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Abstract

In this article we define a canonical decomposition of rooted outerpla-
nar maps into a spanning tree and a list of edges. This decomposition,
constructible in linear time in the Word-RAM model, implies the existence
of bijection between rooted outerplanar maps with n nodes and bicolored
rooted ordered trees with n nodes where all the nodes of the last branch
are colored white. As a consequence, for rooted outerplanar maps of n

nodes, we derive:

• an enumeration formula, and an asymptotic of 23n−Θ(log n);

• an optimal data structure of asymptotically 3n bits, built in O(n)
time, supporting adjacency and degree queries in worst-case constant
time and neighbors query of a degree-d node in worst-case O(d) time.

• an O(n) expected time uniform random generating algorithm.
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1 Introduction

A graph is outerplanar if it can be drawn on the plane with non-intersecting
edges such that all the nodes lie on the boundary of the infinite face, also
called outerface. Characterization of outerplanar graphs has been given by
Chartrand and Harary [8]: a graph is outerplanar if and only if it has neither
K2,3 nor K4 as a minor. A linear time recognition algorithm has been given
by Mitchell [19]. Labeled and unlabeled outerplanar graphs can be randomly
generated in O(n4 log n) space and O(n2) time [5] after a preprocessing of O(n5)
time. Among graph properties, outerplanar graphs contain trees, have tree-
width at most two, and are exactly the graphs of pagenumber one [4]. Recall
that a graph G has pagenumber k if k is the smaller integer for which G has a
k-page embedding, also called book embedding. In such an embedding the nodes
are drawn on a straight line (the spine of a book), and the edges are partitioned
into k pages, each page consisting of non-intersecting edges. An outerplanar
graph with a 1-page embedding is depicted on Figure 1c).

A planar map is a connected graph embedded on the sphere with non-
intersecting edges (see [11] for a survey). A planar map is outerplanar if all
the nodes lie on one face, called the outerface. For convenience, outerplanar
maps are drawn on the plane such that the outerface corresponds to the infinite
face, see Figure 1b). A map is rooted if one of its edges, the root, is distinguished
and oriented. In this case, the map is drawn on the plane in such a way that
whenever traveling clockwise around the boundary of the outerface, the tail of
the root edge is traversed before its head. A planted tree is the rooted planar
map of a rooted tree such that the tail of the root of the map coincides with the
root of the tree. In the literature, planted trees are also named ordered rooted
trees. All the maps considered in this paper are planar, rooted, and are simple
(have no loops and multi-edges).
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Figure 1: Four drawings for an outerplanar graph G: a) a planar (but not
outerplanar) map; b) an outerplanar map; and c) a 1-page embedding. As
graphs, a), b), c) and d) are identical, but as maps, only b), c) and d) are
identical. As 1-page embedding, we point out that c) and d) are different.

Some sub-classes of outerplanar maps are well-known. Planted trees and
maximal outerplanar maps, i.e., the map of an outerplanar graph with the
maximum number of edges, are counted by the Catalan numbers. Finally, bi-
connected outerplanar maps can be seen as dissections of a convex polygon, and
their number can be counted by Schröder numbers. For these three sub-classes
there exist linear time random generation algorithms [1, 3, 14].
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Besides the combinatorial aspect and random generation, a lot of attention
is given in Computer Science to efficiently represent discrete objects. By “effi-
ciently”, we mean that the representation should be succinct, i.e., the storage
of these objects requires few bits, and that the time to compute such represen-
tation should be polynomial in its size. Fast manipulation of the so encoded
objects and easy access to a part of the code are also desirable properties. Typ-
ically, adjacency query, i.e., check if two nodes are neighbors or not, and degree
query, i.e., how many neighbors a node has, should be given very fast.

For instance, a folklore encoding of n-edge planted trees, based on a clockwise
depth-first traversal, yields a representation with 2n − O(1) bits. This coding
length is asymptotically optimal since the number of possible n-edge planted
trees is the nth Catalan number 1

n+1

(
2n
n

)
∼ 22n−O(log n). Completing this coding

by an efficient data structures of length o(n) bits, it has been shown in [9, 20]
that adjacency and degree queries can then be answered in constant time, that
the neighbors of a degree-d node can be determined in O(d) time, assuming
that: 1) nodes of the tree are labeled according to the depth-first traversal (i.e.,
node i must be the ith node encountered in the clockwise prefix order of the
tree); and 2) standard arithmetic operations on integers of O(log n) bits can be
performed in constant time.

Outerplanar graphs are an interesting class of graphs because they are iso-
morphic to graphs of pagenumber one, cf. Figure 1. Our contribution is an
optimal 3n-bit encoding for outerplanar maps. We point out that there exist
many 1-page embeddings for a graph of pagenumber one. From the asymptotic
formula of Flajolet and Noy [16], any encoding of 1-page embeddings requires
3.37n bits1.

Let us sketch our technique. First we show that an outerplanar map admits
a canonical decomposition into a particular rooted spanning tree (called well-
orderly tree and defined in Section 2), and a set of additional edges (u, v) such
that v is the first node after u (in a clockwise preorder of the tree) that is
not a descendant of v. This decomposition can be computed in linear time.
Then, we give three applications to this decomposition: enumeration formula
(Section 3), efficient encoding (Section 4), and random generation algorithm
with experiments (Section 5).

Hereafter we denote by Tn,d the number of n-node planted trees where the
depth of the clockwise last leaf is d (formulas for these numbers are given in [15,
18]). Our canonical decomposition gives a bijection between outerplanar maps
and bicolored trees (more precisely planted trees in which the nodes are colored
either white or black), and where all the nodes (including the root) of the
clockwise last branch are colored white. Clearly these last objects are counted
by the following numbers:

n−1∑

d=1

2n−d−1Tn,d .

From this bijection, we show that the number of n-node outerplanar maps is

1In their article, 1-page embeddings are called non-crossing graphs.
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asymptotically
23n

36n
√

πn
.

Moreover, the average number of edges of an outerplanar map is 3
2n−O(1).

An information-theoretic optimal encoding algorithm is deduced from the
previous decomposition. It takes a O(n) time in the Word-RAM Model and
uses at most 3n−6 bits, for n > 2, as follows: 2n−4 bits are used to encode the
spanning tree, and n− 2 bits (at most) are used to encode the additional edges.
Adding a standard o(n)-bit data structure to this coding [20, 9], adjacency and
degree queries can then be answered in worst-case constant time and neighbors
of a d-degree node can be determined in O(d).

Using a grammar to produce bicolored rooted ordered trees with n nodes
where all the nodes of the last branch are colored white, and using Goldwurm’s
algorithm [17], a random outerplanar map can be generated uniformly with
O(n) space and O(n2) average time. Using Floating-Point Arithmetic [12], this
average time complexity can be reduced to O(n1+ǫ). In Section 5, we propose
an O(n) expected time and O(n) space complexity generating algorithm. It
can generate outerplanar maps with a given number of nodes, or with a given
number of nodes and of edges.

2 Well-Orderly Tree of an Outerplanar Map

In [7] the authors introduced the well-orderly trees, a special case of the orderly
spanning trees [9]. Let T be a rooted spanning tree of a planar map H. Two
nodes are unrelated if neither of them is an ancestor of the other in T . An
edge of H is unrelated if its endpoints are unrelated. Let v1, v2 . . . , vn be the
clockwise preordering of the nodes in T . A node vi is well-orderly in H w.r.t.
T if the incident edges of vi in H form the following blocks (possibly empty) in
clockwise order around vi:

• BP (vi): the edge incident to the parent of vi;

• B<(vi): unrelated edges incident to nodes vj with j < i;

• BC(vi): edges incident to the children of vi;

• B>(vi): unrelated edges incident to nodes vj with j > i; and

• the clockwise first edge (vi, vj) ∈ B>(vi), if it exists, verifies that vi is a
descendant of the parent of vj ;

T is a well-orderly tree of H if all the nodes of T are well-orderly in H, and
if the root of T belongs to the boundary of the outerface of H (see Figure 2
for an example). Note that a well-orderly tree is necessarily a spanning tree.
Observe also that for every edge e of H, with e = (vi, vj) and i < j, we have
either e ∈ BC(vi) (i.e., e ∈ T ), or e ∈ B>(vi). For convenience, the clockwise
first edge of B>(vi), if it exists, is called the front edge of vi.
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Figure 2: A rooted outerplanar map, and its well-orderly tree depicted with
solid edges.

Not all planar maps admit a well-orderly tree. For instance the map of
Figure 1a) has no well-orderly tree rooted at the tail of the root edge, whereas
the map of Figure 1b) has one. Actually, we have:

Lemma 1 ([7]) Every rooted planar map admits at most one well-orderly tree
rooted at the tail of the root edge of the map.

The proof of this lemma can be found in [6]. We will show that in fact
every outerplanar map admits a well-orderly tree. It can be computed by the
following recursive algorithm Traversal. H is the rooted outerplanar map, and
r is the tail of its root edge. Traversal(H, ∅, r) returns the well-orderly tree T
of H rooted at r, the second parameter is the current set of edges of the tree.

Algorithm 1 Traversal(H,T, u).

C ← {(u, v) ∈ H | v /∈ T}
T ← T ∪ C
for all edges (u, v) ∈ C taken in the clockwise order around u do

T ← Traversal(H,T, v)
end for
return T

Theorem 1 Every rooted outerplanar map H has a well-orderly tree T , com-
putable in linear time, rooted at the tail of the root edge of H. Moreover, for
every node u, if (u, v) ∈ B>(u), then v is the next unrelated node with u in the
clockwise preordering of T . In particular, |B>(u)| 6 1 for every u.

Proof. Let T be the set of edges returned by Traversal(H, ∅, r) (cf. Algo-
rithm 1), where r is the tail of the root edge of H. Let us denote by Ti and by
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vi respectively the second and the third parameters of the ith call of Traversal.
We have T1 = ∅ and v1 = r. Note that there are exactly n calls to Traversal,
where n is the number of nodes of H. By induction, Ti is a tree with i nodes,
for every i ∈ {1, . . . , n}. Therefore Tn = T is a spanning tree of H. An impor-
tant observation is that the clockwise preordering of the nodes of T is precisely
v1, . . . , vn, and that Ti is a subtree of Ti+1, for i ∈ {1, . . . , n− 1}.

This algorithm can be easily implemented to run in O(n) time. Let us show
that the tree T satisfies the properties of Theorem 1. This is done thanks to
the following properties.

Unrelated edges. Every edge of H is either in T , or an unrelated edge. Indeed,
let (vi, vj) be any edge with i < j. Clearly, vj is not an ancestor of vi. When
vi is being treated: 1) if vj ∈ Ti, then vj is not a descendant of vi, and thus
(vi, vj) is an unrelated edge; and 2) if vj 6∈ Ti, then vj becomes a child of vi in
Ti+1, thus an edge of Tn since Ti is a subtree of Ti+1.

Blocks. The incident edges of vi form clockwise around vi the four blocks
BP (vi), B<(vi), BC(vi), and B>(vi). Since T is a spanning tree of a planar
map, all the edges of B<(vi) are (clockwise) after BP (vi) and before the edges
of B>(vi). Let us show that the edges of BC(vi) are after the edges of B<(vi)
and before the edges of B>(vi).

Let us consider the ith call of Traversal. Let (vi, vt) be the last edge (in
clockwise order around vi) toward a node that is before vi in Ti. Let vk be the
nearest common ancestor of vi and vt. The path from vk to vi, the edge (vi, vt)
and the path from vt to vk defines a region of the plane, R, distinct from the
outerface. Since H is outerplanar there is no node inside the region R. So all
the neighbors of vi that are not in Ti follow the edge (vi, vt) in the clockwise
order around vi. Hence, the edges of BC(vi) are after the edges of B<(vi).

The same reasoning can be done to show that the edges of BC(vi) are before
the edges of B>(vi).

Descendant of the parent. For every (vi, vj) ∈ B>(vi), vi is a descendant of
the parent of vj . Assume (vi, vj) ∈ B>(vi). In particular (vi, vj) /∈ T . When vi

is being treated, the node vj must be in Ti, otherwise vj becomes a child of vi

in Ti+1, and thus in T . By construction, the only nodes vj ’s of Ti that are after
the node vi in the prefix clockwise preordering of Ti are such that their parent
is an ancestor of vi.

At this point, we have proved that every node in T is well-orderly, and thus
T is a well-orderly tree of H.

Next unrelated node. Let (vi, vj) ∈ B>(vi). Let vk be the first unrelated
node with vi clockwise after vi in T . Assume that vj 6= vk, so i < k < j. Let
vt be the parent of vj in T . The cycle composed of the path in T from vt to vi,
and of the edges (vi, vj) and (vj , vt) defines a region of the plane, R, distinct
from the outerface. Because i < k < j, vk must belong to R or to its boundary.
As vj is the only node of the boundary of R that is unrelated with vi, vk must
belong to R: a contradiction with the fact that H is an outerplanar map. It
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follows that vj = vk. Therefore, we have showed that (vi, vj) ∈ B>(vi) implies
that vj is the next unrelated node with vi in T .

This completes the proof of Theorem 1. 2

Combining Lemma 1 and Theorem 1, it is clear that an outerplanar map H
has an unique decomposition into a well-orderly tree T , and a set of edges of the
kind (u, v) ∈ B>(u), where v is the next unrelated node after u in T . (Recall
that an edge of H belongs either to T or to a B> block). Conversely, given
T , and a piece of information on whether B>(u) is empty or not for each node
u, one can uniquely determine the corresponding rooted outerplanar map. The
coding of the cardinality of each B> block can be done by coloring the nodes
of T as follows: if |B>(u)| = 0, u is colored white, and if |B>(u)| = 1, u is
colored black. Observing that for every node u of the clockwise last branch of
T , |B>(u)| = 0, we obtain:

Corollary 1 There is a bijection, computable in linear time, between the n-
node bicolored rooted trees where all the nodes of the last branch (including the
root) are colored white, and the n-node rooted outerplanar maps.

Recall that a graph (or a map) is k-connected if G has more than k nodes and
if, for every subset X of fewer than k nodes, G\X is connected [13]. Biconnected
is a synonym for 2-connected.

Theorem 2 There is a bijection, computable in linear time, between the (n−1)-
node bicolored rooted trees with a white root, all leaves colored in black, and the
set of n-node rooted biconnected outerplanar maps.

Proof. To show the theorem, let show that a outerplanar H map rooted at v
is biconnected if and only if (1) for each leaf u, different from the last leaf, of
the well-orderly tree of H rooted at v, |B>(u)| = 1 and (2) the depth of the last
leaf of T is 1.

Let H be an outerplanar map and T its well-orderly tree. Suppose that u
is a leaf of the tree T such that |B>(u)| = 0. All the neighbors of u belong to
the subtree rooted at P (u) and are before u in the clockwise prefix order of T .
Let u′ be a node of the subtree rooted at P (u). Let (u′′, u′) the front edge of
u′′. By definition u′ is the first unrelated node of u′′ after u′′ in the clockwise
prefix order of T . So, either u′ is equal to P (u) or u′′ is in the subtree rooted
at P (u). Consider the graph H ′ obtained from H when removing P (v). If the
node P (v) is not the root of T then H is not biconnected. If the node P (v) is
the root of T and u is not on the last branch then H is not biconnected.

Assume now that for all leaves u (different from the last leaf) of T |B>(u)| =
1 and that the depth of the last leaf is 1. Let u1 and u2 be two nodes of H.
W.l.o.g. suppose that u1 is before u2 in the prefix clockwise order of T . To
show that H is biconnected, let us construct a cycle, node disjoint containing
u1 and u2. The first part C1 of this cycle contains the edge (l, v) where l is the
last leaf of T , and the path of v to u1 in T . The second part C2 of the cycle
is constructed recursively as follow. Let the variable t initializes with u1. If u2
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does not belong to the subtree of T rooted at t, then we add the path from t
to the last leaf l of the subtree rooted at t plus the edge (l, t′) ∈ B>(l) and t
receives now node t′. If u2 belongs to the subtree of T rooted at t, then we add
the path from t to the last leaf l of the subtree of T rooted at u2 plus the edge
(l, t′) ∈ B>(l) and t receives now the node t′.

The construction ends when t is equal to the last leaf of the tree T . Clearly
the cycle C = C1∪C2 is node-disjoint and contains the nodes u1 and u2. Hence,
there exists two disjoint paths between u1 and u2. This property holds for each
pair u1 and u2 so the outerplanar map H is biconnected. 2

Observe that if the well-orderly tree of an outerplanar map H has its clockwise
last leaf of depth d, then from Corollary 1 H has no more than (n − 1) + n −
(d + 1) = 2n − 2 − d edges. In particular, the depth of the last leaf of the
well-orderly tree of any maximal outerplanar map (i.e., having 2n − 3 edges)
must be 1. As the well-orderly tree is unique, this yields another bijective proof
of the following well known result:

Corollary 2 There is a bijection, computable in linear time, between maximal
n-node outerplanar maps and planted trees with n− 1 nodes.

3 Enumeration of Outerplanar Maps

Let Tn,d be the number of rooted n-node plane trees whose clockwise last leaf is
of depth d. These numbers are called the ballot numbers (or Delannoy numbers),
and we have [15, 18]:

Tn,d =
d

2n− 2− d

(
2n− 2− d

n− 1− d

)

, for all n > d > 0.

So, there are exactly 2n−1−dTn,d bicolored trees whose all the nodes of the
last branch (including the root of the tree) are colored white. Let Mn be the
number of n-node outerplanar maps. The sequence Mn, for n = 1, 2, . . . , is:
1, 1, 3, 13, 67, 381, 2307, 14589, . . . (see Figure 3 for all the outerplanar maps of
4 nodes).

Theorem 3 For all n > 2, Mn =

n−1∑

d=1

2n−d−1Tn,d, and Mn ∼
23n

36n
√

πn
.

Proof. The enumeration formula for Mn follows directly from Corollary 1, and
of the above formula for Tn,d. Let us compute the asymptotic value of Mn.
Developing the factorials in binomial terms of Tn,d, we have:

Tn,d

Tn,1
= d

d∏

j=2

n− j

2n− 2− j
.

Therefore,

Mn

2n−2Tn,1
=

n−1∑

d=1

d

2d−1

d∏

j=2

n− j

2n− 2− j
=

n−1∑

d=1

un,d,
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Figure 3: The 13 rooted outerplanar maps with 4 nodes.

with

un,d =
d

2d−1

d∏

j=2

n− j

2n− 2− j
.

For every n, let us set vd(n) = un,d if d < n, and vd(n) = 0 if d > n. As
(n − j)/(2n − 2 − j) 6 1/2, |vd(n)| 6 d/2d−1(1/2)d−1 = d/22d−2, for all d and
n. Let wd = d/22d−2. We have:

∞∑

d=1

wd = lim
n→∞

n∑

d=1

wd = lim
n→∞

(
16

9
− 4

3

(
1

4

)n (

n +
4

3

))

=
16

9
.

Because the series wd is convergent, the series vd(n) is normally convergent. As
limn→∞ vd(n) = wd, we have:

lim
n→∞

n−1∑

d=1

un,d = lim
n→∞

∞∑

d=1

vd(n) =

∞∑

d=1

lim
n→∞

vd(n) =

∞∑

d=1

wd =
16

9
.

We have:

Tn,1 =
1

2n− 3

(
2n− 3

n− 2

)

=
1

n

(
2(n− 2)

n− 2

)

∼ 22n

16n
√

πn
.

The result follows. 2

Narayana numbers are related with biconnected outerplanar maps. The
Narayana numbers [21] count rooted plane trees with n nodes and ℓ leaves:

Yn,ℓ =
1

n

(
n

ℓ

)(
n− 2

n− ℓ− 2

)

, for all n > ℓ > 0.

Biconnected outerplanar graphs can be seen as dissections of a convex polygon,
and their number can be counted by Schröder numbers. From Theorem 2, we
have:
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Corollary 3 The number of rooted biconnected outerplanar maps with n > 3
nodes is

∑n−2
ℓ=2 2n−1−ℓYn−1,ℓ.

Theorem 4 The number Mn,m of rooted outerplanar maps with n > 3 nodes
and m > n− 1 edges is:

Mn,m =

2n−2−m∑

d=1

(
n− d− 1

m− n + 1

)

Tn,d .

Proof. Outerplanar maps with n nodes and m edges are in bijection with
bicolored trees with white nodes on the last branch and m− n + 1 black nodes
(see Corollary 1). On each tree of Tn,d, there are

(
n−d−1
m−n+1

)
possible ways to color

m− n + 1 nodes that are not on the last branch in black. 2

Let Mn denote the set of n-node outerplanar maps, counted by Mn, and let
Mn,m denote the n-node m-edge outerplanar maps, counted by Mn,m. Thanks
to Corollary 1, for each H ∈Mn, we can uniquely associate a number d that is
the depth of the last leaf of the bicolored tree T in bijection with H. Let d̄ be
the average value of d inMn.

Lemma 2 For every n, d̄ < 3.

Proof. Let us prove that

d̄ =

∑n−1
d=1 d2n−1−dTn,d

∑n−1
d=1 2n−1−dTn,d

6

∑n−1
d=1 dTn,d

∑n−1
d=1 Tn,d

. (1)

Take the positive functions f and g. For i, j ∈ N and f monotonic decreasing,
we show that the following expression is negative:P

i
i·f(i)g(i)P

i
f(i)g(i) −

P
i
i·g(i)P

i
g(i)

=
(
P

i
i·f(i)g(i))(

P
j

g(j))−(
P

i
i·g(i))(

P
j

f(j)g(j))
(
P

i
f(i)g(i))(

P
j

g(j))
.

Consider only the numerator N of the previous function. N can be rewritten
as:

(
∑

i i · f(i)g(i))
(
∑

j g(j)
)

− (
∑

i ig(i))
(
∑

j f(j)g(j)
)

=
∑

i

∑

j i · f(i)g(i)g(j)− i · g(i)f(j)g(j)

=
∑

i

(
∑

j<i i · g(i)g(j)(f(i)− f(j)) +
∑

j>i i · g(i)g(j)(f(i)− f(j))
)

=
∑

i

(
∑

j<i i · g(i)g(j)(f(i)− f(j)) +
∑

j<i j · g(j)g(i)(f(j)− f(i))
)

=
∑

i

∑

j<i(i− j) · g(i)g(j)(f(i)− f(j)).

If f is a monotonically decreasing function, the previous expression is negative.
Since f(d) = 2n−1−d is monotonic decreasing, Inequality (1) is proved.
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Observe that the right term of Inequality (1) is the average depth d̄t of the
last leaf of an n-node planted tree. Let Tn denote the set of n-node planted
trees. Let us show that d̄t 6 3n−1

n+1 .
Let us consider the sequence of bijections of the following diagram:

Tn ↔ D2n−2
∼↔ D2n−2 ↔ Tn ↔ Gn+1.

where 1) D2n is the set of Dyck words2 of length 2n, 2) Gn+1 is the set of rooted
triangulations of an (n + 1)-gon.

Almost all these bijections are well-known. Let us remind some facts and a
new bijection between Tn and Gn+1. Consider the bijections from the left to the
right. In the usual edge encoding w ∈ D2n−2 of a ordered rooted tree t ∈ Tn,
the clockwise prefix coding3, the length of the last branch of t corresponds to
the number of consecutive closed parentheses at the end of w. The operation
∼ consists in reading w from the right to the left and substituting each open
(respectively closed) parenthesis by a closed (respectively open) one. One can
easily check that the result w̃ is also a Dyck word and the distribution of the
number of consecutive open parentheses in the beginning of Dyck words is equal
to the distribution of closed parentheses at the end of Dyck words.

Take another encoding of t ∈ Tn, the degree encoding : start with the empty
Dyck word, perform a prefix traversal of the first n− 1 nodes of t appending for
each node having i children the pattern (( . . . (

︸ ︷︷ ︸

i

). (The last node of t being a

leaf, we do not need to code ) for it.) The final word is of length 2n − 2. The
number of consecutive open parentheses in the beginning of w̃ represents now
the degree of the root of t.

By Corollary 2, there is a bijection between Gn+1 and Tn. Let us remind some
details of the bijection. If we apply Algorithm Traversal to a rooted triangulation
of an (n + 1)-gon g, the result of the algorithm is of course a bicolored tree t′

of n + 1 nodes. Through this new bijection, the degree of the root of g and of
t′ are the same. Removing the last branch of length 1 and ignoring the color of
the nodes of t′, we obtain a tree t ∈ Tn. The degree of the root of t is equal to
the degree of the root of t′ minus one.

Through these bijections, the distribution of the degree of the root in Gn+1

is in bijection with the distribution of the length of the last branch in Tn minus
one.

Let d̄g be the average degree of the root in Gn+1. d̄t = d̄g− 1 = 2 2n−1
n+1 − 1 =

3n−1
n+1 . 2

Let mn be the average number of edges of the maps belonging toMn. From
Theorems 3, 4, and Lemma 2, we can deduce the following result:

2Dyck words or words of balanced parentheses are the set of words belonging to {(,)}∗

with the same amount of open and closed parentheses and so that at least half of the letters
of any prefix are a occurrence of open parentheses.

3Each edge encountered for the first time is coded by an open parenthesis and otherwise
by a closed one.
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Corollary 4 For every n, 3
2n− 3 < mn 6

3
2n− 2.

Proof. Let mn,d be the average number of edges for given d.

mn,d =

∑2n−d−2
m=n−1 m

(
n−d−1
m−n+1

)
Tn,d

2n−d−1Tn,d

.

Taking k = m− n + 1 and using the well-known binomial identities

n∑

d=0

(
n

d

)

= 2n and

n∑

d=0

d

(
n

d

)

= n2n−1,

we have

mn,d =

∑n−d−1
k=0 (n + k − 1)

(
n−d−1

k

)

2n−d−1

=
(n− 1)

∑n−d−1
k=0

(
n−d−1

k

)
+

∑n−d−1
k=0 k

(
n−d−1

k

)

2n−d−1

=
(n− 1)2n−d−1 + (n− d− 1)2n−d−2

2n−d−1

=
3n− d− 3

2
.

By definition,

mn =

∑n−1
d=1 mn,dMn,d

Mn

=

∑n−1
d=1 (3n− d− 3)Mn,d

2Mn

=
(3n− 3)

∑n−1
d=1 Mn,d −

∑n−1
d=1 dMn,d

2Mn

=
3n− 3

2
− d̄

2
.

From Lemma 2, 1 6 d̄ < 3 and 3n
2 − 2 > mn > 3n

2 − 3. 2

4 Coding Supporting Adjacency, Degree and

Neighbors Queries

From Corollary 1, every outerplanar map with n nodes can be represented by
a bicolored tree with n nodes. A standard coding for n-node planted trees uses
2n − 4 bits if n > 2, and the colors can be stored using n − 2 bits at most,
observing that the color associated to the last branch (containing the last leaf
and the root) is known (white). For the tree encoding, we use a clockwise depth-
first traversal of the tree, each edge being traversed twice starting from the root.
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During the traversal, we output “1” if the edge is traversed for the first time,
and “0” otherwise. This leads to a 2(n − 1)-bit encoding. Actually, if the tree
has at least one edge (n > 2) two bits can be saved observing that the previous
coding always starts with a “1” and ends with a “0”.

This leads to a (3n−6)-bit encoding. By Lemma 3, the length of this coding
is asymptotically optimal, up to an additive factor of O(log n) bits.

Theorem 5 Every n-node rooted outerplanar map or every outerplanar graph,
n > 2, can be coded (and decoded) in O(n) time and using a representation of
at most 3n− 6 bits.

In the following, we show how to extend this coding with an additional
o(n) bits (still constructible in linear time) so that the data structure supports
adjacency and degree queries in worst-case constant time, and neighbors queries
in O(d) time. For that we present below efficient well-known data structures for
binary strings and balanced string of parentheses.

4.1 Constant time queries in strings of parentheses

Let S be a string of symbols defined over a given alphabet of constant size. We
denote by S[i] the ith symbol of S, i > 1. Let select(S, i, ⋆) be the position of
the ith ⋆ in S. Let rank(S, j, ⋆) be the number of symbols ⋆ before or at the jth
position of S. That is if select(S, i, ⋆) = j then rank(S, j, ⋆) = i.

Now, let S be a string of open and closed parentheses, i.e., ⋆ ∈ {(, )}. Two
parentheses S[i] = ( and S[j] = ) match if i < j and the difference of the
number of open and closed parentheses between them is null. The string S is
balanced if for each parenthesis, there is a matching parenthesis. Let match(S, i)
be the position in S of the matching parenthesis of S[i]. S[k] is enclosed by S[i]
and S[j] if i < k < j. Let enclose(S, i1, i2) be the closest matching parenthesis
pair (j1, j2) that encloses S[i1] and S[i2]. Finally, let wrapped(S, j) denote twice
the number of pairs of matching parentheses (i1, i2) such that enclose(S, i1, i2) =
(j,match(S, j)).

The following results are valid in the word-RAM model, in which standard
arithmetic operations on binary words of length O(log n) can be done in constant
time.

Lemma 3 ([20, 9]) For every balanced string S of parentheses (or a binary
string) of length O(n), the operations select, rank, match, enclose, and wrapped
can be done in worst-case constant time using an auxiliary table of o(|S|) bits
and O(|S|) preprocessing time.

Actually, Lemma 3 holds for the operations select and rank, even if S is not
balanced.

4.2 Coding of outerplanar maps

We can associate to any planted tree T a balanced string of parentheses (or Dyck
word) as follows: during a clockwise depth-first traversal of T starting at the
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root, if an edge is traversed for the first time, output an open parenthesis and
otherwise output an closed parenthesis. For convenience, an open parenthesis
(respectively a closed parenthesis) is added at the beginning (respectively at the
end) of the output string. One can regard this latter transformation as an extra
edge entering in the root of T . If T has n nodes, the final string of parentheses
contains 2n symbols as each of T (plus the extra edge) is traversed twice. The
final string is called the clockwise prefix coding of T .

Consider T an n-node planted tree, and its clockwise prefix coding ST . Let
v1, . . . , vn be the clockwise preordering of the nodes of T . To support efficiently
queries on T , we label the node vi by its index i, so that an adjacency query
between the nodes vi and vj is simply the pair (i, j). By construction of the
clockwise prefix coding, the ith open parenthesis corresponds to the edge of
T entering in vi. And, the matching parenthesis of the ith open parenthesis
corresponds to the edge of T leaving vi. In other words, each node vi can be
seen as a pair (i, j) of matching parentheses, i.e., such that ST [i] matches with
ST [j] in ST . See Example 1.

Lemma 3 and the clockwise prefix coding lead to two useful operations for
the tree that can be supported in constant time: adjacency and degree.

Two nodes are adjacent in T if one of them is the parent of the other one.
One can determine the parent of a node vi finding the position p of the ith open
parenthesis using p = select(ST , i, (), and the position of the closest enclos-
ing pair (j1, j2) of (p,match(ST , p)) with (j1, j2) = enclose(ST , p,match(ST , p)).
Then, the parent of vi is vj where j = rank(ST , j1, ().

As for the degree, one can check that the number of children of vi is
1
2wrapped(ST , select(ST , i, ()). We just have to add 1 if vi is not the root, i.e.,
if i 6= 1.

From the previous explanations, one can claim the following lemma:

Lemma 4 ([9]) Let T be an n-node planted tree and its clockwise prefix coding
ST . The parent, degree and adjacency of a node can be answered in constant
time using an auxiliary table of o(|ST |) bits and an O(n) preprocessing time.

We encode an outerplanar map H with two binary strings:

1. ST of length 2n: the clockwise prefix coding of the well-orderly tree T of
H;

2. SB of length n: a binary string such that SB [j] = |B>(vi)|, where vi is
the node corresponding to the jth closed parenthesis of ST .

Remark 1 Given j, i can be obtained by:

i = rank(ST ,match(ST , select(ST , j, ))), ().

Observe that if j > n − 2, then vi belongs to the last branch of T , and thus
|B>(vi)| = 0. Thus, SB can reduce to the first n− 2 entries.

To know if node vi has a front edge, that is to perform |B>(vi)| given i, one
can compute j = rank(ST ,match(ST , select(ST , i, ()), )), and return SB [j].
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The sequence of nodes vi1 , vi2 , . . . , vij
is a branch of T if vij

is a leaf, and if for
every t ∈ {1, . . . , j − 1}, vit+1

is the clockwise last child of vit
. The last branch

consists therefore of all the nodes of the path between the root and the clockwise
last leaf of T . The branches partition the nodes of T and there is exactly one
branch per leaf. One can check that a branch of T corresponds to a maximal
block of closed parentheses in ST .

Example 1 The outerplanar map of Figure 2 can be encoded by the following
two strings:

ST = (((()((()))(()()))())((())())) and SB = 101110111010000.
The sequence of nodes v3, v8, v10 is a branch. To know if node v3 has a front edge,
do the following sequence of operations: p = select(ST , 3, () = 3, match(ST , p) =
18, rank(ST , 18, )) = 8. Since SB [8] = 1, node v3 has a front edge.

Lemma 5 Let vi1 , . . . , vij
be a branch of T . We have

|B<(vij+1)| =
j

∑

t=1

|B>(vit
)|.

Moreover, |B<(vij+1)| can be computed in constant time.

Proof. Clearly, the next unrelated node with any node vi is the node vr+1

such that vr is the leaf of the branch of vi. In particular, the next unrelated
node of every node vit

, t ∈ {1, . . . , j}, is vij+1. Let k = ij + 1. Let vi be any
unrelated node with vk and with i < i1. The next unrelated node of vi is a node
vr+1 where vr is the leaf of the branch of vi. So we have r < i1, that implies
vk 6= vr+1. It follows that the only nodes whose the next unrelated node is vk

are the nodes vi1 , . . . , vij
. It follows that |B<(vij+1)| =

∑j

t=1 |B>(vit
)|.

To compute |B<(vij+1)|, we need to find in ST the positions correspond-
ing to the beginning and the end of the branch. A branch corresponds to a
maximal sequence of closed parentheses in ST . The position p of vk in ST is
p = select(ST , k, (). The last closed parenthesis of branch b corresponding to vi1

is at position p−1 in ST . To find the position p′ of the closed parenthesis of vij
,

we compute p′ = select(ST , k−1, (). The cardinality of B<(vk) is the number of
ones in SB from position p1 = rank(ST , p′, )) to position p2 = rank(ST , p−1, )).
Let r1 (respectively r2) be the number of black nodes before the p1-th (re-
spectively p2-th) node in the postfix order of T : r1 = rank(SB , p1, 1) and
r2 = rank(SB , p2, 1). Thus, |B<(vk)| = r2 − r1. 2

Theorem 6 Every rooted outerplanar map with n nodes admits a 3n+o(n)-bit
encoding, constructible in linear time, such that adjacency and degree queries
can be computed in worst-case constant time and the neighbors of a d-degree
node can be determined in worst-case O(d) time.

Proof. We proposed a 3n-bit encoding for a rooted outerplanar map. Adding
auxiliary tables of size o(n), by Lemmas 3 and 4, the parent and the degree of
vi in T can be obtained in O(1) time.



Bonichon et al., Decomp. of Outerpl. Maps, JGAA, 9(2) 185–204 (2005) 200

Algorithm 2 Adjacency(ST , SB , i, j), assuming i < j

if i is the parent of j in T then
return true

else
i′ ← match(ST , select(ST , i, ())
r ← rank(ST , i′, ()
if r 6= j − 1 then

return false
else

return SB[r]
end if

end if

Adjacency: it remains to check the adjacency for the edges of H that does not
belong to T . Nodes vi and vj , with i < j, are adjacent in H if vj is the next
unrelated node after vi (that is j = r − 1 where vr is the leaf of the branch of
vi) and if |B>(vi)| = 1. See Algorithm 2 for details.

Degree: the degree of node vi is the sum of the degree within tree T (see
Lemma 4), the cardinality of B<(vi) (see Lemma 5) and of B>(vi). Recall that
if vi−1 is not a leaf, B<(vi) = ∅.

Neighbors: The list L of neighbors vj of a node vk contains the neighbors LT

within the tree T and the unrelated neighbors LR.
The list LT can be found in O(LT ) time as in [20] in which the d neighbors

of a node within a tree is computed in O(d) with a similar encoding.
The list LR contains nodes reached either by the front edge or by the edges

of B>(vk).
If vk has a front edge leading to vj , vj is the first unrelated node after vk

can be computed in constant time as follows:

j = rank(ST ,match(ST , select(ST , k, ()), () + 1.

If B<(vk) 6= ∅ (see Lemma 5 and above), then the edge (vk, vj) ∈ B<(vk)
if and only if vj has a front edge and belongs to the branch of the leaf vk−1.
Using the same notation as in the proof of Lemma 5, the labels of these nodes
can be computed as follows: for each r, r1 + 1 6 r 6 r2 we get the label
j of the r-th node having a front edge in the postfix order in constant time:
j = rank(ST ,match(ST , select(ST , select(SB , r, 1), ))), (). 2

Starting from a connected outerplanar graph, we can compute a rooted out-
erplanar map using the algorithm presented in [10]. So the previous results on
outerplanar maps can also be applied to outerplanar graphs.
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5 Uniform Random Generation

To randomly generate an outerplanar map, one can randomly generate a bi-
colored tree where the nodes of the last branch are colored white. Thanks to
Corollary 1, one can then construct in linear time the corresponding random
outerplanar map.

Theorem 7 A rooted outerplanar map with n nodes or with n nodes and m
edges can be generated uniformly at random in O(n) expected time.

Proof. Let Bn,b be the set of all bicolored rooted trees with n nodes such that:

1. the root is colored white;

2. the clockwise last leaf is colored white; and

3. there are exactly b nodes colored black.

Let Bn =
⋃n−2

b=0 Bn,b. From the bijection between outerplanar maps and some
bicolored trees (cf. Corollary 1), the outerplanar maps with n nodes are in bi-
jection with a subset, say M̃n, of bicolored trees. Clearly, M̃n ⊂ Bn. Similarly,
the outerplanar maps with n nodes and m edges are in bijection with a subset,
say M̃n,m, of bicolored trees. The trees of M̃n,m have exactly m− (n−1) black

nodes, so M̃n,m ⊂ Bn,m−n+1.
Our algorithm is an accept-reject algorithm: it consists in repeating a uni-

formly generation of an element of Bn (or of Bn,m−n+1) until we get an element

of M̃n (or of M̃n,m). This clearly provides a uniform random generation on the

set M̃n (or on M̃n,m), and thus on the corresponding outerplanar maps.
A rooted tree can be generated in linear time using for example the Arnold

and Sleep’s algorithm [2]. Each of the n− 2 nodes is colored black with proba-
bility 1/2 (recall that the root and the last leaf are forced to be colored white by
definition of Bn). This provides an O(n) time algorithm to generate an element
of Bn.

To generate an element of Bn,m−n+1, we have to select exactly b = m −
n + 1 black nodes among n − 2 (the root and the last leaf are forced to be
colored white). Selecting b elements among n− 2 can be done in O(n) time [22]
(the procedure uses O(n) arithmetic operations on O(log n) bit integers). This
provides an O(n) time algorithm to generate an element of Bn,m−n+1.

Testing whether T ∈ Bn belongs to M̃n (or whether T ∈ Bn,m−n+1 belongs

to M̃n,m) clearly takes O(n) time: it suffices to test whether all the inner nodes
of the last branch are white or not.

As the bijection between bicolored trees and maps can be obtained in lin-
ear time, it remains to show that the average number of rejects in the above
procedure is bounded by a constant.

Observe that every tree T ∈ Bn whose last leaf is of depth 1 belongs to M̃n

and M̃n,m−n+1. Thus the probability to accept a tree T ∈ Bn in M̃n (or in
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M̃n,m−n+1) is at least :

Tn,12
n−2

|Bn|
=

Tn,12
n−2

∑n−1
d=1 Tn,d2n−2

=
cn−2

cn−1
=

n

4n− 6
>

1

4
.

To see the above inequality, we use the fact that
∑n−1

d=1 Tn,d = cn−1 and Tn,1 =
cn−2, where cn = 1

n+1

(
2n
n

)
is the nth Catalan number counting the number of

n-edge rooted trees. It follows that the average number of rejects is at most 4,
thereby completes the proof. 2

The algorithm presented in the proof of Theorem 7 can be enhanced into an
anticipated-reject version. In this version, the bicolored tree is constructed from
the end (so from the last branch). As soon as an inner black node appears in
the last branch, we reject. The advantage of this version is that fewer random
bits are needed to generate an outerplanar map since the expected length of the
last branch is O(1), so only O(1) bits are consumed before acceptation of the
whole bicolored tree. An implementation of the enhanced algorithm is available
in the PIGALE Library (http://pigale.sourceforge.net/), and an experiments of
this algorithm is given in Figure 4.

Figure 4: A random outerplanar map with 500 nodes, drawn using a spring
embedding algorithm preserving embedding.
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