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Abstract

We present algorithms for the two layer straightline crossing minimiza-
tion problem that are able to compute exact optima. Our computational
results lead us to the conclusion that there is no need for heuristics if
one layer is fixed, even though the problem is NP-hard, and that for the
general problem with two variable layers, true optima can be computed
for sparse instances in which the smaller layer contains up to 15 nodes.
For bigger instances, the iterated barycenter method turns out to be the
method of choice among several popular heuristics whose performance we
could assess by comparing their results to optimum solutions.
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1 Introduction

Directed graphs are widely used to represent structures in many fields such as
economics, social sciences, mathematics and computer science. A good visual-
ization of structural information allows the reader to focus on the information
content of the diagram. Examples are entity-relationship diagrams, PERT-
diagrams, or any flow diagram.

A common method for drawing directed graphs has been introduced by
Sugiyama et al. [14] and Carpano [1]. In the first step, the vertices are par-
titioned into a set of k levels, and in the second step, the vertices within each
level are permuted in such a way that the number of crossings is small. In this
paper we focus on the second step.

Let us assume that we are given a k-layered network, i.e., a graph G =
(V, E) = (V1, V2, . . . , Vk, E) with vertex sets V1, . . . , Vk, V = V1 ∪ V2 . . . ∪ Vk,
Vi ∩ Vj = ∅ for i 6= j, and an edge set E connecting vertices in levels Vi and Vj

with i 6= j (1 ≤ i, j ≤ k). Vi is called the i-th layer. A k-layered network is drawn
in such a way that the vertices in each layer Vi are drawn on a horizontal line Li

with y-coordinate k − i, and the edges are drawn as straight lines. Essentially,
a k-layered network is a k-partite graph that is drawn in a special way.

Even for 2-layered graphs the straightline crossing minimization problem is
NP-hard [9]. The problem consists of aligning the two shores V1 and V2 of a
bipartite graph G = (V1, V2, E) on two parallel straight lines (layers) such that
the number of crossings between the edges in E is minimized when the edges
are drawn as straight lines.

Let n1 = |V1|, n2 = |V2|, m = |E|, and let N(v) = {w ∈ V | e = {v, w} ∈ E}
denote the set of neighbors of v ∈ V = V1 ∪ V2 in G. Any solution is obviously
completely specified by a permutation π1 of V1 and a permutation π2 of V2.
For k = 1, 2 let δk

ij = 1 if πk(i) < πk(j) and 0 otherwise. Thus πk (k = 1, 2)

is uniquely characterized by the vector δk ∈ {0, 1}(nk
2 ). Given π1 and π2, the

number of crossings is

C(π1, π2) = C(δ1, δ2) =
n2−1∑

i=1

n2∑

j=i+1

∑

k∈N(i)

∑

l∈N(j)

δ1
kl · δ2

ji + δ1
lk · δ2

ij (1)

=
n1−1∑

k=1

n1∑

l=k+1

∑

i∈N(k)

∑

j∈N(l)

δ1
kl · δ2

ji + δ1
lk · δ2

ij . (2)

In practice, the crossing minimization problem for k-layered networks is
reduced to a series of 2-layer straightline crossing minimization problems in the
following way. In a preprocessing step, we add artificial vertices to the layers
Li for all the edges traversing Li (i = 2, . . . , k − 1). For i = 1, 2, . . . , k − 1,
we solve the 2-layer crossing minimization problem for the two adjacent layers
Li and Li+1 with Li fixed, repermuting the vertices on layer Li+1. Then we
go backward, fixing layer Li and repermuting the vertices on layer Li−1 for
i = k, k − 1, . . . , 2. The heuristic consists of repeating these two loops until no
more improvement is obtained.
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Unfortunately, the 2-layer straightline crossing minimization problem with
the permutation of one layer fixed is also NP-hard [7]. Therefore, a lot of
effort went into the design of efficient heuristics, for the version in which one
permutation is fixed as well as for the general case (see, e.g., [16, 14, 6, 8, 4, 2]
and [15]). Eades and Kelly [6] observe that the computation of true optima
would be desirable in order to assess the performance of various heuristics,
however, they believe that the NP-hardness of the problem renders such an
experimental evaluation impractical.

In this paper, we would like to demonstrate that, if one permutation is
fixed, it is indeed possible to compute the exact minima in surprisingly short
computation times. In section 2, we outline our algorithm which transforms the
problem to a linear ordering problem that is subsequently solved via the branch
and cut method. In section 3, we give computational results that allow us to
assess the performance of several popular heuristics accurately.

Assume the permutation π1 of V1 is fixed. For each pair of nodes i, j ∈ V2,
i 6= j, we define cij to be the number of crossings between edges incident with
i and edges incident with j if π2 is such that π2(i) < π2(j). Then

L =
n2−1∑

i=1

n2∑

j=i+1

min{cij , cji}

is a trivial lower bound on the number of crossings. One observation in our
experiments was that this trivial lower bound is surprisingly good. In section 4,
we utilized this fact and the branch and cut algorithm of section 2 for the design
and implementation of a program that solves the general two layer straightline
crossing minimization problem to optimality.

(b)

a b dc e f g h

7 2 41 3 8 5 6

c ah d f g b

4 2 31 5 6 7 8

e

(a)

Figure 1: Crossing minimal drawings with (a) fixed lower layer and (b) both
layers free

Figure 1 demonstrates that the number of crossings can indeed be consid-
erably less if both layers can be freely permuted. The left drawing was given
in [14] with fixed lower layer, [14] obtained the shown drawing with 48 crossings
that we could show to be optimum. The right drawing is the optimum when
both layers can be freely permuted. It has only 19 crossings.
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As was to be expected, two sided crossing minimization can be done only for
small instances. For large instances, we adopt the common method that consists
of fixing the first layer, “optimizing” the second, fixing the found permutation
of the second, “optimizing” the first, etc., back and forth, until the crossing
number is not reduced anymore. We follow this iterative approach both using
the heuristics of section 3 as well as the exact algorithm. The results are some-
what surprising, e.g., using the barycenter heuristic rather than exact one-sided
crossing minimization yields slightly better results.

2 Branch and Cut for One Sided Crossing Min-
imization

The one sided straightline crossing minimization problem consists of fixing a
permutation π1 of V1 and finding a permutation π2 of V2 such that the number
of straightline crossings

C(π2) = C(δ2) =
n2−1∑

i=1

n2∑

j=i+1

∑

k∈N(i)

∑

l∈N(j)

δ1
kl · δ2

ji + δ1
lk · δ2

ij

is minimized. Let
cij =

∑

k∈N(i)

∑

l∈N(j)

δ1
lk

denote the number of crossings among the edges adjacent to i and j if π2(i) <
π2(j). Then

C(π2) = C(δ2) =
n2−1∑

i=1

n2∑

j=i+1

cijδ
2
ij + cji(1 − δ2

ij) (3)

=
n2−1∑

i=1

n2∑

j=i+1

(cij − cji)δ2
ij +

n2−1∑

i=1

n2∑

j=i+1

cji. (4)

For n = n2, xij = δ2
ij and aij = cij − cji we solve the linear ordering problem

(LO) minimize
∑n−1

i=1

∑n
j=i+1 aijxij (5)

0 ≤ xij + xjk − xik ≤ 1 for 1 ≤ i < j < k ≤ n (6)
0 ≤ xij ≤ 1 for 1 ≤ i < j ≤ n (7)
xij integral for 1 ≤ i < j ≤ n. (8)

If z is the optimum value of (LO), z+
∑n−1

i=1

∑n
j=i+1 cji is the minimum number

of crossings.
The constraints of (LO) guarantee that the solutions correspond indeed pre-

cisely to all permutations π2 of V2. Furthermore, it can be shown that the
“3-cycle constraints” are necessary in any minimal description of the feasible
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solutions by linear inequalities, if the integrality conditions are dropped. The
NP-hardness of the problem makes it unlikely that such a complete linear de-
scription can be found and exploited algorithmically. Further classes of inequal-
ities with a number of members exponential in n that must be present in a
complete linear description of the feasible set, are known, and some of them can
be exploited algorithmically. For the details see [12].

When the integrality conditions in (LO) are dropped, only 2
(
n
2

)
hypercube

inequalities and 2
(
n
3

)
3-cycle inequalities are left that define a relaxation of (LO)

which has been proven very useful in practical applications. In [10] a branch
and cut algorithm for (LO) is proposed that solves this relaxation with a cutting
plane approach, since writing down all 3-cycle inequalities, even though taking
only polynomial space, and solving the corresponding linear program, is not
practical for space reasons. Rather, the algorithm starts with the hypercube
constraints that are handled implicitly by the LP-solver, and iteratively adds
violated 3-cycle constraints and deletes nonbinding 3-cycle constraints after an
LP has been solved, until the relaxation is solved. If the optimum solution is
integral, the algorithm stops, otherwise it is applied recursively to two subprob-
lems in one of which a fractional xij is set to 1 and in the other set to 0. In [11]
such a branch and cut approach could be used to find optimum linear orderings
with n up to 60 in an application involving input-output matrices that are used
in economic analysis. For the many details and the inclusion of further useful
inequalities in the cutting plane part, see [10].

A new implementation of the algorithm is used in our computational experi-
ments. It is written in C and uses the CPLEX [3] software for solving the linear
programming relaxations coming up in the course of the computation.

3 One Sided Crossing Minimization

The fact that we are able to compute optimum solutions allows us to assess
the quality of various popular heuristics for one-sided two layer straightline
crossing minimization experimentally. Our computational comparison includes
the following heuristics: the barycenter heuristic by [14], the median heuristic
by [8], the stochastic heuristic by [4], the greedy-insert heuristic by [6], the
greedy-switch heuristic by [6], the split heuristic by [6], and the assign heuristic
by [2].

The barycenter heuristic [14] and the median heuristic [8] are the most popu-
lar ones. They are also called “averaging heuristics”, since they simply compute
the “average position”, i.e., the barycenter or median, for each vertex and sort
the vertices according to these numbers. Surprisingly, these simple heuristics
turned out to be among the most promising ones. The stochastic heuristic [4],
originally designed for permuting both layers, generates a series of “assessment
number matrices” while greedily placing a vertex in layer 1 or layer 2. The as-
sessment numbers are based on some frequency numbers arising from stochastic
considerations on the complete bipartite graph. The greedy-insert heuristic [6]
proceeds by successively choosing the next vertex v to be the one which mini-
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mizes the number of crossings that edges adjacent to v make with edges adjacent
to vertices to the left of v. The greedy-switch heuristic [6] passes over all con-
secutive pairs of vertices and switches them if it would decrease the number of
crossings. This is done until no more switching takes place. The split heuristic
chooses a pivot vertex v, and places every other vertex to the left or right of v
according to whether it would make fewer crossings. This step is applied recur-
sively to order the left hand set and the right hand side of v. The assignment
heuristic [2] reduces the problem to an assignment problem. The entries in the
assignment matrix are computed based on the adjacency matrix and on a four
dimensional matrix representing the complete bipartite graph.

In order to gain confidence in the correctness of our implementations, we
repeated the computational tests in [6]. We could reproduce their results ac-
curately. Also the results in [2] on the assign heuristic are in line with ours.
There are no published computational results for the stochastic heuristic, but
a personal communication with the author [5] confirms the correctness of our
implementation.

All subsequent figures and tables use the following notation:

– ni: Number of nodes on layer i for i = 1, 2

– m: Number of edges

– Lowerbound: The trivial lower bound for the number of crossings

– Minimum: The minimum number of crossings (computed by the branch
and cut algorithm)

– Barycenter: The number of crossings found by the barycenter heuristic

– Median: The number of crossings found by the median heuristic

– Stoch: The number of crossings found by the stochastic heuristic

– Gre-ins: The number of crossings found by the greedy-insert heuristic

– Gre-swi: The number of crossings found by the greedy-switch heuristic

– Split: The number of crossings found by the split heuristic

– Assign: The number of crossings found by the assign heuristic

For each type of graph, we measured the following three numbers: the av-
erage number of crossings taken over all sampled instances of this type, the
relative size of this number in percentage of the minimum number of crossings,
and the average running time in seconds on a SUN Sparcstation 10. All samples
are generated by the program random bigraph of the Stanford GraphBase by
Knuth [13]. The generators are hardware independent and are available from
the authors so that exactly the same experiments can be run by anyone who is
interested.
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Figure 2: Results for 100 instances on 20 + 20 nodes with increasing density
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Figure 3: Time for 100 instances on 20 + 20 nodes with increasing density
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Figure 4: Results for 10 instances of sparse graphs with increasing size
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Figure 5: Time for 10 instances of sparse graphs with increasing size
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In Figures 2 and 3, we give the results for “20+20-graphs”, i.e., bipartite
graphs with 20 nodes on each layer and various fixed numbers of edges chosen
uniformly and independently from the set of all possible edges. Each average is
taken over 100 samples. The most surprising fact is perhaps that the exact com-
putation by the branch and cut algorithm is faster than many of the heuristics.
Only the barycenter and the median heuristic are between two to four times
faster than the exact algorithm. The stochastic and assign heuristic take about
the same time as the exact algorithm, whereas the split and the two greedy
heuristics take much longer (see Fig. 3). The best results are obtained by the
split heuristic. But also the results of the barycenter and the stochastic heuristic
are quite good. For sparse graphs, the assign and the greedy-switch heuristic
are quite far away from the optimum solution (10%, resp., 50%), whereas they
achieve good solutions for dense graphs. However, in automatic graph drawing
the graphs are usually sparse. The median heuristic is between 1% and 14 %
away from the optimum solution. Greedy-insert shows the worst behaviour.
Surprisingly, the lower bound is very close to the optimum solution, even in the
sparse case (see Fig. 2).

In Figures 4 and 5, we concentrate on sparse instances in which, on the
average, every node has two adjacent edges. We believe that such instances
are among the most interesting in practical applications. It turns out that the
stochastic, the split, and the barycenter heuristic perform very well in terms
of quality (1%-4% off the optimum solution), however, the split heuristic takes
roughly the same time as the branch and cut computation up to size 80+80,
whereas the barycenter heuristic obtains results of similar quality as split, but
much faster. The assign and the median heuristic are about 10% away from
the optimum solution. Greedy-insert and greedy-switch behave worst for sparse
graphs (see Fig. 4). For n = 60, the ranking of the heuristics with respect
to increasing time is barycenter, median, greedy-insert, assign, greedy-switch,
stochastic, exact, and split (see Fig. 5).

In Table 1, we repeat an experiment by Dresbach [4] for instances defined
by Warfield [16] as follows: For k = 3, 4, 5, 6, 7, 8 we let n1 = k, n2 = 2k − 1,
and the adjacency matrix of the bipartite graph is a n1 × n2 matrix whose
rows are labelled 1, 2, . . . , k, whose columns are labelled 1, 2, . . . , 2k − 1, and
column j contains j in k-digit binary notation. Layer 1 is fixed and layer 2
is “optimized”. Again, it turns out that barycenter is the fastest method with
excellent quality solutions. The results of the stochastic heuristic, the barycenter
and the split heuristic are very close to the optimum solution. Up to size 7+127,
the branch and cut algorithm needs only moderate computation time, for the
instance 8+255 it is not competitive in terms of time, but we found it surprising
that such a big linear ordering instance with n = 255 could be solved at all.
The branch and cut algorithm was the only method that found the true optima
for k ≥ 6, whereas for 3 ≤ k ≤ 5, the fact that the optimum value equals the
value of the trivial lower bound seems to indicate that these instances are not
hard.
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n1 n2 m Low Min Bary Median Stoch Gre-ins Gre-swi Split Assign

3 7 12 8 8 8 13 8 11 8 8 8

100.00 100.00 162.50 100.00 137.50 100.00 100.00 100.00

0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.00

4 15 32 95 95 95 127 95 122 98 95 101

100.00 100.00 133.68 100.00 128.42 103.16 100.00 106.32

0.00 0.00 0.00 0.03 0.02 0.05 0.07 0.02

5 31 80 756 756 758 922 756 934 804 760 780

100.00 100.27 121.96 100.00 123.55 106.35 100.53 103.17

0.03 0.00 0.03 0.18 0.08 0.40 0.43 0.08

6 63 192 4998 5002 5015 5818 5004 6023 5523 5043 5120

100.00 100.26 116.31 100.04 120.41 110.42 100.90 102.36

0.73 0.05 0.07 1.38 0.38 2.87 2.65 0.38

7 127 448 29745 29778 29883 33641 29841 35152 34366 30086 30386

100.00 100.35 112.97 100.21 118.05 115.41 101.03 102.04

20.50 0.17 0.20 9.02 1.98 20.20 24.30 2.18

8 255 1024 165375 165602 166098 183342 165824 192633 202957 167546 168056

100.00 100.30 110.71 100.13 116.32 122.56 101.17 101.48

7200.00 0.95 1.08 67.90 7.33 147.00 189.00 21.50

Table 1: Results for Dresbach instances

4 Two Sided Crossing Minimization

The trivial lower bound on the number of crossings that turned out to be excel-
lent in our previous experiments, can obviously be adapted to partial orderings
rather than complete orderings (permutations) on one of the layers. This en-
couraged us to devise a simple branch and bound algorithm for the general
two layer straightline crossing minimization problem in which both π1 and π2

must be determined. Namely, we enumerate all permutations π1 (without loss
of generality we can assume |V1| ≤ |V2|, V1 = {1, 2, . . . , n}) as follows: Initially
all v ∈ V1 are unfixed. At depth l in a depth-first-search, l − 1 nodes of V1 are
fixed in positions 1, 2, . . . , l − 1. Then the first unfixed node in the canonical
ordering of V1 is fixed at position l, and the trivial lower bound L is computed
for the resulting partial ordering. If L is greater than the value of the best
known solution, the next unfixed node in the canonical ordering of V1 is fixed
at position l, else we move to position l + 1, if l < n, and otherwise (l = n) we
call the branch and cut algorithm to determine an optimum ordering of V2 and
update the best known solution, if necessary. Backtracking, i.e., moving from
position l to position l − 1 occurs whenever the list of unfixed nodes at depth
l in the enumeration tree is exhausted. Before the enumeration is entered, a
heuristic solution is determined in order to initialize the best known solution.
A good initial solution makes the enumeration tree smaller.

We use this algorithm to determine optimum solutions for 10+10 graphs
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with increasing edge densities, 100 samples for each type of graph. All heuris-
tics are iterated between the two layers until a local optimum is obtained, as
outlined in the introduction, starting from the canonical ordering on V1. An
additional column labelled “LR-Opt” gives according results for the iterated
minimum crossing computation by branch and cut, which is, remarkably, some-
times outperformed by the best iterated heuristics. For sparse instances, the
minimum is much better than any of the heuristically found solutions (see Fig-
ure 7). The best heuristics barycenter, median, and LR-opt are very far away
from the optimum solution. For density 0.1 the number of crossings is between
5 times and 33 times higher than the minimum straightline crossing number.
For density 0.2 the best solution is still 60% away from the optimum. The
ranking of the heuristics here is barycenter, LR-opt, split, median, stochastic,
greedy-switch, assign, greedy-insert. The rank of greedy-switch improves for
dense graphs. It turns out that with increasing density, the computation times
increase rapidly for the minimum computation, whereas the heuristics are not
very sensitive to density. The running times for the heuristics stay under 0.4
seconds, whereas the computation by the exact algorithm increased from 1.1
seconds for density 0.1 to 1550 seconds for density 0.9.

In Figure 6, we show an example of a 10+10 graph with 20 edges. The first
drawing was found by the LR-opt heuristic and has 30 crossings, the second
by the barycenter heuristic and contains 10 crossings and the third one is the
optimum solution with only 4 crossings.

h j ed g b i c

4 5 79 8 3 6 2

a f

10 1

h j ed g c b a

4 5 9 7 8 2 10 6

i f

3 1

h j df b g a e

4 5 101 9 3 8 2

i c

7 6

Figure 6: Time for 10 instances of sparse graphs with increasing size
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Figure 8: Results for 100 instances on 10 + 10 nodes with 10 trials
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Figure 10: Results for 10 instances on sparse graphs (relative to barycenter)
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Within one hour of computation time, we can find optimum solutions for
11+11 instances with up to 80% density, 12+12 with up to 50% density, 13+13
with up to 30% density, 14+14, 15+15, 16+16 with up to 10% density.

In Figure 8, we repeat the same experiment with 10 starts from random
orderings of the nodes in V1 and take the best solutions found. The results
show that a considerable performance gain for all heuristics can be achieved.
LR-Opt, barycenter and split obtain results of similar good quality. But still,
for sparse graphs, they are at least 7% away from the optimum, split even 44%.

Figures 9 and 10 deal with the more interesting sparse instances of bigger
size for which we can not compute the optimum anymore. Thus, we divided
the number of crossings found by the heuristics (shown in Figure 9) by that
computed by barycenter (see Figure 10). This allows us to compare the be-
haviour of the heuristics for one layer fixed against the free case. Barycenter
constantly gives the best solutions for sparse graphs. Also, median is, contrary
to the one-layer fixed case, among the best heuristics. Barycenter, LR-opt,
median and split give the best solutions. However, we do not know how far
their solutions are away from the optimum. Stochastic behaves worse for two
free layers, although it was originally designed for this problem. Assign and
greedy-insert are among the worst heuristics, but their quality seems to stay
constant with increasing number of nodes, in contrary to greedy-switch. With
10 different starts from random orderings of the nodes in V1, the quality of the
results improves only slightly. The data of all of our experiments is given in
the Appendix. Summarizing, the barycenter method turns out to be the clear
winner, both in terms of quality as well as in terms of computation time.

5 Conclusions

The outcome of our computational experiments lead to the following conclu-
sions.

(1) When one layer is fixed, and the free layer does not contain more than 60
vertices, which is well beyond typical practical instance sizes, the exact
minimum crossing number can be efficiently computed in practice, so there
is no real need for heuristics.

(2) In the general case, small sparse instances, which often occur in appli-
cations, can be solved to optimality if the smaller sized shore has up to
about 15 vertices. For larger instances, the iterated barycenter method,
started with a few random orderings of one layer, is clearly the method of
choice among all tested methods.
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[12] M. Grötschel, M. Jünger, and G. Reinelt. Facets of the linear ordering
polytope. Mathematical Programming, 33:43–60, 1985.

[13] D. Knuth. The Stanford GraphBase: A Platform for Combinatorial Com-
puting. ACM Press, Addison-Wesley Publishing Company, New York, 1993.

[14] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical systems. IEEE Trans. Syst. Man Cybern., SMC-11(2):109–
125, 1981.

[15] V. Valls, R. Marti, and P. Lino. A branch and bound algorithm for minimiz-
ing the number of crossing arcs in bipartite graphs. Journal of Operational
Research, 90:303–319, 1996.

[16] J. Warfield. Crossing theory and hierarchy mapping. IEEE Trans. Syst.
Man Cybern., SMC-7(7):502–523, 1977.
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6 Appendix: Tables

The tables show the average number of crossings taken over all sampled in-
stances of this type, the relative size of this number in percentage of the mini-
mum number of crossings, and the average running time in seconds on a SUN
Sparcstation 10 for the investigated heuristics and exact algorithms.

ni m Low Min Bary Median Stoch Gre-ins Gre-swi Split Assign

20 40 180.35 180.75 185.34 206.27 185.44 248.37 275.99 183.39 199.09

99.78 100.00 102.54 114.12 102.60 137.41 152.69 101.46 110.15

0.02 0.01 0.01 0.05 0.02 0.04 0.08 0.02

20 80 957.62 959.23 968.80 1051.14 970.01 1175.11 1044.14 964.35 988.76

99.83 100.00 101.00 109.58 101.12 122.51 108.85 100.53 103.08

0.03 0.01 0.01 0.06 0.05 0.10 0.11 0.03

20 120 2420.14 2422.32 2433.53 2564.82 2437.39 2763.72 2460.94 2428.23 2453.89

99.91 100.00 100.46 105.88 100.62 114.09 101.59 100.24 101.30

0.03 0.01 0.01 0.07 0.10 0.16 0.16 0.04

20 160 4625.79 4627.72 4638.24 4825.06 4644.35 5098.27 4644.10 4632.17 4657.85

99.96 100.00 100.23 104.26 100.36 110.17 100.35 100.10 100.65

0.04 0.01 0.02 0.08 0.17 0.23 0.23 0.04

20 200 7560.42 7561.88 7571.08 7817.99 7582.47 8157.86 7572.24 7566.79 7589.64

99.98 100.00 100.12 103.39 100.27 107.88 100.14 100.07 100.37

0.05 0.02 0.02 0.09 0.24 0.31 0.31 0.05

20 240 11314.37 11315.55 11323.26 11625.54 11338.06 12033.34 11321.10 11318.68 11336.09

99.99 100.00 100.07 102.74 100.20 106.34 100.05 100.03 100.18

0.07 0.02 0.03 0.09 0.34 0.42 0.41 0.06

20 280 15859.70 15860.35 15865.69 16225.57 15883.69 16667.12 15863.66 15861.76 15874.86

99.99 100.00 100.03 102.30 100.15 105.09 100.02 100.01 100.09

0.09 0.03 0.03 0.10 0.45 0.52 0.53 0.07

20 320 21290.56 21290.76 21294.12 21727.43 21313.78 22116.56 21292.93 21291.56 21300.43

99.99 100.00 100.02 102.05 100.12 103.88 100.01 100.00 100.05

0.11 0.03 0.04 0.11 0.59 0.65 0.66 0.08

20 360 27751.63 27751.69 27752.99 28257.47 27768.41 28459.57 27752.01 27751.84 27754.31

100.00 100.00 100.01 101.82 100.06 102.55 100.00 100.00 100.01

0.14 0.04 0.04 0.12 0.74 0.81 0.80 0.09

Table 2: Results for 100 instances of the one sided crossing minimization prob-
lem on 20 + 20 nodes with increasing density (see Figs. 2 and 3)
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ni m Low Min Bary Median Stoch Gre-ins Gre-swi Split Assign

10 20 37.90 38.00 38.90 45.40 38.70 46.40 50.90 38.50 40.60

99.74 100.00 102.37 119.47 101.84 122.11 133.94 101.32 106.84

0.00 0.00 0.00 0.01 0.00 0.01 0.02 0.00

20 40 171.70 171.90 175.70 193.70 174.90 240.80 293.60 174.70 195.10

99.88 100.00 102.21 112.68 101.74 140.08 170.80 101.63 113.50

0.01 0.01 0.01 0.05 0.02 0.05 0.09 0.02

30 60 436.60 438.30 451.90 491.10 451.30 602.30 692.40 445.60 475.90

99.61 100.00 103.10 112.05 102.97 137.42 157.97 101.67 108.58

0.11 0.01 0.01 0.13 0.05 0.11 0.25 0.05

40 80 761.50 765.70 785.60 856.60 782.70 1105.00 1367.50 783.20 842.30

99.45 100.00 102.60 111.87 102.22 144.31 178.60 102.29 110.00

0.30 0.01 0.02 0.28 0.08 0.22 0.57 0.09

50 100 1247.30 1252.20 1279.90 1389.50 1273.20 1770.60 2200.50 1277.80 1375.90

99.61 100.00 102.21 110.97 101.68 141.40 175.73 102.04 109.88

0.68 0.02 0.03 0.50 0.13 0.32 1.00 0.14

60 120 1683.10 1687.60 1738.30 1890.90 1720.20 2453.10 2994.50 1736.10 1855.30

99.73 100.00 103.00 112.05 101.93 145.36 177.44 102.87 109.94

1.09 0.03 0.04 0.83 0.18 0.61 1.67 0.24

70 140 2465.00 2479.00 2541.30 2730.00 2522.50 3592.20 4498.80 2549.20 2688.60

99.44 100.00 102.51 110.13 101.76 144.91 181.48 102.83 108.46

4.46 0.04 0.04 1.28 0.26 0.73 2.82 0.36

80 160 3153.90 3172.10 3254.60 3521.60 3232.90 4583.10 5885.70 3240.60 3488.90

99.43 100.00 102.60 111.02 101.92 144.48 185.55 102.16 109.99

6.42 0.05 0.06 1.85 0.33 0.99 4.11 0.51

90 180 4104.00 4132.80 4233.70 4566.80 4206.80 5843.70 7331.30 4293.90 4561.60

99.30 100.00 102.44 110.50 101.79 141.40 177.39 103.90 110.38

25.13 0.05 0.06 2.66 0.41 1.32 5.84 0.75

100 200 5127.40 5162.70 5287.50 5728.80 5247.60 7469.90 9407.50 5333.50 5627.50

99.32 100.00 102.42 110.97 101.64 144.69 182.22 103.31 109.00

435.51 0.06 0.08 3.35 0.49 1.45 7.56 0.90

Table 3: Results for 10 instances of the one sided crossing minimization problem
of sparse graphs with increasing size (see Figs. 4 and 5)



M. Jünger et al., 2-Layer Crossing Minimization, JGAA, 1(1) 1–25 (1997) 22

ni m Min LR-Opt Bary Median Stoch Gre-ins Gre-swi Split Assign

10 10 0.29 1.64 1.52 1.53 2.71 4.32 9.61 2.63 5.42

100.00 565.52 524.14 527.59 934.48 1489.66 3313.79 906.90 1868.97

1.10 0.01 0.01 0.01 0.03 0.02 0.02 0.04 0.01

10 20 11.62 19.99 18.78 24.08 26.96 38.85 34.81 23.25 34.96

100.00 172.03 161.62 207.23 232.01 334.34 299.57 200.09 300.86

3.89 0.02 0.01 0.01 0.06 0.04 0.03 0.07 0.02

10 30 56.60 66.98 65.30 81.78 82.98 109.96 80.29 70.11 97.80

100.00 118.34 115.37 144.49 146.61 194.28 141.86 123.87 172.79

14.06 0.02 0.02 0.02 0.07 0.06 0.07 0.11 0.02

10 40 146.89 157.91 157.70 189.55 182.77 225.26 165.65 160.20 202.10

100.00 107.50 107.36 129.04 124.43 153.35 112.77 109.06 137.59

43.02 0.03 0.02 0.02 0.08 0.10 0.11 0.15 0.03

10 50 276.78 287.32 288.15 333.25 320.21 387.87 296.38 290.79 343.65

100.00 103.81 104.11 120.40 115.69 140.14 107.08 105.06 124.16

91.58 0.04 0.03 0.02 0.09 0.13 0.15 0.21 0.03

10 60 463.17 475.04 475.52 539.59 509.38 598.98 482.76 478.46 542.88

100.00 102.56 102.67 116.50 109.98 129.32 104.23 103.30 117.21

206.61 0.06 0.03 0.03 0.10 0.17 0.22 0.28 0.03

10 70 698.35 709.91 710.88 782.33 747.20 854.61 715.73 712.73 779.79

100.00 101.66 101.79 112.03 107.00 122.38 102.49 102.06 111.67

379.12 0.07 0.04 0.03 0.11 0.22 0.29 0.35 0.04

10 80 1008.38 1021.46 1021.44 1110.39 1051.66 1165.97 1025.84 1024.78 1083.39

100.00 101.30 101.30 110.12 104.29 115.63 101.73 101.63 107.44

763.53 0.08 0.04 0.03 0.12 0.27 0.34 0.40 0.04

10 90 1405.57 1420.68 1421.86 1524.18 1430.86 1516.62 1423.90 1421.72 1456.97

100.00 101.08 101.16 108.44 101.80 107.90 101.30 101.15 103.66

1549.12 0.07 0.03 0.03 0.12 0.29 0.32 0.37 0.04

Table 4: Results for 100 instances of the two sided crossing minimization prob-
lem on 10 + 10 nodes with increasing density (see Figs. 7 and 8)
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ni m Min LR-Opt Bary Median Stoch Gre-ins Gre-swi Split Assign

10 10 0.29 0.30 0.31 0.71 0.73 2.10 3.95 0.42 2.15

100.00 103.45 106.90 244.83 251.72 724.14 1362.07 144.83 741.38

1.10 0.11 0.08 0.08 0.27 0.21 0.16 0.38 0.10

10 20 11.62 12.50 12.44 16.57 17.44 30.55 21.00 13.83 25.44

100.00 107.57 107.06 142.60 150.09 262.91 180.72 119.02 218.93

3.89 0.18 0.12 0.13 0.52 0.38 0.34 0.64 0.17

10 30 56.60 57.27 57.46 68.66 66.33 97.22 62.59 58.30 79.97

100.00 101.18 101.52 121.31 117.19 171.77 110.58 103.00 141.29

14.06 0.26 0.17 0.15 0.68 0.60 0.62 1.01 0.23

10 40 146.89 147.35 147.73 166.41 159.31 205.97 150.34 148.24 174.12

100.00 100.31 100.57 113.29 108.46 140.22 102.35 100.92 118.54

43.02 0.36 0.21 0.18 0.79 0.90 1.02 1.45 0.26

10 50 276.78 277.11 277.78 304.62 292.34 363.43 277.85 277.61 308.26

100.00 100.12 100.36 110.06 105.62 131.31 100.39 100.30 111.37

91.58 0.47 0.26 0.22 0.87 1.23 1.50 2.03 0.30

10 60 463.17 463.76 464.07 499.41 478.48 565.63 464.54 464.17 497.17

100.00 100.13 100.19 107.82 103.31 122.12 100.30 100.22 107.34

206.61 0.59 0.32 0.25 0.96 1.65 2.15 2.67 0.34

10 70 698.35 698.75 699.23 745.00 712.78 816.80 699.37 699.04 728.95

100.00 100.06 100.13 106.68 102.07 116.96 100.15 100.10 104.38

379.12 0.68 0.34 0.29 1.03 2.23 2.78 3.30 0.37

10 80 1008.38 1008.62 1008.88 1070.82 1018.66 1120.31 1008.96 1008.94 1031.45

100.00 100.02 100.05 106.19 101.02 111.10 100.06 100.06 102.29

763.53 0.81 0.37 0.31 1.11 2.70 3.39 3.89 0.41

10 90 1405.57 1406.14 1406.22 1490.03 1410.31 1461.52 1406.43 1406.44 1416.64

100.00 100.04 100.05 106.01 100.34 103.98 100.06 100.06 100.79

1549.12 0.70 0.33 0.34 1.17 2.86 3.13 3.53 0.44

Table 5: Results for 100 instances of the two sided crossing minimization prob-
lem on 10 + 10 nodes with increasing density, 10 trials each (see Figs. 7 and
8)
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ni m LR-Opt Bary Median Stoch Gre-ins Gre-swi Split Assign

10 20 19.70 15.70 25.70 27.20 35.80 34.20 20.90 32.40

0.02 0.02 0.01 0.05 0.04 0.04 0.06 0.02

20 40 73.70 72.50 79.60 132.50 170.70 237.70 91.20 161.90

0.10 0.03 0.04 0.36 0.17 0.17 0.41 0.06

30 60 176.00 147.90 188.50 288.20 442.30 549.80 208.30 370.00

0.48 0.10 0.09 1.18 0.49 0.48 1.33 0.15

40 80 309.80 273.30 374.20 555.70 760.60 1207.00 368.80 684.40

1.81 0.17 0.14 2.72 0.93 0.67 3.45 0.28

50 100 457.70 392.30 561.90 824.40 1284.40 1971.20 548.10 1125.60

5.87 0.25 0.17 5.92 1.37 1.10 7.14 0.47

60 120 645.60 567.00 811.20 1219.90 1954.80 2667.90 811.10 1531.20

13.34 0.38 0.24 8.58 2.24 1.87 10.52 0.73

70 140 861.30 764.60 1146.20 1689.30 2549.30 4122.80 1032.40 2182.40

24.95 0.55 0.34 14.09 2.89 2.19 19.48 1.02

80 160 1246.10 1080.70 1481.30 2183.30 3279.40 5495.90 1467.70 2984.90

62.65 0.68 0.52 21.09 4.58 3.22 25.01 1.46

90 180 1697.70 1272.40 1848.00 2859.50 4280.00 6853.70 1762.40 3708.20

86.37 1.10 0.57 31.84 6.41 4.30 38.36 2.28

100 200 2027.30 1555.10 2084.10 3453.10 5405.00 8796.30 2209.40 4591.00

178.93 1.46 0.82 40.23 7.41 5.25 47.78 2.67

Table 6: Results for 10 instances of the two sided crossing minimization problem
of sparse graphs (see Figs. 9 and 10)
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ni m LR-Opt Bary Median Stoch Gre-ins Gre-swi Split Assign

10 20 13.60 12.70 18.70 17.50 30.00 22.30 14.70 25.70

0.12 0.15 0.12 0.55 0.40 0.34 0.68 0.16

20 40 51.00 48.30 59.10 89.00 150.80 163.40 63.70 128.60

0.98 0.42 0.39 3.61 1.82 1.58 3.93 0.68

30 60 133.40 117.00 145.80 228.60 421.30 422.10 160.10 321.80

5.55 0.96 0.76 11.48 4.59 4.18 13.13 1.42

40 80 234.10 212.40 271.40 432.80 724.50 949.80 279.90 589.70

18.45 1.75 1.29 26.57 8.25 7.42 31.26 6.91

50 100 384.20 325.60 407.30 715.60 1245.60 1715.90 462.70 966.20

52.01 2.79 2.06 51.33 13.59 11.60 60.80 4.83

60 120 541.10 479.90 599.90 1106.80 1909.70 2472.10 654.00 1425.80

128.12 4.38 2.93 92.08 21.97 18.27 114.07 7.14

70 140 733.20 641.30 858.00 1489.30 2514.30 3640.00 896.90 1973.20

304.08 5.79 3.82 139.95 30.18 23.22 175.83 11.04

80 160 1022.90 903.70 1145.10 1993.30 3248.70 4843.50 1169.60 2634.00

619.36 7.57 5.28 204.64 38.96 31.18 264.82 14.59

90 180 1282.50 1044.70 1323.70 2516.50 4209.10 6228.20 1466.40 3289.20

1134.67 10.81 6.55 307.44 57.13 43.19 377.72 20.20

100 200 1599.20 1313.20 1793.20 3119.40 5323.90 8145.30 1807.60 4165.10

2313.48 13.76 8.02 402.74 67.13 50.24 504.25 27.12

Table 7: Results for 10 instances of the two sided crossing minimization problem
of sparse graphs, 10 trials each


