
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 9, no. 3, pp. 327–346 (2005)

Distributed Graph Layout for Sensor Networks

Craig Gotsman

Department of Computer Science
Harvard University, Cambridge, MA 02138

gotsman@cs.technion.ac.il

Yehuda Koren

AT&T Labs – Research
Florham Park, NJ 07932
yehuda@research.att.com

Abstract

Sensor network applications frequently require that the sensors know

their physical locations in some global coordinate system. This is usually

achieved by equipping each sensor with a location measurement device,

such as GPS. However, low-end systems or indoor systems, which can-

not use GPS, must locate themselves based only on crude information

available locally, such as inter-sensor distances. We show how a collection

of sensors, capable only of measuring distances to close neighbors, can

compute their locations in a purely distributed manner, i.e. where each

sensor communicates only with its neighbors. This can be viewed as a

distributed graph drawing algorithm. We experimentally show that our

algorithm consistently produces good results under a variety of simulated

real-world conditions, and is relatively robust to the presence of noise in

the distance measurements.

Article Type Communicated by Submitted Revised

Regular paper E. R. Gansner and J. Pach November 2004 July 2005

Gotsman & Koren, Layout for Sensor Networks, JGAA, 9(3) 327–346 (2005)328

1 Introduction

Sensor networks are a collection of (usually miniature) devices, each with lim-
ited computing and (wireless) communication capabilities, distributed over a
physical area. The network collects data from its environment and should be
able to integrate it and answer queries related to this data. Sensor networks are
becoming more and more attractive in environmental, military and ecological
applications. See [14] for a survey of this topic.

The advent of sensor networks has presented a number of research challenges
to the networking and distributed computation communities. Since each sensor
can typically communicate only with a small number of other sensors, informa-
tion generated at one sensor can reach another sensor only by routing it through
the network, whose connectivity is described by a graph. This requires ad hoc
routing algorithms, especially if the sensors are dynamic. Traditional routing
algorithms relied only on the connectivity graph of the network, but with the
introduction of so-called location-aware sensors, namely, those who also know
what their physical location is, e.g. by being equipped with a GPS receiver, this
information can be used to perform more efficient geographic routing. See [10]
for a survey of these routing techniques.

Beyond routing applications, location-aware sensors are important for in-
formation dissemination protocols and query processing. Location awareness is
achieved primarily by equipping the sensors with GPS receivers. These, how-
ever, may be too expensive, too large, or too power intensive for the desired
application. In indoor environments, GPS does not work at all (due to the
lack of line-of-sight to the satellites), so alternative solutions must be employed.
Luckily, sensors are usually capable of other, more primitive, geometric mea-
surements, which can aid in this process. An example of such a geometric
measurement is the distance to neighboring sensors. This is achieved either by
Received Signal Strength Indicator (RSSI) or Time of Arrival (ToA) techniques.
An important question is then whether it is possible to design a distributed pro-
tocol by which each sensor can use this local information to (iteratively) compute
its location in some global coordinate system.

This paper solves the following sensor layout problem: Given a set of sensors

distributed in the plane, and a mechanism by which a sensor can estimate its

distance to a few nearby sensors, determine the coordinates of every sensor via

local sensor-to-sensor communication. These coordinates are called a layout of
the sensor network.

As stated, this problem is not well-defined, because it typically will not have
a unique solution. A unique solution would mean that the system is rigid, in
the sense that the location of any individual sensor cannot be changed without
changing at least one of the known distances, or by transforming all locations
by some rigid transformation. When all

(

n

2

)

inter-sensor distances are known,
the solution is indeed unique (up to a rigid transformation), and is traditionally
solved using the Classical Multidimensional Scaling (MDS) technique [1]. When
only a subset of the distances are known, more sophisticated techniques must
be used.

Gotsman & Koren, Layout for Sensor Networks, JGAA, 9(3) 327–346 (2005)329

When multiple solutions exist, the main phenomenon observed in the solu-
tions is that of foldovers, where entire pieces of the graph fold over on top of
others, without violating any of the distance constraints. The main challenge is
to generate a solution which is fold-free. Obviously the result will have trans-
lation, orientation and reflection degrees of freedom, but either these are not
important, or can be resolved by assigning some known coordinates to three
sensors.

In real-world sensor networks, noise is inevitable. This manifests itself in the
inter-sensor noise measurements being inaccurate. Beyond the obvious compli-
cation of the distances possibly no longer being symmetric, thus violating the
very essence of the term “distance”, there may no longer even exist a solution
realizing the measured edge lengths. The best that can be hoped for, in this
case, is a layout whose coordinates are, up to some acceptable tolerance, close
to the true coordinates of the sensors.

In order to be easily and reliably implemented on a sensor network, the
solution to this sensor network layout problem should be fully distributed (de-
centralized). This means that each sensor should use information available only

at that sensor and its immediate neighbors. The class of neighbors is typically
characterized by a probabilistic variant of the disk graph model: Any sensor
within distance R1 is reachable, any sensor beyond distance R2 is not reachable,
and any sensor at a distance between R1 and R2 is reachable with probability
p. Of course, information from one sensor may eventually propagate through
the network to any other sensor, but this should not be done explicitly.

2 Related Work

The problem of reconstructing a geometric graph given its edges lengths has
received some attention in the discrete geometry and computational geometry
communities, where it is relevant for molecule construction and protein folding
applications [6]. Deciding whether a given graph equipped with edge lengths is
rigid in 2D - i.e. admits a unique layout realizing the given edge lengths (up
to a rigid transformation) - is possible in polynomial time for the dense class
of graphs known as generic graphs [7]. However, computing such a layout is in
general NP-hard [16]. This does not change even if a layout is known to exist
(as in our case).

The problem of distributed layout of a sensor network has received consid-
erable attention in the sensor network community. A recent work of Priyantha
et al. [12] classifies these into anchor-based vs. anchor-free algorithms and in-

cremental vs. concurrent algorithms. Anchor-based algorithms rely on the fact
that some of the sensors are already aware of their locations, and the locations of
the others are computed based on those. In practice, a large number of anchor
sensors is required for the resulting location errors to be acceptable. Incremen-
tal algorithms start with a small core of sensors that are assigned coordinates.
Other sensors are repeatedly added to this set by local trigonometric calcula-
tions. These algorithms accumulate errors and cannot escape local minima once

Gotsman & Koren, Layout for Sensor Networks, JGAA, 9(3) 327–346 (2005)330

they are entered. Concurrent algorithms work in parallel on all sensors. They
are better able to avoid local minima and avoid error accumulation. Priyantha
et al. [12] review a number of published algorithms and their classifications. All
of them, however, are not fully distributed.

Moore et al. [11] describe an incremental algorithm which attempts to lo-
calize small “patches” of the network. Each such patch is a set of four sensors
forming a rigid quadrilateral, which is localized using a procedure called “tri-
lateration” and then improved by a local optimization process. Given one quad
which has been localized, another quad is found which has some sensors in com-
mon with the first. This is then laid out relative to the first by applying the best
possible rigid transformation. In such a manner, a sequence of quads is laid out
in breadth-first order until no more sensors can be localized. This algorithm
will localize only those sensors contained in a rigid component of the network,
and will not produce anything useful for the other sensors.

A similar “patching” algorithm was described by Shang and Ruml [13]. How-
ever, they localize an individual patch by first computing all pairwise shortest
paths (in the weighted network connectivity graph) between sensors in the patch.
MDS is then applied to these distances to yield an initial layout, which is subse-
quently improved by stress minimization. The patches are “stitched” together
incrementally in a greedy order by finding the best affine transformation between
a new patch and the global layout. A post-processing stage of the algorithm fur-
ther improves layout quality by minimizing the “stress energy” of the complete
network.

These incremental algorithms seem to be sound, but, unfortunately, like any
other incremental algorithm, may accumulate error indefinitely, especially when
the pairwise distances are significantly noisy.

The algorithm we describe in this paper is most similar in spirit to the so-
called Anchor-Free Localization (AFL) algorithm proposed by Priyantha et al.

[12]. The AFL algorithm operates in two stages. In the first stage a heuristic is
applied to try to generate a well-distributed fold-free graph layout which “looks
similar” to the desired layout. The second stage applies a stress-minimization
optimization procedure to correct and balance local distance errors, converging
to the final result. The heuristic used in the first stage involves the selection of
five reference sensors. Four of these sensors are well-distributed on the periphery
of the network, and serve as north, east, south and west poles. A fifth reference
sensor is chosen at the center. Coordinates are then assigned to all nodes,
using these five sensors, reflecting their assumed positions. Unfortunately, this
process does not lend itself easily to distribution. The second stage of the
AFL algorithm attempts to minimize the partial stress energy using a gradient
descent technique. At each sensor, the coordinates are updated by moving an
infinitesimal distance in the direction of the spring force operating on the sensor.
This is a fully distributed protocol. It, however, involves a heuristic choice of
the infinitesimal step, and can be quite slow.

Our algorithm also involves two stages with similar objectives. The first aims
to generate a fold-free layout. This is done based on a distributed Laplacian
eigenvector computation which typically spreads the sensors well. The second

Gotsman & Koren, Layout for Sensor Networks, JGAA, 9(3) 327–346 (2005)331

stage uses the result of the first stage as an initial layout for an iterative stress-
minimization algorithm. As opposed to AFL, it is not based on gradient descent,
but rather on a more effective majorization technique.

Once again we emphasize that the main challenge is to design algorithms
which are fully distributed. This is a major concern in sensor network appli-
cations, and there is an increasing interest in designing such solutions. These
turn out sometimes to be quite non-trivial. Probably the simplest example is
a distributed algorithm to compute the sum (or average) of values distributed
across the network. See [15] for a discussion on this.

3 The Problem

We are given a n-vertex graph G(V = {1, . . . , n}, E), and for each edge 〈i, j〉∈
E - its Euclidean “length” lij . Denote a 2D layout of the graph by x, y ∈
R

n, where the coordinates of vertex i are pi = (xi, yi). Denote dij = ‖pi −

pj‖=
√

(xi − xj)2 + (yi − yj)2.
In the non-noisy version of the problem, we know that there exists a layout

of the sensors that realizes the given edge lengths (i.e. dij = lij). Our goal is
then to reproduce this layout. This layout is usually not unique. For example,
consider a 2n × 2n square grid, where each internal sensor is connected to its
four immediate neighbors with an edge of length one. We can realize all lengths
using the degenerate 1D layout where half of the sensors are placed on 0 and
the other half is placed on 1. Specifically, given a sensor with grid coordinates
(r, c), we place it on point 0 if r + c is even; otherwise, we place it on point 1.

Fortunately, there is additional information which we may exploit to elim-
inate spurious solutions to the layout problem - we know that the graph is a
complete description of the close sensors. Consequently, the distance between
each two nonadjacent sensors should be greater than some constant r, which
is larger than the longest edge. This can further constrain the search space
and eliminate most undesired solutions. Formally, we may pose our problem as
follows:

Layout problem Given a graph G({1, . . . , n}, E), and for each edge 〈i, j〉
∈ E - its length lij , find an optimal layout (p1, . . . , pn) (pi ∈ R

d is the location
of sensor i), which satisfies for all i 6= j:

{

‖pi − pj‖ = lij if 〈i, j〉 ∈ E
‖pi − pj‖ > R if 〈i, j〉 /∈ E

where R = max〈i,j〉∈E lij . For the rest of this paper we assume that the sensors
are embedded in the plane, namely d = 2.

It seems that an optimal layout is unique (up to translation, rotation and
reflection) in many practical situations. For example, it overcomes the problem
in the 2n × 2n grid example described above. However, there are graphs for
which even an optimal layout is not unique. For example, consider the 6-sensor
graph in Fig. 1, which shows two different optimal layouts.

Gotsman & Koren, Layout for Sensor Networks, JGAA, 9(3) 327–346 (2005)332

a d

f

e

1.5

1

1

c

b

1

1

a d

e

f

1.5

1

1

c

b

1

1

Figure 1: Two different optimal layouts of the same graph.

An optimal layout is similar to that generated by common force-directed
graph drawing algorithms that place adjacent nodes closely while separating
nonadjacent nodes. Therefore, we may exploit some known graph drawing tech-
niques. For example, separating nonadjacent sensors can be achieved by solving
an electric-spring system with repulsive forces between these sensors [2, 3]. An-
other possibility is to somehow estimate the distances lij between nonadjacent
sensors (e.g., as the graph-theoretic distance) and then to minimize the full

stress energy:
∑

i<j

(dij−lij)
2

l2
ij

using an MDS-type technique; see [8].

However, since we aim at a distributed algorithm which should minimize
communication between the sensors, dealing with repulsive forces or long-range
target distances is not practical, as this will involve excessive inter-sensor in-
teraction, which is very expensive in this scenario. To avoid this, we propose
an algorithm which is based only on direct information sharing between adja-
cent sensors, avoiding all communication between nonadjacent sensors or any
centralized supervision. Note that such a restriction rules out all common al-
gorithms for general graph drawing problem; we are not aware of any layout
algorithm that satisfies it.

In the real-life noisy version of the problem, the measured distances lij are
contaminated by noise: lij = dij + ǫij . This means that there might not even
exist a solution to the optimal layout problem. In this case we would like
to minimize the difference between the true location of the sensors and those
computed by the algorithm.

4 Smart Initialization and Eigen-projection

A useful energy function which is minimized by the desired layout is the localized

stress energy:

Stress(x, y) =
∑

〈i,j〉∈E

(dij(x, y)− lij)
2 (1)

Note that this energy is not normalized, as opposed to the full stress energy. This
non-convex energy function may have many local minima, which an optimizer
may get stuck in. However, since in the non-noisy case, we are guaranteed the
existence of a layout where dij = lij , namely Stress(x, y) achieves the global

Gotsman & Koren, Layout for Sensor Networks, JGAA, 9(3) 327–346 (2005)333

minimum of zero, it is reasonable to hope that if we start with the optimization
process at a “smart” initial layout, the process will converge to this global
minimum.

To construct such an initial layout, we exploit the fact that nonadjacent
sensors should be placed far apart. This means that we seek a layout that
spreads the sensors well. We first deal with the one-dimensional case. We will
design an energy function which is minimized by such a layout, and can be
optimized in a strictly distributed fashion. The function is defined as follows:

E(x) =

∑

〈i,j〉∈E wij ||xi − xj ||
2

∑

i<j ||xi − xj ||2
(2)

Here, wij is some measure for the similarity of the adjacent sensors i and j. It
should be obtained from lij , e.g., wij = 1/(lij + α) or wij = exp(−αlij), α > 0;
in our experiments we used wij = exp(−lij). Minimizing E(x) is useful since it
tries to locate adjacent sensors close to each other while separating nonadjacent
sensors. It can also be solved fairly easily. Denote by D the diagonal matrix
whose i’th diagonal entry is the sum of the i’th row of W : Dii =

∑

j:〈i,j〉∈E wij .

The global minimum of E(x) is the eigenvector of the related weighted Laplacian
matrix Lw = D−W associated with the smallest positive eigenvalue; see [5, 9].
In practice, it is better to work with the closely related eigenvectors of the
transition matrix D−1W , which have some advantages over the eigenvectors of
Lw; see [9]. Note that the top eigenvalue of D−1W is λ1 = 1, associated with the
constant eigenvector v1 = 1n = (1, 1, . . . , 1), so the desired solution is actually
the second eigenvector v2.

The vector v2 can be computed in a distributed manner by iteratively aver-
aging the value at each sensor with the values of its neighbors:

xi ← a ·

(

xi +

∑

〈i,j〉∈E wijxj
∑

〈i,j〉∈E wij

)

(3)

Readers familiar with numerical linear algebra will recognize this process as
power iteration of the matrix I + D−1W . Power iteration usually converges to
the eigenvector of the iterated matrix corresponding to the eigenvalue with high-
est absolute value. However, here we initialize the process by a vector y which
is D-orthogonal to v1, namely yT Dv1 = 0, using a distributed method that will
be described shortly. Hence, the process will converge to v2 - the next highest
eigenvector of I + D−1W (or, equivalently D−1W); see [9]. D-orthogonality,
rather than simple orthogonality, is required because D−1W is not symmetric.
The constant a > 0 controls the growth of ‖x‖; in our implementation we used
a = 0.51.

4.1 Two dimensional layout

We now turn our attention to the two-dimensional layout problem. E(x) is
defined also in higher dimensions (where x is short for (x, y)), and a “smart”

Gotsman & Koren, Layout for Sensor Networks, JGAA, 9(3) 327–346 (2005)334

initial 2D layout is achieved by taking the x coordinate to be v2 - the second
eigenvector of D−1W , and the y coordinate to be v3 - the third eigenvector
of D−1W . Unfortunately, the power iteration (3) will not detect v3, as it is
dominated by v2, unless we start the process (3) with a vector D-orthogonal to
x = v2.

Constrained by the distributed computation requirement, it is not easy to
initialize the process with a vector D-orthogonal to v2. We resort to the following
lemma:

Lemma 1 Given two vectors x and y and matrices D and A, the vector Ay is

D-orthogonal to x if AT Dx = 0.

Proof: Since AT Dx = 0, then yT AT Dx = 0. Equivalently (Ay)T Dx = 0 and
the lemma follows. 2

Therefore, it suffices to construct a “local matrix” A such that AT Dx =
0. By “local” we mean that Ai,j 6= 0 only if 〈i, j〉 ∈ E. This will enable a
distributed computation. In our case when D is diagonal, a suitable matrix is
the following:

Ai,j =

−xj/Dii 〈i, j〉 ∈ E
0 〈i, j〉 /∈ E, i 6= j i, j = 1, . . . , n
−
∑

k Ai,k i = j

It is easy to verify that AT Dx = 0.
To summarize, to obtain y = v3, we pick some random vector u, and initialize

y with Au. Note that the computation of Au involves only local operations, and
can be easily distributed. Then, we run the power iteration (3) on the vector y.
While the initial vector is D-orthogonal to v2, it is not necessarily D-orthogonal
to v1 = 1n. Hence, after many iterations, the result will be y = αv1 + ǫv3, for
some very small ǫ. While the process ultimately converges to what seems to be
an essentially useless vector, its values near the limit is what is interesting. Since
v1 is the constant vector - 1n, these values are essentially a scaled version of v3

displaced by some fixed value (α) and they still retain the crucial information
we need.

However when the numerical precision is low and the ratio α/ǫ is too high,
we might lose the v3 component. Fortunately, we can work around this by trans-

lating and scaling y during the power iteration. Specifically, every βn iterations
(we use β = 1/2) compute mini yi and maxi yi. A distributed computation is
straightforward and can be completed with the number of iterations bounded
by the diameter of the graph (at most n − 1). Then, linearly transform y by
setting

yi ←
yi −mini yi

maxi yi −mini yi

−
1

2
, i = 1, . . . , n (4)

After this, mini yi = −0.5 and maxi yi = 0.5. Since translation is equivalent to
the addition of γv1 and scaling cannot change direction, we can still express y
as α̂v1 + ǫ̂v3.

Gotsman & Koren, Layout for Sensor Networks, JGAA, 9(3) 327–346 (2005)335

Now assume, without loss of generality, that maxi v3−mini v3 = 1, and recall
that v1 = (1, 1, . . . , 1). The D-orthogonality of v3 to 1n implies: maxi v3 > 0
and mini v3 < 0. In turn, mini yi = −0.5 and maxi yi = 0.5 imply that |α̂| < 0.5.
Moreover, since all the variability of y is due to its v3 component, we get ǫ̂ = 1.
Therefore, (4) guarantees that the magnitude of the v3 component is larger than
that of the v1 component, avoiding potential numerical problems.

4.2 Balancing the axes

Obviously, the process described in Section 4.1 can yield x and y coordinates at
very different scales. Usually, we require that ||x|| = ||y||, but this is difficult to
achieve in a distributed manner. An easier alternative that is more suitable for
a distributed computation is a balanced aspect ratio, i.e.:

max
i

xi −min
i

xi = max
i

yi −min
i

yi

Since the computation of the y-coordinates already achieved maxi yi−mini yi

= 1, it remains to ensure that the x coordinates have the same property. We
achieve this by performing:

xi ←
xi

maxj xj −minj xj

, i = 1, . . . , n (5)

Note that we only scale the x-coordinates and do not translate them, because
translation involves the v1 component that is not part of the x-coordinates.

In fact, it might be beneficial to scale x by (5) a few times during the
power iteration (3). This can prevent potential numerical problems when the
coordinates are extremely large (overflow) or small (underflow).

5 Optimizing the Localized Stress Energy

At this point we have reasonable initial locations for both the x- and y-coordinates,
and are ready to apply a more accurate 2D optimization process for minimiz-
ing the localized stress energy (1). A candidate could be simple gradient de-
scent, which is easily distributed, as in [12]. Each sensor would update its
x-coordinates as follows:

xi(t + 1) = xi(t) + δ
∑

j:〈i,j〉∈E

(xj(t)− xi(t))

dij(t)
(dij(t)− lij) , (6)

where dij(t) =
√

(xi(t)− xj(t))2 + (yi(t)− yj(t))2. The y-coordinates are han-
dled similarly. This involves a scalar quantity δ whose optimal value is difficult
to estimate. Usually a conservative value is used, but this slows down the con-
vergence significantly.

A more severe problem of this gradient descent approach is its sensitivity
to the scale of the initial layout. Obviously the minimum of E(x) is scale-
invariant, since E(cx) = E(x) for c 6= 0. However, the minimum of Stress(x)

Gotsman & Koren, Layout for Sensor Networks, JGAA, 9(3) 327–346 (2005)336

is certainly not scale-invariant as we are given concrete target edge lengths.
Therefore, before applying gradient descent we have to scale the minimum of
E(x) appropriately.

Fortunately, we can avoid the scale problem by using a different approach
called majorization. Besides being insensitive to the original scale, it is usually
more robust and avoids having to fix a δ for the step size. For a detailed de-
scription of this technique, we refer the interested reader to multidimensional
scaling textbooks, e.g., [1]. Here we provide just a brief description.

Using the Cauchy-Schwartz inequality we can bound the localized 2D stress
of a layout (x, y) by another expression of (x, y) and (a, b), as follows:

Stress(x, y) 6 xT Lx + yT Ly + xT L(a,b)a + yT L(a,b)b + c , x, y, a, b ∈ R
n , (7)

with equality when x = a and y = b. Here, c is a constant independent of
x, y, a, b. L is the graph’s unweighted n×n Laplacian matrix (also independent
of x, y, a, b) defined as:

Li,j =

−1 〈i, j〉 ∈ E
0 〈i, j〉 /∈ E i, j = 1, . . . , n
−
∑

j 6=i Li,j i = j

The weighted Laplacian n× n matrix La,b is defined as:

L
(a,b)
i,j =

−lij · inv
(

√

(ai − aj)2 + (bi − bj)2
)

〈i, j〉 ∈ E

0 〈i, j〉 /∈ E i, j = 1, . . . , n

−
∑

j 6=i L
(a,b)
i,j i = j

where

inv(x) =

{

1/x x 6= 0
0 x = 0

Note the special treatment that the inv function gives to the zero value.
Given a layout a, b, we can find another layout (x, y) which minimizes the r.h.s.
xT Lx + yT Ly + xT La,ba + yT La,bb + c by solving the linear equations:

Lx = L(a,b)a
Ly = L(a,b)b

Using inequality (7) we are guaranteed that the stress of the layout has not
increased when going from (a, b) to (x, y), i.e., Stress(x, y) 6 Stress(a, b). This
induces an iterative process for minimizing the localized stress. At each itera-
tion, we compute a new layout (x(t+1), y(t+1)) by solving the following linear
system:

L · x(t + 1) = L(x(t),y(t)) · x(t)
L · y(t + 1) = L(x(t),y(t)) · y(t)

(8)

Without loss of generality, we can fix the location of one of the sensors (utilizing
the translation degree of freedom of the localized stress) and obtain a strictly

Gotsman & Koren, Layout for Sensor Networks, JGAA, 9(3) 327–346 (2005)337

diagonally dominant matrix. Therefore, we can safely use Jacobi iteration [4]
for solving (8), which is easily performed in a distributed manner as follows.

Assume we are given a layout (x(t), y(t)) and want to compute a better layout
(x(t + 1), y(t + 1)) by a single iteration of (8). Then we iteratively perform for
each i = 1, . . . , n:

xi ←
1

degi

∑

j:〈i,j〉∈E

(xj + lij(xi(t)− xj(t)) inv(dij(t)))

yi ←
1

degi

∑

j:〈i,j〉∈E

(yj + lij(yi(t)− yj(t)) inv(dij(t)))

(9)

Note that x(t), y(t) and dij(t) are constants in this process which converges
to (x(t + 1), y(t + 1)). Interestingly, when obtaining (x(t + 1), y(t + 1)) only
the angles between sensors in (x(t), y(t)) are used. Therefore, this process is
independent of the scale of the current layout.

It is possible to simplify the 2D majorization process somewhat. When
the iterative process (9) converges the layout scale issue is resolved. Hence,
instead of continuing with another application of (8) to obtain a newer layout,
it is possible to resort to a faster local process (which, in contrast, is scale-
dependent). In this process each sensor uses a local version of the energy where
all other sensors are fixed. By the same majorization argument the localized
stress decreases when applying the following iterative process:

xi ←
1

degi

∑

j:〈i,j〉∈E

(xj + lij(xi − xj)inv(dij))

yi ←
1

degi

∑

j:〈i,j〉∈E

(yj + lij(yi − yj)inv(dij))

(10)

Here, as usual dij =
√

(xi − xj)2 + (yi − yj)2. This process is similar to (9),
except that xi, xj and dij are no longer constants. We have used this in our
implementation, and it seems to accelerate the convergence. Note that this is
quite close to the gradient descent (6) when using δ = 1/degi, a different stepsize
per sensor.

6 Experimental Results

We have implemented our algorithm and the AFL algorithm [12], and com-
pared their performance on a variety of inputs. In the first experiment, we
construct a family of graphs containing 1000 sensors distributed uniformly in
a 10 × 10 square. Each two sensors are connected if they are in range R,
where we used R = 0.5, 0.6, 0.7, 0.8, 0.9, 1. If the graph is disconnected, the
largest connected component was taken. We measure the sensitivity of the
algorithms to noise controlled by the fractional range measurement error pa-
rameter σ. The distances fed as input to the algorithms are the true distances

Gotsman & Koren, Layout for Sensor Networks, JGAA, 9(3) 327–346 (2005)338

lij , to which uniformly distributed random noise in the range [−σlij , + σlij]
is added; σ = 0, 0.05, 0.1, 0.25, 0.5. Consequently, each graph in this family is
characterized by the values of R and σ. For each pair (R, σ) we generated 250
corresponding random graphs. Some properties of these graphs are displayed in
Table 1.

R size avg degree max degree min degree
0.5 993 7 17.2 1
0.6 999.5 10 22 1.4
0.7 1000 14 27.5 2.4
0.8 1000 18.2 33.5 3.7
0.9 1000 23 40.3 5.2
1.0 1000 28.2 47.5 6.9

Table 1: Average (over 250 experiments) properties of largest connected compo-
nent of graphs obtained by distributing 1000 sensors in a 10× 10 square, using
different values of R.

It seems that the key to successful results is a good initial layout from which
the stress minimization routine can start. To compare the performance of our
algorithm to that of the AFL algorithm and a more naive method, we ran three
different initialization methods on each input followed by the same stress mini-
mization algorithm: (1) Stress majorization with random initialization (RND).
(2) Stress majorization with AFL initialization (AFL). (3) Stress majorization
with eigen-projection initialization (EIGEN). For each method the quality of
the final solution is measured by its Average Relative Deviation (ARD), which
measures the accuracy of all resulting pairwise distances:

ARD =
2

n(n− 1)

∑

i<j

|dij − lij |

min(lij , dij)

Note that here we sum over all distances between sensors, not just the short
range distances, as reflected by the edges of the graph. The results are summa-
rized in Table 2, where each cell shows the average ARD of RND/AFL/EIGEN
for 250 different graphs characterized by the same (R, σ) pair. For all graphs,
EIGEN and AFL outperformed RND by a significant margin. Also, consistently,
EIGEN outperformed AFL by a small margin. As expected, the algorithm per-
formance is improved as the graphs become denser revealing more information
about the underlying geometry. Note that the sparser graphs contain nodes of
degree smaller than 3, which are inherently non-rigid thereby preventing accu-
rate recovery. We can also see that optimization is quite robust in the presence
of noise and performance deteriorates only moderately as σ grows. In Figure
2 we show typical results of EIGEN, before and after stress minimization. For
comparison, we also provide the original layout and the AFL initialization for
the same graph.

In another experiment, we worked with 350 sensors distributed uniformly
on a ring, with external radius 5 and internal radius 4. Again, the graphs are

Gotsman & Koren, Layout for Sensor Networks, JGAA, 9(3) 327–346 (2005)339

original AFL initialization

EIGEN initialization =⇒ stress minimization

Figure 2: Reconstructing a 1000-sensor proximity graph using EIGEN; here
R = 0.8, σ = 0. Original layout and alternative AFL initialization are also
shown.

Gotsman & Koren, Layout for Sensor Networks, JGAA, 9(3) 327–346 (2005)340

σ = 0 σ = 0.05 σ = 0.1
RND AFL EIGEN RND AFL EIGEN RND AFL EIGEN

R = 0.5 12.6 0.099 0.079 12.6 0.10 0.079 12.4 0.10 0.092
R = 0.6 11.2 0.026 0.0093 11.0 0.028 0.013 10.8 0.031 0.019
R = 0.7 9.70 0.013 0.0031 9.79 0.015 0.0048 9.77 0.017 0.0076
R = 0.8 8.51 0.0086 0.0016 8.52 0.0097 0.0033 8.42 0.012 0.0059
R = 0.9 7.29 0.0064 0.0011 7.37 0.0082 0.0028 7.28 0.011 0.0051
R = 1.0 6.31 0.0054 0.0008 6.40 0.0068 0.0025 6.51 0.0079 0.0047

σ = 0.25 σ = 0.5
RND AFL EIGEN RND AFL EIGEN

R = 0.5 12.3 0.12 0.091 11.6 0.26 0.22
R = 0.6 11.0 0.046 0.031 10.4 0.12 0.10
R = 0.7 9.71 0.026 0.018 9.53 0.060 0.050
R = 0.8 8.58 0.020 0.014 8.49 0.041 0.034
R = 0.9 7.37 0.017 0.013 7.50 0.033 0.028
R = 1.0 6.33 0.016 0.012 6.52 0.030 0.026

Table 2: Average relative deviation (ARD) of square-based proximity graphs
with varying (R, σ) generated by RND / AFL / EIGEN. Each result is averaged
over 250 graphs.

characterized by the range and noise parameters (R, σ), and for each such a pair
we generated 250 corresponding random graphs. The properties of these graphs
are shown in Table 3. Here we worked with a different range of R, producing av-
erage degrees similar to those of the previous experiment. Note that we avoided
working with R 6 0.6 as for these values the largest connected component broke
the ring topology with high probability, making recovery impossible. In Figure
3 we show a typical result of EIGEN, before and after the stress majorization.
We ran RND, AFL and EIGEN on these graphs, the results summarized in Ta-
ble 4. The topology of the ring is different than that of the square, and resulted
in a lower quality results. However, all the observations from the square-based
experiment still hold here. Note that in a ring there is no natural central node.
Therefore, the AFL initialization that identifies one node as the center is less
appropriate here. A surprising finding is that the performance of AFL seems to
deteriorate when increasing R from 1.1 to 1.2, instead of improving, as would
be expected. We observed this also with other types of graphs we experimented
with. We believe that this is due to the fact that the first phase of AFL models
the network as an unweighted graph. Thus, as the variance of the true edge
lengths becomes larger, this model is less accurate.

As far as computational complexity is concerned, since we deal with a dis-
tributed environment, the most interesting quantity is the communication com-
plexity (i.e. the number of messages passed). In each iteration, each sensor
communicates only with its neighbors. The number of neighbors is of course
limited by the communication range and is fairly independent of the overall num-
ber of sensors. In fact, a larger number of neighbors will definitely accelerate

Gotsman & Koren, Layout for Sensor Networks, JGAA, 9(3) 327–346 (2005)341

R size avg degree max degree min degree
0.7 349 10.4 22 2
0.8 349.6 13.2 26.3 3.2
0.9 350 16.2 30.2 4.8
1.0 350 19.3 33.8 6.8
1.1 350 22.5 37.3 9.0
1.2 350 25.8 40.5 11.5

Table 3: Properties of largest connected component of graphs obtained by dis-
tributing 350 sensors on a RING with radii 4 and 5, using different values of R.

original placement eigen-projection initialization

=⇒

stress minimization

Figure 3: Reconstructing a 350-sensor ring-based proximity graph by localized
stress majorization preceded by eigen-projection. Here R = 0.7, σ = 0.

Gotsman & Koren, Layout for Sensor Networks, JGAA, 9(3) 327–346 (2005)342

σ = 0 σ = 0.05 σ = 0.1
RND AFL EIGEN RND AFL EIGEN RND AFL EIGEN

R = 0.7 4.96 0.34 0.14 5.16 0.26 0.13 4.94 0.26 0.13
R = 0.8 7.69 0.19 0.091 7.53 0.23 0.091 7.54 0.020 0.090
R = 0.9 7.52 0.14 0.064 7.35 0.16 0.065 7.56 0.14 0.065
R = 1.0 6.61 0.10 0.041 6.62 0.11 0.045 6.41 0.11 0.046
R = 1.1 5.77 0.10 0.029 5.72 0.098 0.031 5.69 0.10 0.035
R = 1.2 4.97 0.11 0.021 4.98 0.11 0.021 4.88 0.11 0.026

σ = 0.25 σ = 0.5
RND AFL EIGEN RND AFL EIGEN

R = 0.7 4.66 0.33 0.15 4.88 0.39 0.21
R = 0.8 7.81 0.19 0.10 7.41 0.29 0.16
R = 0.9 7.27 0.18 0.080 7.14 0.22 0.13
R = 1.0 6.54 0.13 0.055 6.40 0.15 0.091
R = 1.1 5.62 0.12 0.044 5.69 0.14 0.070
R = 1.2 5.08 0.13 0.032 4.97 0.16 0.058

Table 4: Average relative deviation (ARD) of disk-based proximity graphs with
varying (R, σ) constructed using RND / AFL / EIGEN. Each result is averaged
over 250 graphs.

convergence (by enabling faster information transfer through the network) and
also improve the quality of the results (as clearly shown in our experimental re-
sults). However, the key factor in determining the communication complexity is
the number of iterations. The iterative nature of the algorithm suggests a trade-
off between the number of iterations (and hence, communication complexity)
and the accuracy of the resulting solution. Typical performance is demonstrated
in Fig. 4. This figure shows the decrease in the ARD (the Average Relative
Error) as a function of the number of iterations. The results were averaged over
100 runs on a 1000-sensor network. The sensors were distributed on a 10 × 10
square with communication range of 0.7, with and without transmission noise.
As evident in the figure, the quality improves rapidly at the beginning of the
process, dropping the ARD to 5% after about 120 iterations. This then slows
down, reaching an ARD of 1% only after about 600 additional iterations. Soon
after this the process converges as the ARD stabilizes. A somewhat surprising
result was that the algorithm converged faster for noisier networks. After ex-
perimenting with quite a few networks, we speculate that about n iterations are
required for convergence.

7 Extensions

There are a number of ways our basic algorithm can be extended:

Gotsman & Koren, Layout for Sensor Networks, JGAA, 9(3) 327–346 (2005)343

0 500 1000 1500 2000 2500 3000
0.003

0.01

0.05

0.1

0.2

#iterations

av
er

ag
e

er
ro

r
(lo

ga
rit

hm
ic

 s
ca

le
)

no noise
5% noise
10% noise

Figure 4: Layout accuracy (represented by ARD) vs. number of iterations.
Results were averaged on 100 runs on a network with 1000 sensors distributed
on a 10× 10 square and R = 0.7.

7.1 Hybrid method

It is possible to couple the stress optimization together with the eigen-projection
in a single process. In such a process, we continuously perform a few local
majorization iterations, where each sensor is relocated according to process (10),
followed by a single barycentric placement, where each sensor is placed at the
2D centroid of its neighbors.

The introduction of a few barycentric iterations during the majorization
goes a long way towards preventing folding and convergence to local minima.
Our recommendation is to start the process as a pure eigen-projection, then
to continue with this hybrid method and to finish with a pure localized stress
majorization.

7.2 Termination

A central issue in distributed systems is reaching agreement. In our applica-
tion, this is relevant in reaching agreement when to terminate any particular
iterative stage of the algorithm. It is easy for each sensor to check whether it
has converged, so each sensor can terminate that way. However, transition to
another phase of the algorithm that involves a different type of computation re-
quires some sort of collective agreement on convergence. Currently, we just limit
the maximal number of iterations (as a function of the number of sensors). In
some settings, it would be reasonable to allow the sensors to perform an eternal
process of stress minimization. When asked for their coordinates they should

Gotsman & Koren, Layout for Sensor Networks, JGAA, 9(3) 327–346 (2005)344

deliver the freshest result. This is especially suitable when sensor locations are
dynamic, so they should be continuously updating their estimated locations.

7.3 Numerical stability

When computing the y-coordinates, the power iteration process (3) may occa-
sionally lose its D-orthogonality to x = v2, due to limited numerical precision.
This can lead to high correlation between the x- and y-coordinates. Currently,
we are using double precision arithmetic and our application will suffer from this
problem only when the graphs are quite dense (average degree > 30). For such
dense graphs the performance of the hybrid method is excellent and compen-
sates for this deficiency of the power iteration. We believe that if the algorithm
is implemented with extended numerical precision, one should not encounter
such problems.

7.4 Working in three dimensions

When applying our eigen-projection method to 3D layouts, the z vector should
be v4 - the fourth eigenvector of I + D−1W . This means we must compute a
vector z which is D-orthogonal to both x and y already computed. To achieve
this, we partition the sensors into disjoint sets, each of cardinality 3 at least.
Possibly, some sensors are left as singletons. In each set there should be a sensor
that is adjacent to all other sensors of its set; call it the “center”. This is a ran-
domized max “star-matching” that can be performed in a distributed manner,
using a few sweeps. Consider a set {i, j, k}, where i is the center. Now, i should
know xi,yi,Dii,xj ,yj ,Djj ,xk,yk,Dkk, which is possible since i can communicate
with both j and k. Using this information, sensor i computes a vector (zi, zj , zk)
which is “D-orthogonal” to (xi, xj , xk), and (yi, yj , yk). By this we mean that
Diizixi + Djjzjxj + Dkkzkxk = 0, and also Diiziyi + Djjzjyj + Dkkzkyk = 0.
This is done simply by a standard Gram-Schmidt process. Similarly, each cen-
ter assigns the sensors of its set their z-coordinates. Also, each sensor i that
was not assigned to a set takes zi = 0. This way we get an initial z which is
D-orthogonal to x and y. Before computing this z, we should use the same
technique to compute an exact y = v3, which is D-orthogonal to both 1n and x.

8 Conclusion

We have presented an algorithm to generate fold-free sensor network layouts
based on short-range inter-sensor distances. This algorithm is fully distributed
(decentralized), and relies on no explicit communication other than that between
immediate neighbors. The fully distributed nature of the algorithm is crucial for
a practical implementation which avoids excessive communication. To the best
of our knowledge, this is the first fully distributed algorithm for graph drawing.
Beyond this important feature, our experiments indicate that our algorithm
seems to be superior to the state-of-the-art in the sensor network literature.

Gotsman & Koren, Layout for Sensor Networks, JGAA, 9(3) 327–346 (2005)345

Future work includes extension of our methods to dynamic sensor networks and
sensor networks where more geometric information (such as angles) is available.

Gotsman & Koren, Layout for Sensor Networks, JGAA, 9(3) 327–346 (2005)346

References

[1] I. Borg and P. Groenen. Modern Multidimensional Scaling: Theory and

Applications. Springer-Verlag, 1997.

[2] P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–
160, 1984.

[3] T. M. G. Fruchterman and E. Reingold. Graph drawing by force-directed
placement. Software-Practice and Experience, 21:1129–1164, 1991.

[4] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins
University Press, 1996.

[5] K. M. Hall. An r-dimensional quadratic placement algorithm. Management

Science, 17:219–229, 1970.

[6] B. Hendrickson. The molecule problem: Exploiting structure in global
optimization. SIAM Journal on Optimization, 5:835–857, 1985.

[7] B. Hendrickson. Conditions for unique graph realizations. SIAM Journal

on Computing, 21:6–84, 1992.

[8] T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Information Processing Letters, 31:7–15, 1989.

[9] Y. Koren. Drawing graphs by eigenvectors: Theory and practice. Comput-

ers and Mathematics with Applications, 49:1867–1888, 2005.

[10] J. W. M. Mauve and H. Hartenstein. A survey on position-based routing
in mobile ad hoc networks. IEEE Network, 15:30–39, 2001.

[11] D. Moore, J. Leonard, D. Rus, and S. Teller. Robust distributed network
localization with noisy range measurements. In SenSys 2004: Proc. 2nd

Inter. Conf. on Embedded Networked Sensor Systems, pages 50–61, 2004.

[12] N. B. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller. Anchor-free
distributed localization in sensor networks. In SenSys 2003: Proc. 1st Inter.

Conf. on Embedded Networked Sensor Systems, pages 340–341, 2003.

[13] Y. Shang and W. Ruml. Improved mds-based localization. In Infocom

’04: Proc. 23rd Conf. of the IEEE Communicatons Society, pages 340–341,
2004.

[14] M. Tubaishat and S. Madria. Sensor networks : An overview. IEEE Po-

tentials, 22:20–23, 2003.

[15] L. Xiao and S. Boyd. ast linear iterations for distributed averaging. Systems

and Control Letters, 53:65–78, 2004.

[16] Y. Yemini. Some theoretical aspects of location-location problems. In FOCS

’79: Proceedings of the 20th Annual IEEE Symposium on Foundations of

Computer Science, pages 1–8, 1979.

