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Abstract

In this paper we study simple families of clustered graphs that are
highly unconnected. We start by studying 3-cluster cycles, which are
clustered graphs such that the underlying graph is a simple cycle and
there are three clusters all at the same level. We show that in this case,
testing the c-planarity can be done efficiently and give an efficient drawing
algorithm. Also, we characterize 3-cluster cycles in terms of formal gram-
mars. Finally, we generalize the results on 3-cluster cycles considering
clustered graphs that have a cycle structure at each level of the inclusion
tree. We present efficient c-planarity testing and drawing algorithms also
for this case.
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1 Introduction

Given a graph, a cluster is a non-empty subset of its vertices. A clustered graph
C(G,T) consists of a graph G and a rooted tree T such that the leaves of T
are the vertices of G (see Fig. 1 for an example). Each internal node v of T
corresponds to the cluster V(v) of G whose vertices are the leaves of the subtree
rooted at v. The subgraph of G induced by V(v) is denoted as G(v). An edge e
between a vertex of V(v) and a vertex of V — V(v) is said to be incident on v.
Graph G and tree T are called underlying graph and inclusion tree, respectively.

Figure 1: An example of a clustered graph and its inclusion tree.

Several applications may benefit from drawing clustered graphs. In many
areas, as, for example, networking and telecommunications, the vertices of the
graphs are naturally partitioned into clusters, and the representation of such
clusters, which is generally required by the applications, may be also of help in
the challenge of exploring large amounts of data [15]. Conversely, clusters may
be artificially introduced with the purpose of navigating large graphs, allowing
representations at different levels of abstraction (see for example [8]).

In a drawing of a clustered graph C(G, T') vertices and edges of G are drawn
as points and curves as usual [6], and each node v of T is a simple closed region
R(v) such that: (i) R(v) contains the drawing of G(v); (ii) R(v) contains a
region R(u) if and only if u is a descendant of v in T'; and (iii) any two regions
R(v1) and R(v2) do not intersect if vy is not a descendant or an ancestor of vs.

Consider an edge e and a node v of T'. If e is incident on v and e crosses the
boundary of R(v) more than once, we say that edge e and region R(v) have an
edge-region crossing. Also, edge e and region R(v) have an edge-region crossing
if e is not incident on v and e crosses the boundary of R(v). A drawing of a
clustered graph is c-planar if it does not have edge crossings and edge-region
crossings. A clustered graph is c-planar if it admits a c-planar drawing. The
concept of c-planarity extends that of planarity, which is a recognized aesthetic
criterion for graph drawings.

Clustered planarity, because of its practical impact and because of its theo-
retical appeal, attracted many research contributions.
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Feng, Cohen, and Eades devised the first polynomial time c-planarity testing
algorithm for connected clustered graphs [13, 14]. A clustered graph is connected
if for each node v of T we have that G(v) is connected (for example, the clustered
graph in Fig. 1 is connected). Based on the above result, multilevel, straight line,
or orthogonal drawings of connected c-planar graphs can be obtained by using
the techniques described in [9, 10, 11], respectively. More recently, Dahlhaus [4]
claimed to have improved the time bound of [13, 14] with a linear time algorithm.
A planarization algorithm for (non-c-planar) connected clustered graph is shown
in [5].

However, the complexity of the c-planarity testing for an unconnected clus-
tered graph is still unknown.

A contribution on this topic has been given by Gutwenger et al. who pre-
sented a polynomial time algorithm for c-planarity testing for almost connected
clustered graphs [16]. In almost connected clustered graphs either all nodes
corresponding to unconnected clusters are in the same path in T starting at
the root of T', or for each unconnected cluster its parent and all its siblings
are connected. Note that the set of almost connected clustered graphs contains
that of connected clustered graphs (see Fig. 2). Another contribution studying
the interplay between c-planarity and connectivity has been presented in [3] by
Cornelsen and Wagner. They show that a completely connected clustered graph
is c-planar iff its underlying graph is planar. A completely connected clustered
graph is so that not only each cluster is connected but also its complement is
connected.

Clustered Graphs

Almost connected

Connected

Completely
Connected

Figure 2: Classes of clustered graphs.

With the purpose of investigating the complexity of c-planarity testing in
the general case, we focus on simple classes of unconnected clustered graphs.
We say that a clustered graph C(G,T) is flat if T has depth two, that is, if all
the clusters are at the same level with the exception of the root of T'. In such
a case, a clustered graph is equivalently described by a graph G and a labeling
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of its nodes with labels {l1,ls,...,l;}, where k is the number of clusters at the
lower level. We say that a flat clustered graph is a k-cluster graph if such a
labeling uses k different labels.

For 2-cluster graphs, the results in [1, 2] by Biedl, Kaufmann, and Mutzel
can be interpreted as a linear time c-planarity test for unconnected clustered
graphs. A similar result can be obtained from the work of Di Battista, Liu
and Rival [7], where it is shown that a planar bipartite graph always admits an
upward drawing.

As far as we know, the complexity of testing whether a 3-cluster graph
is c-planar is still open. In this paper we restrict our attention to 3-cluster
graphs whose underlying graph is a cycle. Discovering the complexity of find-
ing c-planar drawings of 3-cluster cycles may help investigating the c-planarity
problem for 3-cluster graphs.

Fig. 3.a provides an example of a 3-cluster cycle. As it is shown in the
following sections, the problem of finding a c-planar drawing for the 3-cluster
cycle of Fig. 3.a is equivalent to the problem of adding new edges so that: (i)
the new graph (i.e., cycle plus new edges) is planar and (ii) for each label, the
subgraph induced by the vertices with that label is connected. In the case of
Fig. 3.a the problem admits a solution, depicted in Fig. 3.b. The set of edges
added to the cycle, which we call the saturator, is used to “simulate” the closed
regions containing the clusters (See Fig. 3.c). Observe that the clustered graph
of Fig. 3 is not connected.

Figure 3: (a) An example of a cycle with labels in {a, b, c}. (b) The cycle with
extra edges. (c) The corresponding clustered drawing of the cycle.

In this paper we present the following results.

e In Section 3 we study 3-cluster cycles. We show that in this case testing
the c-planarity can be done efficiently. We also give an efficient drawing
algorithm. Further, we show that in this specific case, if the c-planarity
problem admits a solution then a saturator exists that is composed only
of simple paths.

e In Section 4 we characterize 3-cluster cycles in terms of formal grammars.
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e Finally, in Section 5 we generalize the results on 3-cluster cycles consid-
ering clustered graphs that have a cycle structure at each level of the
inclusion tree. Even in this case we present efficient c-planarity testing
and drawing algorithms.

Section 2 contains preliminaries, while conclusions and open problems are in
Section 6.

2 Preliminaries

We assume familiarity with connectivity and planarity of graphs [6, 12]. We
also assume familiarity with formal grammars [17].

Given an unconnected clustered graph C(G,T), a saturator of C' is a set of
edges that can be added to the underlying graph G so that C' becomes connected.
If G with the added edges is c-planar, we say that the saturator is planar, non-
planar otherwise. It is easy to see that an unconnected clustered graph is
c-planar iff it admits a planar saturator. Finding a saturator of a clustered
graph is important since it allows us to apply to C' the same drawing techniques
that have been devised for connected clustered graphs.

We define a 3-cluster cycle as a clustered graph such that the underlying
graph is a simple cycle and there are exactly three clusters all at the same level
(plus the root cluster). In a 3-cluster cycle the inclusion tree consists of a root
node with three children. Each vertex of the underlying cycle is a child of one
of these three nodes. Given a 3-cluster cycle, we associate a label in {a,b, c}
with each of the three clusters. Observe that there exist 3-cluster cycles that
are not c-planar. Fig. 4 provides an example of a non-c-planar 3-cluster cycle.

Figure 4: The smallest 3-cluster cycle that is not c-planar. (a) The cycle with
labels; the dashed lines represent the unique saturator. Note that the cycle and
its saturator form a K3 3 graph, and thus the saturator is not planar. (b) The
corresponding inclusion tree.

Consider a 3-cluster cycle and arbitrarily select a starting vertex and a direc-
tion. We can visit the cycle and denote it by the sequence o of labels associated
with the clusters encountered during the visit. The same 3-cluster cycle is also
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denoted by any cyclic permutation of ¢ and by any reverse sequence of such
permutations. We use Greek letters to denote general sequences and Roman
letters to identify single-character sequences. Given a sequence o, we denote
with @ its reverse sequence.

It is easy to see that repeated consecutive labels can be collapsed into a single
label without affecting the c-planarity property of a 3-cluster cycle. Hence, in
the following we consider only 3-cluster cycles where consecutive vertices belong
to distinct clusters. Also, since clusters can not be empty, in a 3-cluster cycle
at least one occurrence of each label can be found.

We assign a cyclic order to the labels a,b,c so that a < b, b < ¢, and
¢ < a. A sequence o is monotonic increasing (decreasing) if for each pair x,y
of consecutive labels of o, z < y (y < x). A sequence is cyclically monotonic
increasing (decreasing) if all its cyclic permutations are monotonic increasing
(decreasing).

Given a 3-cluster cycle o, Balance(o) is a number defined as follows. Select a
start vertex and a direction. Set counter C to zero. Visit o adding (subtracting)
one unit to C when passing from = to y, where z < y (y < z). Observe
that, when the start vertex is reached again, C is a multiple of 3 that can
be positive, negative, or zero. If we selected a different start vertex, while
preserving the direction, we would obtain the same value. On the contrary, if o
was visited in the opposite direction, the opposite value would be obtained for C.
Balance(o) = |C|. For example, Balance(ababe) = 3 and Balance(cbacba) = 6.

Observe that, when representing a 3-cluster cycle with a sequence of labels,
by reading the sequence from left to right, we implicitly choose a direction
for visiting the cycle. For simplicity, we adopt the convention of representing
a 3-cluster cycle with a sequence o such that, when the vertices of the cycle
are visited according to the order induced by o, a non-negative value for C is
obtained.

3 Cycles with Three Clusters

In this section we address the problem of testing the c-planarity of a 3-cluster
cycle. Lemma 1 introduces a transformation, called “zig-zag removal”, that can
be applied to a 3-cluster cycle to obtain a smaller 3-cluster cycle which is c-planar
if and only if the starting 3-cluster cycle is c-planar. Lemma 2, by repeatedly
applying the above mentioned transformation, shows that any 3-cluster cycle
can be reduced to a trivial 3-cluster cycle which is either cyclically monotonic
or it is composed by two maximal monotonic subsequences. Lemma 3 and
Lemma 4 show how to test c-planarity for these two kinds of 3-cluster cycles.
Finally, Theorems 1, 2, and 3 state the main results about c-planarity of 3-
cluster cycles.

Lemma 1 (Zig-zag removal) Let 0 = oyzayazayos be a 3-cluster cycle such
that 01, 02, and « are possibly empty and xay is monotonic. The 3-cluster cycle
T = o1xQyoy is c-planar if and only if o is c-planar. Balance(o) = Balance(T).
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Figure 5: llustration for the proof of Lemma 1. Circles represent clusters.

Before showing a formal proof for this Lemma, we give an intuitive descrip-
tion of the main idea used for the proof.

Suppose there exists a c-planar drawing of 7. The black line in Fig. 5 shows
an example of such a drawing for the portion concerning subsequence xay.
Introduce between y and the first vertex of oo the sequence @xay, drawing it
suitably close to xay so to preserve c-planarity. The result is shown in Fig. 5
where the added part is drawn gray.

Figure 6: Zig-zag removal. (a) Starting configuration. (b) Rearrangement of
the embedding.

Conversely, suppose that there exists a c-planar drawing of o. Fig. 6.a shows
an example of such a drawing for the part concerning subsequence xayazay.
The inlet formed by xayaz may contain parts of o that are denoted by @ in
Fig. 6.a. Analogously, the parts of o that are contained in the inlet formed
by yazay are denoted by P. The embedding of P and () may be rearranged
preserving c-planarity as shown in Fig. 6.b. Path azay can now be replaced
with an edge connecting vertex y with the first vertex of 5.
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A formal proof for Lemma 1 follows.

Proof: In the following we use primes to distinguish different occurrences of
the same character (as in 2’ and z”’) or of the same substring (as in o’ and &).
According to this notation o = o12’d’y'@z" o y" o9 and 7 = o127’ a’y o5.

We denote by k the length of the sequences o', @, and o’. We denote with
a(j) the j-th vertex of sequence « where j € {1,...,k}. Suppose that there
exists a c-planar drawing I'; of 7. (Fig. 7.a shows an example of such a drawing
for the part related to the subsequence z’a’y’.) We prove that o is c-planar by
constructing a c-planar drawing I',, in the following way.

All vertices and cluster boundaries of I'; are drawn in ', in the same way
as in I';. Edges of I'; are drawn in I', in the same way as in I', with the
exception of the edge between 3’ and the vertex z following % in 7. Such an
edge is replaced by the path @z”a”y” with @ connected to y’ and vy’ connected
to z. This path is drawn as follows. Vertex z” is placed arbitrarily near to z’
in the region of I', that is on the left side of the edge joining 2’ with «/(1).
Vertex 3" is placed arbitrarily near to ¢’ in the region of I', that is on the left
side of the edge joining y’ with o'(k). For each vertex o/(j) the corresponding
vertex @(k — j + 1) is placed arbitrarily near to o/(j) into the region that is
on the left side when traversing o’ from z’ to 3’. The path y'@z” can now
be connected without crossings since the edges of @ can be drawn arbitrarily
close to the edges of o (see Fig. 7.b). Analogously, for each vertex of @(j)
the corresponding vertex of o'(k — j + 1) is placed arbitrarily near to @(j)

X «m] \e@f e/ \y

)

O3

Figure 7: (a) The drawing of 2’a’y’ in T';.. The gray zones are part of cluster
regions. Note that 7 may pass through each cluster many times. (b) After the
insertion of path y'az”. (c) After the insertion of path z”«a’y”, the last edge is
connected to the first vertex of os.
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Figure 8: (a) The drawing of z’a/y'a@a”a”y"” in I';. The gray zones are part

of cluster regions. Note that 7 may pass through each cluster many times. (b)

The drawing of ', after y'az”a’'y"” was deleted and P was moved

into the region that is on the right side when traversing @ from g’ to z’/. The
path 2”7a’'y"” can now be connected without crossings since edges of o can be
drawn arbitrarily close to the edges of @ (see Fig. 7.c). Finally, vertex y” can
be connected to z, crossing the boundary of cluster y only. The drawing I', is
c-planar, since the set of edges added to I'; do not generate edge crossings or
edge region crossings.

Suppose o is c-planar and I, is a c-planar drawing of it. We prove that 7 is
c-planar by showing how to build a c-planar drawing I', starting from I',.

Call A; the set of edges of 2'a/y’, A the set of edges of y'ax”, and Ay the
set of edges of z”"a”y”. In T, (see Fig. 8.a) the inlet delimited by y'ax"a”y"”
and by the part of the border of cluster y between the edges y'a(k) and o' (k)y
may contain some parts of o. Call P the set of edges of such parts including
those that cross the border of the cluster of y’. Analogously, consider the inlet
delimited by z’a’y'@x” and by the part of the border of the cluster of 2’ between
the edges 2'a/(1) and @(1)a”. This inlet may contain some parts of o. Call Q
the edges of the subgraph in this inlet including those that cross the boundary
of the cluster of z'.

To construct I'; we delete the path az”a’y”. Then, we move the subgraph
induced by P, which is on the left side of 2’a’y’, to the right side of 2'a/y’ (see
Fig. 8.b). This operation may be performed without introducing intersections
by suitably shrinking the graph induced by P and placing it close to a’. Note
that at this point the subgraph induced by P and the subgraph induced by @

1
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are on the opposite sides of x’'a’y’, and that g can be connected to the vertex
z following 4’ in 7 crossing the boundary of the cluster of 4’ only.

Finally, observe that, since we have removed from ¢ two monotonic sub-
sequences, one increasing and one decreasing, with the same length, Balance(r)
= Balance(o). O

Lemma 1 allows, for example, one to study the c-planarity of cabcab instead
of the c-planarity of cabcacbabecab (by taking o1 = ¢, x = a, o = be, y = a, and
09 = b)

Figure 9: Hlustration for the proof of Lemma 2.

Lemma 2 Let o be a 3-cluster cycle. There exists a 3-cluster cycle T such
that: Balance(t) = Balance(o), T is c-planar iff o is c-planar, and either T is
cyclically monotonic or T = xay, where

1. « and B are non-empty,
2. xay is maximal monotonic increasing, and

8. yPBx is mazrimal monotonic decreasing.

Proof: If o is cyclically monotonic the statement is trivially true. If o is
monotonic but not cyclically monotonic note that the length of o is at least 4.
Suppose 0 = z1T20123%4, With oy possibly empty, and suppose without loss
of generality that o is monotonic increasing (otherwise & can be considered).
Since all the subsequences of ¢ are monotonic increasing and 41 T2 23 is not
monotonic, it follows that x4z is monotonic decreasing. Thus, Lemma 1 can be
applied to z3x4xix2001, Where o1 and « are empty, * = 3 = x1, Yy = T4 = T3,
and oo = o/, obtaining the cycle x3z40’ = x1220’, which is cyclically monotonic
increasing and which is c-planar iff o is c-planar.

Otherwise, suppose ¢ is not monotonic. Sequence ¢ is composed by m > 2
maximal monotonic sub-sequences. Namely, let 0 = 112205 . . . Ty, Where
;%11 18 maximal monotonic and «; is possibly empty (41 = z1). If
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m = 2, then, since ¢ is not monotonic, both a; and as are non-empty and the
statement of the lemma holds. If m > 2, by applying Lemma 1 we prove that
there exists a sequence composed by m — 2 maximal monotonic subsequences
that is c-planar iff ¢ is c-planar. By repeatedly applying this argument we find
a sequence composed by one or two maximal monotonic subsequences for which
one of the cases discussed above applies.

In order to reduce the number m of maximal monotonic sub-sequences by
applying Lemma 1, assume that «; is one of the shortest of such sub-sequences
(see Fig. 9) and consider the sub-sequence x;_1q;_12;0; ;11112 +2. Observe
that it is possible to find in z;_10;—1 an = and in o;y12,42 a y, such that
T = Ti11, Y = T4, and Lemma 1 can be applied where 2’ = x, 3y’ = x;, 2/ = 2411,
y" = y, a is the sequence of labels encountered traveling from z to x; (end
vertices excluded), and @ = «; (see Fig. 9). O

The following two lemmas (Lemma 3 and Lemma 4) study the c-planarity
of the simple families of 3-cluster cycles cited in Lemma 2.

Lemma 3 A 3-cluster cycle o such that o is cyclically monotonic is c-planar
if and only if Balance(o) = 3.

Proof: Since ¢ is monotonic we have that Balance(o) # 0. Recall that
Balance(o) is a multiple of 3. If Balance(oc) = 3, then it can only be the
case that ¢ = abc or ¢ = bca or ¢ = cab and it is trivial to see that o is
c-planar.

Suppose that Balance(o) > 6. We show that o is not c-planar. Suppose by
contradiction that there exists a c-planar drawing I', of 0. Since Balance(o) > 6
each cluster has at least two vertices, and since the sequence is monotonic any
three consecutive vertices of o belong to three distinct clusters. Consider two
vertices v; and vo belonging to the same cluster Z and such that it is possible to
add an edge (v1,v2) preserving the planarity of the drawing (see Fig. 10). Let
p1, N1, P2, and ng be the intersection points between the edges incident to v
and vy and the border of cluster Z in T, such that point p; (resp. ps) precedes
v1 (resp. v2) and point ny (resp. ng) follows vy (resp. v2) when moving along the
cycle o. Since o is monotonic, when moving from v; along o and exiting cluster
Z at point ni, one reaches point py before reaching point p;. Analogously,
when moving from vy along o and exiting cluster Z at point ns, one reaches
point p; before reaching point ps. A contradiction arises from the fact that the
c-planarity of o implies the planarity of a K33 graph with vertices {v1, p2,n2}
and {va,p1,m1}. In fact, p; and pa (resp. ny and n2) can be connected with an
edge along the border of Z, and the path from n; to py (resp. na to p1) can be
replaced with a single edge. O

Lemma 4 Let 0 = xzayfB be a 3-cluster cycle, where o and 3 are non-empty,
xay is mazximal monotonic increasing, and yBx is maximal monotonic decreas-
ing. We have that o is c-planar iff Balance(o) is in {0, 3}.
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Figure 10: Illustration for the proof of Lemma 3. Triangular and square vertices
show the subdivision of K3 3.

Figure 11: The construction of a c-planar drawing for a cycle ¢ when
Balance(o) = 0 (a) and when Balance(o) = 3 (b).

Proof: Let Balance(o) = 3k, with k a non-negative integer. Suppose k is equal
to 0 or 1. A c-planar drawing of ¢ can be constructed by placing the vertices
on three half-lines as in the examples shown in Fig. 11.a and 11.b, respectively.
The vertices of each half-line can be enclosed into a region representing their
cluster.

Suppose that £ > 1. We show that ¢ is not c-planar. Suppose for a contra-
diction that o is c-planar and let ', be a c-planar drawing of o.

Since o is composed of two monotonic subsequences, there are exactly two
“cusps” (vertices adjacent to two vertices of the same cluster). Therefore, there
is at least a cluster Z such that each vertex z of Z belongs to a sub-sequence
p = xzy or p = yzx of o, with © # y. Since k > 1, the difference between
the number of vertices of Z belonging to a sub-sequence p and the number of
vertices of Z belonging to a sub-sequence p is at least two (see Fig. 12). It
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Figure 12: Tllustration for the proof of Lemma 4.

follows that two vertices v1 and vo can be identified such that they belong to a
sub-sequence of the same kind (p or p) and such that it is possible to add an
edge (v1,vy) preserving the planarity of the drawing. A contradiction can be
found by applying the same argument of Lemma 3 to v; and vs. O

Because of Lemma 2, Lemma 3, and Lemma 4, the problem of testing
whether a 3-cluster cycle o is c-planar can be reduced to the problem of com-
puting Balance(c). Since it is easy to compute Balance(o) in linear time (see
Section 2), the following theorem holds.

Theorem 1 Given an n-vertex 3-cluster cycle, there exists an algorithm to test
if it is c-planar in O(n) time.

In what follows we introduce a simple algorithm which guarantees the com-
putation of a c-planar drawing of a 3-cluster cycle, if it admits one, in linear
time. Consider a 3-cluster cycle o with Balance(o) € {0,3}. Set a counter C to
zero. Visit o starting from the first vertex and adding (subtracting) one unit to
C when passing from z to y, where < y (y < x). Remember that by convention
a 3-cluster cycle is represented with a sequence o such that, when the vertices
of the cycle are visited according to the order induced by ¢ a non-negative value
for C is obtained. Without loss of generality we will further assume that C never
reaches a negative value. Otherwise, we can replace o with an equivalent cyclic
permutation ¢’ that has the above property. Permutation ¢’ can be obtained
in linear time from o by choosing as a starting vertex one for which the counter
reaches the minimum value during the visit. Let K be the maximum value
assumed by C during the visit.

We say that a vertex of o belongs to the k-th level iff C has value k when
reaching such a vertex. The first vertex of o belongs to level 0. Note that each
level contains vertices of the same cluster. Also, vertices belonging to level k
and level k + 3 belong to the same cluster. We denote with o] the sequence o
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restricted to level k, obtained from o by deleting all the vertices not belonging
to the k-th level.

We construct a planar saturator in the following way. For each level k €
{0,..., K}, we connect with an edge each pair of consecutive vertices of o|g.
For each level k € {0,..., K — 3}, we insert an edge connecting the first vertex
of ol with the last vertex of ok 3.

Level

o P N W > 00O N

Figure 13: The construction of a c-planar drawing of a 3-cluster cycle ¢ in the
case in which Balance(o) = 3.

In order to show that the above defined saturator is planar we provide a
c-planar drawing of the graph composed by the cycle and the saturator (see
Fig. 13). First, we arrange all the vertices of o on a grid: the x-coordinate of a
vertex is its position in ¢ and the y-coordinate is its level. Then, we draw each
edge of the cycle (excluding the one connecting the first and the last vertex
of o) with a straight segment without introducing intersections. Second, for
each level k € {0,..., K}, we draw those edges of the saturator that connect
pairs of consecutive vertices of o|; with straight segments without introducing
intersections. Note that, the sequence of the clusters at levels 0,..., K — 3 is
the same as the sequence of the clusters at levels 3,..., K. Also, note that at
this point of the construction, for each k& € {0,..., K}, the first and the last
vertices of ol are on the external face. Hence, the drawing can be completed
without intersections by adding, for each level k € {0,..., K — 3}, the edge of
the saturator connecting the first vertex of o, with the last vertex of o3 as
shown in the example of Fig. 13. Finally, since the first and the last vertex of o
are on the same face, they can be connected with a curve contained into such a
face without introducing intersections.
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It is easy to implement the above algorithm to work in linear time by building
the lists of vertices for each level while visiting 0. Notice that K is bounded by
the number of the vertices of the cycle.

Hence, we can state the following result.

Theorem 2 Given an n-vertex c-planar 3-cluster cycle o, there exists an algo-
rithm that computes a c-planar drawing of o in O(n) time.

From the above construction we also have the following.

Theorem 3 A c-planar 3-cluster cycle admits a planar saturator that is the
collection of three disjoint paths.

4 Clusters and Grammars

In this section we characterize the c-planar 3-cluster cycles in terms of formal
grammars. Namely, we show that the sequences representing such cycles are
those generated by a context-free grammar.

We denote by £ the language of all strings on the alphabet {a,b,c} such
that each string:

(1) contains at least one instance of each label,
(2) does not contain repeated consecutive letters, and
(3) does not start and end with the same letter.

Observe that £ describes all possible 3-cluster cycles. The following lemma
holds:

Lemma 5 L is a reqular language.

Proof: The statement can be easily proved by showing that language £1 (Lo,
L3, respectively) of all the strings on the alphabet {a, b, ¢}, such that property
1 (2, 3, respectively) holds, is regular, and the intersection between regular
languages is a regular language. In turn, the fact that £q, Lo, and L3 are
regular languages can be easily proved by showing that they admit a regular
expression. O

Theorem 4 The following context-free grammar generates all and only the c-
planar 3-cluster cycles:

S — Zy|Zs

Zy — ABCB|ACBC|BCAC|BACA|CABA|CBAB
Z3 — ABC|BCA|CAB

A — ABA|ACAla
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B — BAB|BCB|b
C — CAC|CBC|c

Proof: The proof exploits the same considerations used to prove Theorem 1.
Note that symbol Zy generates all 3-cluster cycles o with Balance(o) = 0 and
symbol Z3 generates all 3-cluster cycles with Balance(o) = 3. O

Theorem 5 The language of the c-planar 3-cluster cycles is not reqular.

Proof: The proof exploits the equivalence classes of the Myhill-Nerode theorem:
given a language L two strings « and [ are said to be equivalent if for each
string v, ay and (v both belong or both do not belong to L. Language L is
regular iff the number of equivalence classes induced by the above equivalence
relation is finite [17]. For each integer n > 1, denote by «, the string (abc)™.
For each pair n, m, with n < m, «, concatenated with 7, = (acbh)"~! yields
a string of the language (corresponding to a c-planar cycle with balance 3)
while «,,, concatenated with ~, yields a string not belonging to the language
(corresponding to a c-planar cycle with balance greater than 3). Thus, for
n < m, a, and a,, belong to two different equivalence classes. It follows that
there is at least one equivalence class [a,] for each n > 1 and thus the language
of the c-planar 3-cluster cycles is not regular. O

From the above two theorems, we have that the language of the c-planar
3-cluster cycles is strictly context-free.

5 Cycles in Cycles of Clusters

In this section we present a generalization of the results of Section 3. First, we
generalize the results on 3-cluster cycles to k-cluster cycles. Second, we tackle
the general problem of testing the c-planarity of a cycle that is clustered into a
cycle of clusters that is in turn clustered into another cycle of clusters, and so
on. An example is shown in Fig. 14. Fig. 14.a shows a c-planar clustered graph
whose underlying graph is a cycle for which two levels of clusters are defined.
Fig. 14.b puts in evidence the inclusion relationships between clusters of a given
level and clusters of the level directly above it. The same figure shows also that
the clusters of each level form a cycle (dashed edges).

We start by introducing preliminary assumptions and definitions. We con-
sider clustered graphs C'(G,T) in which all the leaves of the inclusion tree T'
have the same distance from the root. We call this distance the depth. A clus-
tered graph which does not have this property can be easily reduced to this
case by inserting “dummy” nodes in T. Hence, from now on we consider only
inclusion trees whose leaves are all at the same depth. We define as G!(V!, EY)
the graph whose vertices are the nodes of T' at distance [ from its root, and an
edge (u,v) exists if and only if an edge of G exists incident to both p and v.

For example, G° has only one vertex and G*, where L is the depth of the
tree, is the underlying graph G of C(G,T). We label each vertex v of G! with
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Figure 14: A clustered graph where at each level of the inclusion tree the nodes
form a cycle. (a) A c-planar drawing. (b) The inclusion tree augmented with
dashed edges that show the adjacencies between nodes at the same level.

the cluster (corresponding to a vertex of G'~!) to which v belongs. If G! is a
cycle, then it is possible to describe G! with the cyclic sequence of the labels
of its vertices. If also G'~! is a cycle, we consider the labels of G! cyclically
ordered according to the order they appear in G!~1. Further, Balance(G') can
be defined as in Section 3 with values in {0, k, 2k, 3k, ...}, where k is the length
of G'=1.

According to the above definitions a 3-cluster cycle is a clustered graph where
T has depth 2, G? is a cycle and G! is a cycle of length 3. In fact, the results
of Section 3 can be extended to the case in which G is a cycle of an arbitrary
length.

Theorem 6 Given an n-vertex clustered graph C(G,T), such that T has depth
2 and G' and G? are cycles, then:

1. there exists an algorithm to test if C is c-planar in O(n) time;

2. if C is c-planar, a c-planar drawing of C' can be computed in O(n) time.

Proof: The proof exploits the same considerations and constructions of Theo-
rems 1 and 2. If the length of G is k then C is c-planar iff Balance(G?) € {0, k}.
In order to find a c-planar drawing of C, if it exists, the same strategy described
in Section 3 can be applied, where, since in the construction depicted in Fig. 13
vertices belonging to level j and level j + k belong to the same cluster, an edge
of the saturator is added between the first vertex of level j and the last vertex
of level j + k. O
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Let C(G,T) be a clustered graph and [ be an integer between 1 and L, where
L is the depth of T. A new clustered graph C'(G,T") can be obtained from C
by replacing T with a tree 7" obtained from T by connecting all the nodes at
depth [ with the root and deleting all the nodes having depth greater than zero
and less than [. According to this definition, C* = C. The c-planarity of C! can
be used to study the c-planarity of C'~!, as is shown in the following lemma.

Lemma 6 Let C(G,T) be a clustered graph and l be an integer between 2 and
L, where L is the depth of T. Let C' be c-planar, G* be a cycle, and G*~* be a
cycle of length k. C'=! is c-planar iff Balance(G') € {0, k}.

Internal

»" 2 ~‘~\s‘ f
N e
A . (External

Figure 15: (a) Drawing I'c: of G with edges of the planar saturator added to
the external or internal face. (b) Drawing I'c: in which two faces (called the
internal and external face) touching all the clusters can be found. (c) saturator
edges joining suitable vertices of ['ci.

Proof: First, we prove that if Balance(G') € {0,k}, then C'~! is c-planar
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by producing a planar drawing I'ci-1 of it. Since Balance(G') € {0,k}, then
there exists a planar drawing I'ci of G' augmented with the edges of a planar
saturator connecting vertices of G! with the same label. The edges of this planar
saturator are drawn in ' either internally or externally with respect to the
cycle G! (see Fig. 15.a).

Let I'c: be a planar drawing of the underlying graph G augmented with the
edges of a planar saturator of C'. Such a drawing exists because C! is c-planar.
Two faces of I' i are incident to at least one vertex belonging to v for each vertex
v of G' (see Fig. 15.b).We call such faces f; and f., where f. is the unbounded
one. Also, we denote with vy, , (vy, ) an arbitrary vertex of v incident to f;
(f.):

A saturator of C'~! can be constructed from the planar saturator of C! by
adding one edge ¢’ for each edge e of the planar saturator of G! (see Figure 15.c).
Edge ¢’ is added within f; (f.) if e is drawn internally (externally) in I'ci. Let
v and p be the end vertices of e. Suppose, without loss of generality, that e is
added externally. Edge €’ is attached to vy, ,, and vy, ,,. The obtained saturator
is planar since the starting drawing I': is planar, and two edges of the saturator
can not intersect in I'ci-1 since they don’t intersect in I'ci.

The second part of the proof shows that if C*~! is c-planar then
Balance(G') € {0,k}. Assume that there exists a planar saturator S of C'~1.
Consider graph G’ obtained by adding to G the edges of the planar saturator S.
For each cluster p that is a vertex of G! we contract all edges of G’ which have
both extremes in p (we use label u to denote the resulting vertex) and remove
multiple edges. Note that since the edges of S make each cluster connected we
obtain a new graph G” with the following properties:

e there is a one-to-one correspondence among the vertices of G! and the
vertices of G,

e for each edge of G! there is a correspondent edge in G”.

Since the contraction operation preserves planarity and connectivity, the edges
of S that were incident to distinct clusters are still present in G”, such edges
connect all vertices with the same label, and G” is planar. Hence, the edges
of G which have no corresponding edge in G form a planar saturator for G'.
Since G! admits a planar saturator, its balance is in {0, k}. O

Lemma 7 Let C = (G,T) be a clustered graph and let I be an integer between
2 and L, where L is the depth of T. If C! is not c-planar, then C* = C is not
c-planar.

Proof: If C! is not c-planar, any saturator introduces a subdivision of Ks 3 or
K3 in the graph G. Since any saturator of C'! contains a (non-planar) saturator
of C', it is always possible to find an obstruction in the graph G augmented
with the edges of the saturator of C''. Hence C' can not be c-planar. O

The following theorems state the main results about c-planarity testing for
cluster graphs in which each G!, 1 € {1,...,L}, is a cycle.
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Theorem 7 Given an n-vertex clustered graph C(G,T), such that T has depth
L and, forl >0, G! is a cycle, there exists an algorithm to test if C is c-planar
in O(Ln) time.

Proof: We apply Lemma 6 and Lemma 7 to the clustered graphs C* for | =
L,L—1,...,2. Since each test can be performed in O(n) time, the statement
follows. 0

Theorem 8 Given an n-vertex clustered graph C(G,T), such that T has depth
L and, for 1 > 0, G' is a cycle, if C is c-planar there exists an algorithm to
compute a c-planar drawing of C in O(Ln) time.

Proof: Since Lemma 6 is proved by construction, by applying, level by level,
Lemma 6 starting from level L to level 1, a planar saturator of C' can be obtained.
Since each step may be performed in O(n) time, the statement follows. O

6 Conclusions and Open Problems

In this paper we studied a restricted family of unconnected clustered graphs.

Namely, we studied clustered graphs whose underlying graph is a simple cycle.
Besides the general problem of stating the complexity of the c-planarity

testing of unconnected clustered graphs, several other problems remain open:

e Are there other families of unconnected clustered graphs whose c-planarity
can be efficiently assessed and whose underlying graph has a simple struc-
ture? For example, what happens if the underlying graph is a tree? It
is easy to show that a flat clustered graph whose underlying graph G? is
a path and such that graph G' is a cycle, is c-planar. It is also easy to
find an example of an unconnected flat clustered graph whose underlying
graph G2 is a tree, such that G' is a cycle and that is not c-planar (see
Fig. 16).

Figure 16: A 3-cluster graph that is not c-planar. The underlying graph is a
tree.
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e Suppose that the underlying graph has a fixed embedding. Can this hy-
pothesis simplify the c-planarity testing?

e Can the techniques introduced in this paper be combined with techniques
known in the literature for c-planarity testing and embedding problem for
more complex families of clustered graphs?
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