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Abstract

In this paper, we show how to use the notion of layering-tree intro-
duced in [5], in order to obtain polynomial time constructible routing
schemes. We describe efficient routing schemes for two classes of graphs
that include the class of chordal graphs. For k-chordal graphs, i.e., graphs
containing no induced cycle of length greater than k, the routing scheme
uses addresses and local memories of size O(log2 n) bits per node, and
the length of the route between all pairs of vertices never exceeds their
distance plus k + 1 (deviation at most k + 1). For tree-length δ graphs,
i.e., graphs admitting a tree-decomposition in which the diameter of any
bag is at most δ, the routing scheme uses addresses and local memories of
size O(δ log2 n) bits per node, and its deviation is at most 6δ−2. Observe
that for chordal graphs, for which δ = 1 and k = 3, both schemes produce
a deviation 4, with addresses and local memories of size O(log2 n) bits per
node.
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1 Introduction

Delivering messages between pairs of processors is a basic activity of any distrib-
uted communication network. This task is performed using a routing scheme,
which is a mechanism for routing messages in the network. The routing mech-
anism can be invoked at any origin node and be required to deliver a message
to any destination node.

It is naturally desirable to route messages along paths that are as short as
possible. Routing scheme design is a well-studied subject. The efficiency of a
routing scheme is measured in terms of its deviation or in terms of its stretch.
The deviation of a routing scheme is d if it guarantees that the length of the
route between all pairs of vertices never exceeds their distance plus d. Similarly,
the stretch is s if lengths of routes are bounded by distances multiplied by s. A
straightforward approach to achieving the goal of guaranteeing optimal routes
is to store a complete routing table in each node u in the network, specifying
for each destination v the first edge (or an identifier of that edge, indicating the
output port) along some shortest path from u to v. However, this approach may
be too expensive for large systems since it requires O(n log d) memory bits for
a node of degree d in an n-node network. Thus, an important problem in large-
scale communication networks is the design of routing schemes that produce
efficient routes and have relatively low memory requirements.

The routing problem can be presented as requiring to assign two kinds of
labels to every node of a graph. The first is the address of the node, whereas
the second label is a data structure called the local routing table. The labels
are assigned in such a way that at every source node u and given the address
of any destination node v, one can decide the output port of an edge outgoing
from u that leads to v. The decision must be taken locally at u, based solely
on the two labels of u and with the address label of v. In order to allow each
intermediate node to proceed similarly, a header is attached to the message to
v. This header consists either of the destination label, or of a new label created
by the current node.

It was shown in a series of papers (see, e.g., [1, 2, 3, 4, 18, 21]) that there
is a trade-off between the memory requirements of a routing scheme and the
worst-case stretch factor it guarantees. In [18] it is shown that every routing
strategy that guarantees a routing scheme of stretch s for every n-node graph
requires Ω(n1+1/(2s+4)) bits in total, so Ω(n1/(2s+4)) for local routing tables, for
some worst-case graphs. Stronger lower bounds hold for small stretch factors.
In particular, any routing scheme of stretch s must use Ω(

√
n) bits for some

nodes in some graphs for s < 5 [20], Ω(n) bits for s < 3 [11, 13], and Ω(n log n)
bits for s < 1.4 [15]. More precisely, for s = 1 [15] showed that for every shortest
path routing strategy and for all d and fixed ε > 0 such that 3 � d � (1− ε)n,
there exists a graph of degree bounded by d for which Ω(n log d) bits routing
tables are required simultaneously on Θ(n) nodes, matching with the memory
requirements of complete routing tables. All the lower bounds presented above
assume that routes and addresses can be computed and optimized by the routing
strategy in order to decrease the memory requirements.
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If we insist on chordal graphs, namely the class of graphs containing no
induced cycles of length greater than 3, no strategy better than complete routing
tables is known for an optimal stretch factor s = 1. Nevertheless, in [8], it is
shown that every chordal graph admits a routing scheme of deviation 2 with
addresses and local memories of size O(log3 n/ log log n) bits per node.

Our contribution

In this paper, we show how to use the notion of layering-tree introduced in [5],
in order to obtain polynomial time constructible routing schemes. Then, we
describe efficient routing schemes for two classes of graphs which both include
the class of chordal graphs.

The first generalisation of chordal graphs is based on the very rich concept
of Tree-decomposition, introduced by Robertson and Seymour [19] and widely
used to solve various graph problems. In particular, efficient algorithms exist for
graphs having a tree-decomposition into subgraphs (or bags) of bounded size: for
bounded tree-width graphs. The tree-length of a graph G is the smallest integer δ
for which G admits a tree-decomposition into bags of diameter at most δ. It has
been formally introduced in [9], and extensively studied in [7]. Chordal graphs
are exactly the graphs of tree-length 1, since a graph is chordal if and only if
it has a tree-decomposition in cliques (cf. [16]). AT-free graphs, permutation
graphs, and distance-hereditary graphs are of tree-length 2. More generally, [14]
showed that k-chordal graphs have tree-length at most k/2. However, there are
graphs with bounded tree-length and unbounded chordality1, like the wheel.
So, the class of bounded tree-length graphs is larger than the class of bounded
chordality graphs. For graphs of tree-length bounded by δ, we obtain a routing
scheme of deviation 6δ−2 with addresses and local memories of size O(δ log2 n)
bits per node, moreover headers attached to the message are of size O(δ log n)
bits.

The second generalisation of chordal graphs for which our routing scheme
improves the best previous one, is the class of k-chordal graphs, namely the
class of graphs containing no induced cycles of length greater than k. For such
graphs, the best previous routing scheme has a deviation 2 �k/2� with addresses
and local memories of size O(log3 n/ log log n) bits per node [10]. In this paper
we show that by relaxing a bit the deviation, k + 1 instead of 2 �k/2�, it is
possible to obtain a routing scheme with addresses and local memories of size
O(log2 n) bits per node, moreover headers attached to the message are of size
Θ(logn) bits.

Observe that for chordal graphs, both schemes have a deviation 4, with
addresses and local memories of size O(log2 n) bits per node.

1The chordality is the smallest k such that the graph is k-chordal.
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2 Basic notions and notation

All graphs occurring in this paper are connected, finite and undirected. Let
G = (V,E) be any graph, let X,Y be two subsets of V and let u be vertex of
G. Then, the distance in G between u and X, denoted dG(u,X) is: dG(u,X) =
minv∈X dG(u, v). Moreover, the distance in G between X and Y is: dG(X,Y ) =
minu∈X dG(u, Y ). A shortest path spanning tree T of a graph G is a rooted tree
having the same vertex set as G and such that for every vertex u, dG(u, r) =
dT (u, r) where r is the root of T . In the following, we will use the standard
notions of parent, children, ancestor, descendant and depth in trees. The nearest
common ancestor between two vertices u, v in a tree T is denoted by ncaT (u, v).

2.1 Layering-tree

In this paper all routing schemes we describe are strongly based on the notion of
Layering-tree we define in this subsection. Let G be a graph with a distinguished
vertex s. Then we partition V (G) into layers: for every integer i � 0, Li =
{u ∈ V (G) | dG(s, u) = i}. Then, each layer Li is partitioned into Li

1, . . . , L
i
pi

,
such that two vertices stay in a same part if and only if they are connected by
a path visiting only vertices at distance at least i from s. A Layering-tree of G,
denoted LT, is the graph whose vertex set is the collection of all the parts Li

j .
In LT, two vertices Li

j and Li′
j′ are adjacent if and only if there exists u ∈ Li

j

and v ∈ Li′
j′ such that u and v are adjacent in G (see Figure 1 for an example).

The vertex s is called the source of LT.

Lemma 1 [5] For any graph G, LT is a tree computable in linear time.
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Figure 1: A graph G and a layering-tree of it.

Given a layering-tree LT of a graph G, for every vertex u we define the part
of u: part(u) that denotes the part of LT which contains u. By construction,
one can prove that Layering-trees have this property:

Property 1 Let LT be a layering-tree of a graph G, let u, v be two vertices of
G, and let X = ncaLT(part(u),part(v)). Then, any path in G from u to v has
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to use at least one vertex of X. Moreover dG(u, v) � dLT(part(u),part(v)) =
dS(u,X) + dS(v,X)

2.2 Hierarchical-tree

All routing schemes we describe in this paper need also the notion of hierarchical-
tree we define hereafter. It is well known that every tree T has a vertex u, called
median, such that each connected component of T \ {u} has at most 1

2 |V (T )|
vertices. A hierarchical-tree of T is a rooted tree H defined as follows: the root
of H is the median u of T and its children are the roots of the hierarchical
trees of the connected components of T \ {u}. Observe that T and H share the
same vertex set, and the depth of H is at most2 log |V (T )|. By construction of
hierarchical-trees, one can prove the following property:

Property 2 Let H be a hierarchical-tree of a tree T . Then let u, v be two
vertices of T , then ncaH(u, v) separates u and v in T .

2.3 Tree-length δ graphs

The notion of tree-length we define hereafter will be useful in section 4. In their
work on graph minors [19], Robertson and Seymour introduce the notion of
tree-decomposition. A tree-decomposition of a graph G is a tree T whose nodes,
called bags, are subsets of V (G) such that:

1.
⋃

X∈V (T ) X = V (G);

2. for all {u, v} ∈ E(G), there exists X ∈ V (T ) such that u, v ∈ X; and

3. for all X,Y,Z ∈ V (T ), if Y is on the path from X to Z in T then X ∩Z ⊆
Y .

The length of a tree-decomposition T of G is maxX∈V (T ) maxu,v∈X dG(u, v),
and the tree-length of G is the minimum of the length, over all tree-decompositions
of G.

A well-known invariant related to tree-decompositions of a graph G is the
tree-width, defined as minimum of (−1+maxX∈V (T ) |X|) over all tree-decompositions
T of G. We stress that the tree-width of a graph is not related to its tree-length.
For instance cliques have unbounded tree-width and tree-length 1, whereas cy-
cles have tree-width 2 and unbounded tree-length.

2.4 k-chordal graphs

The notion of k-chordal graphs we define hereafter will be useful in section 5.
A graph G is k-chordal if the length of the longest induced cycle of G is at
most k. This class of graphs is also discussed under the name k-bounded-hole
graphs in [17]. Chordal graphs are 3-chordal graphs. The chordality of G is

2All the logs are in base two.
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the smallest integer k such that G is k-chordal. Trees are, by convention, of
chordality 2.

2.5 BFS-ordering and BFS-tree

These two notions we define hereafter, will be useful in the last optimisation in
section 5. A Breadth-First-Search-ordering σ of a graph G is a function that
orders vertices of G by assigning numbers from n to 1 in the following way.
Let s any vertex of G, s is called the source, then s gets the number n. Then
each next available number is assigned to the unnumbered vertex having the
neighbor with the largest number.

A BFS-tree of G based on σ is the spanning tree of G rooted at the source
of σ such that for any vertex u of G, the parent of u, p(u), is the neighbor of u
having the largest number in σ. Clearly a BFS-tree is a shortest path spanning
tree of G, moreover for all vertices u, v, if u >σ v then either p(u) >σ p(v) or
p(u) = p(v).

3 The main routing scheme

In this section, G denotes an arbitrary graph, LT denotes a layering-tree of G,
H denotes a hierarchical-tree of LT, and S denotes a shortest path spanning
tree of G rooted at the source s of LT.

Let us outline the routing scheme. Each vertex u, contains in its address the
information needed to route optimally in the tree S. In every part X of LT, we
choose arbitrarily a vertex, rX . For every part X which is an ancestor of part(u)
in H (part(u) included), let us define Z = ncaLT (part(u),X). Then the address
of u contains all the information of a shortest path in G between the ancestor
in S of rX that belongs to Z, and the ancestor in S of u that belongs to Z.
Observe that, since the depth of H is at most log n, u contains the information
of at most 1 + log n paths.

To send a message from any vertex u to any other v, the solution we pro-
pose consists on finding the nearest common ancestor in H between part(u)
and part(v): X = ncaH(part(u),part(v)). By Property 2, X belongs to the
path in LT from part(u) to part(v). So, Y = ncaLT (part(u),part(v)) is either
ncaLT (part(u),X), or ncaLT (part(v),X). Assume that Y = ncaLT (part(u),X),
then the route from u to v is depicted in Figure 2, where rescue1 (Resp. rescue2)
is the path contained in the address of u (Resp. of v) associated to X. More-
over, by Property 1, we know that dG(u, v) � dS(u, Y ) + dS(Y,X) + dS(X, v),
so the deviation is at most diamG(Y ) + diamG(X).

3.1 Description of labels

In this paper we consider that the outgoing edges of every vertex u of G, distinct
integers called output port numbers, can be chosen from [1,deg(u)]. Our scheme
associate to every vertex u of G two labels: its address, denoted by address(u)
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and a local routing table, denoted by table(u). The local routing table of u in
G, table(u), is set to < id(u), route(u) > (defined hereafter); The address of u
in G, is set to < id(u), route(u),path(u), help(u) >, where:

• id(u) is the identifier of u (an integer in {1, . . . , n});
• route(u) is a binary label depending on the tree S and on u such that

the route from u to any vertex v in S can be determined from the labels
route(u) and route(v) only. More precisely, for a suitable computable
function f (so independent of the tree), f(route(u), route(v)), for every
v �= u, returns the output port number of the first edge of the path from
u to v in S. An implementation of these labels is discussed in Lemma 3.

• path(u) is a binary label allowing to determine, given path(u) and path(v),
the depth of the nearest common ancestor between part(u) and part(v) in
H;

• help(u) is a table with 1 + depthH(part(u)) entries. Let X be an an-
cestor of part(u) in H (X = part(u) is possible), help(u)[depthH(X)] =
< route(r′X), rescue >, defined as follows (see Figure 2):

Let Z = ncaLT(part(u),X) and rX be a special vertex of X arbitrarily
chosen in advance, then:

– r′X is the ancestor of rX in S which belongs to Z, route(r′X) is its
routing label in S.

– Let P be a shortest path in G between the ancestor of u which belongs
to Z, say u′, and r′X , then for every vertex of P , rescue contains its
identifier, the port numbers to reach its successor and its predecessor
in P .

3.2 The routing algorithm

Let u, v be two vertices of G, u the sender and v the receiver. Procedure init(u, v)
is in charge of initializing the header attached to the message sent by u. This
header, denoted by huv, contains: huv = < route(v), route(r), rescue1, rescue2 >
as describe below.

Consider any node w of G that receives a message with a header huv, the
header computed from init(u, v) (possibly, w = u). The output port number of
the edge on which the message to v has to be sent from w is computed by the
function send(w, huv) described below. Observe that once huv is initialized by
the sender, huv is never changed along the route.
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Algorithm init
Input: Two addresses: address(u) and address(v)
Result: huv, the header of a message to v

begin
hX ← depthH(ncaH(part(u),part(v)));
rescue1 ← help(u)[hX ].rescue;
rescue2 ← help(v)[hX ].rescue;
route(r)← help(v)[hX ].route(r′X);

end

Algorithm send
Input: The local routing table of a vertex w, a header huv

Result: The port number of an outgoing edge from w

begin
if w is an ancestor or a descendant of v in S then

return (f(route(w), route(v)));
if id(w) ∈ rescue2 then

return (the port number associated to w);
if w is an ancestor or a descendant of r in S then

return (f(route(w), route(r)));
if id(w) ∈ rescue1 then

return (the port number associated to w);
return (the port number between w and its parent);

end

3.3 Correctness and performances of the routing algo-
rithm

We now prove the correctness of the routing algorithm. Let ρ(u, v) denotes
the length of the route produced by init and send from u to v. We denote by
dG(u, v) the distance between u and v in G. The correctness of our scheme is
given by the following lemma:

Lemma 2 Let u, v be two vertices of G and let λ be the maximum distance
between two vertices of a part of LT, then ρ(u, v) � dG(u, v) + 2λ.

Proof: Let u, v be two vertices of G, u is the sender and v the receiver. Let Y =
ncaLT (part(u),part(v)) and X = ncaH(part(u),part(v)). Then, by Property 2,
X separates part(u) and part(v) in LT , thus X is a descendant of Y in LT
(or X = Y ). Moreover, by Property 1, every vertex of X has an ancestor in S
which belongs to Y . In particular it is true for rX , so r′X is well defined.

Assume that X is not an ancestor in LT of part(u), i.e., X is an ancestor in
LT of part(v) (see Figure 2). In this case, clearly help(u)[hX ].rescue contains
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Path of rescue1

Y

u′
Path of rescue2

r′X

X

v′rX

LT

v

u

Paths in S

Figure 2: Example of the route induced by the scheme

a shortest path in G from u′ to r′X . Moreover, since X = ncaLT (part(u),X),
we have help(v)[hX ].route(r′X) = route(rX), and help(v)[hX ].rescue contains
a shortest path in G from rX to v′. Thus, Function send guarantees that
the message follows the path depicted in Figure 2, or a subpath of it, if it
contains loops. Then, by Property 1, we have dG(u, v) � dG(u, Y ) + dG(Y, v) =
dS(u, u′) + dS(r′X , rX) + dS(v′, v). So we can conclude:

ρ(u, v) � dG(u, v) + dG(u′, r′X) + dG(rX , v′) � dG(u, v) + 2λ.

The proof of the case where X is an ancestor in LT of part(u), is similar,
replacing u by v, and v by u. �

3.4 Implementation of the scheme

We assume that the standard bitwise operations (like addition, xor, shift, etc.)
on O(log n) bit words run in constant time. Moreover we consider that output
port numbers can be chosen during the construction of the labels.

Lemma 3 For every vertex u, address(u) can be implemented with a binary
string of size O(λ log2 n) bits, such that init(u, v) runs in constant time. More-
over headers can be implemented with a binary string of size O(λ log n) bits such
that for all vertex w, send(w, huv) runs in O(log λ) time.

Proof: Let u be an arbitrary vertex of G. To implement the routing in the tree
S, we use the shortest path routing scheme proposed in [12]. Since output port
numbers can be chosen, this scheme produces binary labels of size O(log n) bits
per vertex and such that for every u, v, the routing function f(route(u), route(v))
is computable in constant time. Thus, the size of route(u) is O(log n) bits.
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To implement path(u) we use another known result, which produces labels
of size O(log n), and a decodable function running in constant time [14]. Then,
for every ancestor of part(u) in H, help(u)[hX ].rescue contains O(λ) entries,
and each entry contains three integers between 0 and n: the identifier of the
vertex, the port number to reach its predecessor and the port number to reach
its successor. Since the depth of H is O(log n), help(u) contains O(λ log2 n)
bits. Since a header contains one entry of help(u), it contains O(λ log n) bits.

In the function init, we only make some constant number of copies of point-
ers. Thus init runs in constant time.

In the function send, knowing if w belongs to rescue1 or rescue2, can be done
in O(log λ) time, thanks to a dichotomic procedure because rescue1 and rescue2

can be sorted. Others tests can be done in constant time using the routing
function f . �

From the previous lemmas, it follows that:

Theorem 1 Every n-vertex graph admits a loop-free routing scheme of devia-
tion 2λ such that the address and the local table have at most O(λ log2 n) bits size
per vertex, where λ is the maximum distance between two vertices of a same part
of a layering-tree of G. Once computed by the sender, headers of size O(λ log n)
bits never change. Moreover the scheme is polynomial time constructible and
the routing decision is performed in O(log λ) time at every vertex.

4 Routing scheme for tree-length δ graphs

In this section G denotes a tree-length δ graph, LT denotes a layering-tree of G
and H denotes a hierarchical-tree of LT, and S denotes a shortest path spanning
tree of G rooted at the source s of LT.

4.1 Preliminaries

Let us show the relation between tree-length and distances in a part of a layering-
tree:

Lemma 4 Let LT be a layering-tree of a tree-length δ graph G. Then, for every
part W of LT, there is a vertex c of G, called the center of W , such that, for all
u, v ∈W , dG(u, v) � 3δ and dG(u, c) � 2δ. Moreover, for every δ, these bounds
are best possible.

Proof: Let T be a tree-decomposition of G of length δ, w.l.o.g. T is supposed
to be rooted at a bag containing s, the source of LT (see figure 3(a)). Let S be
a shortest path spanning tree of G rooted at s.

Now, let W be a part of LT at distance i from s. Let X be the bag of T that
is the nearest common ancestor in T of all the bags containing a vertex of W ,
and let dX = maxu,v∈X dG(u, v) be its diameter. Let us prove that for every
u ∈W , dG(u,X) � δ. In this way, we obtain:
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• ∀u, v ∈W , dG(u, v) � dG(u,X) + dX + dG(v,X) � 3δ;

• ∀u ∈W and ∀c ∈ X, dG(u, c) � dG(u,X) + dX � 2δ.

Let u be an arbitrary vertex of W , and let v be a vertex of W such that
X = ncaT (B(u),B(v)) (observe that v is well defined). Let P be the path in
S from s to u, P must intersect X at a vertex x. Since u, v are both in W ,
there exists a path Q in G from u to v in which every vertex w is such that
dG(s, w) � i. Q intersects X at a vertex z (see Figure 3(a)).
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Figure 3: A part of LT is of diameter at most 3δ and of radius at most 2δ.

Note that dG(s, u) = i = dG(s, x)+dG(x, u) and dG(s, z) � dG(s, x)+ δ. So,
dG(s, z) � i − dG(x, u) + δ. If dG(x, u) > δ then dG(s, z) < i: a contradiction
since z ∈ Q. So, dG(u,X) � dG(x, u) � δ as claimed.

These bounds are best possible for each δ � 1. Indeed, for δ = 1, the graph
depicted on Figure 3(b) is chordal, the vertices u, v, w belong to the same part
and dG(u, v) = dG(u,w) = dG(v, w) = 3. By replacing each edge by a path
of length δ, the tree-length increases to δ, vertices u, v, w still belong to the
same part and they are at distance 3δ. We check that a center c for L2

1 can be
chosen arbitrarily among {x1, x2, x3, z, s} and attains a radius 2δ. Moreover, if
c /∈ {x1, x2, x3, z, s}, one can prove that either dG(u, c) > 2δ, or dG(v, c) > 2δ,
or dG(w, c) > 2δ. Thus, the radius of L2

1 is exactly 2δ. �

Observation 1 Note that the choice of the center of any part W can be en-
hanced. Indeed, it can be set to any vertex c which belongs to X and is an
ancestor in S of a vertex of W . Thus, let u ∈ W such that for all v ∈ W ,
dS(u,X) � dS(v,X), Then the center of W can be set to the vertex c ∈ X such
that dS(u, c) = dS(u,X), and we obtain:

∀v ∈W, dG(v, c) � δ + dS(u, c) � 2δ.

In the graph depicted on Figure 3(b), vertices satisfying this observation are
x1, x2 and x3.
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Lemma 4 and Theorem 1 imply the following corollary:

Corollary 1 Every n-vertex graph of tree-length δ admits a loop-free routing
scheme of deviation 6δ such that the address and the local table have at most
O(δ log2 n) bits size per vertex. Once computed by the sender, headers of size
O(δ log n) bits never change. Moreover the scheme is polynomial time con-
structible and the routing decision is performed in O(log δ) time at every vertex.

4.2 The routing scheme

In this subsection, we will adapt the main routing scheme for the case of graphs
with tree-length bounded by δ, in order to improve Corollary 1. Indeed, we will
prove the following theorem:

Theorem 2 Every n-vertex graph of tree-length δ admits a loop-free routing
scheme of deviation 6δ − 2 such that the address and the local table have at
most O(δ log2 n) bits size per vertex. Once computed by the sender, headers
of size O(δ log n) bits never change. Moreover the scheme is polynomial time
constructible and the routing decision is performed in O(log δ) time at every
vertex.

Proof: The routing scheme which satisfies this theorem is very similar to the
general routing scheme presented in section 3. There are only two differences:
let X = ncaH(part(u),part(v)) and Y = ncaLT(part(u),X), then:

• the special vertex rX is not chosen arbitrarily, it is set to a center of X
which satisfies Observation 1;

• since rX /∈ X, part(rX) can be an ancestor of Y in LT and so the definition
of r′X has to be changed: if part(rX) is an ancestor of Y in LT then
r′X = rX else r′X is the ancestor of rX in S which belongs to Y .

Then the proof of Theorem 2 is completed by Lemma 5, given below. �

Lemma 5 Let u, v be two vertices of G, then:

• either ncaH(part(u),part(v)) = ncaLT(part(u),part(v)), and then ρ(u, v) �
dG(u, v) + 4δ;

• or part(rX) separates ncaLT(part(u),part(v)) and ncaH(part(u),part(v))
in LT, and then ρ(u, v) � dG(u, v) + 4δ;

• or part(rX) is an ancestor in LT of ncaLT(part(u),part(v)) and then
ρ(u, v) � dG(u, v) + 6δ − 2;

Proof: Let u, v be two vertices of G, let X = ncaH(part(u),part(v)),and let
Y = ncaLT(part(u),X). In the proof we assume, w.l.o.g., that X is an ancestor
in LT of part(v). Let u′ be the ancestor of u in S which belongs to Y and v′ be
the one of v which belongs to X, then:
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• Case 1 (Figure 4(a)), ncaH(part(u),part(v)) = ncaLT(part(u),part(v)).
By Observation 1, part(rX) is an ancestor of ncaLT(part(u),part(v)), so
the path from u′ to rX is contained in the address of u and the path from
rX to v′ in the address of v. So the route from u to v is well defined and
by Lemma 4 the deviation is at most 4δ.

• Case 2 (Figure 4(b)), part(rX) separates Y and X in LT. Then the path
from u′ to r′X is contained in the address of u, and the path from rX to
v′ in the address of v. So the route is well defined and we have: ρ(u, v) �
dG(u, Y ) + dG(u′, r′X) + dG(Y,part(rX)) + dG(rX , v′) + dG(X, v). More-
over, by Observation 1 we have dG(rX , v′) � δ + dG(part(rX),X). Thus,
we conclude ρ(u, v) � dG(u, Y ) + dG(Y,part(rX)) + dG(part(rX), v′) +
dG(X, v) + 4δ, which is less or equal to dG(u, v) + 4δ.

• Case 3 (Figure 4(c)), X �= Y and part(rX) is an ancestor in LT of Y .
Then r′X = rX , so the path from u′ to rX is contained in the address
of u, and the path from rX to v′ in the address of v, so the route is well
defined. Moreover, we have: ρ(u, v) � dG(u, u′)+dG(u′, rX)+dG(rX , v′)+
dG(v′, v). Then observe that, by Property 1 and Lemma 4, we have:
dG(u′, rX) � dG(u′,part(rX)) + 3δ. Then, by Observation 1, we have
dG(rX , v′) � δ + dG(v′,part(rX)) � 2δ, thus dG(Y,part(rX)) � δ − 1.
Finally we obtain:

ρ(u, v) � dG(u, u′) + (δ − 1) + 3δ + 2δ + dG(v′, v)
� dG(u, v)− dG(X,Y ) + 6δ − 1
� dG(u, v) + 6δ − 2.

�

5 Routing scheme for k-chordal graphs

In this section G denotes a k-chordal graph, LT denotes a layering-tree of G and
H denotes a hierarchical-tree of LT, and S denotes a shortest path spanning tree
of G rooted at the source s of LT.

5.1 Preliminaries

Let us show, thanks to the following lemma, the relation between chordality and
distances in a part of a layering-tree. The first point of this lemma is already
proved in [5] and the second one in [6].

Lemma 6 Let LT be a layering-tree of a k-chordal graph G and S be a shortest
path spanning tree of G rooted at s. Let Li

j be an arbitrary part of LT, then for
all vertices u, v of Li

j we have:

1. dG(u, v) � �k/2�+ 2;



Y. Dourisboure, Routing in gen. chordal graphs, JGAA, 9(2) 277–297 (2005)290

u v

part(rX)
rX

X=Y

u′ v′

(a) deviation 4δ

v′

part(rX)

rX

u

u′ r′X

Y

X

v

(b) deviation 4δ

rX
part(rX)

Y
u′

u

v′
X

v

(c) deviation 6δ − 2

Figure 4: The three possible situations in case of tree-length δ graphs

2. there exists a path of length at most k from u to v that contains ancestors
of u in S, then ancestors of v in S.

Proof: Let G be a k-chordal graph, let LT be a layering-tree of G, let S be a
shortest path spanning tree of G rooted at s, and let u, v be two vertices of G
which belong to a same part: Li

j .
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Then, by definition of Li
j , there exists a path from u to v using only vertices

which are at distance at least i from s. Let P be one such chordless path (see
Figure 5). Moreover, let Pu (resp. Pv) be the path in S from u (resp. v) to s,
then let a(u) ∈ Pu be the nearest ancestor of u such that a(u) has a neighbour,
say a(v), that belongs to Pv. Note that a(u) exists and in the extreme case,
a(v) = s, see Figure 5.

Then, if there is no chord between P and Pu or between P and Pv, then
P, u, · · · , a(u), a(v), · · · , v is an induced cycle containing both u and v, and thus
dG(u, v) � k/2, otherwise, by definition of S and as shown in Figure 5, chords
can exist only between the parent of u: p(u) (or the parent of v: p(v)) and
vertices of P .

P

u v Li
l

s

a(v)

p(v) Li−1
m

Pu Pv
a(u)

p(u)

Figure 5: Relation between chordality and distances in a part of LT.

In the extreme case, there is a chord from both p(u) and p(v). Nevertheless
there is an induced cycle containing p(u) and p(v). Thus dG(p(u), p(v)) � k/2
and dG(u, v) � k/2 + 2.

The path claimed by the second point of Lemma 6 is composed by: the
subpath of Pu from u to a(u), the edge 〈a(u), a(v)〉, and the subpath of Pv from
a(v) to v. �

The first point of Lemma 6 implies the following corollary of Theorem 1:

Corollary 2 Every k-chordal graph with n vertices admits a loop-free routing
scheme of deviation 2 k/2�+4 such that the addresses and the local tables have
at most O(k log2 n) bits size per vertex. Once computed by the sender, headers
of size O(k log n) bits never change. Moreover the scheme is computable in
polynomial time and the routing decision is performed in O(log k) time at every
vertex.

5.2 The routing scheme

In this subsection, we will adapt the main routing scheme for the specific case
of k-chordal graphs, in order to improve Corollary 2. Indeed, we will prove the
following theorem:
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Theorem 3 Every k-chordal graph with n vertices admits a loop-free routing
scheme of deviation k + 1 such that the addresses and the local tables have at
most O(log2 n) bits size per vertex. Once computed by the sender, headers of size
Θ(log n) bits never change. Moreover the scheme is computable in polynomial
time and the routing decision is performed in constant time at every vertex.

Proof: The routing scheme which satisfies this theorem is very similar to the
main routing scheme presented in section 3. In this proof, we just present the
differences:

1. At first, for every vertex u of G and every part X of LT that is an ances-
tor of part(u) in H, we reduce the path contained in the field rescue of
help(u)[depthH(X)] as follows. Let Y be the nearest common ancestor of
part(u) and X in LT and let r′X be the ancestor of rX in S that belongs
to Y . Then, let P be the path satisfying the second point of Lemma 6,
from u to r′X . Then, help(u)[depthH(X)] = < route(a(r′X)), rescue >,
defined by:

• a(r′X) is the first vertex of P that is an ancestor of r′X in S.

• rescue contains information of the edge of P between a(r′X) and its
predecessor: a(u′). Thus, rescue contains four integers: two identi-
fiers and two port numbers.

This is enough to prove that the routing scheme can be implemented with
addresses and local tables of size at most O(log2 n) bits per vertex and
with headers of size Θ(log n) bits. Moreover, it is easy to see (cf. Figure 6)
that the route from u to v is well defined. Moreover, by the second point
of Lemma 6 we have ρ(u, v) � dG(u, v) + k + 2.

2. Now we describe how to reduce the deviation from k + 2 to k + 1.

• Instead of setting S to an arbitrary shortest path spanning tree of G,
we set S to a BFS-tree based on a BFS-ordering σ of source s.

• For every part X of LT, instead of setting rX to an arbitrary vertex
of X, we set rX to the vertex of X with minimum number in σ.

Then, we need the following lemma already proved in [6]:

Lemma 7 Let S be a BFS-tree based on a BFS-ordering σ of source s,
then for every vertex x of any part X, the path satisfying the second point
of Lemma 6 from x to rX is such that dS(x, a(x)) � dS(rX , a(rX))

Proof: Let x be any vertex of any part X. Let a(x) and a(rX) be the
vertices satisfying the second point of Lemma 6. We already know that
|dS(x, a(x))− dS(rX , a(rX))| � 1.

Assume now that dS(x, a(x)) > dS(rX , a(rX)) as depicted in figure 7.
Then let w be the child of a(x) that is an ancestor in S of x. Then, by
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Figure 6: The three possible situations in case of k-chordal graphs
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choice on rX , x >σ rX , thus, by definition of S, w >σ a(rX). Thus, either
a(x) = p(a(rX)) or a(x) >σ p(a(rX)). If a(x) = p(a(rX)) then w has a
neighbor in G that is an ancestor in S of rX , a contradiction because by
definition of a(x), a(x) is the nearest ancestor of x having this property.
So a(x) >σ p(a(rX)), that is also a contradiction because by the definition
of S, p(a(rX)) is the neighbor of a(rX) having the largest number in σ. �

x rX X

s

p(a(rX))a(x)

w a(rX)

Figure 7: Impossible case when S is a BFS-tree

Lemma 7 shows that some cases depicted in figure 6 are impossible:

• in figure 6(a), part(a(u′)) cannot be above part(a(r′X)) ;
and part(a(v′)) cannot be above part(a(rX))

• in figure 6(b) and 6(c), part(a(v′)) cannot be above part(a(rX)).

Therefore, in all cases, we obtain that ρ(u, v) � dG(u, v)+k+1 as claimed
in Theorem 3.

�

6 Conclusion

In this paper, we show how to use the notion of layering-tree to construct efficient
compact routing schemes for tree-length δ graphs and for k-chordal graphs. It
would be interesting to find other classes of graphs for which distances in parts of
a layering-tree are related to some parameters of the class. In this way, we would
be able to obtain a very fast constructible and efficient routing scheme, even if
the class of graphs is hard to construct. Indeed, producing a tree-decomposition
of length minimum is probably NP-complete for general graphs. Nevertheless,
we propose an efficient routing scheme, constructible in very short time.
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Moreover, the study of the case of graphs with tree-length bounded by δ
can be continued. As we have done in case of k-chordal graphs, it would be
interesting to remove the δ factor of the memory requirements.
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