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Abstract

The task of balancing dynamically generated work load occurs in
a wide range of parallel and distributed applications. Diffusion based
schemes, which belong to the class of nearest neighbor load balancing al-
gorithms, are a popular way to address this problem. Originally created
to equalize the amount of arbitrarily divisible load among the nodes of a
static and homogeneous network, they have been generalized to hetero-
geneous topologies. Additionally, some simple diffusion algorithms have
been adapted to work in dynamic networks as well. However, if the load
is not divisible arbitrarily but consists of indivisible unit size tokens, dif-
fusion schemes are not able to balance the load properly. In this paper we
consider the problem of balancing indivisible unit size tokens on hetero-
geneous systems. By modifying a randomized strategy invented for ho-
mogeneous systems, we can achieve an asymptotically minimal expected
overload in l1, l2 and l∞ norm while only slightly increasing the run-time
by a logarithmic factor. Our experiments show that this additional factor
is usually not required in applications.
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1 Introduction

Load balancing is a very important prerequisite for the efficient use of parallel
computers. Many distributed applications produce work load dynamically which
often leads to dramatical differences in runtime. Thus, in order to achieve an
efficient use of the processor network, the amount of work has to be balanced
during the computation. Obviously, we can ensure an overall benefit only if the
balancing scheme itself is highly efficient.

If load is arbitrarily divisible, the balancing problem for a homogeneous
network with n nodes can be described as follows. At the beginning, each node
i contains some work load wi. The goal is to obtain the balanced work load
w =

∑n
i=1 wi/n on all nodes. We assume for now that no load is generated or

consumed during the balancing process, i.e., we consider a static load balancing
scenario.

A popular class of load balancing algorithms consists of diffusion schemes
e.g. [5]. They work iteratively and each node migrates a load fraction (flow)
over the topology’s communication links (edges), depending on the work load
difference to its neighbors. Hence, these schemes operate locally and therefore
avoid expensive global communication. Formally, if we denote the load of node
i after k iteration steps by wk

i and the flow over edge {i, j} in step k by yk−1
i,j ,

then

∀e = {i, j} ∈ E : yk−1
i,j = αi,j(w

k−1
i − wk−1

j );

and wk
i = wk−1

i −
∑

{i,j}∈E

yk−1
i,j , (1)

is computed where all αi,j satisfy the conditions described in the next Section.
Equation 1 can be rewritten in matrix notation as wk = Mwk−1, where the
matrix M is called the Diffusion Matrix of the network. This algorithm is
called First Order Scheme (FOS) and converges to a balanced state computing
the l2-minimal flow. Improvements of FOS are the Second Order Schemes (SOS)
which perform faster than FOS by almost a quadratic factor [22, 6].

In [8], these schemes are extended to heterogeneous networks consisting of
processors with different computing powers. In such an environment, com-
putations perform faster if the load is balanced proportionally to the nodes’
computing speed si:

wi :=

∑n
j=1 wj

∑n
j=1 sj

si . (2)

Obviously, this is a generalization of the load balancing problem in homogeneous
networks (si = 1). Diffusion in networks with communication links of different
capacities are analyzed e.g. in [6, 26]. It is shown that the existing balancing
schemes can be generalized, such that roughly speaking faster communication
links get a higher load migration volume than slower ones. The two gener-
alizations can be combined as described in [8]. Heterogeneous topologies are
extremely attractive because they often appear in real hardware installations
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containing machines and networks of different capabilities. In [9] it is demon-
strated that FOS is also applicable to balance load in dynamic networks where
edges fail from time to time or are present depending on the distance of the
moving nodes.

In contrast to the above implementations, work load in real world appli-
cations usually cannot be divided arbitrarily often, but only to some extent.
Thus, to address the load balancing problem properly, a more restrictive model
is needed. The unit-size token model [22] assumes a smallest load entity, the
unit-size token. Furthermore, work load is always represented by a multiple
of this smallest entity. It is clear that load in this model is usually not com-
pletely balanceable. Unfortunately, as shown for FOS in homogeneous networks
in e.g. [22, 23, 7], the use of integer values prevents the known diffusion schemes
to balance the load completely. Especially if only a relatively small amount of
tokens exists, a considerable load difference remains.

To measure the balance quality in a network, usually two metrics are con-
sidered. The l2-norm expresses how well the load is distributed on the proces-

sors, hence the error in this norm ||e||2 =
√

∑n
i=1(w

k
i − wi)2 should be min-

imized. One is even more interested in minimizing the overall computation
time and therefore the load in l∞-norm, which is equivalent to minimizing the
maximal (weighted) load occurring on the processors. Recall, that if the error
||e||∞=max |w − wi| is less than b, then ||e||2 is bounded by

√
n · b.

The problem of balancing indivisible tokens in homogeneous networks is
addressed e.g. in [3]. The proposed algorithm improves the local balance sig-
nificantly, but still cannot guarantee a satisfactory global balance. The authors
of [22] use a discretization of FOS by transmitting the flow yi,j = ⌊αi,j(w

k−1
i −

wk−1
j )⌋ over edge {i, j} in step k. After k = Θ((d/λ2) log(En)) steps, the error

in l2-norm is reduced to O
(

nd2/λ2

)

, where E = maxi |w0
i −wi| is the maximal

initial load imbalance in the network, λ2 denotes the second smallest eigenvalue
of the Laplacian of the graph (see next Section), and d is the maximal vertex
degree. This bound has been improved by showing that the error in l∞-norm is
O
(

(d2/λ2) log(n)
)

after k = Θ((d/λ2) log(En)) iterations. [23]. Furthermore,
there exist a number of results to improve the balance on special topologies, e.g.
[13, 18, 17]. The randomized algorithm developed in [7] reduces ||ek||2 to O(

√
n)

in k = Θ((d/λ2) (log(E) + log(n) log(log(n)))) iteration steps with high proba-
bility, if wi exceeds some certain threshold. Since it is also shown that in l2-norm
O(

√
n) is the best expected asymptotic result that can be achieved concerning

the final load distribution [7], this algorithm provides an asymptotic optimal
result. However, concerning the minimization of the overall computation time,
the above algorithm only guarantees ||wk||∞ ≤ wi +O(log(n)) within the previ-
ouslz described number of steps k. Since ||wk||∞ = wi + Ω(log(n)/ log(log(n)))
can occur, this algorithm does not achieve an optimal situation concerning the
maximal overload in the system.

In this paper, we present a modification of the randomized algorithm from
[7] in order to minimize the overload in the system in l1, l2- and l∞-norm,
respectively. We show that this algorithm can also be applied in heterogeneous
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networks, achieving the corresponding asymptotic overload for the weighted l1-,
l2-, or l∞-norms (for a definition refer to Section 3). The algorithm’s run-time
increases slightly by at most a logarithmic factor and is bounded by Θ((d/λ2) ·
(log(E) + log2(n))) with high probability, whenever wi exceeds some threshold.
Note, that from our experiments we can conclude that the additional run-time
is usually not needed. Furthermore, our results can be generalized to dynamic
networks which are modeled as graphs with a constant node set, but a varying
set of edges during the iterations. Similar dynamic networks have been used to
analyze the token distribution problem in [14]. However, in contrast to diffusion,
the latter only allows one single token to be sent over an edge in each iteration.

The outline of the paper is as follows. In the next section, we give an overview
of the basic definitions and the necessary theoretical background. Then, we
describe the randomized strategy for heterogeneous networks and show that
this algorithm minimizes the overload to the asymptotically best expected value
whenever the heterogeneity obeys some restrictions. In Section 4, we present
some experimental results and finally Section 5 contains our conclusion.

2 Background and Definitions

Let G = (V,E) be an undirected, connected, weighted graph with |V | = n
nodes and |E| = m edges. Let ci,j ∈ R be the capacity of edge ei,j ∈ E, si be
the processing speed of node i ∈ V , and wi ∈ R be its work load. In case of
indivisible load entities, this value represents the number of unit-size tokens.

Let A ∈ R
n×n be the Weighted Adjacency Matrix of G. As G is undirected,

A is symmetric. Column/row i of A contains ci,j where j and i are neighbors in
G. For some of our constructions we need the Laplacian L ∈ Z

n×n of G defined
as L := D − A, where D ∈ N

n×n contains the weighted degrees as diagonal
entries, e.g. Di,i =

∑

{i,j}∈E ci,j , and 0 elsewhere.
The Laplacian L and its eigenvalues are used to analyze the behavior of

diffusion in homogeneous networks. For heterogeneous networks we have to
apply the generalized Laplacian LS−1, where S ∈ R

n×n denotes the diagonal
matrix containing the processor speeds si (cf. [8]). We assume that 1 ≤ si ≤
O(nδ) with δ < 1.

Generalizing the local iterative algorithm of equation (1) in the case of ar-
bitrary divisible tokens to heterogeneous networks, one yields [8]:

wk
i = wk−1

i −
∑

j∈N(i)

ci,j

(

wk−1
i

si
−

wk−1
j

sj

)

(3)

Here, N(i) denotes the set of neighbors of i ∈ V , and wk
i is the load of the

node i after the k-th iteration. As mentioned, this scheme is known as FOS and
converges to the average load w of equation (2) [8]. It can be written in matrix
notation as wk = Mwk−1 with M = I − LS−1 ∈ R

n×n. M contains ci,j/sj at
position (i, j) for every edge e = {i, j}, 1−∑e={i,j}∈E ci,j/sj at diagonal entry
i, and 0 elsewhere.
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Now, let λi, 1 ≤ i ≤ n be the eigenvalues of the Laplacian LS−1 in in-
creasing order. It is known that λ1 = 0 with (right) eigenvector (s1, . . . , sn)
[4]. The values of ci,j have to be chosen such that the diffusion matrix M has
the eigenvalues −1 < µi = 1 − λi ≤ 1. In the rest of the paper, we assume
that ci,j = 1/(c · max{di, dj}) if i and j share an edge, and ci,j = 0 otherwise,
where di is the degree of node i and c ∈ (1, 2] is a constant. Note that by
using this choice for ci,j the nodes do not need to have any global knowledge
about the network. Since G is connected, the first eigenvalue µ1 = 1 is simple
with eigenvector (s1, . . . , sn). We denote by γ = max{|µ2|, |µn|} < 1 the second
largest eigenvalue of M according to absolute values and call it the diffusion

norm of M . Certainly, γ governs the convergence of the process described in
equation (3). Choosing ci,j as described above, 1/(1− |µn|) = O(1). Therefore,
in the case when γ = |µn|, 1/(1−|µn|) and 1/(1−|µ2|) differ only in a constant
factor, and we still can express the asymptotic behaviour of the scheme by µ2.
Otherwise, the convergence is described by µ2. Hence, we can ignore µn here
(see [9]).

Several modifications to FOS have been discussed in the past. One of them
is SOS [22], which has the form

w1 = Mw0, wk = βMwk−1 + (1 − β)wk−2, k = 2, 3, . . . (4)

Setting β = 2/(1 +
√

1 − µ2
2) results in the fastest convergence.

As described in the introduction, we denote the error after k iteration steps
by ek, where ek = wk−w. The convergence rate of diffusion schemes in the case
of arbitrary divisible tokens depends on how fast the system becomes ǫ-balanced,
i.e., the final error ||ek||2 is less than ǫ||e0||2. By using simple calculations and
the results from [22, 8, 9], we obtain the following lemma.

Lemma 1 Let G be a graph and L its Laplacian, where ci,j = 1/(c·max{di, dj}),
di is the degree of node i and c ∈ (1, 2] a constant. Let M = I − LS−1 be the

diffusion matrix of G and set β = 2/(1+
√

1 − γ2). Then, FOS and SOS require

Θ((d/λ2)·ln(smax/(ǫsmin))) and Θ(
√

d/λ2 ·ln(smax/(ǫsmin))) steps, respectively,

to ǫ-balance the system, where smax = maxi si and smin = mini si.

Although SOS converges faster than FOS by almost a quadratic factor and
therefore seems preferable, it has a drawback. During the iterations, the out-
going flow of a node i may exceed wi which results in negative load. On static
networks, the two phase model copes with this problem [6]. The first phase
determines the balancing flow while the second phase then migrates the load
accordingly. However, this two phase model cannot be applied on dynamic net-
works because edges included in the flow computation might not be available
for migration.

Even in cases where the nodes’ outgoing flow does not exceed their load, we
have not been able to show the convergence of SOS in dynamic systems yet.
Hence, our diffusion scheme analysis on such networks is restricted to FOS.

Since the diffusion matrix M is stochastic, FOS can also be interpreted as a
Markov process, where M is the corresponding transition matrix and the bal-
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anced load situation is the related stationary distribution1. Using this Markov
chain approach, the following lemma can be stated [12, 21].

Lemma 2 Let G be a graph and we assume that a token performs a random walk

on G according to the diffusion matrix M as defined in Lemma 1. If the values si

are in a range [1, nδ], δ ∈ [0, 1), then for any constant τ , a constant a exists such

that after a((d · log(n))/λ2) steps the probability pi of the token being situated on

some node i is bounded by (si/
∑n

j=1 sj)−(1/nτ ) ≤ pi ≤ (si/
∑n

j=1 sj)+(1/nτ ).

3 The Randomized Algorithm

In this Section, we describe a randomized algorithm that guarantees a final
weighted overload of O(1) in l∞-norm for the load balancing problem of indi-
visible unit-size tokens in heterogeneous networks.

First, we show that FOS as well as SOS do not guarantee a satisfactory
balance in case of unit size tokens on inhomogeneous networks. As mentioned,
the outgoing load from some node i may exceed wi when applying SOS. Hence,
simply rounding down the flow to the nearest integer does not lead to the desired
algorithm. Therefore, the authors of [22] introduced a so called ’I Owe You’
(IOU) unit on each edge. These IOUs represent the difference between the total
flow moved along an edge in the idealized scheme and in the realistic algorithm.
If the IOUs accumulate, then we can not prove any result w.r.t. the convergence
of the adapted SOS. Nevertheless, in most of the simulations on static networks,
even if the IOUs emerge, the number of owed units becomes very small after a
few rounds.

If we assume that the IOUs tend to zero after a few iterations, then we can
use the techniques of [15] to state the following theorem.

Theorem 1 Let G = (V,E) be a node weighted graph, where si is the weight

of node i ∈ V , and let w0 be the initial load distribution on G. Executing SOS

on G, we assume that after a few iteration steps the IOUs are bounded by some

constant on each edge of the graph. Then, after sufficient number of steps k,

the error ||ek||2 is O((
√

n · smax · d)/(
√

smin · (1 − γ))), where γ is the diffusion

norm of the corresponding diffusion matrix M .

Proof: During the SOS iterations (equation (4)), we round the flow such that
only integer load values are shifted over the edges. Hence, we get

wk = βMwk−1 − (β − 1)wk−2 + δk−1, (5)

where δk is the round-off error in iteration k. Comparing this to the balanc-
ing algorithm with arbitrary divisible load w′k (equation (4)), by subtracting
equation (4) from (5), we get an accumulated round-off

ak = wk − w′k = βMak−1 − (β − 1)ak−2 + δk−1,

1We use M insteed of MT as the transition matrix of the corresponding Markov chain,
and consider its right eigenvectors. Accordingly, the stationary distribution corresponds to
the right eigenvector of M with eigenvalue 1.
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where a0 = 0 and a1 = δ0. We know that for any eigenvector zi of M an
eigenvector ui of S−1/2LS−1/2 exists such that zi = S1/2ui. We also know that
the eigenvectors zi form a basis in R

n [8]. On the other hand, ak =
∑n

i=2 βizi

for some β2, . . . , βn ∈ R and any k ∈ N. Combing the techniques from [15] and
[8], we therefore obtain

||ak||2 ≤
k−1
∑

j=0

√

smax

smin
(β − 1)

k−j−1

2 (k − j)δ ≤
√

smax

smin

(

1 − rk+1

(1 − r)2
− (k + 1)rk

1 − r

)

δ,

where δ is chosen such that ||δj ||2 ≤ δ for any j ∈ {0, . . . , k−1} and r =
√

β − 1.
Since ||δj ||2 ≤ √

n · d, the theorem follows. 2

Using similar techniques, the same bound can also be obtained for FOS
(without the restrictions). Due to classical isoperimetric bounds on the second
smallest eigenvalue of the normalized Laplacian of a connected unweighted graph
[2], λ2 = Ω(1/n2), and since si ≤ n for any i, it holds that 1/(1 − γ) =
O(n3). Therefore, the load discrepancy can at most be O(nt) with t being small
constant. In the rest of the paper we refer to this constant t as the discrepancy

constant. However, a satisfactory final balance cannot be guaranteed in the case
of indivisible unit size tokens.

We now present a randomized strategy, which reduces the final weighted
load to an asymptotic optimal value. In the sequel, we only consider the load
in l∞-norm, although we can also prove that the algorithm described below
achieves an asymptotic optimal balance in l1- and l2-norm.

In order to show the optimality, we have to consider the lower bound on the
final weighted load deviation. Let w̃k

i = wk
i /si be the weighted load of node i

after k steps, where si = n · si/(
∑n

j=1 sj) is its normalized processing speed.

Proposition 1 There exist node weighted graphs G = (V,E) and initial load

distributions w, such that for any load balancing scheme working with indivisible

unit-size tokens the expected final weighted load in l∞-norm, limk→∞ ||w̃k||, is

wi/si + Ω(1).

To see this, let G be a homogeneous network (si = 1 for i ∈ V ) and let
wi = b′ + b, where b′ ∈ N and b ∈ (0, 1). Obviously, this fulfills the proposition.

The following randomized algorithm reduces the final load ||w̃k||∞ to wi/si+
O(1) in heterogeneous networks. We assume that the weights si are lying in
the range [1, nδ] with δ < 1, and that the number of tokens

∑n
i=1 wi is high

enough. Although we mainly describe the algorithm for static networks, it can
also be used on dynamic networks, obtaining the same bound on the final load
deviation.

The algorithm we propose consists of two main phases. In the first phase,
we perform FOS as described in [8] to reduce the load imbalance in l1-norm to
O(nt+1), where t is the discrepancy value. At the same time, we approximate wi

within an error of ±1/n2 by using the diffusion algorithm for arbitrarily divisible
load. Due to Lemma 1, in this first phase we perform O(d log(nE)/λ2) steps. It
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is worth mentioning that the nodes do not need to have any global information
(excepting n), and we can use the usual termination detection algorithms [11,
24, 27] to determine whether the system has achieved the state described above.

In the second phase, we perform so called main random walk steps (MRWSs)
described in the following. In a preparation step, we mark the tokens that take
part in the random walk and also introduce participating “negative tokens” that
represent load deficiencies. Let wi be the current (integer) load and R be the
set of nodes with si < 1/3. If a node i ∈ R contains less than ŵi = ⌊wi⌋ tokens,
we place ŵi − wi “negative tokens” on it. If i ∈ R owns more than ŵi tokens,
we mark wi − ŵi of them. On a node i ∈ V \R we set ŵi = ⌈wi⌉+ ⌈2si⌉. If such
an i has less than ŵi tokens, we create ŵi −wi “negative tokens”. Accordingly,
if i ∈ V \R contains more than ŵi tokens, we mark wi − ŵi of them. Obviously,
the number of “negative tokens” is larger than the number of marked tokens
by an additive value of Ω(n). Now, all “negative tokens” and all marked tokens
perform random walk steps according to M until at each node the number of
tokens is less than ŵi. Note, that if a “negative token” is moved from node i
to node j, a real token is transferred in the opposite direction from node j to
node i. Furthermore, if a “negative token” and a marked token meet on a node,
they eliminate each other. In the sequel, we call one single step, in which each
“negative token” and each marked token performs one random walk step, a Main

Random Walk Step (MRWS). Again, the usual termination detection algorithms
can be used to determine whether the second phase has been completed, and
hence the nodes do not need to have any global information.

In the remaining part of this section we prove the correctness of the algorithm
and analyze its run-time. In contrast to the above description, we assume for
the analysis that “negative tokens” and marked tokens do not eliminate each
other instantly, but only after completing ad ln(n)/λ2 MRWSs, where a is the
constant of Lemma 2 for τ = t + 4 with t being the discrepency constant. The
sequence of ad ln(n)/λ2 MRWSs is called in the remaining of this section a
Main Random Walk Round (MRWR). This modification simplifies the proof,
although we will see that the same bounds can also be obtained for the original
randomized algorithm.

In order to show the correctness of the algorithm, we first need some auxiliary
lemmas.

Lemma 3 If pi ≤ si/n + 1/nt+4 and qj ≤ 1 − si/n + 1/nt+4, where t is the

constant defined above, then it holds that
(m

k

)

pk
i qm−k

j ≤
(m

k

)

(1/n)k(1 − 1/n)m−k(1 + O(1/n2−δ)),

where 1/nδ ≤ si ≤ nδ, k > msi/n and m ≥ n.

Proof: First we show by induction that
(

m
k

)

pk
i ≤

(

m
k

) (

si

n

)k
(1 + k

nt+3−δ +
k

nt+5−δ ). Obviously, the claim holds for k = 1. Let us assume that it also holds
for k − 1. Then

(m

k

)

pk
i =

(

m

k − 1

)

pk−1
i

m − k + 1

k
pi
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≤
(

m

k − 1

)(

si

n

)k−1(

1 +
k − 1

nt+3−δ
+

k − 1

nt+5−δ

)

·m − k + 1

k
· si

n

(

1 +
1

nt+3si

)

≤
(m

k

)

(

1

n

)k (

1 +
k

nt+3−δ
+

k

nt+5−δ

)

On the other hand
(

1 − si

n + 1
nt+4

)m−k ≤
(

1 − si

n

)m−k
(

1 + 2(m−k)
nt+3−δ + m−k

nt+5−δ

)

,

which can also be shown the same way. The claim holds for m−k = 1. Assuming
the claim holds for m − k − 1, we obtain

(

1 − si

n
+

1

nt+4

)m−k

≤
(

1 − si

n

)m−k−1(

1 +
2(m − k − 1)

nt+3−δ
+

m − k − 1

nt+5−δ

)

·
(

1 − si

n

)(

1 +
2

nt+3−δ

)

≤
(

1 − si

n

)m−k (

1 +
2(m − k)

nt+3−δ
+

m − k

nt+5−δ

)

and the lemma follows. 2

Lemma 4 Let G = (V,E), |V | = n be a node weighted graph. Assume that

qn tokens are executing random walks, according to G’s diffusion matrix, of

length (ad ln(n))/λ2, q > 32 ln(n), where a is the same constant as in Lemma

2 for τ = t + 4. Then, a constant c exists, such that, after completion of the

random walk, the number of tokens producing overload is less than cn
√

q ln(n)
with probability 1 − o(1/n).

Proof: We can use the techniques from [7] to show the theorem. Due to lemma
2, after ad ln(n)/λ2 steps each token lies on a certain node i with probability
pi ∈ [si/n − 1/nt+4, si/n + 1/nt+4]. Then, the probability that on node i are
more than φ tokens is

Pi,φ ≤
qn
∑

j=φ

(

qn

j

)

(si/n + 1/nt+4)j(1 − si/n + 1/nt+4)qn−j .

Due to lemma 3 we get

Pi,φ ≤
qn
∑

j=φ

(

qn

j

)

(si/n)j(1 − si/n)qn−j(1 + O(1/n2−δ)).

For the next, we only consider

P̃i,φ =

qn
∑

j=φ

(

qn

j

)

(si/n)j(1 − si/n)qn−j ,
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where q > 32 ln(n). If siq > ln(n), then let φ = (1 + ϕ√
siq

)siq, where ϕ ≤
c
√

ln(n) and c ∈ (2
√

2,≤
√

q/4 ln(n)) is a constant. Combining a Chernoff
type bound [1] with the methods from [7], we obtain

P̃i,φ ≤
(

1

e

)

ϕ2

4
(1−o(1))

.

If siq ≤ 32 ln(n), then we can use the Chernoff bound to show that

P̃(i,(e2+1) ln n) ≤ o(1/n2).

Using the results above, we know that on some node i with siq > ln(n) an
overload of at most c

√

siq ln(n) can occur. If siq ≤ ln(n), then the overload can
be at most (e2 + 1) ln(n). Applying the Cauchy-Schwarz inequality to the sum
of the overloads, we obtain the lemma. 2

Due to the previous lemma, after O(log(log(n))) MRWRs, the maximal load
imbalance is O(log(n)) and the number of tokens producing an overload is
O(n log(n)) (with probability 1 − o(1/n)).

The next lemma handles the case when the number of tokens producing
overload in the system is O(n log(n)).

Lemma 5 Let G = (V,E), |V | = n be a node weighted graph and let q1n be

the number of marked tokens and q2n be the number of “negative tokens” which

perform random walks of length (ad ln(n))/λ2 on G, respectively. If q1, q2 =
O(ln(n)) with q2n − q1n = Ω(n) and q1 > e2 ln(n)/n, then a constant c > 1
exists, such that, after completion of the random walk, the number of tokens

producing overload is less than ⌈q1n/c⌉ with probability 1 − o(1/n). If q1 ≤
e2 ln(n)/n, then an arbitrary marked token is destroyed with probability at least

((e − 1)/e) · (1 − o(1)).

Proof: First, we describe the distribution of the “negative tokens” on G’s
nodes. Obviously, with probability at least 1/2 a token is placed on a node
i with si > 1/2. Using the Chernoff bound [16], it can be shown that with
probability 1 − o(1/n2) at least q2n(1 − o(1))/2 tokens are situated on nodes
with si > 1/2 after a MRWR. With help of the Chernoff bound we can also
show that for any node i with si ≥ c′ ln(n) and c′ being a proper constant,
with probability 1 − o(1/n2) there are at least q2si/2 tokens on i after the
MRWR. If G contains less than c′ ln(n) nodes with normalized processing speed
c′ ln(n)/2j < si < c′ ln(n)/2j−1 for some j ∈ {1, . . . , log(c′ ln(n)) + 1}, then a
token lies on one of these nodes with probability O(ln2(n)/n). Otherwise, if
there are Q > c′ ln(n) nodes with speed c′ ln(n)/2j < si < c′ ln(n)/2j−1, then
at least Q/ρj of these nodes contain more than ⌈q2c

′ ln(n)/2j+1⌉ tokens, where
ρj = max{⌈2/(q2c

′ ln(n)/2j)⌉, 2}.
Now we turn our attention to the distribution of the marked tokens after

an MRWR. Let q1n ≥ √
n. Certainly, w.h.p. q1n(1 − o(1))/2 tokens reside

on nodes with si > 1/2. On a node i with normalized processing speed si >
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c′ ln(n) are placed at most q1si(1 + o(1)) + O(ln(n)) tokens. Therefore, most
of the marked tokens on such heavy nodes will be eliminated by the “negative
tokens”. Let Sj be the set of nodes with c′ ln(n)/2j < si < c′ ln(n)/2j−1, where
j ∈ {1, . . . , log(c′ ln(n))}. We ignore the tokens in sets Sj with |Sj | ≤

√
n, since

their number adds up to at most O(
√

q1n ln2(n)). Each of the other sets Sj with
|Sj | >

√
n, contains nS = Ω(

√
q1n) marked tokens distributed nearly evenly.

Therefore, a constant c′′ exists so that at least nS/c′′ of them are eliminated by
“negative tokens”. If q1n ≤ √

n, then after the MRWR it holds that a marked
token lies on some node i with normalized speed si > 1/2 with a probability of
at least 1/2. If one of these tokes is situated on some node i with si ≥ c′ ln(n),
then it is destroyed by some “negative token” with high probability. If a marked
token resides on some node of the sets Sj , where j ∈ {1, . . . , log(c′ ln(n))}, then
a constant cf > 0 exists such that this token is destroyed with probability 1/cf .
Therefore, a marked token is destroyed with probability of at least 1/(2cf ).

Summarizing, the number of marked tokens is reduced to
√

n after O(ln(n))
MRWRs. Additional O(ln(n)) MRWRs decrease this number to at most O(ln(n)).
These can be eliminated within another O(ln(n)) MRWRs with probability
1 − o(1/n). 2

Combining the Lemmas 4 and 5 we obtain the following theorem.

Theorem 2 Let G = (V,E) be a node weighted graph with maximum vertex

degree d and let λ2 be the second smallest eigenvalue of the weighted Laplacian

of G. Furthermore, let w0 be the initial load and E = maxi |w0
i −wi| the initial

maximal load imbalance. If
∑n

i=1 wi exceeds some certain threshold, then the

randomized algorithm reduces the weighted load in l∞-norm, ||w̃k||∞ to wi/si +
O(1) in k = O((d/λ2)(log(E) + log2(n))) iteration steps with probability 1 −
o(1/n).

Proof: We know that after the first phase the load imbalance in l1-norm is re-
duced to some value O(nt+1), where t is the small discrepancy constant. More-
over, after this phase every node approximates wi within an error of ±1/n2, and
it also follows from the description of the algorithm that this phase takes time
O(d log(n)/λ2). For simplicity, we assume from now on that every node i has
computed the value wi exactly.

As described in the previous paragraphs, we so far have assumed for the
analysis that “negative tokens” and marked tokens do not eliminate each other
instantly, but only after completing a MRWR. However, if they eliminate each
other immediately, then the number of destroyed tokens after a MRWR is at
least half of what we computed in Lemma 4 and Lemma 5.

In order to prove this, we define dead “negative” and marked tokens in
the following way. If a “negative token” and a marked token meet each other
during the execution of the algorithm, they die without eliminating each other.
The dead tokens continue the random walk until an MRWR is finished, and
without influencing any other token in the system. After the MRWR has been
completed, a situation can occur where a live (marked or “negative”) token
cannot be eliminated any more, because its counterparts have been killed before.
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However, they are counted as eliminated in the analysis of Lemma 4 and 5.
Nevertheless, since each of these uneliminated tokens has a dead counterpart,
it holds that the number of eliminated tokens after an MRWR is at least half
of what we computed in Lemma 4 and Lemma 5.

Now, applying lemma 4 and 5 together with the arguments described above,
we can conclude that after k = O((d/λ2)(log(E) + log2(n))) steps it holds that
||w̃k||∞ = wi/si + O(1). 2

In the previous analysis we assume that the tokens are evenly distributed on
the graphs’ nodes after each MRWR. However, after the marked and “negative
tokens” have eliminated each other, the distribution of the remaining entities no
longer corresponds to the stationary distribution of the Markov process. For the
analysis, we therefore perform another MRWR to regain an even distribution.
Indeed, the tokens are not evenly distributed after the elimination step, but
they are close to the stationary distribution in most cases. Hence, the analysis
is not tight what can also be seen in the experiments presented in the next
section. Using the techniques of [25], we could improve the upper bound for the
run-time of the algorithm for special graph classes. However, we do not see how
to obtain better run-time bounds in the general case.

Theorem 2 implies that asymptotic optimal results can also be obtained for
the weighted overload w.r.t. the l1 and l2-norm. Moreover, the results can also
be generalized to dynamic networks (see [9] for the case of arbitrary divisible
tokens). Dynamic networks can be modeled by a sequence (Gi)i≥0 of graphs,
where Gi is the graph which occurs in iteration step i [14]. Let us assume that

any graph Gi is connected and let h ≥ 1/C
∑(k+1)C

i=kC+1(d
i
max/λi

2) for any k ∈ N,

where C is a large constant, di
max represents the maximum vertex degree and

λi
2 denotes the second smallest eigenvalue of Gi’s Laplacian. Then, the random-

ized algorithm reduces ||w̃k||∞ to wi/si + O(1) in k = O
(

h(log(E) + log2(n))
)

iteration steps (with probability 1 − o(1/n)).

4 Experiments

In this section we present some of the experimental results we obtained with
our implementation of the approach proposed in the last Section. Our tests are
performed in two different environments. The first one is based on common
network topologies and therefore mainly considers static settings. However, by
letting each graph edge only be present with a certain probability p in each
iteration, it is possible to simulate e.g. edge failures and therefore dynamics.
The second environment is taken from the mobile ad-hoc network community.
Here, nodes move around in a simulation space and a link between two nodes
is present if their distance is small enough.

The algorithm works as described in Section 3 and consists of two main
phases. First, we balance the tokens as described in [22] only sending the in-
teger amount of the calculated flow. Simultaneously and independently, we
simulate the diffusion algorithm with arbitrarily divisible load. Note, that in
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Table 1: Graphs and some of their properties used in the experiments.

degree
Graph |V | |E|

min avg max
girth diam. λ2

TORUS(16x16) 256 512 4 4.00 4 4 16 0.152241
GRID(16x16) 256 480 2 3.96 4 4 30 0.038429
BFLY(6) 384 768 4 4.00 4 4 9 0.396125
CCC(6) 384 576 3 3.00 3 6 13 0.157764
DEBR(8) 256 509 2 3.98 4 3 8 0.304482
FFT(6) 448 768 2 3.43 4 4 12 0.116233
SE(8) 256 381 1 2.98 3 4 15 0.152241
RAMAN-Q(3,17) 306 606 3 3.96 4 5 7 0.697224
RAMAN-C(3,7) 336 672 4 4.00 4 8 6 1.000000
HYP(8) 256 1024 8 8.00 8 4 8 2.000000

both cases we adapt the vertex degree in non static networks in every iteration
to improve the convergence as shown in [9]. The additional simulation leads
to an approximation of the fully balanced load amount. If its error is small
enough, the second phase of the algorithm is entered. Each node now calcu-
lates its desired load based on its approximated and its current real integer load
situation as it is described in Section 3. Then, the excess load units and the
virtual negative tokens start performing a random walk until the error between
the desired load and the real load becomes small enough.

4.1 Network topologies

The network types included in our tests are general interconnection topologies
like Grid, Torus, FFT, Butterfly (BFLY), Shuffle-Exchange (SE), Cube Con-
nected Cycle (CCC), de Bruijn (DEBR), and Hypercube (HYP) networks. All
of these topologies are well known and some of them are designed to have many
favorable properties for distributed computing, e.g. a small vertex degree and
diameter and large connectivity. Furthermore, we also include Ramanujan (RA-
MAN) graphs that are described in [20]. An overview on some of the graphs’
properties are displayed in Table 1. In all settings, |V |2 tokens are initially
placed on a single node and an edge fails with 10% probability. Furthermore,
the nodes processing speed varies from 0.8 to 1.2.

Figure 1 demonstrates the algorithm’s behavior on the 16 × 16 Torus. Ap-
plying FOS, the maximal weighted load in the system (left) is initially re-
duced quickly, while in the end many iterations for only small improvements
are needed. At some point, due to the rounding, no further reduction will be
possible. This is also visible when looking at the corresponding l2 error (right,
fos(int):error) which stagnates at around 200.0. In contrast, the error of the
arbitrarily divisible load simulation (fos(real):error) converges steadily. Hence,
the proposed load balancing algorithm switches to random walk in iteration 277.
One can see (left) that this accelerates the load distribution and leads also to
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Figure 1: Balancing tokens on the 16x16 Torus.
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Figure 2: Balancing tokens on the Ramanujan Graph RAMAN-Q(3, 17).

a smaller maximal weighted load than FOS can ever achieve. Note, that the
optimal load for each node is not exactly known when switching. Hence, the
error of the unit-size token distribution (right, rnd(int):error) cannot exceed the
one of the approximated solution (rnd(real):error).

A similar behaviour can be observed on the Ramanujan graphs and the
Hypercube given in Figures 2 and 3. Compared to the Torus, these topologies
posses much better properties (the second smallest eigenvalue of their Laplacian
λ2 is large), and therefore the diffusion process converges much faster. Note that
although the Hypercube has better properties than the Ramanujan graph, its
large degree and the resulting rounding operations prevent the distribution of
indivisible load if using diffusion only. Hence, the benefit of the randomized
approach is higher.

Further observations concerning varying parameters reveal that an increased
edge failure probability slows the algorithm down. However, it also slightly im-
proves the balance that can be achieved with diffusion, because the average ver-
tex degree is smaller and therefore the rounding error decreases. Furthermore,
we observe that the number of additional iterations needed is much smaller than
expected regarding the theoretical increase of the bound through the additional
logarithmic factor.
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Figure 3: Balancing tokens on the Hypercube HYP(8).
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Figure 4: Balancing tokens in a mobile ad-hoc network with slow node move-
ment.

4.2 Mobile ad-hoc networks

The second environment we use to simulate load balancing is a mobile ad-
hoc network (Manet) model. The simulation area is the unit-square and 256
nodes are placed randomly within it. Prior to an iteration step of the general
diffusion scheme, edges are created between nodes depending on their distance.
Here, we apply the disc graph model (e.g. [28]) which simply uses a uniform
communication radius for all nodes. After executing one load balancing step, all
nodes move toward their randomly chosen way point. Once they have reached it,
they pause for some iterations before continuing to their next randomly chosen
destination. This model has been proposed in [19] and is widely applied in the
ad-hoc network community to simulate movement. Note, that when determining
neighbors as well as during the movement, the unit-square is considered to have
wrap-around borders, meaning that nodes leaving on one side of the square will
reappear at the proper position on the other side. For the experiments, we
average the results from 25 independent runs.

The outcome of two experiment is shown in Figures 4 and 5. In both exam-
ples the communication radius is set to 0.1. While the nodes move quite slowly
in the first setting with speeds between 0.001 and 0.005, they are ten times
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Figure 5: Balancing tokens in a mobile ad-hoc network with fast node movement.

faster in the second one. Furthermore, a node pauses for 3 iterations after it
has reached its destination.

From the results one can conclude that, in contrast to the former results ob-
tained for static network topologies, load can be better balanced when applying
FOS only. This is due to the vertex movement which is an additional, and in
later iterations the only mean to spread the tokens in the system. Higher move-
ment rates will increase this effect. Nevertheless, the randomized algorithm is
again able to speed up the load balancing process in both cases and is reaching
an almost equalized state much earlier.

5 Conclusion

The presented randomized algorithm balances unit-size tokens in general het-
erogeneous and dynamic networks without global knowledge. It is able to reduce
the weighted maximal overload in the system to O(1) with only slightly increas-
ing of the run-time by at most a factor of O(ln(n)) compared to the general
diffusion scheme. From our experiments, we can see that this additional factor
is usually not needed in practice.
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