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1 Introduction

This paper deals with a simple graph G which has no multiple edges or self-
loops. An edge-coloring of a graph G is to color all the edges of G so that no two
adjacent edges are colored with the same color. The minimum number of colors
needed for an edge-coloring is called the chromatic index of G and denoted by
χ′(G). In this paper the maximum degree of a graph G is denoted by ∆(G) or
simply by ∆. Vizing showed that χ′(G) = ∆ or ∆ + 1 for any simple graph G
[10, 30]. The edge-coloring problem is to find an edge-coloring of G with χ′(G)
colors. Let f be a function which assigns a positive integer f(v) to each vertex
v ∈ V . Then an f -coloring of G is to color all the edges of G so that, for
each vertex v ∈ V , at most f(v) edges incident to v are colored with the same
color. Thus an f -coloring of G is a decomposition of G to edge-disjoint spanning
subgraphs in each of which vertex degrees are bounded above by f . An ordinary
edge-coloring is a special case of an f -coloring for which f(v) = 1 for every vertex
v ∈ V . The minimum number of colors needed for an f -coloring is called the
f -chromatic index of G and denoted by χ′

f (G). The f -coloring problem is to
find an f -coloring of G with χ′

f (G) colors. Let ∆f (G) = maxv∈V dd(v)/f(v)e
where d(v) is the degree of vertex v, then χ′

f (G) = ∆f or ∆f + 1 for any simple
graph G [13].

The edge-coloring and f -coloring have applications to scheduling problems
like the file transfer problem in a computer network [5, 24, 25]. In the model a
vertex of a graph G represents a computer, and an edge does a file which one
wishes to transfer between the two computers corresponding to its ends. The
integer f(v) is the number of communication ports available at a computer v.
The edges colored with the same color represent files that can be transferred
in the network simultaneously. Thus an f -coloring of G with χ′

f (G) colors
corresponds to a scheduling of file transfers with the minimum finishing time.

Since the ordinary edge-coloring problem is NP-complete [15], the f -coloring
problem is also NP-complete in general. Therefore it is very unlikely that there
exists an exact algorithm which solves the ordinary edge-coloring problem or
the f -coloring problem in polynomial time. However, the following approxi-
mate algorithms are known. Any simple graph G can be edge-colored with
∆ + 1 colors in polynomial time [27, 29]; the best known algorithm takes time
O(min{n∆logn, m

√
n log n}) [12], where we denote by n the number of the

vertices and m the number of the edges in G. Furthermore, the proof in [13]
immediately yields an approximate algorithm to f -color any simple graph with
∆f +1 colors in time O(mn). On the other hand, exact algorithms to edge-color
G with χ′(G) colors are known for restricted classes of graphs as follows:

(a) an O(m log n)-time algorithm for bipartite graphs [6, 11];
(b) a linear-time algorithm for planar graphs of ∆ ≥ 19 [4];
(c) an O(n log n)-time algorithm for planar graphs of ∆ ≥ 9 [3];
(d) an O(n2)-time algorithm for planar graphs of ∆ ≥ 8 [12, 27];
(e) a linear-time algorithm for series-parallel multigraphs [34]; and
(f) a linear-time algorithm for partial k-trees [32].
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Concerning parallel edge-coloring algorithms, NC parallel exact algorithms have
been obtained only for a few restricted classes of graphs such as bipartite graphs
[20], series-parallel simple graphs [2], series-parallel multigraphs [35], partial k-
trees [32] and planar graphs with maximum degree ∆ ≥ 9 [3, 4]. However, NC
parallel approximate algorithms to edge-color G with ∆+1 colors have not been
known so far except for the case when ∆ is small [18]. On the other hand, no
efficient exact algorithms for the f -coloring problem have been obtained even
for restricted classes of graphs.

In this paper we consider various classes of graphs specified by invariants
like the degeneracy. The degeneracy s(G) of a graph G is the minimum number
s such that G can be reduced to an empty graph by the successive deletion of
vertices with degree at most s [1]. Clearly the degeneracy has a favorable impli-
cation on the vertex-coloring: any graph G can be vertex-colored with at most
s(G) + 1 colors [9, 22, 23, 28]. On the other hand, Vizing [16, 31] showed that
the degeneracy has a surprising implication on the edge-coloring: χ′(G) = ∆(G)
if ∆(G) ≥ 2s(G). Thus Vizing gave a lower bound on ∆(G) for χ′(G) = ∆(G)
to hold true. In this paper we express such a lower bound in terms of vari-
ous other graph-invariants like tree-width, arboricity, unicyclic index, thickness,
and genus. It is rather straightforward to derive from Vizing’s proof an O(mn)
algorithm for edge-coloring a graph G with ∆(G) colors if ∆(G) ≥ 2s(G). We
give more efficient sequential and NC parallel algorithms to edge-color a graph
G whose maximum degree ∆(G) is roughly larger than twice the lower bounds,
say ∆(G) ≥ 4s(G). Our sequential algorithm takes time O(n log n) if s(G) is
bounded and ∆(G) ≥ 4s(G). We next give a simple but useful transformation
of a graph G to a new graph Gf such that an ordinary edge-coloring of Gf

immediately induces an f -coloring of the original graph G with the same num-
ber of colors. Using the transformation, we finally give efficient sequential and
NC parallel algorithms to f -color various classes of graphs with large ∆(G). In
the paper the parallel computation model we use is a concurrent-read exclusive-
write parallel random access machine (CREW PRAM). An early version of the
paper was presented at [33].

2 Preliminary

In this section we define terminology and observe relationships between various
graph invariants.

A graph with vertex set V and edge set E is denoted by G = (V, E). The
vertex set and the edge set of a graph G is often denoted by V (G) and E(G),
respectively. We denote the number of vertices in G by n(G) or simply n, and
denote the number of edges in G by m(G) or simply m. We say that a graph
G is trivial if m(G) = 0. The degree of v in G is denoted by d(v, G) or simply
by d(v). We denote by ∆(G) the maximum degree of vertices of G and by δ(G)
the minimum degree. The graph obtained from G by deleting all vertices in
V ′ ⊆ V (G) is denoted by G − V ′. The graph obtained from G by deleting all
edges in E′ ⊆ E(G) is denoted by G − E′.
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We then define various invariants of graphs. Let s be a positive integer. A
graph G is s-degenerate if the vertices of G can be ordered v1, v2, · · ·, vn so
that d(vi, Gi) ≤ s for each i, 1 ≤ i ≤ n, where Gi = G − {v1, v2, · · · , vi−1}
[1, 9, 22, 23]. Thus G is s-degenerate if and only if G can be reduced to a
trivial graph by the successive removal of vertices having degree at most s. The
degeneracy s(G) of G is the minimum integer s for which G is s-degenerate. The
degeneracy s(G) is also called the Szekeres-Wilf number [28]. The degeneracy
of a graph can be computed in linear time [23]. Every planar graph G has a
vertex of degree at most five, that is, δ(G) ≤ 5 [1, 27], and hence

s(G) ≤ 5. (1)

Obviously any graph G can be vertex-colored with at most s(G) + 1 colors
[9, 22, 23, 28]. Vizing showed that χ′(G) = ∆(G) if ∆(G) ≥ 2s(G) [16, 31].

A graph G = (V, E) is a k-tree if either it is a complete graph on k vertices
or it has a vertex v ∈ V whose neighbors induce a clique of size k and G−{v} is
again a k-tree. A graph is a partial k-tree if it is a subgraph of a k-tree [32]. The
tree-width k(G) of graph G is the minimum integer k such that G is a partial
k-tree. Clearly

s(G) ≤ k(G). (2)

The arboricity a(G) of a graph G is the minimum number of edge-disjoint
forests into which G can be decomposed. Nash-Williams [26] proved that a(G) =
maxH⊆Gdm(H)/(n(H)− 1)e, where H runs over all nontrivial subgraphs of G.
We have

a(G) ≤ s(G), (3)

because any subgraph H of G is s(G)-degenerate and hence m(H) ≤ s(G)(n(H)
−1) and m(H)/(n(H) − 1) ≤ s(G). Furthermore, if G is planar, then

a(G) ≤ 3, (4)

because m(H) ≤ 3n(H) − 3 for any nontrivial subgraph H of G.
We now introduce a rather unfamiliar invariant a′(G) which we call the

unicyclic index of a graph G: a′(G) is the minimum number of edge-disjoint
unicyclic graphs, that is, graphs with at most one cycle, into which G can be
decomposed. Since a forest is a unicyclic graph and a unicyclic graph can be
decomposed to one or two forests, we have

a′(G) ≤ a(G) ≤ 2a′(G). (5)

The thickness θ(G) of a graph G is the minimum number of edge-disjoint
planar subgraphs into which G can be decomposed. Clearly

θ(G) ≤ a′(G) ≤ a(G) ≤ 3θ(G) (6)

since every unicyclic graph is planar and every planar graph can be decomposed
into at most three edge-disjoint forests [8].
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The genus g(G) of a graph G is the minimum number of handles which must
be added to a sphere so that G can be embedded on the resulting surface. Of
course, g(G) = 0 if and only if G is planar. It is known [14, 17] that if g(G) ≥ 1
then

δ(G) ≤
⌊(

5 +
√

48g(G) + 1
)

/2
⌋

. (7)

Furthermore any subgraph H of G satisfies g(H) ≤ g(G). Therefore, if g(G) ≥ 1
then

s(G) ≤
⌊(

5 +
√

48g(G) + 1
)

/2
⌋

. (8)

One can observe that the following upper bound holds on the minimum
degree.

Lemma 1 The following (a)–(c) hold for any nontrivial graph G:

(a) δ(G) ≤ 2a(G) − 1 [8];

(b) δ(G) ≤ 2a′(G); and

(c) if a′(G) is bounded and U = {u ∈ V | d(u, G) ≤ 2a′(G)}, then |U | ≥
n/(2a′(G) + 1) and hence |U | = Θ(n).

Proof: (a) One may assume that G has no isolated vertices. Let n′ be the
number of vertices v of G such that 1 ≤ d(v) ≤ 2a(G) − 1. Then clearly
n′ + 2a(G)(n − n′) ≤ 2m. On the other hand, G can be decomposed into
a(G) edge-disjoint forests, and any forest has at most n − 1 edges. Therefore
m ≤ a(G)(n−1). Thus n′ ≥ 2a(G)/(2a(G)−1) > 1, and hence δ(G) ≤ 2a(G)−1.

(b) and (c) Since every vertex in V − U has degree ≥ 2a′(G) + 1, we have
(2a′(G) + 1)(n − |U |) ≤ 2m. Since any unicyclic graph has at most n edges,
we have m ≤ a′(G)n. Thus we have |U | ≥ n/(2a′(G) + 1). Hence U 6= φ and
δ(G) ≤ 2a′(G). If a′(G) is bounded, then |U | = Θ(n). 2

By Lemma 1 and Eqs. (1), (2), (4)–(6) and (8) we can immediately derive
the following upper bounds on s(G) in terms of k(G), a(G), a′(G), θ(G) and
g(G). Note that a(H) ≤ a(G), a′(H) ≤ a′(G), θ(H) ≤ θ(G) and g(H) ≤ g(G)
for any subgraph H of G.

Lemma 2 The following (a) – (f) hold:

(a) s(G) ≤ k(G);
(b) s(G) ≤ 2a(G) − 1;
(c) s(G) ≤ 2a′(G);
(d) s(G) ≤ 6θ(G) − 1;
(e) s(G) ≤

⌊(
5 +

√
48g(G) + 1

)
/2

⌋
if g(G) ≥ 1; and

(f) s(G) ≤ 5 if G is planar.

The relationships among these graph-invariants are illustrated in Figure 1.
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Figure 1: Relationships among graph-invariants.

3 Chromatic Index

By the classical Vizing’s theorem, χ′(G) = ∆ or ∆ + 1 for any simple graph G
[10, 30]. Vizing also showed that χ′(G) = ∆ if ∆ ≥ 2s(G). In this section we
give various lower bounds on ∆(G) for χ′(G) = ∆(G) to hold true, expressed in
terms of various invariants such as k(G), a(G), a′(G), θ(G) and g(G).

For vertices u and v, we denote by d∗u(v) the number of v’s neighbors, other
than u, having degree ∆(G). An edge (u, v) ∈ E is eliminable if either d(u) +
d∗u(v) ≤ ∆(G) or d(v) + d∗v(u) ≤ ∆(G) [27, 29]. The following lemma is an
expression of a classical result on “critical graphs,” called “Vizing’s adjacency
lemma” (see, for example, [10, 27, 29]). In other words, the edges that are
excluded in a critical graph by the adacency lemma are eliminable. Note that
the definition is not symmetric with u and v.

Lemma 3 If (u, v) is an eliminable edge of a simple graph G and χ′(G −
(u, v)) ≤ ∆(G), then χ′(G) = ∆(G).

Thus, if we remove an eliminable edge (u, v) and can color the remaining
graph G− (u, v) with ∆(G) colors, then the obtained coloring can be extended
to the edge (u, v) without using more colors.

Vizing [31] obtained the following two theorems. We give proofs for them,
which yield an O(mn) algorithm to edge-color G with ∆ colors if ∆(G) ≥ 2s(G),
as we will show in the succeeding section.

Theorem 1 [31] Any nontrivial graph G has an eliminable edge if ∆(G) ≥
2s(G).

Proof: Let U = {u ∈ V (G) | d(u, G) ≤ s(G)}. Then U 6= φ because the
definition of the degeneracy implies that G has at least one vertex of degree
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≤ s(G). Furthermore V −U 6= φ since ∆ ≥ 2s(G) > s(G) and hence the vertices
of degree ∆ are not contained in U . Thus H = G−U is not empty and s(H) ≤
s(G). Therefore H has a vertex v of degree ≤ s(G). Since s(G) + 1 ≤ d(v, G)
and d(v, H) ≤ s(G), G has an edge (u, v) joining v and a vertex u ∈ U . Since
u ∈ U , d(u) ≤ s(G) < 2s(G) ≤ ∆. Thus none of v’s neighbors in U has degree
∆, and hence d∗u(v) ≤ d(v, H) ≤ s(G). Therefore d(u) + d∗u(v) ≤ 2s(G) ≤ ∆,
and hence edge (u, v) is eliminable. 2

Theorem 2 [31] χ′(G) = ∆(G) if ∆(G) ≥ 2s(G).

Proof: Assume that G is a nontrivial graph with ∆(G) ≥ 2s(G). Then by
Theorem 1 G has an eliminable edge e1. Let G1 = G−{e1}, then s(G1) ≤ s(G).
If ∆(G1) = ∆(G), then G1 has an eliminable edge e2. Thus there exists a
sequence of edges e1, e2, · · · , ej such that

(i) ∆(Gj) = ∆(G) − 1 where Gj = G − {e1, e2, · · · , ej}; and

(ii) every edge ei, 1 ≤ i ≤ j, is eliminable in Gi−1 = G − {e1, e2, · · · , ei−1}.

By the classical Vizing’s theorem [10], χ′(Gj) ≤ ∆(Gj) + 1 = ∆(G). Therefore,
applying Lemma 3 repeatedly, we have χ′(G) = ∆(G). 2

A minor of a graph G is a graph obtained from G by repeated deletions and
contractions of edges. We say that a class G of graphs is minor closed if any
minor of G belongs to G for every graph G ∈ G. A classical result of Mader
[7, 21] implies that every graph G in any minor closed class G has a degeneracy
bounded by a constant h(G), that is, s(G) ≤ h(G), where h(G) is a constant
depending on the class G. For example, h(G) = 5 for the class G of planar
graphs.

Thus we have the following corollary from Theorem 2 and Lemma 2.

Corollary 1 χ′(G) = ∆(G) if one of the following (a) – (g) holds:

(a) G belongs to a minor closed class G and ∆(G) ≥ 2h(G);

(b) ∆(G) ≥ 2k(G) [32];

(c) ∆(G) ≥ 4a(G) − 2;

(d) ∆(G) ≥ 4a′(G);

(e) ∆(G) ≥ 12θ(G) − 2;

(f) g(G) ≥ 1 and ∆(G) ≥ 2
⌊(

5 +
√

48g(G) + 1
)

/2
⌋
; and

(g) G is planar and ∆(G) ≥ 10.

A result better than Corollary 1(g) is known [10, 27]: χ′(G) = ∆(G) if G is
planar and ∆(G) ≥ 8.
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4 Finding Edge-Colorings

The proofs of Theorems 1 and 2 yield an exact algorithm to edge-color a graph G
with ∆ colors if ∆(G) ≥ 2s(G). However, the algorithm takes O(mn) time, since
it repeats operations of “shifting a fan sequence” and “switching an alternating
path” O(m) times and each operation takes O(n) time [27]. In this section we
give a more efficient exact algorithm of complexity O(n log n) for the case where
a′(G) is bounded and ∆(G) is large: ∆(G) ≥ 4a′(G). Remember that a′(G) ≤
s(G). Furthermore we give an NC parallel exact algorithm for this case. Our
algorithms first decompose a given graph G of large maximum degree to several
edge-disjoint subgraphs of small maximum degrees by using Zhou, Nakano and
Nishizeki’s algorithm [32], and then find edge-colorings of the subgraphs by
using Chrobak and Nishizeki’s algorithm (for planar graphs) [3], and finally
superimpose the edge-colorings of subgraphs to obtain an edge-coloring of G.

The main result of this section is the following.

Theorem 3 If the unicyclic index a′(G) is bounded and ∆(G) ≥ 4a′(G), then
graph G can be edge-colored by ∆(G) colors in O(n log n) sequential time or in
O(log3 n) parallel time with O(n log3 n) operations.

By Lemma 2 and Eqs.(2)–(6) we have the following corollary.

Corollary 2 Graph G can be edge-colored by ∆(G) colors in O(n log n) sequen-
tial time or in O(log3 n) parallel time with O(n log3 n) operations if one of the
following (a) – (g) holds:

(a) G belongs to a minor closed class G and ∆(G) ≥ 4h(G);

(b) a(G) is bounded and ∆(G) ≥ 4a(G);

(c) s(G) is bounded and ∆(G) ≥ 4s(G);

(d) k(G) is bounded and ∆(G) ≥ 4k(G);

(e) θ(G) is bounded and ∆(G) ≥ 12θ(G);

(f) g(G) ≥ 1 is bounded and ∆(G) ≥ 4
⌊(

5 +
√

48g(G) + 1
)

/2
⌋
; and

(g) G is planar and ∆(G) ≥ 12.

Zhou et al. [32] obtained a result stronger than Corollary 2(d): a linear-time
sequential and an optimal parallel edge-coloring algorithm for any graphs with
bounded k(G), i.e., partial k-trees.

In the remaining of this section we prove Theorem 3. We use Chrobak and
Nishizeki’s algorithm [3] which edge-colors a planar graph G of ∆(G) ≥ 9 by ∆
colors in O(n log n) sequential time or in O(log3 n) parallel time with O(n log3 n)
operations and hence is stronger than Corollary 2(g). Their algorithm relies on
the following fact: any planar connected graph G has Θ(n) eliminable edges if
∆(G) ≥ 9 [3]. We have the following lemma on graphs which are not always
planar.
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Lemma 4 If G is a connected graph, ∆(G) is bounded and ∆(G) ≥ 4a′(G),
then G has Θ(n) eliminable edges.

Proof: Let U = {u ∈ V (G) | d(u, G) ≤ 2a′(G)}, then U 6= φ because by
Lemma 1(b) δ(G) ≤ 2a′(G). Furthermore V − U 6= φ since ∆(G) ≥ 4a′(G) >
2a′(G). Therefore the graph H obtained from G by deleting all the vertices in
U is not empty. Let W = {w ∈ V (H) | d(w, H) ≤ 2a′(G)}, and let E′ be the
set of edges (u, v) ∈ E(G) such that u ∈ U and v ∈ U ∪ W . Then it suffices to
prove the following (i) and (ii):

(i) each edge (u, v) ∈ E′ is eliminable; and

(ii) the number of edges in E′ is Θ(n).

We first prove (i). Let (u, v) be an arbitrary edge in E′. Since u ∈ U ,
d(u) ≤ 2a′(G) < ∆. On the other hand d∗u(v) ≤ 2a′(G): if v ∈ U then
d∗u(v) ≤ d(v, G) ≤ 2a′(G); and if v ∈ W then d∗u(v) ≤ d(v, H) ≤ 2a′(G) since
none of v’s neighbors in U has degree ∆. Therefore d(u)+ d∗u(v) ≤ 4a′(G) ≤ ∆,
and hence edge (u, v) is eliminable.

We next prove (ii). Since at least one edge in E′ is incident to each vertex
in W , we have

|E′| ≥ |W |. (9)

By applying Lemma 1(c) to graph H we have

|W | ≥ n(H)
2a′(H) + 1

. (10)

Since a′(H) ≤ a′(G) and n(H) = n − |U |, we have

|W | ≥ n − |U |
2a′(G) + 1

. (11)

If |U | is small, say |U | ≤ 2∆−1
2∆+1n, then by Eqs. (9) and (11) we have

|E′| ≥ 1
2a′(G) + 1

(n − |U |)

≥ 2
(2a′(G) + 1)(2∆ + 1)

n,

and hence |E′| = Θ(n) since both ∆(G) and a′(G) are bounded. Thus it suffices
to verify |E′| = Θ(n) for the case when |U | > 2∆−1

2∆+1n, that is,

n − |U | <
2

2∆ + 1
n. (12)

Edges in E(G) −E′ either join two vertices in W or are incident to vertices
in V −U−W . The number of former edges is at most a′(G)|W |, and the number
of latter edges is at most ∆(n − |U | − |W |). Therefore we have

|E′| ≥ m − a′(G)|W | − ∆(n − |U | − |W |)
= m − ∆(n − |U |) + (∆ − a′(G))|W |. (13)
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Since G is connected, m ≥ n−1. Therefore by Eqs. (11), (12) and (13) we have

|E′| ≥ n − 1 − ∆(n − |U |) +
∆ − a′(G)
2a′(G) + 1

(n − |U |)

= n − 1 − a′(G)(2∆ + 1)
2a′(G) + 1

(n − |U |)

> n − 1 − 2a′(G)
2a′(G) + 1

n

=
1

2a′(G) + 1
n − 1.

Thus |E′| = Θ(n) since a′(G) is bounded. 2

Lemma 4 implies that if G is a connected planar graph, ∆(G) is bounded and
∆(G) ≥ 12 then G has Θ(n) eliminable edges. Thus Lemma 4 does not implies
the fact proved by Chrobak and Nishizeki [3], but is a kind of generalization of
the fact for (not always planar) graphs.

Chrobak and Nishizeki’s algorithm [3] correctly edge-colors any (not always
planar) graph G with ∆ colors if ∆ is bounded and G has Θ(n) eliminable edges.
Therefore by Lemma 4 we have the following lemma.

Lemma 5 If ∆(G) is bounded and ∆(G) ≥ 4a′(G), then G can be edge-colored
by ∆(G) colors in O(n log n) sequential time or in O(log3 n) parallel time with
O(n log3 n) operations.

By Lemma 5, in order to prove Theorem 3, it suffices to give an algorithm
to edge-color G with ∆ colors only for the case in which ∆ is not bounded, say
∆ ≥ 8s(G)(> 4a′(G)). Chrobak and Nishizeki’s algorithm [3] uses Chrobak and
Yung’s algorithm [4] for the case in which ∆ is large, say ∆ ≥ 19. However,
the algorithm in [4] works only for planar graphs with ∆ ≥ 19. Our idea
is to decompose (not always planar) graph G of large maximum degree into
several edge-disjoint subgraphs G1, G2, · · · , Gj of small maximum degrees ∆(Gi)
such that ∆(G) =

∑j
i=1 ∆(Gi) and 4s(G) ≤ χ′(Gi) = ∆(Gi) < 8s(G) for

each i, and hence an edge-coloring of G with ∆(G) colors can be obtained
simply by superimposing edge-colorings of Gi with ∆(Gi) colors. Note that the
edge-coloring of Gi can be found within the required time bounds as shown in
Lemma 5 since ∆(Gi) is bounded.

Let c be a bounded positive integer, and let E1, E2, · · · , Ej be a partition
of E. Denote by Gi = G[Ei] the subgraph of G induced by the edge set Ei.
We say that E1, E2, · · · , Ej is a (∆, c)-partition of E if Gi = G[Ei], 1 ≤ i ≤ j,
satisfies

(i) ∆(G) =
∑j

i=1 ∆(Gi); and

(ii) ∆(Gi) = c for each i, 1 ≤ i ≤ j − 1, and c ≤ ∆(Gj) < 2c.

Clearly s(Gi) ≤ s(G) for each i, 1 ≤ i ≤ j. Theorem 2 implies that χ′(G) =
∆(G) since ∆(G) ≥ 8s(G) > 2s(G). Choose c = 4s(G), then ∆(Gi) ≥ c =



X. Zhou et al., Edge-Coloring and f -Coloring, JGAA, 3(1) 1–18 (1999) 11

4s(G) > 2s(Gi) and hence χ′(Gi) = ∆(Gi) for each i, 1 ≤ i ≤ j. Since
∆(Gi) < 2c = 8s(G) ≤ 16a′(G) = O(1) by Lemma 2, ∆(Gi) is bounded for
1 ≤ i ≤ j. Furthermore ∆(Gi) ≥ 4s(G) ≥ 4s(Gi) ≥ 4a′(Gi) by Eqs. (3) and
(5). Therefore by Lemma 5 one can find an edge-coloring of Gi with ∆(Gi)
colors in the claimed time. Since

∆(G) =
j∑

i=1

∆(Gi),

edge-colorings of Gi with ∆(Gi) colors, 1 ≤ i ≤ j, can be immediately superim-
posed to an edge-coloring of G with ∆(G) colors. Zhou et al. [32] obtained the
following result on the (∆, c)-partition.

Lemma 6 If ∆(G) ≥ 2c ≥ 8s(G), then a (∆, c)-partition of E can be found in
linear sequential time or in O(log n) parallel time with O(n) operations.

Thus we have the following algorithm to edge-color a graph G such that
a′(G) is bounded and ∆(G) ≥ 4a′(G).

EDGE-COLOR(G);

{ assume that a′(G) is bounded and ∆(G) ≥ 4a′(G) }
begin

if ∆(G) < 8s(G) then {∆(G) is bounded }
1. edge-color G with ∆(G) colors by Lemma 5;

else {∆(G) ≥ 8s(G)}
begin

2. find a (∆, 4s(G))-partition E1, E2, · · ·Ej of E(G);

3. for i := 1 to j do

edge-color of Gi with ∆(Gi) colors where Gi = G[Ei];

4. extend these optimal edge-colorings of G1, G2, · · · , Gj

to an optimal edge-coloring of G with ∆(G) colors

end

end;

We are now ready to prove Theorem 3.

Proof of Theorem 3: By Lemmas 5 and 6 clearly the algorithm above cor-
rectly finds an edge-coloring of a graph G with ∆ colors. Therefore it suffices
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to prove the complexities. By Lemma 6 line 2 can be done in linear time
or optimally in parallel. By Lemma 5 line 1 can be done in O(n log n) se-
quential time or in O(log3 n) parallel time with O(n log3 n) operations, since
∆(G) < 8s(G) ≤ 16a′(G) = O(1). At line 3, for each i, 1 ≤ i ≤ j, by Lemma 5
one can find an edge-coloring of Gi with ∆(Gi) colors in O(n(Gi) log n(Gi))
sequential time or in O(log3 n(Gi)) parallel time with O(n(Gi) log3 n(Gi)) op-
erations. Since Gi = G[Ei], n(Gi) ≤ 2|Ei|. Therefore

j∑
i=1

n(Gi) ≤ 2
j∑

i=1

|Ei| = 2|E|.

Since the unicyclic index a′(G) is bounded, |E| = O(n). Thus line 3 can be
totally done in O(n log n) sequential time or in O(log3 n) parallel time with
O(n log3 n) operations. At line 4, since ∆(G) =

∑j
i=1 ∆(Gi), one can immedi-

ately superimpose these edge-colorings of G1, G2, · · · , Gj to an edge-coloring of
G with ∆(G) colors. Thus the algorithm spends O(n log n) sequential time in
total or in O(log3 n) parallel time with O(n log3 n) operations. 2

It should be noted that the algorithm EDGE-COLOR does not need to know
an actual decomposition of G into a(G) unicyclic subgraphs.

5 f-Coloring

In this section we give efficient sequential and NC parallel algorithms for the
f -coloring problem on various classes of graphs.

We first show that the f -coloring problem on a graph G can be reduced to
the edge-coloring problem on a new graph Gf defined below. We may assume
without loss of generality that f(v) ≤ d(v) for each v ∈ V . For each vertex
v ∈ V , replace v with f(v) copies v1, v2, · · · , vf(v), and attach the d(v) edges
incident with v to the copies; attach dd(v)/f(v)e or bd(v)/f(v)c edges to each
copy vi, 1 ≤ i ≤ f(v). Let Gf be the resulting graph. It should be noted that
the construction of Gf is not unique. Figure 2 illustrates G and an example
of Gf , where the number next to vertex v is f(v). Since an edge-coloring of
Gf immediately induces an f -coloring of G with the same number of colors, we
have

χ′
f (G) ≤ χ′(Gf ). (14)

However, Eq. (14) does not always hold in equality. For example, χ′
f (G) = 2 for

a graph G in Figure 2(a) as indicated by solid and dotted lines, but χ′(Gf ) = 3
for the graph Gf in Figure 2(b) as indicated by thin, thick and dotted lines.
Clearly ∆(Gf ) = ∆f (G) = maxv∈V dd(v)/f(v)e. If G is a simple graph, then
Gf is also a simple graph and hence χ′(Gf ) ≤ ∆(Gf )+1 = ∆f (G)+1. Thus an
edge-coloring of Gf with χ′(Gf ) colors does not always induce an f -coloring of
G with χ′

f (G) colors, but induces a near-optimal f -coloring of G with at most
∆f (G) + 1 colors.
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Figure 2: Transformation from G to Gf .

The number of edges in Gf is equal to that of G, but the number of vertices
of Gf increases to

∑
v∈V f(v) (≤ 2m). Furthermore one can easily observe that

the following lemmas hold.

Lemma 7 For a graph G there exists Gf such that

(a) Gf is bipartite if G is bipartite;
(b) Gf is planar if G is planar;
(c) g(Gf ) ≤ g(G);
(d) s(Gf ) ≤ s(G);
(e) a(Gf ) ≤ a(G);
(f) a′(Gf ) ≤ a′(G); and
(g) θ(Gf ) ≤ θ(G).

Lemma 8 Let G be a class of graphs which are closed under the transformation
above, that is, any Gf is contained in G for every G ∈ G, and let α and β be
real numbers. Then the following (a) and (b) hold.

(a) If there exists a sequential algorithm to edge-color any graph G′ ∈ G by
α∆(G′)+β colors in polynomial time T (m(G′)+n(G′)), then there exists
a sequential algorithm to f -color any graph G ∈ G by α∆f (G) + β colors
in O(T (m(G) + n(G))) time.

(b) If there exists a parallel algorithm to edge-color any graph G′ ∈ G by
α∆(G′)+ β colors in polylogarithmic parallel time T (m(G′)+ n(G′)) with
polynomial operations P (m(G′)+n(G′)), then there exists a parallel algo-
rithm to f -color any graph G ∈ G by α∆f (G) + β colors in O(T (m(G) +
n(G))) parallel time with O(P (m(G) + n(G))) operations.
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Proof: (a) Let G be a graph in G. One can construct Gf from G in linear
time. Using the assumed algorithm, one can find an ordinary edge-coloring of
Gf with α∆(Gf )+β colors in T (m(Gf )+n(Gf )) time. The edge-coloring of Gf

immediately induces an f -coloring of G with α∆(Gf )+β = α∆f (G)+β colors.
By the construction of Gf we have m(Gf ) = m(G) and n(Gf ) ≤ 2m(G)+n(G)
and hence m(Gf )+n(Gf) ≤ 3m(G)+n(G). Since the function T is polynomial,
T (m(Gf )+n(Gf)) = O(T (m(G)+n(G))). Thus an f -coloring of G can be found
in O(T (m(G) + n(G))) time in total.

(b) Similarly, Gf can be easily constructed from G in O(log(m(G) + n(G)))
parallel time with O(m(G) + n(G)) operations. 2

It is known that χ′(G) = ∆(G) if G is a bipartite graph [19] and that
χ′(G) = ∆(G) if G is a planar graph with ∆(G) ≥ 8 [10, 27]. Therefore, by
Theorem 2, Corollary 1 and Lemmas 7, 8, we have the following theorem.

Theorem 4 χ′
f (G) = ∆f (G) if one of the following (a)–(i) holds:

(a) G belongs to a minor closed class G and ∆f (G) ≥ 2h(G);
(b) G is bipartite [13];
(c) ∆f (G) ≥ 2s(G);
(d) G is a partial k-tree and ∆f (G) ≥ 2k;
(e) ∆f (G) ≥ 4a(G) − 2;
(f) ∆f (G) ≥ 4a′(G);
(g) ∆f (G) ≥ 12θ(G) − 2;

(h) g(G) ≥ 1 and ∆f (G) ≥ 2
⌊(

5 +
√

48g(G) + 1
)

/2
⌋
; and

(i) G is planar and ∆f (G) ≥ 8.

Proof: Proofs of (a), (b), (c), (e), (f), (g) and (i) are immediate. If G is a
partial k-tree, then Gf is not always a partial k-tree, but s(G) ≤ k. Therefore
(d) above is an immediate consequence of (c). If g(G) ≥ 1 and

∆f (G) ≥ 2
⌊(

5 +
√

48g(G) + 1
)

/2
⌋

,

then ∆f (G) = ∆(Gf ) ≥ 12 and hence χ′
f (G) ≤ χ′(Gf ) = ∆(Gf ) = ∆f (G) even

if g(Gf ) = 0. Thus (h) follows. 2

By Theorem 3, Corollary 2, Lemmas 7, 8 and the algorithms in [3, 6, 12],
we have the following results.

Theorem 5

(a) Any graph G can be f -colored by at most ∆f (G)+1 colors in O(min{m∆f

log n, m
√

m log n}) time.

(b) Any bipartite graph G can be f -colored by ∆f (G) colors in O(m log n)
time.
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(c) Graph G can be f -colored by ∆f (G) colors in O(n log n) time if one of the
following (i) – (viii) holds:

(i) G belongs to a minor closed class G and ∆f (G) ≥ 4h(G);

(ii) a′(G) is bounded and ∆f (G) ≥ 4a′(G);

(iii) a(G) is bounded and ∆f (G) ≥ 4a(G);

(iv) s(G) is bounded and ∆f (G) ≥ 4s(G);

(v) k(G) is bounded and ∆f (G) ≥ 4k(G);

(vi) θ(G) is bounded and ∆f (G) ≥ 12θ(G);

(vii) g(G) ≥ 1 is bounded and ∆f (G) ≥ 4
⌊(

5 +
√

48g(G) + 1
)

/2
⌋
; and

(viii) G is planar and ∆f (G) ≥ 9.

Proof: (a) The algorithm in [12] edge-colors Gf with ∆(Gf ) + 1 colors in time

O(min{mf∆f log nf , mf

√
mf log nf}),

where mf is the number of edges and nf the number of vertices in Gf . Since
mf = O(m), nf = O(m + n) and ∆(Gf ) = ∆f (G), the claim holds.

(b) Gf is also bipartite. The algorithm in [6] edge-colors a bipartite graph
Gf with ∆(Gf ) colors in time O(mf log nf). Thus the claim holds similarly as
(a).

(c) Similar to (b). Note that s(G) ≤ h(G), a′(G) ≤ a(G) ≤ s(G) ≤ k(G),
a(G) ≤ 3θ(G), and a(G) ≤ s(G) ≤

⌊(
5 +

√
48g(G) + 1

)
/2

⌋
. 2

Theorem 6

(a) Any bipartite graph G can be f -colored by ∆f (G) colors in O(log3 n) par-
allel time with O(m) operations.

(b) Graph G can be f -colored by ∆f (G) colors in O(log3 n) parallel time with
O(n log3 n) operations if one of the following (i) – (viii) holds:

(i) G belongs to a minor closed class G and ∆f (G) ≥ 4h(G);

(ii) a′(G) is bounded and ∆f (G) ≥ 4a′(G);

(iii) a(G) is bounded and ∆f (G) ≥ 4a(G);

(iv) s(G) is bounded and ∆f (G) ≥ 4s(G);

(v) k(G) is bounded and ∆f (G) ≥ 4k(G);

(vi) θ(G) is bounded and ∆f (G) ≥ 12θ(G);

(vii) g(G) ≥ 1 is bounded and ∆f (G) ≥ 4
⌊(

5 +
√

48g(G) + 1
)

/2
⌋
; and

(viii) G is planar and ∆f (G) ≥ 9.
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Proof: (a) Gf is also bipartite. The algorithm in [20] edge-colors Gf with
∆(Gf ) colors in O(log3 nf ) parallel time with O(mf ) operations. Since mf =
O(m), nf = O(m + n) and ∆(Gf ) = ∆f (G), the claim holds.

(b) Similar to (a). 2

It should be noted that the algorithms in Theorems 5.4 and 5.5 do not need
to know an actual embedding or a decomposition related to an invariant.

6 Conclusion

In this paper we first gave efficient sequential and NC parallel algorithms to
edge-color graph G with ∆(G) colors if a′(G) is bounded and ∆(G) ≥ 4a′(G),
where a′(G) is the unicyclic index of G. Our algorithms are based on the
following two algorithms: the edge-coloring algorithm (for planar graphs) by
Chrobak and Nishizeki [3], and the algorithm for decomposing a graph of large
maximum degree to edge-disjoint subgraphs of small maximum degrees by Zhou,
Nakano and Nishizeki [32]. We next introduced a simple but useful reduction
of an f -coloring to an ordinary edge-coloring, and derived various sufficient
conditions for χ′

f (G) = ∆f (G) to hold true. Using the reduction, we finally
gave efficient sequential and NC parallel f -coloring algorithms.
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