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Abstract. A 2-packing set for an undirected graph G = (V,E) is defined as a
subset S ⊆ V such that for each pair of vertices v1 ̸= v2 ∈ S, the shortest path between
v1 and v2 has at least length three. Finding a 2-packing set of maximum cardinality is
an NP-hard problem. We develop a new approach to solve this problem on arbitrary
graphs using its close relation to the independent set problem. Our approach uses
new data reduction rules as well as a graph transformation. Experiments show that
this technique outperforms the state-of-the-art for arbitrary graphs with respect to
solution quality. Furthermore, we can compute solutions multiple orders of magnitude
faster than previously possible. Our approach solves 63% of the graphs in the tested
data set to optimality in under a second. In contrast, the competitor for arbitrary
graphs can only solve 5% of these graphs to optimality even with a 10-hour time
limit. Moreover, our approach can solve a wide range of large instances that have
previously been unsolved.

1 Introduction

For a given undirected graph G a 2-packing set is defined as a subset S of the vertex set of
G such that, for each pair of distinct vertices v1 ̸= v2 ∈ S, the shortest path between v1 and
v2 has length at least three. A maximum 2-packing set (M2S) is a 2-packing set of the largest
cardinality. A generalization of the maximum 2-packing set problem is the maximum k-packing
set problem, where the shortest path length is bounded by k + 1. For k = 1, this results in the
maximum independent set (MIS) problem. An important application for the maximum 2-packing
set problem is given in distributed algorithms. In contrast to the independent set problem, where
a given solution vertex is in conflict only with the direct neighborhood, the 2-packing set provides
information about a larger area around the vertex. This is important for self-stabilizing algorithms
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[20, 21, 39, 42, 48, 46, 50]. In particular, computing large 2-packing sets can be used as a subroutine
to ensure mutual exclusion of vertices with overlapping neighborhoods. An example is finding
a minimal {k}-dominating function [20], which has various applications itself as presented by
Gairing et al. [22]. Bacciu et al. [5] use large k-packing sets to develop a downsampling approach
for graph data. This is particularly useful for deep neural networks. Further, Soto et al. [28]
show that the knowledge of the size of a maximum 2-packing set in special graphs can be used
for error correcting codes, and Hale et al. [29] indicate that large 2-packing sets can be used to
model interference issues for frequency assignment. This can be done by looking at the frequency-
constrained co-channel assignment problem. Here, the vertex set consists of locations of radio
transmitters, and two vertices share an edge if their frequencies are mutually perceptible. Now,
we want to assign a channel to as many radio transmitters as possible to conserve spectrum and
avoid interference issues. Vertices assigned to the same channel must have a certain distance. If
this distance is two, this can be solved by finding a maximum 2-packing set in the corresponding
graph. The maximum 2-packing set problem can be solved to optimality quite fast for small
instances. However, since it is an NP-hard problem [31], the running time of exact algorithms
grows exponentially with the size of the graph. One powerful technique for tackling NP-hard graph
problems is to use data reduction rules, that remove or contract local (hyper)graph structures to
reduce the input instance to an equivalent, smaller instance. Originally developed as a tool for
parameterized algorithms [12], data reduction rules have been effective in practice for computing
an (unweighted) maximum independent set [10, 33, 43] / minimum vertex cover [3], maximum
clique [9, 51], and maximum k-plex [11, 32], as well as solving graph coloring [38, 51] and clique
cover problems [25, 44]. For a detailed overview of data reductions used for other problems, we
direct the reader to the survey by Abu-Khzam et al. [2]. The maximum 2-packing set problem
can be solved with a reduction to the MIS problem by transforming the instance to the square
graph. This is the original graph extended by a set of edges connecting all vertices that share a
common neighbor. In recent years several highly scalable algorithms for the maximum (weighted)
independent set problem have been presented [13, 16, 24, 26, 27, 33, 34]. However, graphs can get
very dense if we directly compute the graph transformation which could prohibit scalability.

Our Results. In addition to the new data reduction rules for the maximum 2-packing set prob-
lem, we contribute a novel exact algorithm red2pack b&r and a heuristic red2pack heuristic.
Both approaches use our new reductions to compute (near-)optimal maximum 2-packing sets for
arbitrary large-scale graphs. These approaches work in three phases. First, the data reductions
are applied to the input graph, resulting in a reduced equivalent instance. Afterward, the re-
sulting graph is transformed such that a solution on the transformed graph for the MIS problem
corresponds to a solution of the maximum 2-packing set problem for the original graph. The
third phase of the approach consists of solving the MIS problem on the transformed graph. In this
phase, our two variants differ. We use an exact solver in red2pack b&r while we use a heuristic in
red2pack heuristic. Our experiments indicate that our methods outperform the current state-
of-the-art heuristic, an evolutionary approach gen2pack introduced by Trejo-Sánchez et al. [45],
for arbitrary graphs regarding solution quality and running time. For instance, we compute op-
timal solutions for 63 % of our data set in less than a second, whereas gen2pack achieves this
only for 5 % of the graphs, even with a 10-hour time limit. Lastly, our method solves many large
instances that remained unsolved before.
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2 Preliminaries

Let G = (V,E) be an undirected graph with n = |V | and m = |E|, where V = {0, . . . , n− 1}. When
comparing different graphs, we use the notation n(G) and m(G) to specify the number of vertices
and edges of a graph G. We extend this definition to a link-graph G = (G,L), which is a tuple
of a graph G and a set of links L ⊆

(
V
2

)
\ E connecting two vertices. Note that this link set L

is disjunct to the edge set E, i.e. L ∩ E = ∅. Two vertices connected by a link are called linked
vertices. A path p in G is a sequence of adjacent edges. The length of a path is equal to its
number of edges. In the link-graph G, a path can also contain links. For each link in the path,
we add 2 to its length. Therefore, the shortest path between two linked vertices is of length 2.
We define the induced link-subgraph of a set of vertices V ′ ⊆ V as G[V ′] = (G[V ′],L[V ′]) with
L[V ′] = {{u, v} ∈ L | u, v ∈ V ′}. We use the notation G−v for G[V \{v}] and G−V ′ for G[V \ V ′].

The open neighborhood N(v) of a vertex v ∈ V is defined as N(v) = {u ∈ V | {u, v} ∈ E} and
the closed neighborhood N [v] = N(v) ∪ {v}. The notation is extended to a set of vertices U ⊆ V
with N(U) = ∪u∈UN(u) \ U and N [U ] = N(U) ∪ U . Similarly, we define the link-neighborhood of
a vertex v ∈ V as L(v) = {u ∈ V | {u, v} ∈ L ∨ u ∈ N(N [v])}. The 2-neighborhood is defined as
N2[v] = N [v] ∪ L(v). By this definition, for all vertices u ∈ L(v), the shortest path from u to v is of
length 2. This notation again is extended to a set of vertices U ⊆ V with L(U) = ∪u∈UL(u)\N [U ].

The degree of a vertex v is the size of its neighborhood deg(v) = |N(v)|. The link-degree of
a vertex is defined by the size of its link-neighborhood degL(v) = |L(v)|. For a vertex v ∈ V ,

we define the induced link set link(v) =
(
N(v)
2

)
\ E. This set contains all links between two non-

adjacent vertices with v as a common neighbor. This set links exactly those vertices that would
have to be connected to complete N(v) as a clique. This notation is extended to a set of vertices

V ′ ⊆ V by link(V ′) = {{x, y} ∈
(
N(V ′)

2

)
\ E | (N(x) ∩ N(y)) ∩ V ′ ̸= ∅}, such that link(V ′) only

contains links connecting vertices in N(V ′) that have a common neighbor in V ′. An important
part of the correctness of our data reduction rules introduced in the following sections is extending
the set L by these links for removed vertices.

The square graph G2 = (V,E2) of a graph G = (V,E) is defined as a graph with the same vertex
set and an edge for every pair of vertices that are connected by a path of length at most 2 in G.

For 0 < k ∈ N a k-packing set is defined as a subset S ⊆ V such that between each pair of
vertices in S the shortest path has length at least k + 1. For k = 1, we refer to the set as the
independent set, where all vertices in S are non-adjacent. The maximum independent set (MIS)
problem is finding an independent set of maximum cardinality. Our work mainly focuses on the
case k = 2, where the shortest path between each pair of vertices in S is at least length three. A
maximal 2-packing set is a 2-packing set S ⊆ V that cannot be extended by any further vertex
v ∈ V without violating the 2-packing set condition. The maximum 2-packing set problem (M2S)
is finding a 2-packing set of maximum cardinality. Analogously to the independence number α(G)
for the maximum independent set, we define α2(G) as the size of the solution to the maximum
2-packing set problem for a given link-graph G.

A distance-2-clique is a set of vertices in G pairwise connected by a shortest path of length at
most 2. A vertex v is distance-2-isolated if the vertices of N2[v] form a distance-2-clique.

3 Related Work

In Section 3.1, we summarize the most important related work on the maximum 2-packing set
problem. Since our approach also utilizes independent set solvers, we cover related work on that
problem in Section 3.2.
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3.1 2-Packing Set Algorithms

Trejo-Sánchez et al. [45] are the first and as far as we know only authors to have proposed a
sequential heuristic for the maximum 2-packing set problem on connected arbitrary graphs. They
developed a genetic approach in which they use local improvements in each round and a penalty
function. Ding et al. [14] propose a self-stabilizing algorithm for arbitrary graphs. The algorithm
consists basically of two operations, namely entering the solution candidate and exiting the solution
candidate for each vertex in the graph. If a vertex enters the solution, its neighbors get locked,
so they cannot enter the solution and cause a conflict. The decision to enter or exit the solution
is based on the simple criteria to check whether a vertex causes a conflict or not. In general,
most of the contributions to the 2-packing set problem on arbitrary graphs are in the context of
distributed algorithms [20, 39, 42]. Further, there are some contributions to distributed algorithms
for the M2S problem for special graphs. Flores-Lamas et al. [19] present a distributed algorithm
that finds a maximal 2-packing set in an undirected non-geometric Halin graph in linear time.
They use reduction rules by Eppstein [17] to determine a partition of the vertex set on which they
base a coloring scheme to determine a maximal 2-packing set. However, the reduction of the graph
is used only temporarily to compute the vertex partition; the coloring phase of the algorithm works
on the original graph. Fernández-Zepeda et al. [47] present a distributed algorithm for an M2S in
geometric outerplanar graphs. Mjelde [40] presents a self-stabilizing algorithm for the maximum
k-packing set problem on tree graphs. Further, Mjelde [40] present a sequential algorithm for the
M2S problem on tree graphs using dynamic programming. For special graphs, there are also some
non-distributed algorithms for the M2S problem [18, 28, 49]. Trejo-Sánchez et al. [49] present
an approximation algorithm called Apx-2p + Imp2p using graph decompositions and LP-solvers.
The approximation ratio is related to how the algorithm decomposes the input graph into smaller
subgraphs, which is inspired by Baker [6]. They also mention the possibility of solving the maximum
2-packing set problem by using a graph transformation to the square graph and then applying an
independent set solver. However, this is not used for their algorithm. This equivalence was stated
by Halldórsson et al. [30].

3.2 Independent Set Algorithms

Our algorithm uses data reductions in a problem-specific context as well as for solving the MIS
problem on the transformed graph. Therefore, we summarize some related work on this topic with
respect to the MIS problem as well. In recent years, the branch-and-reduce paradigm has been
shown to be an effective method for solving the maximum independent set problem to optimality,
as well as its complementary problem, the minimum vertex cover [3]. By this paradigm, we mean
branching algorithms that utilize reduction rules to reduce the input size. These reduced instances
are equivalent to the original input instances, and an optimal solution on the reduced instance
can be extended to an optimal solution on the original instance. Akiba and Iwata show that this
approach yields good results in comparison to other exact approaches for the minimum vertex cover
problem and the maximum independent set problem [3]. Furthermore, this approach is successfully
applied to the maximum weight independent set problem. Lamm et al. [34] use this approach
for an exact algorithm, while data reductions are also used for heuristics. Großmann et al. [26]
use reduction rules in combination with an evolutionary approach for solving the maximum weight
independent set problem on huge sparse networks. Gao et al. [23] use inexact reduction rules
by performing multiple rounds of a local search algorithm to determine vertices that are likely
to be part of a solution to the MIS problem. Further, some contributions combine local search
algorithms with data reductions [36] and graph neural networks [35]. Moreover, Gu et al. [27]
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Algorithm 1: High-level view of red2pack.

Data: Graph G = (V,E)
Result: M2S

1 Procedure red2pack(G):
2 K,L ← reduce(G)
3 K2 ← transform(K,L)
4 return MISsolve(K2)

use data reduction and a tie-breaking policy to apply data reductions repeatedly until they reach
an empty graph. Lamm et al. [33] present a branch-and-reduce approach combined with an
evolutionary algorithm for the MIS problem. A different, widely used technique is local search.
The main idea behind it is to start from an initial solution and then improve this solution by swaps.
The algorithm proposed by Andrade et al. [4] has proven to be a successful approach in this area.
The basic idea is to perform (1, 2)-swaps, i.e. to delete one vertex from the solution and add two
new vertices. Hence, the solution size increases by one. Other local search approaches have also
proven successful [7, 8, 37, 41].

4 The Algorithm red2pack

We now give an overview of the components of our algorithm. The idea of our approach is to build
the square graph on which a maximum independent set is equivalent to a maximum 2-packing set
on the original graph (see Theorem 1).

On this transformed graph, we apply well-studied maximum independent set solvers to find
optimal solutions. During the transformation, we increase the number of edges in the graph. Since
this results in a more dense graph, this approach can necessitate a substantial amount of memory
and yield longer running times.

To alleviate this issue, we add a preprocessing step. There, we apply new problem-specific data
reductions exhaustively to the graph to obtain a reduced link-graph K. An (optimal) solution K
can be used to construct an (optimal) solution on the original instance. On this reduced instance
K, we apply the transformation, resulting in a significantly smaller square graph. On this, a
maximum independent set solver is applied to obtain an (optimum) solution. In the end, the
solution is transformed into an (optimum) solution for the input instance. Overall, this results
in the algorithm red2pack (see Algorithm 1). In the following, we introduce our new data
reductions, then present the used graph transformation, and finally give details about the maximum
independent set solvers used.

4.1 Data Reduction Rules

In this section, we introduce a set of new data reduction rules for the maximum 2-packing set
problem following the scheme explained in the following.

Reduction Scheme [Reduction Name] by [Authors]
Description of the pattern that can be reduced.
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Figure 1: Demonstration of the vital role of retaining 2-neighborhood information for non-reduced
vertices in maintaining a valid solution to the M2S problem. Reduced vertices and edges have less
opacity. Green vertices are included, and red vertices are excluded from the solution.

(a) Including v without links L, thereby loosing the 2-neighborhood information yielding an invalid solution.

reduce solvev u w
n1

n2

n3

v u w
n1

n2

n3

v u w
n1

n2

n3

(b) Including v with necessary 2-neighborhood information via L resulting in a valid M2S.

reduce solvev u w
n1

n2

n3

v u w
n1

n2

n3

v u w
n1

n2

n3

Link Set Which additional links L have to be stored
Reduced Graph How to build the reduced graph G′
Offset Difference in solution size on G and G′
Reconstruction How to reconstruct the solution S for the original graph given the

solution S ′ on the reduced graph G′

First, we give the name of the reduction rule. Then, we define the pattern that this rule can
reduce. Finally, we give details on how to perform the actual reduction. This last information
consists of four parts. We start with information on how to extend the link set L. Note that
initially, the set L is empty. Then, the construction of the reduced link-graph G′ from G already
containing the extended link set is defined. The offset describes the difference between the size of
an M2S on the reduced graph α2(G′) and the size of an M2S on the original graph α2(G). Lastly,
the information on how the solution on the reduced instance, S ′, can be lifted to a solution on the
original graph, S, is provided.

In general, our reductions allow us to identify vertices as (1) part of a solution to the maximum
2-packing set problem (included) and (2) as non-solution vertices (excluded). Before presenting
the reductions, we give a lemma that generally describes how to change the graph for including or
excluding a vertex and discuss the importance of the link set L.

4.1.1 Initial Reduction Information

We briefly motivate the importance of the edge set L for our reductions. When a reduction includes
a vertex v, its 2-neighborhood has to be excluded to obtain a valid maximum 2-packing set of the
original graph from the solution on the reduced instance. In Figure 1a, we perform a reduction
that includes the vertex v without the use of the link set L. Here, we do not get a valid solution
since the information that n1, n2, and n3 belong to the same 2-neighborhood is lost. When we
apply the reduction with the additional connecting links in L for the excluded vertex w, we obtain
a valid solution. This is illustrated in Figure 1b. In Lemma 1, we show how to include or exclude
a vertex v in a link-graph G = (G,L).
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Lemma 1 Let G be a link-graph with vertex set V and v ∈ V .

1. If there is an M2S in G not containing v, i.e. we can exclude v from the solution. Then, we
can perform the reduction by the following steps.

Link Set L = L ∪ link(v)
Reduced Graph G′ = G[V \ {v}]
Offset α2(G) = α2(G′)
Reconstruction S = S ′

2. If there is an M2S in G containing v, i.e. we can include v into the solution. Then, we can
perform the reduction by the following steps.

Link Set L = L ∪ link(N2[v])
Reduced Graph G′ = G[V \N2[v]]
Offset α2(G) = α2(G′) + 1
Reconstruction S = S ′ ∪ {v}

Proof: Let v ∈ V be a vertex in a link-graph G. First, assume there is an M2S not containing v,
i.e. v can be excluded (Lemma 1, Case 1). The link set L is extended by links between vertices
in the 2-neighborhood of v, i.e. L = L ∪ link(N2[v]). This way, we maintain the 2-neighborhood
information for all remaining vertices. The reduced graph G′ is then obtained by removing the
vertex v from the vertex set V and all incident edges and links to v. Since there exists an M2S
not containing v, there is an M2S S ′ in G′ that is also an M2S in G. We get α2(G) = α2(G′),
and S = S ′.

Second, assume there is an M2S S containing v, i.e. v can be included, (Lemma 1, Case 2).
First, links have to be added to link vertices in the link-neighborhood of v. Note that we do
not need to add links for the link-neighborhood of direct neighbors of v since these only link
to removed vertices. This way, the 2-neighborhood information is maintained for all remaining
vertices. Then, all vertices in the 2-neighborhood N2[v] along with their incident edges and links
have to be removed to avoid a conflict resulting in G′ = G[V \N2[v]]. Since, there is an M2S S ′ in
G′ that can be extended by v to an M2S in G, we get α2(G) = α2(G′) + 1, and S = S ′ ∪ {v}. □

In the following, we first introduce our two main reductions. Afterward, we present more efficient
special cases of these reductions.

Reduction 4.1 (Domination)
Let u, v ∈ V be vertices such that N2[v] ⊆ N2[u], then exclude u.

Link Set L = L ∪ link(u)
Reduced Graph G′ = G − u
Offset α2(G) = α2(G′)
Reconstruction S = S ′

Proof: Let u, v ∈ V and N2[v] ⊆ N2[u]. Further, assume that S is an M2S in G containing u. Since
N2[v] ⊆ N2[u], it holds for all vertices x ∈ N2[v] \ {u} that x /∈ S. We define S ′ = (S \ {u}) ∪ {v}
and it follows that |S| = |S ′|. Moreover, S ′ is still a valid 2-packing set since there is no vertex in
N2[v] \ {v} that is also an element of S ′. By construction S ′ has the same size and, therefore, is
an equivalent solution to M2S not containing u. Using Lemma 1, we get the desired reduction. □

An example of the Domination Reduction is illustrated in Figure 2a.
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Reduction 4.2 (Clique)
Let v ∈ V be distance-2-isolated in G, then include v into the solution.

Link Set L = L ∪ link(N2[v])
Reduced Graph G′ = G −N2[v]
Offset α2(G) = α2(G′) + 1
Reconstruction S = S ′ ∪ {v}

Proof: Let v ∈ V be distance-2-isolated and S ⊆ V be an M2S in G. Then, at least one
vertex w ∈ N2[v] is contained in S, otherwise S is not maximal. It follows that u /∈ S for all
u ∈ N2[v] \ {w}. Additionally, since v is distance-2-isolated N2[v] ⊆ N2[w]. Therefore, a new
solution S ′ = (S \ {w}) ∪ {v} of the same size containing v can be constructed. This way, there
is always an equivalent or better solution when including v, and therefore, the vertex v is in some
M2S of G. Reducing the graph by including v results in α2(G) = 1 + α2(G[V \ N2[v]]). Using
Lemma 1, we get the desired reduction. □

These two reductions require knowledge about the 2-neighborhood as a prerequisite. The
2-neighborhood of a vertex v can become quite large, and verifying these conditions is computa-
tionally expensive. Hence, we have sought out different special cases where only constraints on the
direct neighbors and the maintained link-degree need to be satisfied. As a result, the links of a
link-neighborhood do not need to be considered in a reduction test. The following lemma helps us
to show that these special cases are instances of the more general case.

Lemma 2 Let u, v ∈ V be neighbors in G with N [v] ⊆ N [u] such that degL(v) + deg(v) ≤ deg(u).
Then, L(v) = N [u] \N [v], i.e. all link-neighbors of the vertex v, are also neighbors of the vertex u.

Proof: Let u, v ∈ V be neighbors with N [v] ⊆ N [u] such that degL(v) + deg(v) ≤ deg(u). By
definition of the link-neighborhood and since u and v are neighbors, we know that N [u] \N [v] ⊆
L(v). Therefore, it follows that deg(u) + 1 − (deg(v) + 1) ≤ degL(v) which is equivalent to
deg(u) ≤ degL(v) + deg(v). Since u and v are neighbors, it follows that degL(v) + deg(v) ≥ deg(u),
and because of degL(v) + deg(v) ≤ deg(u) it follows that degL(v) + deg(v) = deg(u). Because of
N [u] ⊆ N [v] ∪ L(v), the two sets N [u] \N [v] and L(v) must be equal. □

Note that, during the reduction process, all direct neighbors of a vertex v may be removed,
resulting in deg(v) = 0, but there are remaining links to the vertex v, yielding degL(v) > 0. This
case is considered in the following reduction.

Reduction 4.3 (Degree Zero Reduction)
Let v ∈ V be a degree zero vertex with degL(v) ≤ 1, then include v into the solution.

Link Set L = L ∪ link(N2[v])
Reduced Graph G′ = G −N2[v]
Offset α2(G) = α2(G′) + 1
Reconstruction S = S ′ ∪ {v}

Proof: Let v ∈ V be a vertex with deg(v) = 0 and degL(v) ≤ 1. For the case of degL(v) = 0, there
is no vertex in the 2-neighborhood of v, and therefore, v can be included in the solution. In the
case of degL(v) = 1, let the link-neighbor of v be u ∈ L(v). If there is a solution not containing
u, the vertex v can safely be included in the solution. In the case of u being part of an M2S S on
the original instance, we show there always exists another M2S S̃ containing v. We can create S̃
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Figure 2: Original link-graph on the left reduced to the link-graph on the right.

(a) Reduction 4.1 (Domination): N2[u] is colored
with orange, N2[v] with blue. The vertex u domi-
nates v and can therefore be excluded.

v u v u

G −N2[{v, u}] G −N2[{v, u}]

(b) Reduction 4.10 (Twin): The neighbors u,w ∈
N(v) are twins. We can include v into the solution
and exclude N2(v).

v wu v wu

G −N3[v] G −N3[v]

by swapping the vertex u for v, i.e. S̃ = S \ {u} ∪ {v}. It follows that S̃ ∩ N2[v] = {v}, since u
is the only 2-neighbor of v in G. Furthermore, S̃ has the same size as S and is therefore also an
M2S. Therefore, there exists an M2S containing v, and v can be included in the solution. Using
Lemma 1, we get the described reduction. □

Reduction 4.4 (Degree Zero Triangle)
Let v ∈ V be a degree zero vertex. Furthermore, let degL(v) = 2 with link-neighbors L(v) = {u,w}
that are also adjacent or linked, that is u ∈ N2[w], then include v into the solution.

Link Set L = L ∪ link(N2[v])
Reduced Graph G′ = G −N2[v]
Offset α2(G) = α2(G′) + 1
Reconstruction S = S ′ ∪ {v}

Proof: Let v ∈ V be a vertex of deg(v) = 0 and {u,w} = L(v) such that its link-neighbors are
adjacent or linked, i.e. u ∈ N2[w]. The vertices u and w dominate vertex v and can therefore be
excluded by Reduction 4.1. Now, Reduction 4.3 is applicable, and vertex v can be included in the
solution. With Lemma 1, we get the final reduction described. □

Reduction 4.5 (Degree One)
Let v ∈ V be a degree one vertex with N(v) = {u}. Furthermore, let degL(v) ≤ deg(u) − 1, then
include v into the solution.

Link Set L = L ∪ link(N2[v])
Reduced Graph G′ = G −N2[v]
Offset α2(G) = α2(G′) + 1
Reconstruction S = S ′ ∪ {v}

.

Proof: Let v ∈ V be a vertex with deg(v) = 1 and N(v) = {u} with degL(v) ≤ deg(u) − 1. We
can apply Lemma 2, and it holds that N2[v] = N [u]. Therefore, this represents a special case of
the distance-2-clique and Reduction 4.2 can be applied. □
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Reduction 4.6 (Degree Two V-Shape)
Let v ∈ V be a vertex of deg(v) = 2 with N(v) = {u,w} and degL(v) = 0, then include v
into the solution.

Link Set L = L ∪ link(N2[v])
Reduced Graph G′ = G −N2[v]
Offset α2(G) = α2(G′) + 1
Reconstruction S = S ′ ∪ {v}

Proof: Let v ∈ V be a vertex of deg(v) = 2 with N(v) = {u,w} and degL(v) = 0. First, we
show that N2[v] ⊆ N2[u]. Since u is a direct neighbor of v, it holds that N [v] ⊆ N2[u]. With
the additional assumption that degL(v) = 0, it follows that L(v) = ∅. Therefore, we get N [v] =
N2[v] ⊆ N2[u]. With the same argument, we also get N2[v] ⊆ N2[w]. Then, the vertices w and u
can be excluded by Reduction 4.1. Since |L(v)| = 0, vertex v can safely be included. □

Reduction 4.7 (Degree Two Triangle)
Let v ∈ V be a vertex of deg(v) = 2 with N(v) = {u,w} and deg(u) = deg(w) = 2. Furthermore,
let degL(v) = 0, then include v into the solution.

Link Set L = L ∪ link(N2[v])
Reduced Graph G′ = G −N2[v]
Offset α2(G) = α2(G′) + 1
Reconstruction S = S ′ ∪ {v}

Proof: Let the vertices v, u, w ∈ V all have degree two and N(v) = {u,w} and degL(v) = 0. In this
case, the vertices u, v, and w form a triangle. Since N2[v] ⊆ N2[u] and N2[v] ⊆ N2[w] the vertices
w and u can be excluded by Reduction 4.1. Since |L(v)| = 0, vertex v can safely be included. □

Reduction 4.8 (Degree Two 4-Cycle)
Let u, v, w, x ∈ V be vertices with deg(v) = deg(u) = deg(w) = 2, N(v) = {u,w} and L(v) = {x}.
Furthermore, let x ∈ N(u) and x ∈ N(w). Then, the vertices build a 4-cycle and v can be included
into the solution.

Link Set L = L ∪ link(N2[v])
Reduced Graph G′ = G −N2[v]
Offset α2(G) = α2(G′) + 1
Reconstruction S = S ′ ∪ {v}

Proof: Let the above-stated assumptions hold such that the vertices u, v, w, and the one link-
neighbor x ∈ L(v) form a 4-cycle. It holds that N2[v] = {u, v, w, x} ⊆ N2[u], therefore, we can
exclude the vertex u by Reduction 4.1. Similarly, we can exclude vertex w. Assume x is part of an
M2S S. Then, we can create a new solution S ′ = S \ {x} ∪ {v} of same size. This way, we always
find an M2S including v. By applying Lemma 1, we get the desired reduction. □

Reduction 4.9 (Fast Domination)
Let u, v ∈ V be vertices such that N [v] ⊆ N [u] and degL(v) + deg(v) ≤ deg(u), then exclude u from
the solution.
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Link Set L = L ∪ link(u)
Reduced Graph G′ = G − u
Offset α2(G) = α2(G′)
Reconstruction S = S ′

Proof: Let u, v ∈ V and N [v] ⊆ N [u] with degL(v) + deg(v) ≤ deg(u). By the assumption
N [v] ⊆ N [u], it follows that u and v are neighbors, and we can use Lemma 2. With this, we know
L(v) = N [u] \N [v]. It holds that N2[v] ⊆ N2[u] and Reduction 4.1 is applicable. □

Reduction 4.10 (Twin)
Let v ∈ V be a vertex with deg(v) = 2 and u,w ∈ V be its neighbors with N(u) = N(w). Further-
more, let degL(v) ≤ deg(u)− 1. Then, u and w are twins, and v can be included in the solution.

Link Set L = L ∪ link(N2[v])
Reduced Graph G′ = G −N2[v]
Offset α2(G) = α2(G′) + 1
Reconstruction S = S ′ ∪ {v}

Proof: Let v ∈ V be a vertex with deg(v) = 2 and u,w ∈ V be its neighbors with N(u) = N(w).
Since u /∈ N(u) = N(w), the vertices u and w are non-adjacent. We now show that all link-
neighbors of v are adjacent to the vertex u and w. By definition of the link-neighborhood and since
w /∈ N(u), we know N(u) \ {v} ⊆ L(v). This yields deg(u)− 1 = |N(u) \ {v}| ≤ |L(v)| = degL(v).
The additional assumption degL(v) ≤ deg(u) − 1 ensures that the sets are equal and therefore
G[N2[v]] forms a distance-2-clique. Consequently, we can apply Reduction 4.2. □

An example of the Twin Reduction is given in Figure 2.

4.2 The Reduction Process

In our preprocessing, the introduced reductions are applied exhaustively in a predefined order. If a
reduction is successful, we start again by applying the first reduction. We define two reduction list
configurations, which we later compare to the configuration called 2pack, which does not include
any of our proposed reductions. In the configuration main, we only use the clique and domination
reduction (Reduction List 1). In preliminary experiments, this order of reductions proved to be
the most effective.

Reduction List 1 R1 = [4.2, 4.1]

For the second variant fast we apply the full set of all special case reductions as well as the Domi-
nation and Clique Reduction. The order of reductions for this variant is given in Reduction List 2.

Reduction List 2 R2 = [4.3, 4.4, 4.5, 4.7, 4.8, 4.6, 4.10, 4.9, 4.1, 4.2]

With this ordering, we put our special case reductions before the Domination and Clique
Reductions to test efficient reductions first and speed up the reduction process. These faster
reduction rules can potentially reduce the number of vertices before applying more computationally
expensive ones. Note that we did not experiment with different orderings for the reductions since
Großmann et al. show in [26] that for the MWIS problem, an intuitive ordering worked best, and
small changes do not affect the solution quality and running time significantly.
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Figure 3: The graph G on the left with links marked as dashed lines. This instance is transformed
into the square graph on the right. The green vertices present the M2S (left) and the MIS (right).

4.3 On-Demand Link-Neighborhood

Our reductions operate on a dynamic graph data structure based on adjacency arrays. Internally,
for each vertex, we store edges and links separately. Overall, this results in two vectors of vectors
to store the adjacent and linked neighbors for each vertex. Undirected edges are stored as two
directed edges. A key observation of our reductions is that we often do not need to know the link-
neighborhood to exclude a vertex. This can be seen, for example, in the Degree One Reduction
applied to a vertex v with its neighbor u. Then, we do not need to consider L(u). In general,
we only compute and store the link-neighborhood of a vertex v on demand. This also leads to
less effort compared to initially constructing the link-neighborhood for the whole graph. When a
vertex u is removed from the graph, we delete every edge and link pointing to it. Removing all
incoming edges and links can take O(∆4) time where ∆ is the highest degree in the graph. This
is because |N2[v]| ∈ O(∆2) for each v ∈ V . When removing all incoming edges and links of v, we
have to go through all its neighbors u ∈ N2[v] for which we iterate through N2[u] to delete the
edge to v. With the on-demand technique, we can also reduce the number of computations there,
i.e. if the link-neighborhood of a vertex v is not computed in advance, there are potentially fewer
links that are deleted in this step.

4.4 Graph Transformation

After we applied all data reduction rules exhaustively, i.e. there is no data reduction rule that can
still be applied, we begin the transformation of the reduced graph to the square graph.

To build the square graph of G = (V,E), the set of regular edges E is extended by edges
connecting all pairs of vertices that have a common neighbor. For the square graph of the link
graph G = (G,L), we first compute the square graph of G and then extend the set of edges E
connecting all linked vertices in G. Note that since E ∩ L = ∅, we do not add parallel edges. See
Figure 3 for an example.

Theorem 1 Let G = (V,E) be a given graph and G2 = (V,E2) the square graph. Then, an optimal
solution to the maximum independent set problem on G2 is an optimal solution for the maximum
2-packing set problem on the original graph G [30].

4.5 MIS Solver

We have chosen to use the solver KaMIS BnR by Lamm et al. [34] since it is a state-of-the-art
exact solver for the independent set problem. However, it is also possible to integrate any other
exact solver for the maximum independent set problem. Note that we did not choose the branch
and reduce solver for the unweighted problem [33], as it restricts us to smaller graphs. While our
focus is on the optimal solution, we also combine our reduction approach with the local search
approach OnlineMIS by Dahlum et al. [13], resulting in our heuristic red2pack heuristic. To
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be fully self-contained, we briefly describe the main components of the solver by Lamm et al. [34]
in Section 4.5.1 and the solver by Dahlum et al. [13] in Section 4.5.2.

Algorithm 2: Branch-and-reduce algorithm KaMIS BnR for Maximum (Weight) Inde-
pendent Set problem by Lamm et al. [34]

Data: Graph G, current solution weight c (initially zero), best solution weight W
(initially zero)

Result: M2S
1 Procedure solve(G, c, W):
2 (G, c)← reduce(G, c)
3 if W = 0 then W ← c + ILS(G)
4 if c+ UpperBound(G) ≤ W then return W
5 if G is empty then return max{W, c}
6 if G is not connected then
7 forall Gi ∈ Components(G) do
8 c← c+ solve(Gi, 0, 0)
9 return max(W, c)

10 (G1, c1), (G2, c2)← branch(G, c)
// Run 1st case, update currently best solution

11 W ← solve(G1, c1,W)
// Use updated W to shrink the search space

12 W ← solve(G2, c2,W)
13 return W

4.5.1 KaMIS BnR for red2pack b&r

The solver KaMIS BnR employs a branch and reduce framework. Algorithm 2 gives an overview.
Throughout the algorithm, it maintains the current solution weight as well as the best solution
weight. The algorithm applies a wide set of reduction rules (Line 2) before branching on a vertex
(Line 10). The branch-and-reduce solver KaMIS BnR applies a large set of reduction rules as
preprocessing and after each branching step. The reduction rules introduced in this work for the
2-packing set problem are derived from the set of rules used in KaMIS BnR. Note, however, that
in KaMIS BnR, there is a larger number and more complex reductions implemented. Therefore, if
time and space constraints are not an issue, the 2pack approach combined with the preprocessing
of KaMIS BnR can result in smaller instances. However, as we show in our experiments, it is
always beneficial to first apply our new reductions.

After the initial reduction phase, a local search algorithm is run on the reduced graph to
compute a lower bound on the solution weight (Line 3), which later helps prune the search space.
The algorithm then prunes the search by excluding unnecessary parts of the branch-and-bound
tree to be explored. If the graph is not connected, each connected component is solved separately.
If the graph is connected, the algorithm branches into two cases by applying a branching rule.
As for the branching rule, initially, vertices are sorted in non-decreasing order by degree, with
ties broken by weight. Throughout the algorithm, the next vertex to be chosen is the highest
vertex in the ordering. This way, the algorithm quickly eliminates the largest neighborhoods and
makes the problem “simpler”. If the algorithm does not finish within a certain time limit, the
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currently best solution is improved using a greedy algorithm. More precisely, the algorithm sorts
the vertices in decreasing order of their weight and adds vertices in that order if feasible. Note
that the pseudocode in Algorithm 2 describes the algorithm such that it outputs the weight of a
maximum weight independent set in the graph. However, the algorithm is implemented to output
the maximum weight independent set.

4.5.2 OnlineMIS for red2pack heuristic

In this section, we give a detailed explanation of the OnlineMIS solver from et al. [13]. For this
solver, the authors combined the iterated local search algorithm ARW [4] with both exact and
inexact data reduction rules. The exact rules reduce the size of the search space without losing
solution quality. Especially for large-scale networks, this approach can significantly boost the
performance of the algorithm by running the local search on the reduced instance. In the paper,
the authors show that applying inexact reductions accelerates the performance while computing
results that still compete with the best solutions reported in the literature.

The algorithm OnlineMIS [3] applies a set of simple simplicial vertex removal reductions (for
degree zero, one, and two) on the fly. A simplicial vertex v is a vertex where N(v) forms a clique.
In that case, the simplicial vertex can be included in the solution. Only using these reductions
enables the algorithm to reduce the graph by marking these simplicial vertices and their neighbors
as removed during the local search.

This is done by first performing a quick single pass when computing the initial solution for
ARW. The algorithm further marks the top 1 % of high-degree vertices as removed during this
pass, which is the inexact data reduction. During the local search, whenever a vertex is checked
to see if it can be inserted into the solution, the isolated vertex removal reduction is checked for
this vertex. If the reduction is applicable, the solution is updated.

5 Experimental Evaluation

Methodology. We implemented our algorithm using C++17. The code is compiled using g++
version 12.2 with full optimizations enabled (-O3). We used a machine equipped with an AMD
EPYC 7702P (64 cores) processor and 1 TB RAM running Ubuntu 20.04.1. We conducted all our
experiments using four different random seeds and report geometric mean values unless otherwise
specified. We set a time limit of 10 hours for all algorithms. If a solver exceeds a memory threshold
of 100 GB during execution or is terminated due to the time limit, we report the best solution
found until this point. To compare different algorithms, we use performance profiles [15], which
depict the relationship between the objective function size or running time of each algorithm and
the corresponding values produced or consumed by the competing algorithms.

Let A be the set of algorithms and I the set of instances that we want to compare. For every
A ∈ A, we define SA

≥τ = {G ∈ I | Asol(G) ≥ τ · max{Bsol(G) | B ∈ A}}, where Asol(G) is the

solution algorithm A found on instance G. The set SA
≥τ contains instances G where the algorithm

A found a solution Asol(G) that was better or equal to τ times the best solution found for G
by any algorithm in A. Similarly, we define the set TA

≤τ of instances that are solved within a
factor of τ times the fastest running time. Formally, for an algorithm A ∈ A, this yields the
set TA

≤τ = {G ∈ I | Atime(G) ≤ τ · min{Btime(G) | B ∈ A}}, where Atime(G) is the running
time of algorithm A on instance G. For a performance profile comparing solution quality, we
plot |SA

≥τ |/|I|, as a function of τ , decreasing from 1 to 0. The smaller the τ value gets, the



JGAA, 29(1) 159–186 (2025) 173

more instances are in the set SA
≥τ . Each algorithm’s performance profile yields a non-decreasing,

piecewise constant function.

To compare the running times for each algorithm A, plot |TA
≤τ |/|I| as a function of increasing

τ ≥ 1. We always report the best solution found until the time limit is reached, along with the
time it takes to find this solution. If the time limit is reached, this can result in reported solutions
from exact solvers not being optimal and smaller than reported heuristic solutions.

Overview/Competing Algorithms. We perform a wide range of experiments. First, we
perform experiments to investigate the influence of the data reduction rules in Section 5.1. There-
fore, we define three reduction list configurations. The first is called 2pack and does not include
any of our proposed reductions. Then, in main, we only use the clique and domination reduction
(see Reduction List 1). For the last variant fast, we apply the full set of all special case reductions
as well as the Domination and Clique Reduction. The order of reductions for this variant is given in
Reduction List 2. For this reduction list, we put our special case reductions before the Domination
and Clique Reduction in fast to test efficient reductions first in order to avoid checking easily
reducible vertices with computationally expensive reductions. Note that we did not experiment
with different orderings for the reductions, as Großmann et al. show in [26] that for the MWIS
problem, an intuitive ordering works best, and small changes do not significantly affect solution
quality or running time.

We then compare our algorithms with the state-of-the-art for the problem in Section 5.2. In
particular, we compare our approach with the algorithm gen2pack by Trejo-Sánchez et al. [45]
as well as the Apx-2p + Imp2p algorithm by Trejo-Sánchez et al. [49] which only works for
planar graphs. We use two configurations of Apx-2p + Imp2p. The configurations differ in the
parameter h. As h increases, the solution quality improves, but the algorithm’s performance slows
down. We chose the default configuration with h = 50. We added the configuration with h = 100
to improve the solution and provide a more fair comparison with our 10-hour time limit e could
not perform experiments with Maximum-2-Pack-Cactus [18] since the code is not available [1]
and the data in the paper itself is presented such that a direct comparison is not possible.

To be able to compare against Apx-2p + Imp2p, we also include planar graphs from [49]. For
an overview of the graph properties see Table 3 in Appendix B.

Table 1: Effect of graph transformation: Arithmetic mean percentage of the number of vertices
ñ = n(K2)/n(G) and edges m̃ = m(K2)/m(G) in the reduced square graph K2. We compare
different reduction variants, computed for each graph class and over all instances. Since 2pack
does not apply reductions, this column represents the square graphs G2. For detailed results, see
Table 3 in Appendix B.

2pack main fast

ñ[%] m̃[%] ñ[%] m̃[%] ñ[%] m̃[%]

planar 100 212.11 99.91 211.67 99.91 211.67
social (s) 100 3 154.00 14.48 70.25 14.48 70.25
social (l) 100 4 327.38 17.12 274.56 17.12 274.58

overall 100 2 564.50 43.84 185.49 43.84 185.50
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Figure 4: Performance profiles evaluating our reduction configurations with red2pack b&r. We
analyse solution quality (left) and running time (right) on planar and social graphs. The factor τ
on the x-axis represents the ratio of the solution quality or running time of the algorithm to the
best algorithm. We compare the three configurations 2pack (direct transformation, no 2-packing
reductions), main using Reduction List 1 and fast using Reduction List 2.
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5.1 Impact of Data Reductions

We now investigate the effectiveness of the data reductions. To do so, we use the three reduction
configurations for the algorithm red2pack b&r. To evaluate the effectiveness, we do not investi-
gate the influence on Erdös–Rényi as well as Cactus graphs, as they are already very small. We
compare the impact on the size of the squared, reduced instances, as well as solution quality and
running time. Details are presented in tables 3 and 4. We summarize these results in Table 1
and Figure 4.

First, we look at the effectiveness of our reductions on the size of the transformed graphs K2.
When applying the graph transformation on the original input, i.e. without applying any reduction
(2pack), the resulting instance has the same amount of vertices and on average 25.65·m(G) edges,
whereas main and fast both yield on average 0.44 · n(G) vertices and 1.86 ·m(G) edges. Thus,
our data reductions help to decrease the size of the transformed graph by more than a factor of
ten on average. The approaches main and fast compute overall the same reduced instance sizes.
However, on five large social instances, fast computes smaller reduced graphs, but only with a
very small difference. On planar graphs, our reduction rules, as expected, are not working well
since they have a mesh-like structure. For mesh graphs, typically, a global perspective is required
to decide the solution status of a vertex. Moreover, we suspect that the subset relationship between
neighborhoods, a common prerequisite in the reductions, is less likely. The number of vertices in
the reduced instance is only reduced by 0.1% compared to the original graph. Altogether, our
approach reduces 15 out of 60 instances to an empty instance and thereby solves them solely by
our data reductions. Hence, we conclude that the reductions are highly effective in reducing the
graph size and especially reduce the size for social networks.

Regarding solution quality overall, our variant fast is performing only slightly better compared
to the other variants, especially on the small social and planar graphs where no differences between
fast and main can be seen. When considering large social graphs, however, we can find no instance
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Table 2: Summary comparison of state-of-the-art. Detailed results are presented in tables 6 to 5.
Geometric mean over different graph classes of solution size |S| and time t to find it. Best results
are emphasized in bold. Apx-2P + Im2p with h = 100 is omitted as not all planar instances were
solved within the time limit.

Apx-2p + Im2p red2pack red2pack
gen2pack (h = 50) b&r heuristic

Class |S| t [s] |S| t [s] |S| t [s] |S| t [s]

cactus 104 1 384 007.11 - 137 4.26 137 7.30
erdos 8 21 679.67 - 9 0.31 9 0.53
planar - 110 009 255.04 92 135 10.41 110 095 31 706.65
social (s) - - 159 11.32 159 13.53
social (l) - - 30 066 6 442.49 30 756 26 377.56

on which 2pack outperforms main or fast. Overall, we achieve an improvement through fast on
this graph class of 0.05% compared to 2pack and main. The instance with the largest difference
in solution quality is road usa. Here, fast achieves an improvement of 0.93% over the other two
strategies. On the instance amazon-2008 fast performs worse compared to main. On this, the
solution quality of main is improved by 0.10% compared to the solution of fast. For all of the
six instances, on which fast was outperformed by 2pack, the improvement over fast is always
smaller than 0.01%.

Figure 4 also shows that using our different data reduction rules as a preprocessing step (main
and fast) especially improves the running time compared to 2pack. Here, we see that, in general,
our reductions are improving the performance, and our approach fast works best. In the detailed
results in Table 4 in the Appendix, we see that especially for large social graphs fast yields a
speed up of 2.7 compared to 2pack. On planar graphs, where our reductions are not effective in
reducing the initial input size, the performance is very similar for all our variants.

Conclusion: We conclude that for all examined criteria, which are the size of the square reduced
instance as well as solution quality and running time, our reduction configuration fast performs
best. Hence, we choose the fast reduction variant in the following state-of-the-art comparisons
for both red2pack b&r and red2pack heuristic.

5.2 Comparison against the State of the Art

We now compare red2pack b&r and red2pack heuristic using the best reduction variant
fast, against the state-of-the-art approaches gen2pack by Trejo-Sánchez et al. [45] as well as
two configurations of Apx-2p + Imp2p (h=50 and h=100) by Trejo-Sánchez et al. [49].

gen2pack: For the comparison against gen2pack we only use cactus graphs and Erdös–Rényi
(erdos) networks, i.e. the instances used in their paper, as gen2pack is not able to solve any of the
other, larger graphs within the given time limit. This can be explained by the initial computations
containing matrix multiplication used in gen2pack. These do not finish during the 10-hour limit,
so the algorithm does not compute any solution at all. Detailed per-instance results for this
comparison can be found in Table 6 in the Appendix.

In Figure 5, we present performance profiles for running time and solution quality. In Table 2,
we give the geometric mean running times and solution qualities for these results. Our algorithm
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Figure 5: State of the art comparison on solution quality (left) and running time (right) for
different graph classes. For planar graphs (bottom) the competitor gen2pack is not able to
solve the instances. To this end we add Apx-2p + Imp2p with h = 50 and h = 100 as well as
red2pack heuristic for comparison.
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red2pack b&r as well as red2pack heuristic find overall the optimal solution in the classes
cactus and erdos within a few milliseconds. Our algorithms outperform gen2pack in terms of both
solution quality and running time. Especially the differences in running time are very large. On all
graphs, our two algorithms are multiple orders of magnitude faster than gen2pack. It can only find
optimal solutions for 6 out of these 40 graphs, see Table 6. On these two graph classes, both of our
algorithms always compute the optimum solution quality, resulting in an average solution quality
improvement of more than 20% while being a factor of 105 times faster than gen2pack. Among
all instances considered, on Erdos37-2 gen2pack needed the least amount of time to compute an
optimum solution. For this instance, we achieve with red2pack b&r a speed up of more than
300 000 and more than 350 000 with red2pack heuristic. The instance on which gen2pack
needs the most time is cac1000. On this instance, red2pack b&r and red2pack heuristic
again have similar speedups in the range of 105 over gen2pack and an improvement in solution
quality of roughly 32%. Considering the overall data set, our approach red2pack b&r can solve
63 out of 100 graphs to optimality within less than one second and 71 within the 10-hour time
limit and 100 GB restriction. For instances that we could not solve optimally due to experimental
restrictions, we present the solution found until this point, shown in tables 4 and 6.

In Table 5, we compare red2pack b&r and red2pack heuristic on social graphs, which
are not solvable with the competitors. On these instances, we achieve an average improvement
in solution quality of around 1 % with red2pack heuristic compared to red2pack b&r. Es-
pecially for large graphs, where our exact solver meets the memory limit, our heuristic is able
to outperform red2pack b&r.

Apx-2p + Imp2p: Since our reductions do not perform well on planar graphs, we are not able
to solve them to optimality with red2pack b&r and exceed the memory threshold quite fast.
Overall, the solution quality achieved by red2pack b&r for planar graphs is 84% of the solution
quality that the competitor Apx-2p + Imp2p (h = 50) computes, but it only uses 4% of the
time. With red2pack heuristic, on the other hand, we outperform Apx-2p + Imp2p (h = 50)
on all but one instance regarding solution quality, see Table 6. We achieve an average solution
quality that is on par in terms of solution quality, i.e. our improvement over the competitor’s is
0.08%. Note that the authors experimentally show in [49] that the computed 2-packing set by
Apx-2p + Imp2p is already at least 99% of the optimum solution. However, on those instances,
our algorithms need roughly two orders of magnitude more running time than Apx-2p + Imp2p
(h = 50). Apx-2p + Imp2p with h = 100 compared to h = 50 can improve all but one solution.
However, the running time increase is up to multiple orders of magnitude, and some instances were
not solved within the 10-hour time limit. red2pack heuristic is able to find better solutions
than Apx-2p + Imp2p (h = 100) on 9 out of 20 instances. Again, the differences in solution
quality are very small. Detailed results for these experiments are given in Table 6 and Figure 5
(bottom). The competitor gen2pack for general graphs is unable to solve any of these instances,
which is why it is omitted in the corresponding tables and performance profiles.

Conclusion: We conclude that on all instances, our approaches outperform gen2pack in both
solution quality and running time by multiple orders of magnitude. Moreover, we can solve 71 out
of 100 instances from our data set to optimality. When comparing against algorithms specialized
on planar graphs, we presented two options: one that is at least a factor of 24 times faster with
lower solution quality and one that is on par in terms of solution quality but slower, compared to
both configurations of the state-of-the-art specialized solver for planar graphs.



178 Borowitz et al. Scalable Algorithms for 2-Packing Sets on Arbitrary Graphs

6 Conclusion and Future Work

This work introduces novel data reduction rules to solve the maximum 2-packing set problem as
well as proposes a new exact algorithm red2pack b&r that uses these reductions to solve the
maximum 2-packing set problem on large-scale arbitrary graphs. Additionally, a new heuristic
red2pack heuristic is introduced that works similarly. Both of the algorithms red2pack b&r
and red2pack heuristic work in three phases. First the new data reduction rules are applied to
the given input resulting in a reduced instance. Following the reduction phase, the resulting graph
is transformed, such that a solution on the transformed graph for the maximum independent set
problem corresponds to a solution of the maximum 2-packing set problem for the original graph.
The third phase of the algorithms consists of solving the maximum independent set problem on
the transformed graph. Our tests indicate that our algorithms outperform the previous algorithm
for arbitrary graphs both in terms of solution quality and running time on all instances evaluated.
For instance, we can compute optimal solutions for 63% of our graphs in under a second, whereas
the competing method for arbitrary graphs achieves this only for 5% of the graphs even with a 10-
hour time frame. Furthermore, our method successfully solves many large instances that remained
unsolved before. Lastly, our approach can compete with a specialized solver on planar instances.
Our code is publicly available at https://github.com/KarlsruheMIS/red2pack.

In future work, we want to find more reduction rules, especially for mesh-like graphs. We are
also interested in the weighted 2-packing set problem as well as the k-packing set problem for larger
values of k and to find independent motifs in graphs via hypergraphs matching algorithms.
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A Reduction and Transformation Details
Table 3: Properties of the input instance (vertices n, edges m, average degree d) and percentage of
remaining vertices and edges for different reduction variants after transformation. Bold numbers
indicate the best results, gray background marks fully reduced graphs.

input instance properties 2pack main fast

Class Graphs n m d n(K2)/n m(K2)/m n(K2)/n m(K2)/m n(K2)/n m(K2)/m

social (s) PGPgiantcompo 10 680 24 316 4.55 100.00 873.91 0.00 0.00 0.00 0.00
adjnoun 112 425 7.59 100.00 725.18 0.00 0.00 0.00 0.00
as-22july06 22 963 48 436 4.22 100.00 22 941.92 0.00 0.00 0.00 0.00
celegans metabolic 453 2 025 8.94 100.00 2 239.56 0.00 0.00 0.00 0.00
celegansneural 297 2 148 14.46 100.00 1 123.00 30.64 98.46 30.64 98.46
chesapeake 39 170 8.72 100.00 407.65 0.00 0.00 0.00 0.00
cond-mat 16 726 47 594 5.69 100.00 678.06 0.00 0.00 0.00 0.00
dolphins 62 159 5.13 100.00 381.76 0.00 0.00 0.00 0.00
email 1 133 5 451 9.62 100.00 1 114.57 0.00 0.00 0.00 0.00
email-EuAll 16 805 60 260 7.17 100.00 16 882.03 0.14 0.07 0.14 0.07
football 115 613 10.66 100.00 476.18 100.00 476.18 100.00 476.18
hep-th 8 361 15 751 3.77 100.00 535.64 0.00 0.00 0.00 0.00
jazz 198 2 742 27.70 100.00 488.48 6.57 1.79 6.57 1.79
lesmis 77 254 6.60 100.00 491.73 0.00 0.00 0.00 0.00
netscience 1 589 2 742 3.45 100.00 245.15 0.00 0.00 0.00 0.00
p2p-Gnutella04 6 405 29 215 9.12 100.00 1 227.55 74.85 638.90 74.85 638.90
polbooks 105 441 8.40 100.00 453.97 50.48 105.67 50.48 105.67
power 4 941 6 594 2.67 100.00 343.18 2.83 4.88 2.83 4.88
soc-Slashdot0902 28 550 379 445 26.58 100.00 8 678.73 24.12 79.04 24.12 79.07
wordassociation-2011 10 617 63 788 12.02 100.00 2 771.82 0.00 0.00 0.00 0.00

social (l) G n pin pout 100 000 501 198 10.02 100.00 1 088.81 99.35 1 075.38 99.35 1 075.38
amazon-2008 735 323 3 523 472 9.58 100.00 901.89 11.27 35.64 11.27 35.66
astro-ph 16 706 121 251 14.52 100.00 1 469.69 0.02 0.00 0.02 0.00
caidaRouterLevel 192 244 609 066 6.34 100.00 1 843.47 0.67 0.67 0.67 0.67
citationCiteseer 268 495 1 156 647 8.62 100.00 2 980.56 0.08 0.03 0.08 0.03
cnr-2000 325 557 2 738 969 16.83 100.00 20 072.23 4.32 378.64 4.34 378.94
coAuthorsCiteseer 227 320 814 134 7.16 100.00 1 005.95 0.00 0.00 0.00 0.00
coAuthorsDBLP 299 067 977 676 6.54 100.00 1 262.80 0.01 0.01 0.01 0.01
coPapersCiteseer 434 102 16 036 720 73.88 100.00 823.64 0.01 0.00 0.01 0.00
coPapersDBLP 540 486 15 245 729 56.41 100.00 1 572.96 0.01 0.00 0.01 0.00
cond-mat-2003 31 163 120 029 7.70 100.00 1 149.60 0.03 0.02 0.03 0.02
cond-mat-2005 40 421 175 691 8.69 100.00 1 467.49 0.00 0.00 0.00 0.00
enron 69 244 254 449 7.35 100.00 9 684.16 0.00 0.00 0.00 0.00
loc-brightkite edges 56 739 212 945 7.51 100.00 4 026.75 0.00 0.00 0.00 0.00
loc-gowalla edges 196 591 950 327 9.67 100.00 25 177.85 0.03 0.01 0.03 0.01
preferentialAttachment 100 000 499 985 10.00 100.00 3 386.36 100.00 3 386.36 100.00 3 386.36
road central 14 081 816 16 933 413 2.40 100.00 261.10 13.55 35.31 13.55 35.31
road usa 23 947 347 28 854 312 2.41 100.00 261.17 13.46 35.13 13.46 35.13
smallworld 100 000 499 998 10.00 100.00 550.88 99.20 543.05 99.20 543.05
web-Google 356 648 2 093 324 11.74 100.00 7 560.20 0.41 0.87 0.42 0.94

planar outP500 1 62 320 65 138 2.09 100.00 213.51 99.94 213.20 99.94 213.20
outP500 2 73 959 76 976 2.08 100.00 212.22 99.93 211.87 99.93 211.87
outP1000 1 148 564 154 609 2.08 100.00 212.19 99.85 211.53 99.85 211.53
outP1000 2 151 091 157 100 2.08 100.00 211.92 99.87 211.29 99.87 211.29
outP1500 1 227 107 236 077 2.08 100.00 211.86 99.95 211.60 99.95 211.60
outP1500 2 226 090 235 100 2.08 100.00 211.97 99.94 211.68 99.94 211.68
outP2000 1 301 431 313 433 2.08 100.00 211.93 99.93 211.58 99.93 211.58
outP2000 2 301 692 313 729 2.08 100.00 211.97 99.91 211.53 99.91 211.53
outP2500 1 375 728 390 874 2.08 100.00 212.10 99.86 211.45 99.86 211.45
outP2500 2 373 931 389 003 2.08 100.00 212.14 99.91 211.72 99.91 211.72
outP3000 1 448 689 466 782 2.08 100.00 212.12 99.89 211.62 99.89 211.62
outP3000 2 451 224 469 413 2.08 100.00 212.11 99.88 211.56 99.88 211.56
outP3500 1 523 959 545 122 2.08 100.00 212.13 99.88 211.55 99.88 211.55
outP3500 2 529 022 550 144 2.08 100.00 212.00 99.91 211.58 99.91 211.58
outP4000 1 600 173 624 188 2.08 100.00 212.01 99.90 211.55 99.90 211.55
outP4000 2 600 288 624 264 2.08 100.00 211.99 99.92 211.61 99.92 211.61
outP4500 1 675 339 702 423 2.08 100.00 212.04 99.88 211.50 99.88 211.50
outP4500 2 677 075 704 222 2.08 100.00 212.05 99.92 211.69 99.92 211.69
outP5000 1 748 383 778 411 2.08 100.00 212.06 99.91 211.64 99.91 211.64
outP5000 2 750 308 780 191 2.08 100.00 211.96 99.92 211.56 99.92 211.56

overall planar and social 100.00 2 564.50 43.84 185.49 43.84 185.50
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Table 4: Solution size |S| and time t needed to find it. The time tp is the time needed to prove

the optimality. Bold numbers indicate best results, gray background optimally solved instances.

2pack main-red2pack b&r fast-red2pack b&r

Class Graphs |S| t [s] tp [s] |S| t [s] tp [s] |S| t [s] tp [s]

social (s) PGPgiantcompo 2 708 0.02 0.02 2 708 0.01 0.01 2 708 0.01 0.01
adjnoun 18 <0.01 <0.01 18 <0.01 <0.01 18 <0.01 <0.01
as-22july06 2 026 4.26 4.26 2 026 0.95 0.96 2 026 1.74 1.74
celegans metabolic 29 0.01 0.01 29 <0.01 <0.01 29 <0.01 <0.01
celegansneural 14 0.06 0.06 14 0.05 0.06 14 0.06 0.06
chesapeake 3 <0.01 <0.01 3 <0.01 <0.01 3 <0.01 <0.01
cond-mat 3 391 0.03 0.03 3 391 0.02 0.02 3 391 0.02 0.02
dolphins 13 <0.01 <0.01 13 <0.01 <0.01 13 <0.01 <0.01
email 209 0.01 0.01 209 0.01 0.01 209 <0.01 <0.01
email-EuAll 696 2.74 2.74 696 1.83 1.83 696 1.56 1.56
football 7 1.36 1.39 7 1.36 1.39 7 1.35 1.39
hep-th 2 611 0.01 0.01 2 611 0.01 0.01 2 611 <0.01 0.01
jazz 13 <0.01 <0.01 13 <0.01 <0.01 13 <0.01 <0.01
lesmis 10 <0.01 <0.01 10 <0.01 <0.01 10 <0.01 <0.01
netscience 477 <0.01 <0.01 477 <0.01 <0.01 477 <0.01 <0.01
p2p-Gnutella04 825 0.35 m.o. 825 0.35 m.o. 825 0.33 m.o.
polbooks 12 <0.01 <0.01 12 <0.01 <0.01 12 <0.01 <0.01
power 1 465 <0.01 <0.01 1 465 <0.01 <0.01 1 465 <0.01 <0.01
soc-Slashdot0902 3 280 27.43 m.o. 3 282 19.77 m.o. 3 282 3.53 m.o.
wordassociation-2011 2 473 0.28 0.28 2 473 0.04 0.04 2 473 0.02 0.02

overall social (s) 159 0.02 - 159 0.01 - 159 0.01 -

social (l) G n pin pout 7 116 8.18 m.o. 7 116 8.46 m.o. 7 116 8.64 m.o.
amazon-2008 106 533 71.17 m.o. 106 558 68.58 m.o. 106 556 70.55 m.o.
astro-ph 2 926 0.28 0.28 2 926 0.09 0.09 2 926 0.05 0.05
caidaRouterLevel 40 138 3.11 3.21 40 138 1.49 1.51 40 138 0.73 0.74
citationCiteseer 43 238 10.39 10.39 43 238 2.51 2.51 43 238 1.72 1.72
cnr-2000 21 897 1 031.59 m.o. 21 896 986.12 m.o. 21 897 1 030.06 m.o.
coAuthorsCiteseer 33 167 1.22 1.22 33 167 0.56 0.56 33 167 0.40 0.40
coAuthorsDBLP 43 960 2.37 2.37 43 960 0.73 0.73 43 960 0.67 0.67
coPapersCiteseer 26 001 47.88 47.88 26 001 33.65 33.65 26 001 14.70 14.70
coPapersDBLP 35 529 121.92 121.92 35 529 90.89 90.89 35 529 18.21 18.21
cond-mat-2003 5 374 0.17 0.17 5 374 0.08 0.08 5 374 0.06 0.06
cond-mat-2005 6 505 0.39 0.39 6 505 0.16 0.16 6 505 0.10 0.10
enron 4 090 11.21 11.21 4 090 1.42 1.43 4 090 1.25 1.26
loc-brightkite edges 12 940 2.18 2.18 12 940 0.40 0.41 12 940 0.18 0.19
loc-gowalla edges 41 590 350.55 351.65 41 590 76.80 76.82 41 590 70.81 70.83
preferentialAttachment 6 397 15.35 m.o. 6 397 15.54 m.o. 6 397 15.95 m.o.
road central 4 289 510 2 566.67 m.o. 4 289 578 2 299.59 m.o. 4 289 639 2 441.79 m.o.
road usa 7 296 706 3 697.55 m.o. 7 296 913 3 043.52 m.o. 7 297 028 3 733.19 m.o.
smallworld 6 872 5.19 m.o. 6 872 5.36 m.o. 6 872 5.38 m.o.
web-Google 30 296 62.47 63.40 30 296 34.77 34.83 30 296 68.16 68.22

overall social (l) 30 065 16.58 - 30 066 8.38 - 30 066 6.44 -

planar outP500 1 19 140 1.64 m.o. 19 140 1.75 m.o. 19 140 1.77 m.o.
outP500 2 21 894 2.16 m.o. 21 894 2.27 m.o. 21 894 2.25 m.o.
outP1000 1 43 855 4.28 m.o. 43 855 4.73 m.o. 43 855 4.76 m.o.
outP1000 2 45 418 4.10 m.o. 45 418 4.53 m.o. 45 418 4.65 m.o.
outP1500 1 69 368 6.33 m.o. 69 368 6.59 m.o. 69 368 6.71 m.o.
outP1500 2 68 571 6.45 m.o. 68 571 6.69 m.o. 68 571 6.84 m.o.
outP2000 1 90 550 8.26 m.o. 90 550 8.60 m.o. 90 550 8.76 m.o.
outP2000 2 90 507 8.44 m.o. 90 505 9.08 m.o. 90 505 9.18 m.o.
outP2500 1 113 643 10.83 m.o. 113 635 11.72 m.o. 113 635 11.99 m.o.
outP2500 2 113 073 10.73 m.o. 113 066 11.30 m.o. 113 066 11.55 m.o.
outP3000 1 135 658 13.22 m.o. 135 659 14.57 m.o. 135 659 14.95 m.o.
outP3000 2 136 101 13.45 m.o. 136 101 15.11 m.o. 136 101 15.67 m.o.
outP3500 1 161 706 13.85 m.o. 161 709 15.14 m.o. 161 709 15.42 m.o.
outP3500 2 162 533 14.23 m.o. 162 528 15.73 m.o. 162 528 16.17 m.o.
outP4000 1 178 655 17.55 m.o. 178 671 18.77 m.o. 178 671 19.36 m.o.
outP4000 2 178 862 17.64 m.o. 178 858 19.12 m.o. 178 858 19.69 m.o.
outP4500 1 198 172 21.96 m.o. 198 176 23.59 m.o. 198 176 24.17 m.o.
outP4500 2 198 440 21.81 m.o. 198 440 22.78 m.o. 198 440 23.26 m.o.
outP5000 1 226 396 21.77 m.o. 226 395 24.31 m.o. 226 395 25.15 m.o.
outP5000 2 33 663 13.39 m.o. 33 663 15.23 m.o. 33 663 15.84 m.o.

overall planar 92 135 9.43 - 92 135 10.19 - 92 135 10.41 -

overall social and planar 7 604 1.50 - 7 604 1.04 - 7 604 0.91 -
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B Detailed State-of-the-Art Comparison

Table 5: Solution size |S| and time t needed to find it. The time tp is the time needed to prove the

optimality. Bold numbers indicate best results in comparison. Gray background marks optimally
solved instances. No competitor is able to solve these instances.

red2pack red2pack
b&r heuristic

Class Graphs |S| t [ms] tp [ms] |S| t [ms]

social (s) PGPgiantcompo 2 708 8.34 8.74 2 708 8.31
adjnoun 18 0.43 0.48 18 0.43
as-22july06 2 026 1 737.58 1 739.08 2 026 1 774.51
celegans metabolic 29 4.77 4.84 29 4.81
celegansneural 14 55.94 58.29 14 57.74
chesapeake 3 0.13 0.18 3 0.13
cond-mat 3 391 16.42 17.09 3 391 16.92
dolphins 13 0.12 0.16 13 0.11
email 209 3.44 3.58 209 3.49
email-EuAll 696 1 561.44 1 561.44 696 1 463.69
football 7 1 351.83 1 388.30 7 223.50
hep-th 2 611 4.77 5.07 2 611 4.85
jazz 13 2.18 2.18 13 7.12
lesmis 10 0.16 0.20 10 0.16
netscience 477 1.24 1.38 477 1.31
p2p-Gnutella04 825 332.37 m.o. 837 1 695.12
polbooks 12 1.97 2.62 12 5.57
power 1 465 3.67 3.92 1 465 17.06
soc-Slashdot0902 3 282 3 532.80 m.o. 3 288 3 314.43
wordassociation-2011 2 473 22.04 22.50 2 473 22.43

overall social (s) 159 11.32 - 159 13.53

social (l) G n pin pout 7 116 8 640.57 m.o. 7 970 1 706 124.41
amazon-2008 106 556 70 549.59 m.o. 107 165 15 503 659.26
astro-ph 2 926 51.34 51.34 2 926 50.86
caidaRouterLevel 40 138 732.05 742.47 40 138 799.62
citationCiteseer 43 238 1 719.69 1 719.69 43 238 1 658.55
cnr-2000 21 897 1 030 063.00 m.o. 21 898 931 990.73
coAuthorsCiteseer 33 167 402.64 402.64 33 167 370.94
coAuthorsDBLP 43 960 672.32 672.32 43 960 630.44
coPapersCiteseer 26 001 14 702.18 14 702.18 26 001 14 979.70
coPapersDBLP 35 529 18 210.66 18 210.66 35 529 17 866.85
cond-mat-2003 5 374 59.71 59.71 5 374 61.45
cond-mat-2005 6 505 99.69 101.85 6 505 100.22
enron 4 090 1 254.90 1 258.90 4 090 1 233.50
loc-brightkite edges 12 940 182.96 185.44 12 940 182.93
loc-gowalla edges 41 590 70 812.67 70 825.69 41 590 71 102.93
preferentialAttachment 6 397 15 947.59 m.o. 7 034 2 608 316.99
road central 4 289 639 2 441 793.42 m.o. 4 499 839 35 841 231.91
road usa 7 297 028 3 733 186.22 m.o. 7 647 882 35 970 721.50
smallworld 6 872 5 379.45 m.o. 7 946 11 329 895.89
web-Google 30 296 68 160.24 68 222.93 30 296 67 864.36

overall social (l) 30 066 6 442.49 - 30 756 26 377.56

overall 2 184 270.05 - 2 210 597.37
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Table 6: Solution size |S| and time t needed to find it. The time tp is the time needed to prove the

optimality. Bold numbers indicate best results in comparison. Gray background marks optimally
solved instances. If a solver reached the time limit of 10 hours before computing a solution, we
mark it with t.o..

red2pack red2pack
gen2pack b&r heuristic

Class Graphs |S| t [ms] |S| t [ms] tp [ms] |S| t [ms]

cactus cac50 15 25 291.12 17 0.05 0.09 17 0.05
cac100 28 85 674.26 31 0.09 0.14 31 0.09
cac150 42 181 973.07 49 0.31 0.31 49 13.49
cac200 55 313 878.10 65 10.27 10.70 65 14.47
cac250 68 484 267.30 82 0.69 0.79 82 0.25
cac300 80 712 988.40 100 0.83 0.83 100 13.07
cac350 92 963 595.66 116 12.89 13.35 116 13.66
cac400 103 1 230 210.54 133 14.58 15.26 133 30.00
cac450 114 1 574 182.46 148 12.22 12.66 148 13.70
cac500 126 1 987 312.28 166 23.73 25.24 166 17.65
cac550 136 2 389 870.11 179 15.61 15.98 179 18.59
cac600 146 2 779 427.76 199 0.24 0.30 199 0.23
cac650 158 3 328 099.16 214 28.90 29.19 214 58.65
cac700 165 3 859 839.95 232 7.68 7.72 232 8.82
cac750 172 4 477 170.66 250 11.58 11.58 250 19.19
cac800 184 5 088 716.64 264 18.26 18.87 264 19.84
cac850 196 5 648 560.45 282 26.46 27.04 282 26.27
cac900 205 6 490 942.35 300 10.92 11.35 300 29.14
cac950 214 7 281 058.31 315 10.18 10.18 315 17.17
cac1000 223 8 084 805.96 332 17.02 17.46 332 58.03

overall cactus 104 1 384 007.11 137 4.26 4.66 137 7.30

erdos Erdos37-2 9 21 118.31 9 0.07 0.11 9 0.06
Erdos37-16 8 21 119.42 9 1.13 1.25 9 2.31
Erdos37-23 9 21 104.45 10 0.09 0.13 10 0.09
Erdos37-44 7 21 318.79 7 0.99 1.19 7 0.14
Erdos37-45 10 21 328.35 11 0.09 0.13 11 0.08
Erdos38-2 9 21 706.27 9 0.07 0.11 9 0.07
Erdos38-14 8 21 915.50 9 0.59 0.68 9 2.50
Erdos38-18 6 21 969.36 7 1.25 1.35 7 4.59
Erdos38-46 8 21 927.82 9 1.05 1.19 9 14.31
Erdos38-48 8 21 643.77 9 0.96 1.17 9 1.30
Erdos39-14 9 22 997.65 9 0.16 0.16 9 0.08
Erdos39-22 10 22 626.53 11 0.06 0.10 11 0.06
Erdos39-25 8 23 005.90 8 1.30 1.69 8 0.48
Erdos39-29 9 22 800.22 10 0.07 0.12 10 0.07
Erdos39-44 8 22 758.11 9 0.11 0.15 9 0.10
Erdos40-0 9 23 138.60 10 0.18 0.18 10 1.79
Erdos40-4 8 19 244.44 9 0.26 0.26 9 1.21
Erdos40-8 7 19 161.29 8 1.87 2.02 8 12.74
Erdos40-10 10 23 474.02 10 0.22 0.22 10 1.04
Erdos40-43 8 19 918.83 9 1.07 1.18 9 3.51

overall erdos 8 21 679.67 9 0.31 0.38 9 0.53

Apx-2p + Im2p Apx-2p + Im2p red2pack red2pack
(h = 100) (h = 50) b&r heuristic

Class Graphs |S| t [s] |S| t [s] |S| t [s] |S| t [s]

planar outP500 1 20 333 97.51 20 327 22.99 19 140 1.77 20 332 26 166.03
outP500 2 24 187 1 978.02 24 144 58.42 21 894 2.25 24 181 12 631.72
outP1000 1 48 575 1 066.37 48 472 145.79 43 855 4.76 48 567 29 215.74
outP1000 2 49 429 692.06 49 430 111.35 45 418 4.65 49 416 28 336.12
outP1500 1 74 232 794.47 74 170 166.89 69 368 6.71 74 292 31 577.14
outP1500 2 73 901 2 638.12 73 813 161.62 68 571 6.84 73 922 31 015.92
outP2000 1 - t.o. 98 519 333.63 90 550 8.76 98 555 32 735.67
outP2000 2 98 643 2 062.41 98 558 251.90 90 505 9.18 98 669 33 103.01
outP2500 1 122 826 1 092.08 122 761 233.20 113 635 11.99 122 831 34 384.01
outP2500 2 122 322 4 897.24 122 275 319.30 113 066 11.55 122 282 34 018.53
outP3000 1 146 748 1 739.13 146 622 258.05 135 659 14.95 146 696 35 371.22
outP3000 2 147 544 1 633.60 147 360 341.67 136 101 15.67 147 522 35 483.06
outP3500 1 171 303 14 025.36 171 127 490.08 161 709 15.42 171 264 34 414.78
outP3500 2 - t.o. 172 720 351.27 162 528 16.17 172 956 35 585.91
outP4000 1 - t.o. 196 172 490.55 178 671 19.36 196 189 35 262.82
outP4000 2 196 218 19 284.45 196 076 540.26 178 858 19.69 196 243 35 367.19
outP4500 1 220 799 4 932.77 220 677 505.56 198 176 24.17 220 737 35 650.42
outP4500 2 221 406 11 015.21 221 283 503.34 198 440 23.26 221 345 35 643.68
outP5000 1 244 641 12 413.34 244 350 595.94 226 395 25.15 244 548 35 605.20
outP5000 2 245 031 6 309.16 245 038 603.84 33 663 15.84 245 223 35 789.86

overall planar - - 110 009 255.04 92 135 10.41 110 095 31 706.65
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