *m* the number of the edges in *G*. Furthermore, the proof in [13] immediately yields an approximate algorithm to *f*-color any simple graph with $\Delta_f + 1$ colors in time O(mn). On the other hand, exact algorithms to edge-color *G* with $\chi'(G)$ colors are known for restricted classes of graphs as follows:

- (a) an $O(m \log n)$ -time algorithm for bipartite graphs [6, 11];
- (b) a linear-time algorithm for planar graphs of $\Delta \ge 19$ [4];
- (c) an $O(n \log n)$ -time algorithm for planar graphs of $\Delta \ge 9$ [3];
- (d) an $O(n^2)$ -time algorithm for planar graphs of $\Delta \ge 8$ [12, 27];
- (e) a linear-time algorithm for series-parallel multigraphs [34]; and
- (f) a linear-time algorithm for partial k-trees [32].

Concerning parallel edge-coloring algorithms, NC parallel exact algorithms have been obtained only for a few restricted classes of graphs such as bipartite graphs [20], series-parallel simple graphs [2], series-parallel multigraphs [35], partial ktrees [32] and planar graphs with maximum degree $\Delta \geq 9$ [3, 4]. However, NC parallel approximate algorithms to edge-color G with $\Delta + 1$ colors have not been known so far except for the case when Δ is small [18]. On the other hand, no efficient exact algorithms for the f-coloring problem have been obtained even for restricted classes of graphs.

In this paper we consider various classes of graphs specified by invariants like the degeneracy. The degeneracy s(G) of a graph G is the minimum number s such that G can be reduced to an empty graph by the successive deletion of vertices with degree at most s [1]. Clearly the degeneracy has a favorable implication on the vertex-coloring: any graph G can be vertex-colored with at most s(G) + 1 colors [9, 22, 23, 28]. On the other hand, Vizing [16, 31] showed that the degeneracy has a surprising implication on the edge-coloring: $\chi'(G) = \Delta(G)$ if $\Delta(G) > 2s(G)$. Thus Vizing gave a lower bound on $\Delta(G)$ for $\chi'(G) = \Delta(G)$ to hold true. In this paper we express such a lower bound in terms of various other graph-invariants like tree-width, arboricity, unicyclic index, thickness, and genus. It is rather straightforward to derive from Vizing's proof an O(mn)algorithm for edge-coloring a graph G with $\Delta(G)$ colors if $\Delta(G) \geq 2s(G)$. We give more efficient sequential and NC parallel algorithms to edge-color a graph G whose maximum degree $\Delta(G)$ is roughly larger than twice the lower bounds, say $\Delta(G) \geq 4s(G)$. Our sequential algorithm takes time $O(n \log n)$ if s(G) is bounded and $\Delta(G) \geq 4s(G)$. We next give a simple but useful transformation of a graph G to a new graph G_f such that an ordinary edge-coloring of G_f immediately induces an f-coloring of the original graph G with the same number of colors. Using the transformation, we finally give efficient sequential and NC parallel algorithms to f-color various classes of graphs with large $\Delta(G)$. In the paper the parallel computation model we use is a concurrent-read exclusivewrite parallel random access machine (CREW PRAM). An early version of the paper was presented at [33].

2 Preliminary

In this section we define terminology and observe relationships between various graph invariants.

A graph with vertex set V and edge set E is denoted by G = (V, E). The vertex set and the edge set of a graph G is often denoted by V(G) and E(G), respectively. We denote the number of vertices in G by n(G) or simply n, and denote the number of edges in G by m(G) or simply m. We say that a graph G is trivial if m(G) = 0. The degree of v in G is denoted by d(v, G) or simply by d(v). We denote by $\Delta(G)$ the maximum degree of vertices of G and by $\delta(G)$ the minimum degree. The graph obtained from G by deleting all vertices in $V' \subseteq V(G)$ is denoted by G - V'. The graph obtained from G by deleting all edges in $E' \subseteq E(G)$ is denoted by G - E'. We then define various invariants of graphs. Let s be a positive integer. A graph G is s-degenerate if the vertices of G can be ordered v_1, v_2, \dots, v_n so that $d(v_i, G_i) \leq s$ for each $i, 1 \leq i \leq n$, where $G_i = G - \{v_1, v_2, \dots, v_{i-1}\}$ [1, 9, 22, 23]. Thus G is s-degenerate if and only if G can be reduced to a trivial graph by the successive removal of vertices having degree at most s. The degeneracy s(G) of G is the minimum integer s for which G is s-degenerate. The degeneracy s(G) is also called the Szekeres-Wilf number [28]. The degeneracy of a graph can be computed in linear time [23]. Every planar graph G has a vertex of degree at most five, that is, $\delta(G) \leq 5$ [1, 27], and hence

$$s(G) \le 5. \tag{1}$$

Obviously any graph G can be vertex-colored with at most s(G) + 1 colors [9, 22, 23, 28]. Vizing showed that $\chi'(G) = \Delta(G)$ if $\Delta(G) \ge 2s(G)$ [16, 31].

A graph G = (V, E) is a k-tree if either it is a complete graph on k vertices or it has a vertex $v \in V$ whose neighbors induce a clique of size k and $G - \{v\}$ is again a k-tree. A graph is a partial k-tree if it is a subgraph of a k-tree [32]. The tree-width k(G) of graph G is the minimum integer k such that G is a partial k-tree. Clearly

$$s(G) \le k(G). \tag{2}$$

The arboricity a(G) of a graph G is the minimum number of edge-disjoint forests into which G can be decomposed. Nash-Williams [26] proved that $a(G) = \max_{H \subseteq G} \lceil m(H)/(n(H) - 1) \rceil$, where H runs over all nontrivial subgraphs of G. We have

$$a(G) \le s(G),\tag{3}$$

because any subgraph H of G is s(G)-degenerate and hence $m(H) \leq s(G)(n(H) - 1)$ and $m(H)/(n(H) - 1) \leq s(G)$. Furthermore, if G is planar, then

$$a(G) \le 3,\tag{4}$$

because $m(H) \leq 3n(H) - 3$ for any nontrivial subgraph H of G.

We now introduce a rather unfamiliar invariant a'(G) which we call the *unicyclic index* of a graph G: a'(G) is the minimum number of edge-disjoint unicyclic graphs, that is, graphs with at most one cycle, into which G can be decomposed. Since a forest is a unicyclic graph and a unicyclic graph can be decomposed to one or two forests, we have

$$a'(G) \le a(G) \le 2a'(G). \tag{5}$$

The thickness $\theta(G)$ of a graph G is the minimum number of edge-disjoint planar subgraphs into which G can be decomposed. Clearly

$$\theta(G) \le a'(G) \le a(G) \le 3\theta(G) \tag{6}$$

since every unicyclic graph is planar and every planar graph can be decomposed into at most three edge-disjoint forests [8]. The genus g(G) of a graph G is the minimum number of handles which must be added to a sphere so that G can be embedded on the resulting surface. Of course, g(G) = 0 if and only if G is planar. It is known [14, 17] that if $g(G) \ge 1$ then

$$\delta(G) \le \left\lfloor \left(5 + \sqrt{48g(G) + 1} \right) / 2 \right\rfloor.$$
(7)

Furthermore any subgraph H of G satisfies $g(H) \leq g(G)$. Therefore, if $g(G) \geq 1$ then

$$s(G) \le \left\lfloor \left(5 + \sqrt{48g(G) + 1}\right)/2 \right\rfloor.$$
(8)

One can observe that the following upper bound holds on the minimum degree.

Lemma 1 The following (a)–(c) hold for any nontrivial graph G:

- (a) $\delta(G) \le 2a(G) 1$ [8];
- (b) $\delta(G) \leq 2a'(G)$; and
- (c) if a'(G) is bounded and $U = \{u \in V \mid d(u,G) \leq 2a'(G)\}$, then $|U| \geq n/(2a'(G)+1)$ and hence $|U| = \Theta(n)$.

Proof: (a) One may assume that G has no isolated vertices. Let n' be the number of vertices v of G such that $1 \leq d(v) \leq 2a(G) - 1$. Then clearly $n' + 2a(G)(n - n') \leq 2m$. On the other hand, G can be decomposed into a(G) edge-disjoint forests, and any forest has at most n - 1 edges. Therefore $m \leq a(G)(n-1)$. Thus $n' \geq 2a(G)/(2a(G)-1) > 1$, and hence $\delta(G) \leq 2a(G)-1$.

(b) and (c) Since every vertex in V - U has degree $\geq 2a'(G) + 1$, we have $(2a'(G) + 1)(n - |U|) \leq 2m$. Since any unicyclic graph has at most n edges, we have $m \leq a'(G)n$. Thus we have $|U| \geq n/(2a'(G) + 1)$. Hence $U \neq \phi$ and $\delta(G) \leq 2a'(G)$. If a'(G) is bounded, then $|U| = \Theta(n)$.

By Lemma 1 and Eqs. (1), (2), (4)–(6) and (8) we can immediately derive the following upper bounds on s(G) in terms of k(G), a(G), a'(G), $\theta(G)$ and g(G). Note that $a(H) \leq a(G)$, $a'(H) \leq a'(G)$, $\theta(H) \leq \theta(G)$ and $g(H) \leq g(G)$ for any subgraph H of G.

Lemma 2 The following (a) - (f) hold:

(a)
$$s(G) \le k(G);$$

(b) $s(G) \le 2a(G) - 1;$
(c) $s(G) \le 2a'(G);$
(d) $s(G) \le 6\theta(G) - 1;$
(e) $s(G) \le \left\lfloor \left(5 + \sqrt{48g(G) + 1}\right)/2 \right\rfloor$ if $g(G) \ge 1;$ and
(f) $s(G) \le 5$ if G is planar.

The relationships among these graph-invariants are illustrated in Figure 1.

Figure 1: Relationships among graph-invariants.

3 Chromatic Index

By the classical Vizing's theorem, $\chi'(G) = \Delta$ or $\Delta + 1$ for any simple graph G [10, 30]. Vizing also showed that $\chi'(G) = \Delta$ if $\Delta \geq 2s(G)$. In this section we give various lower bounds on $\Delta(G)$ for $\chi'(G) = \Delta(G)$ to hold true, expressed in terms of various invariants such as k(G), a(G), a'(G), $\theta(G)$ and g(G).

For vertices u and v, we denote by $d_u^*(v)$ the number of v's neighbors, other than u, having degree $\Delta(G)$. An edge $(u, v) \in E$ is *eliminable* if either $d(u) + d_u^*(v) \leq \Delta(G)$ or $d(v) + d_v^*(u) \leq \Delta(G)$ [27, 29]. The following lemma is an expression of a classical result on "critical graphs," called "Vizing's adjacency lemma" (see, for example, [10, 27, 29]). In other words, the edges that are excluded in a critical graph by the adacency lemma are eliminable. Note that the definition is not symmetric with u and v.

Lemma 3 If (u, v) is an eliminable edge of a simple graph G and $\chi'(G - (u, v)) \leq \Delta(G)$, then $\chi'(G) = \Delta(G)$.

Thus, if we remove an eliminable edge (u, v) and can color the remaining graph G - (u, v) with $\Delta(G)$ colors, then the obtained coloring can be extended to the edge (u, v) without using more colors.

Vizing [31] obtained the following two theorems. We give proofs for them, which yield an O(mn) algorithm to edge-color G with Δ colors if $\Delta(G) \geq 2s(G)$, as we will show in the succeeding section.

Theorem 1 [31] Any nontrivial graph G has an eliminable edge if $\Delta(G) \geq 2s(G)$.

Proof: Let $U = \{u \in V(G) \mid d(u,G) \leq s(G)\}$. Then $U \neq \phi$ because the definition of the degeneracy implies that G has at least one vertex of degree

 $\leq s(G)$. Furthermore $V - U \neq \phi$ since $\Delta \geq 2s(G) > s(G)$ and hence the vertices of degree Δ are not contained in U. Thus H = G - U is not empty and $s(H) \leq$ s(G). Therefore H has a vertex v of degree $\leq s(G)$. Since $s(G) + 1 \leq d(v,G)$ and $d(v,H) \leq s(G)$, G has an edge (u,v) joining v and a vertex $u \in U$. Since $u \in U$, $d(u) \leq s(G) < 2s(G) \leq \Delta$. Thus none of v's neighbors in U has degree Δ , and hence $d_u^*(v) \leq d(v,H) \leq s(G)$. Therefore $d(u) + d_u^*(v) \leq 2s(G) \leq \Delta$, and hence edge (u,v) is eliminable. \Box

Theorem 2 [31] $\chi'(G) = \Delta(G)$ if $\Delta(G) \ge 2s(G)$.

Proof: Assume that G is a nontrivial graph with $\Delta(G) \geq 2s(G)$. Then by Theorem 1 G has an eliminable edge e_1 . Let $G_1 = G - \{e_1\}$, then $s(G_1) \leq s(G)$. If $\Delta(G_1) = \Delta(G)$, then G_1 has an eliminable edge e_2 . Thus there exists a sequence of edges e_1, e_2, \dots, e_j such that

- (i) $\Delta(G_j) = \Delta(G) 1$ where $G_j = G \{e_1, e_2, \dots, e_j\}$; and
- (ii) every edge e_i , $1 \le i \le j$, is eliminable in $G_{i-1} = G \{e_1, e_2, \dots, e_{i-1}\}$.

By the classical Vizing's theorem [10], $\chi'(G_j) \leq \Delta(G_j) + 1 = \Delta(G)$. Therefore, applying Lemma 3 repeatedly, we have $\chi'(G) = \Delta(G)$.

A minor of a graph G is a graph obtained from G by repeated deletions and contractions of edges. We say that a class \mathcal{G} of graphs is minor closed if any minor of G belongs to \mathcal{G} for every graph $G \in \mathcal{G}$. A classical result of Mader [7, 21] implies that every graph G in any minor closed class \mathcal{G} has a degeneracy bounded by a constant $h(\mathcal{G})$, that is, $s(G) \leq h(\mathcal{G})$, where $h(\mathcal{G})$ is a constant depending on the class \mathcal{G} . For example, $h(\mathcal{G}) = 5$ for the class \mathcal{G} of planar graphs.

Thus we have the following corollary from Theorem 2 and Lemma 2.

Corollary 1 $\chi'(G) = \Delta(G)$ if one of the following (a) – (g) holds:

- (a) G belongs to a minor closed class \mathcal{G} and $\Delta(G) \geq 2h(\mathcal{G})$;
- (b) $\Delta(G) \ge 2k(G)$ [32];
- (c) $\Delta(G) \ge 4a(G) 2;$
- (d) $\Delta(G) \ge 4a'(G);$
- (e) $\Delta(G) \ge 12\theta(G) 2;$
- (f) $g(G) \ge 1$ and $\Delta(G) \ge 2 \left\lfloor \left(5 + \sqrt{48g(G) + 1}\right)/2 \right\rfloor$; and
- (g) G is planar and $\Delta(G) \ge 10$.

A result better than Corollary 1(g) is known [10, 27]: $\chi'(G) = \Delta(G)$ if G is planar and $\Delta(G) \ge 8$.

4 Finding Edge-Colorings

The proofs of Theorems 1 and 2 yield an exact algorithm to edge-color a graph G with Δ colors if $\Delta(G) \geq 2s(G)$. However, the algorithm takes O(mn) time, since it repeats operations of "shifting a fan sequence" and "switching an alternating path" O(m) times and each operation takes O(n) time [27]. In this section we give a more efficient exact algorithm of complexity $O(n \log n)$ for the case where a'(G) is bounded and $\Delta(G)$ is large: $\Delta(G) \geq 4a'(G)$. Remember that $a'(G) \leq s(G)$. Furthermore we give an NC parallel exact algorithm for this case. Our algorithms first decompose a given graph G of large maximum degree to several edge-disjoint subgraphs of small maximum degrees by using Zhou, Nakano and Nishizeki's algorithm [32], and then find edge-colorings of the subgraphs by using Chrobak and Nishizeki's algorithm (for planar graphs) [3], and finally superimpose the edge-colorings of subgraphs to obtain an edge-coloring of G.

The main result of this section is the following.

Theorem 3 If the unicyclic index a'(G) is bounded and $\Delta(G) \ge 4a'(G)$, then graph G can be edge-colored by $\Delta(G)$ colors in $O(n \log n)$ sequential time or in $O(\log^3 n)$ parallel time with $O(n \log^3 n)$ operations.

By Lemma 2 and Eqs.(2)-(6) we have the following corollary.

Corollary 2 Graph G can be edge-colored by $\Delta(G)$ colors in $O(n \log n)$ sequential time or in $O(\log^3 n)$ parallel time with $O(n \log^3 n)$ operations if one of the following (a) – (g) holds:

- (a) G belongs to a minor closed class \mathcal{G} and $\Delta(G) \geq 4h(\mathcal{G})$;
- (b) a(G) is bounded and $\Delta(G) \ge 4a(G)$;
- (c) s(G) is bounded and $\Delta(G) \ge 4s(G)$;
- (d) k(G) is bounded and $\Delta(G) \ge 4k(G)$;
- (e) $\theta(G)$ is bounded and $\Delta(G) \ge 12\theta(G)$;
- (f) $g(G) \ge 1$ is bounded and $\Delta(G) \ge 4 \left| \left(5 + \sqrt{48g(G) + 1} \right) / 2 \right|;$ and
- (g) G is planar and $\Delta(G) \ge 12$.

Zhou *et al.* [32] obtained a result stronger than Corollary 2(d): a linear-time sequential and an optimal parallel edge-coloring algorithm for any graphs with bounded k(G), i.e., partial k-trees.

In the remaining of this section we prove Theorem 3. We use Chrobak and Nishizeki's algorithm [3] which edge-colors a planar graph G of $\Delta(G) \geq 9$ by Δ colors in $O(n \log n)$ sequential time or in $O(\log^3 n)$ parallel time with $O(n \log^3 n)$ operations and hence is stronger than Corollary 2(g). Their algorithm relies on the following fact: any planar connected graph G has $\Theta(n)$ eliminable edges if $\Delta(G) \geq 9$ [3]. We have the following lemma on graphs which are not always planar. **Lemma 4** If G is a connected graph, $\Delta(G)$ is bounded and $\Delta(G) \geq 4a'(G)$, then G has $\Theta(n)$ eliminable edges.

Proof: Let $U = \{u \in V(G) \mid d(u,G) \leq 2a'(G)\}$, then $U \neq \phi$ because by Lemma 1(b) $\delta(G) \leq 2a'(G)$. Furthermore $V - U \neq \phi$ since $\Delta(G) \geq 4a'(G) > 2a'(G)$. Therefore the graph H obtained from G by deleting all the vertices in U is not empty. Let $W = \{w \in V(H) \mid d(w,H) \leq 2a'(G)\}$, and let E' be the set of edges $(u,v) \in E(G)$ such that $u \in U$ and $v \in U \cup W$. Then it suffices to prove the following (i) and (ii):

- (i) each edge $(u, v) \in E'$ is eliminable; and
- (ii) the number of edges in E' is $\Theta(n)$.

We first prove (i). Let (u, v) be an arbitrary edge in E'. Since $u \in U$, $d(u) \leq 2a'(G) < \Delta$. On the other hand $d_u^*(v) \leq 2a'(G)$: if $v \in U$ then $d_u^*(v) \leq d(v, G) \leq 2a'(G)$; and if $v \in W$ then $d_u^*(v) \leq d(v, H) \leq 2a'(G)$ since none of v's neighbors in U has degree Δ . Therefore $d(u) + d_u^*(v) \leq 4a'(G) \leq \Delta$, and hence edge (u, v) is eliminable.

We next prove (ii). Since at least one edge in E' is incident to each vertex in W, we have

$$|E'| \ge |W|. \tag{9}$$

By applying Lemma 1(c) to graph H we have

$$|W| \ge \frac{n(H)}{2a'(H) + 1}.$$
(10)

Since $a'(H) \leq a'(G)$ and n(H) = n - |U|, we have

$$|W| \ge \frac{n - |U|}{2a'(G) + 1}.$$
(11)

If |U| is small, say $|U| \leq \frac{2\Delta - 1}{2\Delta + 1}n$, then by Eqs. (9) and (11) we have

$$|E'| \geq \frac{1}{2a'(G)+1}(n-|U|) \\ \geq \frac{2}{(2a'(G)+1)(2\Delta+1)}n$$

and hence $|E'| = \Theta(n)$ since both $\Delta(G)$ and a'(G) are bounded. Thus it suffices to verify $|E'| = \Theta(n)$ for the case when $|U| > \frac{2\Delta - 1}{2\Delta + 1}n$, that is,

$$|n-|U| < \frac{2}{2\Delta+1}n.$$
(12)

Edges in E(G) - E' either join two vertices in W or are incident to vertices in V - U - W. The number of former edges is at most a'(G)|W|, and the number of latter edges is at most $\Delta(n - |U| - |W|)$. Therefore we have

$$|E'| \geq m - a'(G)|W| - \Delta(n - |U| - |W|) = m - \Delta(n - |U|) + (\Delta - a'(G))|W|.$$
(13)

Since G is connected, $m \ge n-1$. Therefore by Eqs. (11), (12) and (13) we have

$$\begin{split} |E'| &\geq n - 1 - \Delta(n - |U|) + \frac{\Delta - a'(G)}{2a'(G) + 1}(n - |U|) \\ &= n - 1 - \frac{a'(G)(2\Delta + 1)}{2a'(G) + 1}(n - |U|) \\ &> n - 1 - \frac{2a'(G)}{2a'(G) + 1}n \\ &= \frac{1}{2a'(G) + 1}n - 1. \end{split}$$

Thus $|E'| = \Theta(n)$ since a'(G) is bounded.

Lemma 4 implies that if G is a connected planar graph, $\Delta(G)$ is bounded and $\Delta(G) \geq 12$ then G has $\Theta(n)$ eliminable edges. Thus Lemma 4 does not implies the fact proved by Chrobak and Nishizeki [3], but is a kind of generalization of the fact for (not always planar) graphs.

Chrobak and Nishizeki's algorithm [3] correctly edge-colors any (not always planar) graph G with Δ colors if Δ is bounded and G has $\Theta(n)$ eliminable edges. Therefore by Lemma 4 we have the following lemma.

Lemma 5 If $\Delta(G)$ is bounded and $\Delta(G) \ge 4a'(G)$, then G can be edge-colored by $\Delta(G)$ colors in $O(n \log n)$ sequential time or in $O(\log^3 n)$ parallel time with $O(n \log^3 n)$ operations.

By Lemma 5, in order to prove Theorem 3, it suffices to give an algorithm to edge-color G with Δ colors only for the case in which Δ is not bounded, say $\Delta \geq 8s(G)(> 4a'(G))$. Chrobak and Nishizeki's algorithm [3] uses Chrobak and Yung's algorithm [4] for the case in which Δ is large, say $\Delta \geq 19$. However, the algorithm in [4] works only for *planar* graphs with $\Delta \geq 19$. Our idea is to decompose (not always planar) graph G of large maximum degree into several edge-disjoint subgraphs G_1, G_2, \dots, G_j of small maximum degrees $\Delta(G_i)$ such that $\Delta(G) = \sum_{i=1}^{j} \Delta(G_i)$ and $4s(G) \leq \chi'(G_i) = \Delta(G_i) < 8s(G)$ for each i, and hence an edge-coloring of G with $\Delta(G)$ colors can be obtained simply by superimposing edge-colorings of G_i with $\Delta(G_i)$ colors. Note that the edge-coloring of G_i can be found within the required time bounds as shown in Lemma 5 since $\Delta(G_i)$ is bounded.

Let c be a bounded positive integer, and let E_1, E_2, \dots, E_j be a partition of E. Denote by $G_i = G[E_i]$ the subgraph of G induced by the edge set E_i . We say that E_1, E_2, \dots, E_j is a (Δ, c) -partition of E if $G_i = G[E_i], 1 \le i \le j$, satisfies

- (i) $\Delta(G) = \sum_{i=1}^{j} \Delta(G_i)$; and
- (ii) $\Delta(G_i) = c$ for each $i, 1 \le i \le j 1$, and $c \le \Delta(G_j) < 2c$.

Clearly $s(G_i) \leq s(G)$ for each $i, 1 \leq i \leq j$. Theorem 2 implies that $\chi'(G) = \Delta(G)$ since $\Delta(G) \geq 8s(G) > 2s(G)$. Choose c = 4s(G), then $\Delta(G_i) \geq c =$

 $4s(G) > 2s(G_i)$ and hence $\chi'(G_i) = \Delta(G_i)$ for each $i, 1 \leq i \leq j$. Since $\Delta(G_i) < 2c = 8s(G) \leq 16a'(G) = O(1)$ by Lemma 2, $\Delta(G_i)$ is bounded for $1 \leq i \leq j$. Furthermore $\Delta(G_i) \geq 4s(G) \geq 4s(G_i) \geq 4a'(G_i)$ by Eqs. (3) and (5). Therefore by Lemma 5 one can find an edge-coloring of G_i with $\Delta(G_i)$ colors in the claimed time. Since

$$\Delta(G) = \sum_{i=1}^{j} \Delta(G_i),$$

edge-colorings of G_i with $\Delta(G_i)$ colors, $1 \leq i \leq j$, can be immediately superimposed to an edge-coloring of G with $\Delta(G)$ colors. Zhou *et al.* [32] obtained the following result on the (Δ, c) -partition.

Lemma 6 If $\Delta(G) \ge 2c \ge 8s(G)$, then a (Δ, c) -partition of E can be found in linear sequential time or in $O(\log n)$ parallel time with O(n) operations.

Thus we have the following algorithm to edge-color a graph G such that a'(G) is bounded and $\Delta(G) \ge 4a'(G)$.

EDGE-COLOR(G);

{ assume that a'(G) is bounded and $\Delta(G) \ge 4a'(G)$ }

begin

if $\Delta(G) < 8s(G)$ then { $\Delta(G)$ is bounded }

1. edge-color G with $\Delta(G)$ colors by Lemma 5;

else $\{\Delta(G) \ge 8s(G)\}$

begin

- 2. find a $(\Delta, 4s(G))$ -partition $E_1, E_2, \cdots E_j$ of E(G);
- 3. for i := 1 to j do

edge-color of G_i with $\Delta(G_i)$ colors where $G_i = G[E_i]$;

4. extend these optimal edge-colorings of G_1, G_2, \cdots, G_j

to an optimal edge-coloring of G with $\Delta(G)$ colors

end

end;

We are now ready to prove Theorem 3.

Proof of Theorem 3: By Lemmas 5 and 6 clearly the algorithm above correctly finds an edge-coloring of a graph G with Δ colors. Therefore it suffices

to prove the complexities. By Lemma 6 line 2 can be done in linear time or optimally in parallel. By Lemma 5 line 1 can be done in $O(n \log n)$ sequential time or in $O(\log^3 n)$ parallel time with $O(n \log^3 n)$ operations, since $\Delta(G) < 8s(G) \le 16a'(G) = O(1)$. At line 3, for each $i, 1 \le i \le j$, by Lemma 5 one can find an edge-coloring of G_i with $\Delta(G_i)$ colors in $O(n(G_i) \log n(G_i))$ sequential time or in $O(\log^3 n(G_i))$ parallel time with $O(n(G_i) \log^3 n(G_i))$ operations. Since $G_i = G[E_i], n(G_i) \le 2|E_i|$. Therefore

$$\sum_{i=1}^{j} n(G_i) \le 2\sum_{i=1}^{j} |E_i| = 2|E|.$$

Since the unicyclic index a'(G) is bounded, |E| = O(n). Thus line 3 can be totally done in $O(n \log n)$ sequential time or in $O(\log^3 n)$ parallel time with $O(n \log^3 n)$ operations. At line 4, since $\Delta(G) = \sum_{i=1}^{j} \Delta(G_i)$, one can immediately superimpose these edge-colorings of G_1, G_2, \dots, G_j to an edge-coloring of G with $\Delta(G)$ colors. Thus the algorithm spends $O(n \log n)$ sequential time in total or in $O(\log^3 n)$ parallel time with $O(n \log^3 n)$ operations. \Box

It should be noted that the algorithm EDGE-COLOR does not need to know an actual decomposition of G into a(G) unicyclic subgraphs.

5 *f*-Coloring

In this section we give efficient sequential and NC parallel algorithms for the f-coloring problem on various classes of graphs.

We first show that the f-coloring problem on a graph G can be reduced to the edge-coloring problem on a new graph G_f defined below. We may assume without loss of generality that $f(v) \leq d(v)$ for each $v \in V$. For each vertex $v \in V$, replace v with f(v) copies $v_1, v_2, \dots, v_{f(v)}$, and attach the d(v) edges incident with v to the copies; attach $\lceil d(v)/f(v) \rceil$ or $\lfloor d(v)/f(v) \rfloor$ edges to each copy v_i , $1 \leq i \leq f(v)$. Let G_f be the resulting graph. It should be noted that the construction of G_f is not unique. Figure 2 illustrates G and an example of G_f , where the number next to vertex v is f(v). Since an edge-coloring of G_f immediately induces an f-coloring of G with the same number of colors, we have

$$\chi_f'(G) \le \chi'(G_f). \tag{14}$$

However, Eq. (14) does not always hold in equality. For example, $\chi'_f(G) = 2$ for a graph G in Figure 2(a) as indicated by solid and dotted lines, but $\chi'(G_f) = 3$ for the graph G_f in Figure 2(b) as indicated by thin, thick and dotted lines. Clearly $\Delta(G_f) = \Delta_f(G) = \max_{v \in V} \lceil d(v)/f(v) \rceil$. If G is a simple graph, then G_f is also a simple graph and hence $\chi'(G_f) \leq \Delta(G_f) + 1 = \Delta_f(G) + 1$. Thus an edge-coloring of G_f with $\chi'(G_f)$ colors does not always induce an f-coloring of G with $\chi'_f(G)$ colors, but induces a near-optimal f-coloring of G with at most $\Delta_f(G) + 1$ colors.

Figure 2: Transformation from G to G_f .

The number of edges in G_f is equal to that of G, but the number of vertices of G_f increases to $\sum_{v \in V} f(v) \ (\leq 2m)$. Furthermore one can easily observe that the following lemmas hold.

Lemma 7 For a graph G there exists G_f such that

(a) G_f is bipartite if G is bipartite; (b) G_f is planar if G is planar; (c) $g(G_f) \leq g(G)$; (d) $s(G_f) \leq s(G)$; (e) $a(G_f) \leq a(G)$; (f) $a'(G_f) \leq a'(G)$; and (g) $\theta(G_f) \leq \theta(G)$.

Lemma 8 Let \mathcal{G} be a class of graphs which are closed under the transformation above, that is, any G_f is contained in \mathcal{G} for every $G \in \mathcal{G}$, and let α and β be real numbers. Then the following (a) and (b) hold.

- (a) If there exists a sequential algorithm to edge-color any graph $G' \in \mathcal{G}$ by $\alpha\Delta(G') + \beta$ colors in polynomial time T(m(G') + n(G')), then there exists a sequential algorithm to f-color any graph $G \in \mathcal{G}$ by $\alpha\Delta_f(G) + \beta$ colors in O(T(m(G) + n(G))) time.
- (b) If there exists a parallel algorithm to edge-color any graph $G' \in \mathcal{G}$ by $\alpha\Delta(G') + \beta$ colors in polylogarithmic parallel time T(m(G') + n(G')) with polynomial operations P(m(G') + n(G')), then there exists a parallel algorithm to f-color any graph $G \in \mathcal{G}$ by $\alpha\Delta_f(G) + \beta$ colors in O(T(m(G) + n(G))) parallel time with O(P(m(G) + n(G))) operations.

Proof: (a) Let G be a graph in \mathcal{G} . One can construct G_f from G in linear time. Using the assumed algorithm, one can find an ordinary edge-coloring of G_f with $\alpha\Delta(G_f) + \beta$ colors in $T(m(G_f) + n(G_f))$ time. The edge-coloring of G_f immediately induces an f-coloring of G with $\alpha\Delta(G_f) + \beta = \alpha\Delta_f(G) + \beta$ colors. By the construction of G_f we have $m(G_f) = m(G)$ and $n(G_f) \leq 2m(G) + n(G)$ and hence $m(G_f) + n(G_f) \leq 3m(G) + n(G)$. Since the function T is polynomial, $T(m(G_f) + n(G_f)) = O(T(m(G) + n(G)))$. Thus an f-coloring of G can be found in O(T(m(G) + n(G))) time in total.

(b) Similarly, G_f can be easily constructed from G in $O(\log(m(G) + n(G)))$ parallel time with O(m(G) + n(G)) operations.

It is known that $\chi'(G) = \Delta(G)$ if G is a bipartite graph [19] and that $\chi'(G) = \Delta(G)$ if G is a planar graph with $\Delta(G) \ge 8$ [10, 27]. Therefore, by Theorem 2, Corollary 1 and Lemmas 7, 8, we have the following theorem.

Theorem 4 $\chi'_f(G) = \Delta_f(G)$ if one of the following (a)–(i) holds:

(a) G belongs to a minor closed class \mathcal{G} and $\Delta_f(G) \ge 2h(\mathcal{G})$; (b) G is bipartite [13]; (c) $\Delta_f(G) \ge 2s(G)$; (d) G is a partial k-tree and $\Delta_f(G) \ge 2k$; (e) $\Delta_f(G) \ge 4a(G) - 2$; (f) $\Delta_f(G) \ge 4a'(G)$; (g) $\Delta_f(G) \ge 12\theta(G) - 2$; (h) $g(G) \ge 1$ and $\Delta_f(G) \ge 2 \left\lfloor \left(5 + \sqrt{48g(G) + 1}\right)/2 \right\rfloor$; and (i) G is planar and $\Delta_f(G) \ge 8$.

Proof: Proofs of (a), (b), (c), (e), (f), (g) and (i) are immediate. If G is a partial k-tree, then G_f is not always a partial k-tree, but $s(G) \leq k$. Therefore (d) above is an immediate consequence of (c). If $g(G) \geq 1$ and

$$\Delta_f(G) \ge 2 \left\lfloor \left(5 + \sqrt{48g(G) + 1} \right) / 2 \right\rfloor,$$

then $\Delta_f(G) = \Delta(G_f) \ge 12$ and hence $\chi'_f(G) \le \chi'(G_f) = \Delta(G_f) = \Delta_f(G)$ even if $g(G_f) = 0$. Thus (h) follows.

By Theorem 3, Corollary 2, Lemmas 7, 8 and the algorithms in [3, 6, 12], we have the following results.

Theorem 5

- (a) Any graph G can be f-colored by at most $\Delta_f(G) + 1$ colors in $O(\min\{m\Delta_f \log n, m\sqrt{m\log n}\})$ time.
- (b) Any bipartite graph G can be f-colored by $\Delta_f(G)$ colors in $O(m \log n)$ time.

- (c) Graph G can be f-colored by Δ_f(G) colors in O(n log n) time if one of the following (i) − (viii) holds:
 - (i) G belongs to a minor closed class \mathcal{G} and $\Delta_f(G) \ge 4h(\mathcal{G})$;
 - (ii) a'(G) is bounded and $\Delta_f(G) \ge 4a'(G)$;
 - (iii) a(G) is bounded and $\Delta_f(G) \ge 4a(G)$;
 - (iv) s(G) is bounded and $\Delta_f(G) \ge 4s(G)$;
 - (v) k(G) is bounded and $\Delta_f(G) \ge 4k(G)$;
 - (vi) $\theta(G)$ is bounded and $\Delta_f(G) \ge 12\theta(G)$;
 - (vii) $g(G) \ge 1$ is bounded and $\Delta_f(G) \ge 4 \left| \left(5 + \sqrt{48g(G) + 1} \right) / 2 \right|$; and
 - (viii) G is planar and $\Delta_f(G) \ge 9$.

Proof: (a) The algorithm in [12] edge-colors G_f with $\Delta(G_f) + 1$ colors in time

$$O(\min\{m_f \Delta_f \log n_f, m_f \sqrt{m_f \log n_f}\}),$$

where m_f is the number of edges and n_f the number of vertices in G_f . Since $m_f = O(m)$, $n_f = O(m+n)$ and $\Delta(G_f) = \Delta_f(G)$, the claim holds.

(b) G_f is also bipartite. The algorithm in [6] edge-colors a bipartite graph G_f with $\Delta(G_f)$ colors in time $O(m_f \log n_f)$. Thus the claim holds similarly as (a).

(c) Similar to (b). Note that $s(G) \le h(\mathcal{G}), a'(G) \le a(G) \le s(G) \le k(G), a(G) \le 3\theta(G), \text{ and } a(G) \le s(G) \le \left\lfloor \left(5 + \sqrt{48g(G) + 1}\right)/2 \right\rfloor.$

Theorem 6

- (a) Any bipartite graph G can be f-colored by $\Delta_f(G)$ colors in $O(\log^3 n)$ parallel time with O(m) operations.
- (b) Graph G can be f-colored by $\Delta_f(G)$ colors in $O(\log^3 n)$ parallel time with $O(n \log^3 n)$ operations if one of the following (i) (viii) holds:
 - (i) G belongs to a minor closed class \mathcal{G} and $\Delta_f(G) \ge 4h(\mathcal{G})$;
 - (ii) a'(G) is bounded and $\Delta_f(G) \ge 4a'(G)$;
 - (iii) a(G) is bounded and $\Delta_f(G) \ge 4a(G)$;
 - (iv) s(G) is bounded and $\Delta_f(G) \ge 4s(G)$;
 - (v) k(G) is bounded and $\Delta_f(G) \ge 4k(G)$;
 - (vi) $\theta(G)$ is bounded and $\Delta_f(G) \ge 12\theta(G)$;

(vii) $g(G) \ge 1$ is bounded and $\Delta_f(G) \ge 4 \left| \left(5 + \sqrt{48g(G) + 1} \right) / 2 \right|$; and

(viii) G is planar and $\Delta_f(G) \geq 9$.

Proof: (a) G_f is also bipartite. The algorithm in [20] edge-colors G_f with $\Delta(G_f)$ colors in $O(\log^3 n_f)$ parallel time with $O(m_f)$ operations. Since $m_f = O(m)$, $n_f = O(m+n)$ and $\Delta(G_f) = \Delta_f(G)$, the claim holds. (b) Similar to (a).

It should be noted that the algorithms in Theorems 5.4 and 5.5 do not need to know an actual embedding or a decomposition related to an invariant.

6 Conclusion

In this paper we first gave efficient sequential and NC parallel algorithms to edge-color graph G with $\Delta(G)$ colors if a'(G) is bounded and $\Delta(G) \geq 4a'(G)$, where a'(G) is the unicyclic index of G. Our algorithms are based on the following two algorithms: the edge-coloring algorithm (for planar graphs) by Chrobak and Nishizeki [3], and the algorithm for decomposing a graph of large maximum degree to edge-disjoint subgraphs of small maximum degrees by Zhou, Nakano and Nishizeki [32]. We next introduced a simple but useful reduction of an f-coloring to an ordinary edge-coloring, and derived various sufficient conditions for $\chi'_f(G) = \Delta_f(G)$ to hold true. Using the reduction, we finally gave efficient sequential and NC parallel f-coloring algorithms.

Acknowledgments

We would like to thank Dr. Hitoshi Suzuki and Dr. Shin-ichi Nakano for helpful comments and discussions. This research is partly supported by Grant in Aid for Scientific Research of the Ministry of Education, Science, and Culture of Japan under a grant number: General Research (C) 07650408.

References

- M. Behzad, G. Chartrand, and L. Lesniak-Foster. *Graphs and Digraphs*. Pindle, Weber & Schmidt, Boston, 1979.
- [2] Y. Caspi and E. Dekel. Edge coloring series parallel graphs. Journal of Algorithms, 18:296–321, 1995.
- [3] M. Chrobak and T. Nishizeki. Improved edge-coloring algorithms for planar graphs. *Journal of Algorithms*, 11:102–116, 1990.
- [4] M. Chrobak and M. Yung. Fast algorithms for edge-coloring planar graphs. Journal of Algorithms, 10:35–51, 1989.
- [5] E. G. Coffman, J. M. R. Garey, D. S. Johnson, and A. S. LaPaugh. Scheduling file transfers. SIAM J. Comput., 14(3):744–780, 1985.
- [6] R. Cole and J. Hopcroft. On edge coloring bipartite graphs. SIAM J. Comput., 11:540–546, 1982.

- [7] R. Diestel. *Graph Theory*, Springer, New York, 1997.
- [8] A.M. Dean and J.P. Hutchinson. Relations among embedding parameters for graphs. In *Graph Theory, Combinatorics, and Applications*, (Eds.) Y. Alavi, G. Chartrand, O.R. Ollermann, and A.J. schwenk. John Wiley and Sons, 287–296, 1991.
- [9] P. Erdös and A. Hajnal. On chromatic number of graphs and set-systems. Acta. Math. Acad. Sci. Hungar., 17:61–99, 1966.
- [10] S. Fiorini and R. J. Wilson. Edge-Colourings of Graphs. Pitman, London, 1977.
- [11] H. N. Gabow and O. Kariv. Algorithms for edge-coloring bipartite graphs. SIAM J. Comput., 11:117–129, 1982.
- [12] H. N. Gabow, T. Nishizeki, O. Kariv, D. Leven, and O. Terada. Algorithms for edge-coloring graphs. Technical Report TRECIS-8501, Tohoku Univ., 1985.
- [13] S. L. Hakimi and O. Kariv. On a generalization of edge-coloring in graphs. Journal of Graph Theory, 10:139–154, 1986.
- [14] P. J. Heawood. Map color theorems. Quart. J. Math., 24:332–338, 1890.
- [15] I. Holyer. The NP-completeness of edge-colouring. SIAM J. Comput., 10:718–720, 1981.
- [16] T. Jensen and B. Toft. Graph Coloring Problems. John Wiley & Sons, New York, 1995.
- [17] P. C. Kainen. Some recent results in topolgical graph theory. In Proceedings of the Captial Conference on Graph Theory and Combinatorics, Springer-Verlag, Lecture Notes in Mathematics, volume 406, pages 76–200, 1974.
- [18] H. J. Karloff and D. B. Shmoys. Efficient parallel algorithms for edgecoloring problems. *Journal of Algorithms*, 8:39–52, 1987.
- [19] D. König. Über graphen und iher anwendung auf determinantentheorie und mengenlehre. Math. Ann., 77:453–465, 1916.
- [20] G. F. Lev, N. Pippenger, and L. G. Valliant. A fast parallel algorithm for routing in permutation networks. *IEEE Transactions on Computers*, C-30, 2:93–100, 1981.
- [21] W. Mader. Homomorphieeigenschaften und mittlere Kantendichte von Graphen. Math. Ann., 174, pp. 265–268, 1967.
- [22] D. Matula. A min-max theorem for graphs with application to graph coloring. SIAM Rev., 10:481–482, 1968.

18

- [23] D. Matula and L. Beck. Smallest-last ordering and clustering and graph coloring algorithms. JACM, 30:417–427, 1983.
- [24] S. Nakano and T. Nishizeki. Scheduling file transfers under port and channel constraints. Int. J. Found. of Comput. Sci., 4(2):101–115, 1993.
- [25] S. Nakano, T. Nishizeki, and N. Saito. On the *f*-coloring of multigraphs. *IEEE Transactions on Circuits and Systems, CAS-35*, 3:345–353, 1988.
- [26] C. S. J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. J. London Math. Soc., 36:445–450, 1961.
- [27] T. Nishizeki and N. Chiba. Planar Graphs: Theory and Algorithms. North-Holland, Amsterdam, 1988.
- [28] G. Szekeres and H. Wilf. An inequality for the chromatic number of a graph. J. Combinatorial Theory, 4:1–3, 1968.
- [29] O. Terada and T. Nishizeki. Approximate algorithms for the edge-coloring of graphs. Trans. Inst. of Electronics and Communication Eng. of Japan, J65-D, 11(4):1382–1389, 1982.
- [30] V. G. Vizing. On an estimate of the chromatic class of a p-graph (in Russian). Metody Discret Analiz., 3:25–30, 1964.
- [31] V. G. Vizing. Critical graphs with given chromatic class (in Russian). Metody Discret. Analiz., 5:9–17, 1965.
- [32] X. Zhou, S. Nakano, and T. Nishizeki. Edge-coloring partial k-trees. Journal of Algorithms, 21:598–617, 1996.
- [33] X. Zhou and T. Nishizeki. Edge-coloring and f-coloring for various classes of graphs. In Proc. of the Fifth International Symposium on Algorithms and Computation, Lect. Notes in Computer Science, Springer-Verlag, volume 834, pages 199–207, 1994.
- [34] X. Zhou, H. Suzuki, and T. Nishizeki. A linear algorithm for edge-coloring series-parallel multigraphs. *Journal of Algorithms*, 20:174–201, 1996.
- [35] X. Zhou, H. Suzuki, and T. Nishizeki. An NCparallel algorithm for edgecoloring series-parallel multigraphs. *Journal of Algorithms*, 23:359–374, 1997.