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Abstract. We study the following combinatorial problem. Given a set of n y-
monotone Jordan curves, called wires, a tangle determines the order of the wires on a
number of horizontal layers such that the orders of the wires on any two consecutive
layers di�er only in swaps of neighboring wires. Given a multiset L of swaps (that is,
unordered pairs of wires) and an initial order of the wires, a tangle realizes L if each pair
of wires changes its order exactly as many times as speci�ed by L. List-Feasibility
is the problem of �nding a tangle that realizes a given list L for a prescribed initial
order if such a tangle exists. The Tangle-Height Minimization problem additionally
aims to �nd a tangle that uses the minimum number of layers. List-Feasibility (and
therefore Tangle-Height Minimization) is NP-hard [Yamanaka et al., CCCG 2018].

We prove that List-Feasibility remains NP-hard if every pair of wires swaps only
a constant number of times. On the positive side, we present an algorithm for Tangle-
Height Minimization that computes an optimal tangle for n wires and a given list L
of swaps in O((|L|/n2 +1)n

2/2 ·φn · n! · n ·min{|L|, n2} · log |L|) time, where φ ≈ 1.618
is the golden ratio and |L| is the total number of swaps in L.

Obviously, this algorithm solves List-Feasibility, too. We show that List-Feasi-
bility can also be solved by a simpler and faster version of the algorithm. Moreover,
the algorithm helps us to show that List-Feasibility is in NP and �xed-parameter
tractable with respect to the number of wires. For simple lists, where every swap occurs
at most once, we show how to solve Tangle-Height Minimization in O(n!φn) time.
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1 Introduction

This paper concerns the visualization of chaotic attractors, which occur in dynamic systems. Such
systems are considered in physics, celestial mechanics, electronics, fractals theory, chemistry, biol-
ogy, genetics, and population dynamics; see, for instance, [6], [17], and [10, p. 191].

The literature contains many de�nitions of an attractor, so here we just give some intuition.
Namely, an attractor can be understood as a minimal set A of states towards which a system evolves
when its state belongs to some neighborhood of A in the space of the system states [20]. Simple
examples of attractors can be �xed points or limit cycles. However, there are also chaotic attractors.
They exhibit a sensitive dependence on initial conditions (known as the �butter�y e�ect�), when
arbitrarily small changes in an initial system state can result in its essentially di�erent evolution,
in particular, in large di�erences in a later state. Chaotic attractors can have a very complicated
(even fractal) structure, so it can be di�cult to describe them. Nevertheless, in some cases, we can
describe them at least roughly. Studying the topological structure of chaotic attractors, Birman
and Williams [5] investigated how they are knotted. Later Mindlin, Hou, Gilmore, Solari, and
Tu�llaro [13] described attractors using so-called linking matrices. Such a matrix contains the
number of torsions (on the main diagonal) and the number of oriented crossings (o� the diagonal)
that occur among the attractor parts.

Olszewski, Meder, Kie�er, Bleuse, Rosalie, Danoy, and Bouvry [14] studied the problem of
visualizing the topological structure of chaotic attractors. They focused on the combinatorial part
of the problem, thus ignoring torsions and the orientations of the crossings. In the framework of
their paper, one is given a set of n y-monotone Jordan curves called wires that hang o� a horizontal
line in a �xed order, and a multiset of swaps between the wires; a tangle then is a visualization
of these swaps, i.e., a sequence of horizontal layers with an order of the wires on each layer such
that (i) only adjacent wires are swapped and (ii) only disjoint swaps can be done simultaneously.
For examples of lists of swaps (described by a multilist and by an (n×n)-matrix) and tangles that
realize these lists, see Figs. 1 and 2.

Olszewski et al. gave an exponential-time algorithm for minimizing the height of a tangle, that
is, the number of layers. We call this problem Tangle-Height Minimization. They tested their
algorithm on a benchmark set.

In an independent line of research, Yamanaka, Horiyama, Uno, and Wasa [21] showed that the
problem Ladder-Lottery Realization is NP-hard. As it turns out, this problem is equivalent
to deciding the feasibility of a list, i.e., deciding whether there exists a tangle realizing the list for
a prescribed initial order. We call this problem List-Feasibility.

Sado and Igarashi [15] used the same objective function for simple lists, that is, lists where each
swap appears at most once. (In their setting, instead of a list, the start and �nal permutations
are given but this uniquely de�nes a simple list of swaps.) They used odd-even sort, a parallel
variant of bubblesort, to compute tangles with at most one layer more than the minimum. Their
algorithm runs in quadratic time. Wang [19] showed that there is always a height-optimal tangle
where no swap occurs more than once. Bereg, Holroyd, Nachmanson, and Pupyrev [3,4] considered
a similar problem. Given a �nal permutation, they showed how to minimize the number of bends
or moves (which are maximal �diagonal� segments of the wires).

Let L1 = (l1ij) denote the (simple) list with l1ij = 1 if i ̸= j, and l1ij = 0 otherwise. This list

is feasible even if we start with any permutation of {1, . . . , n}; a tangle realizing L1 is commonly
known as pseudo-line arrangement. So tangles can be thought of as generalizations of pseudo-line
arrangements where the numbers of swaps are prescribed and even feasibility becomes a di�cult
question.
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In this paper we give new, faster algorithms for List-Feasibility and Tangle-Height Min-

imization, but before we can present our contribution in detail, we need some notation.

Framework, Terminology, and Notation. A permutation is a bijection of the set [n] =
{1, . . . , n} onto itself. The set Sn of all permutations of the set [n] is a group whose multiplication
is a composition of maps (i.e., (πσ)(i) = π(σ(i)) for each pair of permutations π, σ ∈ Sn and each
i ∈ [n]). The identity of the group Sn is the identity permutation idn = ⟨1, 2, . . . , n⟩. We write
a permutation π ∈ Sn as the sequence of numbers ⟨π−1(1), π−1(2), . . . , π−1(n)⟩. In this sequence,
element i ∈ [n] is placed at the position π(i). For instance, the permutation π ∈ S4 with π(1) = 3,
π(2) = 4, π(3) = 2, and π(4) = 1 is written as ⟨4, 3, 1, 2⟩ (or simply as 4312).

Two permutations π and σ of Sn are adjacent if they di�er only in transposing neighboring
elements, that is, if, for every i ∈ [n], |π(i)− σ(i)| ≤ 1. Then the set {i ∈ [n] : π(i) ̸= σ(i)} splits
into pairs {i, j} such that π(i) = σ(j) and π(j) = σ(i). Each such pair is called a swap. For two
adjacent permutations π and σ, let

diff(π, σ) =
{
(i, j) | i, j ∈ [n] ∧ i ̸= j ∧ π(i) = σ(j) ∧ π(j) = σ(i)

}
be the set of swaps in which π and σ di�er. Given a permutation π and a pair (i, j) ∈ [n]2

with |π(i) − π(j)| = 1, applying the swap (i, j) to π yields an adjacent permutation σ such that
π(i) = σ(j) and π(j) = σ(i). Given a set of y-monotone Jordan curves called wires that hang o� a
horizontal line, we label them by their index in a prescribed start permutation π1 (which we will
assume to be idn). Furthermore, we de�ne a list L = (lij) of order n to be a symmetric n × n
matrix with entries in N0 and zero diagonal. A list L = (lij) can also be considered as a multiset
of swaps, where lij is the multiplicity of swap (i, j). By (i, j) ∈ L we mean lij > 0.

A tangle T of height h realizing L is a sequence ⟨π1, π2, . . . , πh⟩ of permutations of the labels

of the wires such that (i) consecutive permutations are adjacent and (ii) L =
⋃h−1

i=1 diff(πi, πi+1).
(Recall that L is a multiset, so the union in (ii) can yield several copies of the same swap.) A
subtangle of T is a non-empty sequence ⟨πp, πp+1, . . . , πq⟩ of consecutive permutations of T (that
is, 1 ≤ p ≤ q ≤ h).

1 2 3 4π1

π2

π3

π4

π5
3 2 4 1

1 2 3 4π′
1

π′
2

π′
3

3 2 4 1
π′
4

Figure 1: Tangles T and T ′ of di�erent heights realizing the list L = {(1, 2), (1, 3), (1, 4), (2, 3)}.

In this paper, we assume that the start permutation π1 of a tangle is always idn (except if
explicitly stated otherwise). For example, the list L in Fig. 1 admits a tangle that starts with id4
and realizes L. We call such a list feasible. For example, the list L′ = L ∪ {(1, 2)} with two (1, 2)
swaps, in contrast, is not feasible (assuming that the start permutation is id4).

In Fig. 2, the list Ln is feasible; it is speci�ed by an (n × n)-matrix. The gray horizontal
bars correspond to the permutations (or layers). As a warm-up, we characterize the tangles that
realize Ln; this characterization will be useful in Section 2.

Observation 1 Given the start permutation idn, the tangle in Fig. 2 realizes the list Ln speci�ed
there. All tangles that start with idn and realize Ln have the same order of swaps along each wire.
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Ln =



0 1 1 . . . 1 0 2
1 0 1 . . . 1 2 0
1 1 0 . . . 1 0 2
...

...
...

. . .
...

...
...

1 1 1 . . . 0 0 2
0 2 0 . . . 0 0 n− 1
2 0 2 . . . 2 n− 1 0


(The bold zeros and twos must be swapped if

n is even.)

πh−1

π2

πi

· · ·1 2 n−2 n−1 n

· · ·n−2 1 n−1 n2

idn

π4

idnLn

π1

πh

Figure 2: A list Ln for n wires and a tangle of height 3n− 4 realizing Ln (drawn for n = 7). The
tangle height is minimum.

Proof: We call wires n−1 and n loop wires. We call each region that is formed by these two wires
between two consecutive swaps a loop. We number the loops from bottom to top 1, 2, . . . , n−2; see
Fig. 3a. Clearly, for every i ∈ [n− 2], wire i enters exactly one of these loops (of the right parity)
from the left and leaves it to the left (because it swaps only with one of the two loop wires). We
claim that wire i enters loop i. Assuming that this is true, before wire i can enter its loop, it must
have swapped with wires i+ 1, i+ 2, . . . , n− 2 and it cannot have swapped with any of the wires
1, 2, . . . , i− 1 to reach its loop. By induction over i, the order of the wires that swap with wire i is
(going from top to bottom) n− 2, n− 3, . . . , i+ 1, then n− 1 or n (depending on the parity of i),
and then i− 1, i− 2, . . . , 1.

To see our claim, observe the following. If two wires (of the same parity), say i and i′ = i+ 2k
(for some k > 0), enter the same loop, then wire i + 1 (which starts between wires i and i′, but
has di�erent parity) has to swap at least twice with wire i or with wire i′ in order to reach a loop
of the right parity and then its �nal destination between wires i′ and i; see the two dashed curves
in Fig. 3a. Hence, each loop is entered by exactly one non-loop wire. Assume that not every wire
enters �its� loop. Let i be the wire with the largest index that enters a loop l > i. Then there is
a wire i′ > i of the same parity as i that enters a loop l′ < l; see Fig. 3b. Then, however, wire i′

would have to swap at least twice with wire i. 2

Let |L| =
∑

i<j lij be the length of L. A list L′ = (l′ij) is a sublist of L if l′ij ≤ lij for each

i, j ∈ [n]. If there is a pair (i′, j′) ∈ [n]2 such that l′i′j′ < li′j′ , then L
′ is a strict sublist of L. A

list is simple if all its entries are zeros or ones. A list L = (lij) is even if all lij are even, and odd
if all non-zero lij are odd. For any two lists L = (lij) and L

′ = (l′ij) such that, for each i, j ∈ [n],
l′ij ≤ lij , let L− L′ = (lij − l′ij).

In order to understand the structure of feasible lists better, we consider the following relation
between them. Let L = (lij) be a feasible list. Pick wires i′ and j′ with li′j′ > 0 and let L′ = (l′ij)

be the list with l′ij = lij for every (i, j) ∈ [n]2\{(i′, j′), (j′, i′)} and l′i′j′ = l′j′i′ = li′j′ +2(= lj′i′ +2).
We claim that the list L′ is feasible, too. To this end, note that any tangle T that realizes L has
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i, n−1 n

i n−1 n

idn

idnLn

i+ 2k

i+ 2k

· · ·

· · ·

· · ·

· · ·

· · ·i+ 1

· · · i+ 1,

loop 1

loop
n− 2

(a)

n−1 n

n−1 n

idn

idnLn

i′

i′

· · · i · · · · · ·

i· · · · · · · · ·

loop
l > i

loop
l′<i′

(b)

Figure 3: Proof of Section 1.

two neighboring layers with adjacent permutations π and π′ such that (i, j) ∈ diff(π, π′). Directly
after π, we can insert two (i, j) swaps into T . This yields a tangle that realizes L′. Given two lists
L = (lij) and L

′ = (l′ij), we write L → L′ if L = L′ or if the list L can be extended to the list L′

by iteratively applying the above operation.
For a list L = (lij), let 1(L) = (lij mod 2) and let 2(L) = (l′′ij) with l

′′
ij = 0 if lij = 0, l′′ij = 1 if

lij is odd, and l
′′
ij = 2 otherwise. We call 2(L) the type of L. Clearly, given two lists L = (lij) and

L′ = (l′ij), we have that L→ L′ if and only if 2(L) = 2(L′) and lij ≤ l′ij for each i, j ∈ [n].
A feasible list L0 is minimal if there exists no feasible list L⋆ ̸= L0 such that L⋆ → L0. Thus a

list L is feasible if and only if there exists a minimal feasible list L0 of type 2(L) such that L0 → L.

Our Contribution. As mentioned above, Yamanaka et al. [21] showed that List-Feasibility
in general is NP-hard (which means that Tangle-Height Minimization is NP-hard as well).
However, in their reduction, for some swaps the number of occurrences is linear in the number of
wires. We strengthen their result by showing that List-Feasibility is NP-hard even if all swaps
have constant multiplicity; see Section 2. Our reduction uses a variant of Not-All-Equal 3-SAT
(whereas Yamanaka et al. used 1-in-3 3SAT). Moreover we show that for some classes of lists, the
problem is e�ciently solvable; see Section 4.

For Tangle-Height Minimization of simple lists for n wires, we present an exact algorithm
that is based on breadth-�rst search (BFS) in an auxiliary graph and runs in O(n!φn) time, where
φ = (

√
5 + 1)/2 ≈ 1.618 is the golden ratio. Recently, Baumann [2] has shown that the BFS

can be executed on a smaller auxiliary graph, which leads to a runtime of O(n!ψn) time, where

ψ = (
3
√
9−

√
69+

3
√

9 +
√
69)/ 3

√
18 ≈ 1.325. For general lists, we present an exact algorithm that

is based on dynamic programming and runs in O((|L|/n2+1)n
2/2 ·φn ·n! ·n ·min{|L|, n2} · log |L|)

time, where L is the input list; see Section 3. Note that the runtime is polynomial in |L| for �xed
n ≥ 2.

For List-Feasibility, we speed up the dynamic programming algorithm from Section 3, ob-
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taining an algorithm with runtime O
(
(|L|/n2+1)n

2/2 ·n!·n3 ·min{|L|, n2}·log |L|
)
and an algorithm

with runtime O
(
(n/

√
8)n

2 · n! · n5 log n + n2 log |L|
)
; see Section 4. The above runtimes are ex-

pressed in terms of the logarithmic cost model of computation to show explicitly how the runtimes
depend on the length of L (actually on its largest entry).

Although we cannot characterize minimal feasible lists, we can bound their entries. Namely,
we show that, in a minimal feasible list of order n, each swap occurs at most n2/4 + 1 times; see
Proposition 2. As a corollary, this yields that List-Feasibility is in NP and �xed-parameter
tractable with respect to n.

2 Complexity

Yamanaka et al. [21] showed that List-Feasibility is NP-hard. In their reduction, however, some
swaps have multiplicity Θ(n). In this section, we show that List-Feasibility is NP-hard even
if all swaps have multiplicity at most 8. In other words, we show that it is NP-hard to decide
whether a list whose entries are all at most 8 is feasible. We reduce from Positive NAE 3-SAT

Diff, a variant of Not-All-Equal 3-SAT. Recall that in Not-All-Equal 3-SAT one is given a
Boolean formula in conjunctive normal form with three literals per clause and the task is to decide
whether there exists a variable assignment such that in no clause all three literals have the same
truth value. By Schaefer's dichotomy theorem [16], Not-All-Equal 3-SAT is NP-hard even if
no negative (i.e., negated) literals are admitted. In Positive NAE 3-SAT Diff, additionally
each clause contains three di�erent variables. We show that this variant is NP-hard, too.

Lemma 1 Positive NAE 3-SAT Diff is NP-hard.

Proof: We show the NP-hardness of Positive NAE 3-SAT Diff by reduction from Not-All-

Equal 3-SAT. Let Φ be an instance of Not-All-Equal 3-SAT with variables v1, v2, . . . , vN .
First we show how to get rid of negative variables and then how to get rid of multiple occurrences
of the same variable in a clause.

We create an instance Φ′ of Positive NAE 3-SAT Diff as follows. For every variable vi, we
introduce two new variables xi and yi. We replace each occurrence of vi by xi and each occurrence
of ¬vi by yi. We need to force yi to be ¬xi. To this end, we introduce the clause (xi ∨ yi ∨ yi).

Now, we introduce three additional variables a, b, and c that form the clause (a ∨ b ∨ c). Let
d = (x ∨ x ∨ y) be a clause that contains two occurrences of the same variable. Note that a clause
that contains three occurences of the same variable is trivially not satis�able. We replace d by
three clauses (x∨ y ∨ a), (x∨ y ∨ b), (x∨ y ∨ c). Since at least one of the variables a, b, or c has to
be true and at least one has to be false, x and y cannot have the same assignment, i.e., x = ¬y.
Hence, Φ′ is satis�able if and only if Φ is. Clearly, the size of Φ′ is polynomial in the size of Φ. 2

Theorem 1 List-Feasibility is NP-complete; it is NP-hard even when restricted to lists whose
entries are at most 8.

Proof: We �rst show that List-Feasibility is in NP, then that it is NP-hard.

Membership in NP. We proceed as indicated in the introduction. Given a list L = (lij), we guess
a list L′ = (l′ij) with 2(L) = 2(L′) and l′ij ≤ min{lij , n2/4 + 1} together with a permutation of its

O(n4) swaps. Then we can e�ciently test whether we can apply the swaps in this order to idn. If
yes, then the list L′ is feasible (and, due to L′ → L, a witness for the feasibility of L), otherwise we
discard it. Note that L is feasible if and only if such a list L′ exists and is feasible. One direction
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is obvious by the de�nition of minimal feasible lists. To show the other direction, we assume that
L is feasible. Thus there exists a minimal feasible list L′ = (lij) of type 2(L). By Proposition 2
(see Section 4), we have l′ij ≤ n2/4 + 1.

NP-hardness. We split the hardness proof, which uses gadgets for variables and clauses, into
several parts. First, we introduce some notation, then we give the intuition behind our reduction.
Next, we present our variable and clause gadgets in more detail. Finally, we show the correctness
of the reduction.

Notation. Recall that we label the wires of a tangle by their index in the start permutation idn.
In particular, for a wire ε, its neighbor to the right is the wire ε + 1. If a wire γ is to the left of
some other wire δ in the start permutation, then we write γ < δ. If all wires in a set Γ are to
the left of all wires in a set ∆ in the start permutation, then we write Γ < ∆. We use γ < Γ as
shorthand for {γ} < Γ and ∆ < δ for ∆ < {δ}. Correspondingly, if we say that wire γ swaps with
the set Γ, it means that γ swaps with every wire in Γ (and hence γ and Γ change their order).

Setup. Given an instance Φ = d1∧· · ·∧dM of Positive NAE 3-SAT Diff with clauses d1, . . . , dM
and variables w1, . . . , wN , we construct in polynomial time a list L of swaps such that there is a
tangle T realizing L if and only if Φ is a yes-instance.

In L, we have two inner wires λ and λ′ = λ + 1 that swap eight times. As in the proof of
Section 1, we call the regions bounded by λ and λ′ between two consecutive (λ, λ′) swaps loops.
Here, we also call the two regions bounded by λ and λ′ and the horizontal lines that start or end
the tangle loops. (see Fig. 4). We distinguish between two types of loops: four λ′�λ loops, where
λ′ is on the left and λ is on the right side, and �ve λ�λ′ loops with λ on the left and λ′ on the
right side. In the following, we construct variable and clause gadgets. Each variable gadget will
contain a speci�c wire that represents the variable, and each clause gadget will contain a speci�c
wire that represents the clause. The corresponding variable and clause wires swap in one of the
four λ′�λ loops. We call the �rst two λ′�λ loops true-loops, and the last two λ′�λ loops false-loops.
If the corresponding variable is true, then the variable wire swaps with the corresponding clause
wires in a true-loop, otherwise in a false-loop.

Apart from λ and λ′, our list L contains (many) other wires, which we split into groups. For
every i ∈ [N ], we introduce sets Vi and V

′
i of wires that together form the gadget for variable wi

of Φ. These sets are ordered (initially) VN < VN−1 < · · · < V1 < λ < λ′ < V ′
1 < V ′

2 < · · · <
V ′
N−1 < V ′

N ; the order of the wires inside these sets will be detailed in the next two paragraphs.
Let V = V1 ∪ V2 ∪ · · · ∪ VN and V ′ = V ′

1 ∪ V ′
2 ∪ · · · ∪ V ′

N . Similarly, for every j ∈ [M ], we
introduce a set Cj of wires that contains a clause wire cj and three sets of wires D1

j , D
2
j , and

D3
j that represent occurrences of variables in a clause dj of Φ. The wires in Cj are ordered

D3
j < D2

j < D1
j < cj . Together, the wires in C = C1 ∪ C2 ∪ · · · ∪ CM represent the clause

gadgets; they are ordered V < CM < CM−1 < · · · < C1 < λ. Additionally, our list L contains a
set E = {φ1, . . . , φ7} of wires that will make our construction rigid enough. The order of all wires
in L is V < C < λ < λ′ < E < V ′. Now we present our gadgets in more detail.

Variable gadget. First we describe the variable gadget, which is illustrated in Fig. 4. For every
i ∈ [N ] (that is, for each variable wi of Φ), we introduce two sets of wires, Vi and V ′

i . Each
set V ′

i contains a variable wire vi that has four swaps with λ and no swaps with λ′. Therefore, vi
intersects at least one and at most two λ′�λ loops. In order to prevent vi from intersecting both
a true- and a false-loop, we introduce two wires αi ∈ Vi and α

′
i ∈ V ′

i with αi < λ < λ′ < α′
i < vi;

see Fig. 4. These wires neither swap with vi nor with each other, but they have two swaps with
both λ and λ′. We want to force αi and α

′
i to have the two true-loops on their right and the two
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T

T

F

F

λ λ′

λ′λ

viα′
i · · ·β′

i,5β′
i,1

T

T

F

F

λ λ′

λ′λ

︷ ︸︸ ︷V ′
i︷ ︸︸ ︷Vi

αi· · ·βi,5 βi,1

αi· · ·βi,1 βi,5 viα′
i · · ·β′

i,1β′
i,5

︷ ︸︸ ︷Vi

· · ·βi,5 βi,1

· · ·βi,1 βi,5

αi

αi

· · ·β′
i,5β′

i,1

︷ ︸︸ ︷V ′
i

· · ·β′
i,1β′

i,5

vi

vi

α′
i

α′
i

Figure 4: A variable gadget with a variable wire vi that corresponds to the variable wi that is true
(left) or false (right). The λ′�λ loops are labeled T for true and F for false.

false-loops on their left, or vice versa. This will ensure that vi cannot reach both a true- and a
false-loop simultaneously.

To this end, we introduce, for j ∈ [5], a βi-wire βi,j ∈ Vi and a β′
i-wire β

′
i,j ∈ V ′

i . These are
ordered βi,5 < βi,4 < · · · < βi,1 < αi and α′

i < β′
i,1 < β′

i,2 < · · · < β′
i,5 < vi. Every pair of

βi-wires as well as every pair of β′
i-wires swaps exactly once. Neither βi- nor β

′
i-wires swap with αi

or α′
i. Each β′

i-wire has four swaps with vi. Moreover, βi,1, βi,3, βi,5, β
′
i,2, β

′
i,4 swap with λ twice.

Symmetrically, βi,2, βi,4, β
′
i,1, β

′
i,3, β

′
i,5 swap with λ′ twice; see Fig. 4.

We use the βi- and β
′
i-wires to �x the minimum number of λ′�λ loops that are on the left of αi

and on the right of α′
i, respectively. Note that, together with λ and λ′, the βi- and β

′
i-wires have

the same structure as the wires shown in Fig. 2. Due to Section 1, this structure is rigid in the
sense that the order of the swaps along each wire is �xed.

Therefore, there is a unique order of swaps between the βi-wires and λ or λ′, i.e., for j ∈ [4],
every pair of (βi,j+1, λ) swaps (or (βi,j+1, λ

′) swaps, depending on the parity of j) can be done only
after the pair of (βi,j , λ

′) swaps (or (βi,j , λ) swaps, respectively). We have the same rigid structure
on the right side with β′

i-wires. Hence, there are at least two λ′�λ loops and three λ�λ′ loops to
the left of αi and at least two λ′�λ loops and three λ�λ′ loops to the right of α′

i. Since αi and α
′
i

do not swap, there cannot be a λ′�λ loop that appears simultaneously on both sides. (Note that
the third λ�λ′ loop does appear on both sides.)

Note that the (λ, λ′) swaps that belong to the same side need to be consecutive, otherwise αi
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or α′
i would have to swap more than twice with λ and λ′. Thus, there are only two ways to order

the swaps among the wires αi, α
′
i, λ, λ

′; the order is either

� (α′
i, λ

′),

� (α′
i, λ),

� four times (λ, λ′),

� (α′
i, λ),

� (α′
i, λ

′) and (αi, λ) in whichever order,

� (αi, λ
′),

� four times (λ, λ′),

� (αi, λ
′), and

� (αi, λ)

(see Fig. 4 (left)) � or the reverse (see Fig. 4 (right)). It is easy to see that in the �rst case vi can
reach only the �rst two λ′�λ loops (the true-loops), and in the second case only the last two (the
false-loops).

To avoid that the gadget for variable wi restricts the proper functioning of the gadget for some
variable wj with j > i, we add the following swaps to L: for any j > i, αj and α

′
j swap with both

Vi and V ′
i twice, the βj-wires swap with α′

i and Vi four times, and, symmetrically, the β′
j-wires

swap with αi and V
′
i four times, and vj swaps with αi and V

′
i six times.

We brie�y explain these multiplicities. Wire αj (α′
j , resp.) swaps with all wires in Vi and V

′
i

twice so that it reaches the corresponding λ�λ′ or λ′�λ loops by �rst crossing all wires of Vi (V
′
i ).

Then αj (α
′
j) crosses all wires of V

′
i (Vi) and �nally goes back crossing all of them a second time.

This way, there are no restrictions for αj (α′
j) regarding which λ′�λ loops it encloses. For the

variable wire vj , see Fig. 5. It swaps six times with αi and V
′
i , which guarantees that vj can reach

both upper or both lower λ′�λ loops. If wi and wj represent the same truth value, vj needs a total
of four swaps with each of the β′

i-wires to enter a loop and to go back. In this case, vj can make
the six swaps with αi and α

′
i next to the λ′�λ loops representing the other truth value. Then, vj

uses the two extra swaps with each of the β′
i-wires to reach αi and α

′
i; see Fig. 5 (left). If wi and

wj represent distinct truth values, vj needs a total of four swaps with each of the β′
i-wires and

with α′
i and αi to enter a loop and to go back. We can accommodate the two extra swaps with

each of these wires afterwards; see Fig. 5 (right). For the βj-wires (and β
′
j-wires), we use the same

argument as for vj above, but each of these wires has only four swaps with each of the other wires
in Vi ∪ {α′

i} (or V ′
i ∪ {αi}) because a β-wire (or a β′-wire) needs to reach only one λ�λ′ or λ′�λ

loop instead of two (as vj).

Clause gadget. For every clause dj from Φ, j ∈ [M ], we introduce a set of wires Cj . It contains
the clause wire cj that has eight swaps with λ′. We want to force each cj to appear in all λ′�λ
loops. To this end, we use (once for all clause gadgets) the set E with the seven φ-wires φ1, . . . , φ7

ordered φ1 < · · · < φ7. They create a rigid structure according to Observation 1 similar to the
βi-wires. Each pair of φ-wires swaps exactly once. For each k ∈ [7], if k is odd, then φk swaps
twice with λ and twice with cj for every j ∈ [M ]. If k is even, then φk swaps twice with λ′. Since
cj does not swap with λ, each pair of swaps between cj and a φ-wire with odd index appears inside
a λ′�λ loop. Due to the rigid structure, each of these pairs of swaps occurs in a di�erent λ′�λ loop;
see Fig. 6.
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Figure 5: A realization of swaps between the variable wire vj and all wires that belong to the
variable gadget corresponding to the variable wi. On the left the variables wi and wj are both
true, and on the right wi is true, whereas wj is false.

If a variable wi belongs to a clause dj , then our list L contains two (vi, cj) swaps. Since every
clause has exactly three di�erent positive variables, we want to force variable wires that belong
to the same clause to swap with the corresponding clause wire in di�erent λ′�λ loops. This way,
every clause contains at least one true and at least one false variable if Φ is satis�able.

We call the part of a clause wire cj that is inside a λ
′�λ loop an arm of cj . We want to �protect �

the arm that is intersected by a variable wire from other variable wires. To this end, for every
occurrence k ∈ [3] of a variable in dj , we introduce four more wires. The wire γkj will protect the
arm of cj that the variable wire of the k-th variable of dj intersects. Below we detail how to realize
this protection. For now, just note that, in order not to restrict the choice of the λ′�λ loop, γkj
swaps twice with φℓ for every odd ℓ ∈ [7]. Similarly to cj , the wire γ

k
j has eight swaps with λ′ and

appears once in every λ′�λ loop. Additionally, γkj has two swaps with cj . In the �rst (and last)

permutation, we have that γkj < cj .

We force γkj to protect the correct arm in the following way. Consider the λ′�λ loop where an
arm of cj swaps with a variable wire vi. We want the order of swaps along λ′ inside this loop to
be �xed as follows: λ′ �rst swaps with γkj , then twice with cj , and then again with γkj . This would

prevent all variable wires that do not swap with γkj from reaching the arm of cj . To achieve this,

we introduce three ψk
j -wires ψ

k
j,1, ψ

k
j,2, ψ

k
j,3 with the initial order ψk

j,3 < ψk
j,2 < ψk

j,1 < γkj .
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Figure 6: A gadget for clause cj showing only one of the three variable wires, namely vi. The
region shaded in yellow is the arm of cj that is protected from other variables by γkj .

Each pair of ψk
j -wires swaps exactly once, ψk

j,1 and ψk
j,3 have two swaps with cj , and ψ

k
j,2 has

two swaps with λ′ and vi. Together with cj and λ′, the ψk
j -wires have the structure assumed in

Observation 1 (similar to the φ- and βi-wires), so the order of the above-mentioned swaps along
each ψk

j -wire is unique. No ψk
j -wire swaps with γkj . Also, since ψk

j,2 does not swap with cj , the

(ψk
j,2, vi) swaps can appear only inside the λ′�cj loop that contains the arm of cj we want to protect

from other variable wires. Since cj has to swap with ψk
j,1 before and with ψk

j,3 after the (ψk
j,2, λ

′)

swaps, and since there are only two swaps between γkj and cj , there is no way for any variable wire

except for vi to reach the arm of cj without also intersecting γkj ; see Fig. 6.

Finally, for every j ∈ [M ] and every k ∈ [3], let Dk
j = {ψk

j,3, ψ
k
j,2, ψ

k
j,1, γ

k
j }. The wires in Dk

j are

initially in this order. We now consider the behavior of the wires among the sets D1
j , D

2
j , and D

3
j ,

as well as the behavior of the wires in Cj with respect to other clause and variable gadgets. For
every k, ℓ ∈ [3] with k ̸= ℓ, the ψk

j -wire has two swaps with the ψℓ
j-wire in order to not restrict the

ψ-wires to a speci�c λ′�λ loop. Furthermore, γkj has four swaps with every ψℓ
j-wire and two swaps

with every wire γℓj . Note that, if k > ℓ, it su�ces for γkj to cross each γℓj at the λ′�λ loop where

γkj �protects� cj and to go back directly afterwards. Also, γkj uses one swap to cross the ψℓ
j-wires

before the �rst λ′�λ loop, then, using two swaps, the ψℓ
j-wires cross γ

k
j next to the λ′�λ loop where
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c2

v1

v1

v3

v3

v4

v4
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c3

c4
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Figure 7: Tangle obtained from the satis�able formula Φ = (w1 ∨w2 ∨w3)∧ (w1 ∨w3 ∨w4)∧ (w2 ∨
w3 ∨w4)∧ (w2 ∨w3 ∨w5). Here, w1, w4 and w5 are set to true, whereas w2 and w3 are set to false.
We show only λ, λ′, and all variable and clause wires.
Inset: problems that occur if variable wires swap with clause wires in a di�erent order.

γℓj �protects� cj , and γ
k
j uses the fourth swap to go back after the last λ′�λ loop.

For every i < j and every k ∈ [3], the wires cj and γkj have eight swaps with every wire in Ci,

which allows cj and γkj to enter every λ′�λ loop and to go back. Similarly, every ψk
j -wire has two

swaps with every wire in Ci, which allows the ψk
j -wire to reach one of the λ′�λ loops. Since all wires

in V are to the left of all wires in C, each wire in C swaps twice with all wires in V (including the
α-wires) and twice with all α′-wires. Finally, the φ-wires with odd index have (beside two swaps
with every cj) two swaps with every γkj , and all φ-wires have, for every i ∈ [N ], two swaps with
every wire in (V ′

i \ {vi}) ∪ {αi} and four swaps with every wire vi to let the wires of the variable
gadgets enter (or cross) the λ�λ′ or λ′�λ loops.

Note that the order of the arms of the clause wires inside a λ′�λ loop cannot be chosen arbi-
trarily. If a variable wire intersects more than one clause wire, the arms of these clause wires occur
consecutively, as for v2 and v3 in the shaded region in Fig. 7. If we had an interleaving pattern
of variable wires (see inset), say v2 �rst intersects c1, then v3 intersects c2, then v2 intersects c3,
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and �nally v3 intersects c4, then v2 and v3 would need more swaps than calculated in the analysis
above.

Correctness. Clearly, if Φ is satis�able, then there is a tangle obtained from Φ as described above
that realizes the list L, so L is feasible; see Fig. 7 for an example. On the other hand, if there
is a tangle that realizes the list L that we obtain from the reduction, then Φ is satis�able. This
follows from the rigid structure of a tangle that realizes L. The only �exibility is in which type of
loop (true or false) a variable wire swaps with the corresponding clause wire. As described above,
if a tangle exists, then each clause wire swaps with the corresponding three variable wires in three
di�erent loops (at least one of which is a true-loop and at least one is a false-loop). In this case,
the position of the variable wires yields a truth assignment satisfying Φ. 2

Note that our proof that shows that List-Feasibility is in NP does not show that the decision
version of Tangle-Height Minimization is also in NP because the minimum height can be
exponential in the size of the input.

3 Algorithms for Minimizing Tangle Height

The two algorithms that we describe in this section test whether a given list is feasible and, if
yes, construct a height-optimal tangle realizing the list. We start with an observation and some
de�nitions, then we present an algorithm for simple lists (see Section 3.1), and �nally we describe
an algorithm for general lists (see Section 3.2).

Let (Fn)n≥1 be the Fibonacci sequence with F1 = F2 = 1 and, for n ≥ 3, Fn = Fn−1 + Fn−2.

Lemma 2 Given a positive integer n and a permutation π ∈ Sn, the number of permutations
adjacent to π is Fn+1 − 1.

Proof: By induction on n, we prove the slightly di�erent claim that the set P (π) consisting of π
and its adjacent permutations has size Fn+1.

For n = 1, there is only one permutation `1' and, hence, |P (1)| = 1. Furthermore, for n = 2,
there are only two permutations `12` and `21', which are also adjacent. Thus, |P (12)| = |P (21)| = 2.
These are the Fibonacci numbers F2 and F3.

Let n > 2 and π ∈ Sn. Note that we can partition the permutations in P (π) into two groups.
The �rst group P1(π) contains the permutations of P (π) where the last wire is the same as in π,
and the second group P2(π) contains the permutations of P (π) where the last wire is di�erent
from π. Clearly, |P (π)| = |P1(π)|+ |P2(π)|.

To obtain P1(π), we �rst remove the last wire of π. This yields a permutation π′ ∈ Sn−1 (after
possibly renaming the wires to avoid a gap in our naming scheme). By our inductive hypothesis,
|P (π′)| = Fn. Then, we append the last wire of π to every permutation in P (π′). This yields P1(π).

For P2(π), observe that the last two wires in every permutation in P2(π) are swapped compared
to π. We remove these two wires from π. This yields a permutation π′′ ∈ Sn−2. Again by our
inductive hypothesis, |P (π′′)| = Fn−1. Then, we append the last two wires of π in swapped order
to every permutation in P (π′′). This yields P2(π).

Summing up, we get |P (π)| = Fn + Fn−1 = Fn+1. 2

For a permutation π ∈ Sn and a list L = (lij), we de�ne the map πL : [n] → Z by

πL(i) = π(i) + |{j : π(i) < π(j) ≤ n and lij odd}| − |{j : 1 ≤ π(j) < π(i) and lij odd}|. (1)
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A list L is called π-consistent if πL ∈ Sn, or, more rigorously, if πL induces a permutation of [n].
In this case, for each wire i ∈ [n], πL(i) is the �nal position of i, that is, the position after all
swaps in L have been applied to π. An idn-consistent list is consistent. For example, the list
L = {(1, 2), (2, 3), (1, 3)} is consistent (because idn L = ⟨3, 2, 1⟩), whereas the list L′ = {(1, 3)} is
not (because idn L

′ = ⟨2, 2, 2⟩).
If a list is not consistent, then it is clearly not feasible. However, not all consistent lists

are feasible. For example, the list {(1, 3), (1, 3)} is consistent but not feasible. In Section 4, we
show that consistency is su�cient for the feasibility of simple (and, more generally, for odd) lists.
Clearly, an even list is always consistent. For a list L = (lij), recall that 1(L) = (lij mod 2). Since
idn L = idn 1(L), the list L is consistent if and only if 1(L) is consistent. We can compute 1(L)
and check its consistency in O(n+ |1(L)|) ⊆ O(n2) time (see Proposition 3 for details).

In the following, we de�ne properties of lists given by permutations or tangles. We show that
these lists behave as expected. For any permutation π ∈ Sn, we de�ne the simple list L(π) = (lij)
such that for 1 ≤ i < j ≤ n, lij = 0 if π(i) < π(j), and lij = 1 otherwise.

Lemma 3 For every positive integer n and every permutation π ∈ Sn, L(π) is the unique simple
list with idn L(π) = π.

Proof: Let L = (lij) = L(π). By the de�nition in Eq. (1), idn L is a map from [n] to Z such that

idn L(i) = i+ |{j : i < j ≤ n and π(i) > π(j)}| − |{j : 1 ≤ j < i and π(i) < π(j)}|
= i+ |{j : i < j ≤ n and π(i) > π(j)}|+ |{j : 1 ≤ j < i and π(i) > π(j)}|

− |{j : 1 ≤ j < i and π(i) > π(j)}| − |{j : 1 ≤ j < i and π(i) < π(j)}|
= i+ |{j : 1 ≤ j ≤ n and π(i) > π(j)}| − |{j : 1 ≤ j < i}|
= i+ (π(i)− 1)− (i− 1) = π(i).

Hence idn L = π. In particular, L is consistent.
We show the uniqueness of L by contradiction. Assume that there is a simple list L′ = (l′ij) ̸= L

such that idn L
′ = π (and so L′ is consistent). Hence there exists a pair (i, j) ∈ [n]2 such that

l′ij ̸= lij . Since both L and L′ are simple, this means that l′ij = 1 − lij . Since L is consistent,
idn L(i) and idn L(j) are the �nal positions of wires i and j, respectively. Since L

′ is also consistent,
an analogous statement holds for L′. Given that l′ij = 1− lij , wires i and j are ordered di�erently
in idn L and idn L

′. This contradicts our assumption that idn L = π = idn L
′. Therefore, L is the

unique simple list with idn L = π. 2

Given a tangle T with n wires, we de�ne the list L(T ) = (lij), where, for every pair (i, j) ∈ [n]2,
lij is the number of occurrences of swap (i, j) in T .

Lemma 4 For every tangle T = ⟨π1, π2, . . . , πh⟩ with π1 = idn, we have π1L(T ) = πh.

Proof: For every pair (i, j) ∈ [n]2 with i < j, we have that lij is odd if and only if πh(i) > πh(j).
Hence 1(L(T )) = L(πh). Now we obtain π1L(T ) = idn L(T ) = idn 1(L(T )) = idn L(πh) = πh,
using the de�nition in Eq. (1) for the second equality and Section 3 for the last equality. 2

3.1 Simple Lists

We �rst solve Tangle-Height Minimization for simple lists. Our algorithm does BFS in an
appropriately de�ned auxiliary graph.
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Theorem 2 For a simple list of order n, Tangle-Height Minimization can be solved in O(n!φn)
time, where φ = (

√
5 + 1)/2 ≈ 1.618 is the golden ratio.

Proof: Let L be a consistent simple list. Wang's algorithm [19] creates a simple tangle from idn L,
i.e., a tangle where all its permutations are distinct. Thus L is feasible. Note that the height of
a simple tangle is at most n!. Let T = (idn =π1, π2, . . . , πh= idn L) be any tangle such that L(T )
is simple. Then, by Section 3, idn L(T ) = πh. By Section 3, L(πh) is the unique simple list with
idn L(πh) = πh = idn L, so L(T ) = L(πh) = L and thus T is a realization of L.

We compute an optimal tangle realizing L = (lij) as follows. Consider the graph GL whose
vertex set V (GL) consists of all permutations π ∈ Sn with L(π) ≤ L (componentwise). A directed
edge (π, σ) between vertices π and σ in V (GL) exists if and only if π and σ are adjacent permuta-
tions and L(π)∩L(π−1σ) = ∅; the latter means that the set of (disjoint) swaps that transforms π
to σ cannot contain swaps from the set that transforms idn to π (otherwise the list that transforms
idn via π to σ would not be simple). The graph GL has at most n! vertices and maximum degree
Fn+1−1; see Section 3. It is well known that, for every positive integer n, Fn = (φn−(−φ)−n)/

√
5.

Hence Fn ∈ Θ(φn). Furthermore, for each h ≥ 0, there is a natural bijection between tangles of
height h+ 1 realizing L and paths of length h in the graph GL from the start permutation idn to
the permutation idn L. A shortest such path can be found by BFS in O(E(GL)) = O(n!φn) time.

2

3.2 General Lists

Now we solve Tangle-Height Minimization for general lists. We use a dynamic program (DP).

Theorem 3 For a list L of order n, the problem Tangle-Height Minimization can be solved
in O((|L|/n2 + 1)n

2/2 ·φn · n! · n ·min{|L|, n2} · log |L|) time, where φ = (
√
5 + 1)/2 ≈ 1.618 is the

golden ratio.

Proof: Let L = (lij) be the given list. We describe a DP that computes the height of an optimal
tangle realizing L (if it exists). It is not di�cult to adjust the DP to also compute an optimal
tangle. Let λ be the number of distinct consistent sublists of L. A sublist L′ of L is, by de�nition,
consistent if idn L

′ ∈ Sn.
Let π ∈ Sn be any permutation, and let L′ = (l′ij) be any sublist of L such that idn L

′ = π.
Then idn 1(L

′) = idn L
′ = π. Since the list 1(L′) is simple, by Section 3, 1(L′) = L(π). So for

each (i, j) ∈ [n]2 with i < j, the parity of (l′ij) is determined by π. Hence, there are at most
⌊lij/2⌋ + 1 choices for l′ij . Therefore, the number of sublists L′ of L with idn L

′ = π is at most
P =

∏
i<j(⌊lij/2⌋+1) and the number λ of distinct consistent sublists of L is at most |Sn|P = n!P .

The DP computes a table H of size λ where, for any consistent sublist L′ of L, H(L′) is the
optimal height of a tangle realizing L′ if L′ is feasible (otherwise H(L′) = ∞). We compute the
entries of H in non-decreasing order of list length. All λ consistent sublists of L can be generated
based on each permutation of Sn in overall O(λn2 log |L|) time, and can be sorted in the same time
as the list lengths are bounded by |L| ≤ λ. The second factor and the third factor in the running
time come from the fact that each list consists of O(n2) numbers between 0 and |L|. Note that the
term does not appear in the overall running time, as it is only required as a preprocessing step,
and the running time of the DP dominates the running time for generating these lists.

Let L′ be the next sublist of L to consider. We compute the optimal height H(L′) of L′. To
this end, let ρ = idn 1(L

′) = idn L
′. This is the �nal permutation of any tangle that realizes L′.

Now we go through the set Sρ of permutations that are adjacent to ρ. According to Section 3,
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|Sρ| = Fn+1 − 1. For each permutation π ∈ Sρ, the set L(⟨π, ρ⟩) is the set of disjoint swaps that
transforms π into ρ. Then

H(L′) = min
π∈Sρ

H(L′ − L(⟨π, ρ⟩)) + 1. (2)

After we have �lled the whole table H, the entry H(L) contains the desired height of a realiza-
tion of L (or ∞ if L is not feasible).

Computing the minimum in Equation (2) needs Fn+1 − 1 lookups in the table H. We can
iterate through the set Sρ of adjacent permutations in O(n) time per permutation as outlined in the
inductive procedure in the proof of Section 3. We can store H as an

(
n
2

)
-dimensional array�where

each dimension corresponds to the number of swaps between a pair of wires�to look up the solution
for a single permutation π ∈ Sρ in O(n2 log |L|) time. The table uses O(λ log |L|) space: it has λ
possible entries, and for each entry we need log |L| space to store it (and thus also log |L| time to read
it). Since we have to consider only pairs of indices that have at least one swap in L, we can reduce
the number of dimensions to |L| if |L| <

(
n
2

)
. Thus, we can compute the table entry for each sublist

in O
(
n2 log |L|+ (Fn+1 − 1) · n ·min{|L|, n2} · log |L|

)
= O

(
(Fn+1 − 1) · n ·min{|L|, n2} · log |L|

)
time, and we spend O

(
λ(Fn+1 − 1) · n ·min{|L|, n2} · log |L|

)
time in total.

Assuming that n ≥ 2, we bound λ as follows, using the inequality of arithmetic and geometric
means (AGM) and Bernoulli's inequality (B). Due to Bernoulli, 1 + ry ≤ (1 + y)r for every real
y ≥ −1 and for every real r ≥ 1. We use his inequality for y = |L|/n2 and r = n/(n− 1):

λ ≤ n!
∏
i<j

(lij/2 + 1)
AGM
≤ n!

(∑
i<j(lij/2 + 1)(

n
2

) )(n2)
= n!

(
|L|

n(n− 1)
+ 1

)(n2) B
≤ n!

(
|L|
n2

+ 1

)n2/2

.

2

Note that, since x+1 ≤ ex for any x ∈ R (here x = |L|/n2), the running time O((|L|/n2+1)n
2/2 ·

φn·n!·n·min{|L|, n2}·log |L|) of the DP is upper-bounded byO(e|L|/2·φn·n!·n·min{|L|, n2}·log |L|).

4 Algorithms for Deciding Feasibility

We investigate the feasibility problem for di�erent classes of lists in this section. First we consider
general lists, then simple lists, odd lists and, �nally, even lists. Recall that a list L is even if and
only if 1(L) is the zero list and L is odd if and only if 1(L) = 2(L).

For any list to be feasible, each triple of wires i < j < k requires an (i, j) or a (j, k) swap
if there is an (i, k) swap � otherwise wires i and k would be separated by wire j in any tangle.
We call a list ful�lling this property non-separable. For odd lists, non-separability is implied by
consistency (because consistency is su�cient for feasibility, see Proposition 4 in the following). The
NP-hardness reduction from Section 2 shows that a non-separable list can fail to be feasible even
when it is consistent.

4.1 General Lists

Our DP for Tangle-Height Minimization runs in O
(
(|L|/n2 +1)n

2/2 ·φn · n! · n ·min{|L|, n2} ·
log |L|

)
time. We adjust this algorithm to the task of testing feasibility, which makes the algorithm

simpler and faster. Then we bound the entries of minimal feasible lists (de�ned in Section 1) and
use this bound to turn our exact algorithm into a �xed-parameter algorithm where the parameter
is the number of wires (i.e., n).
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Theorem 4 There is an algorithm that, given a list L of order n, tests whether L is feasible in
O
(
(|L|/n2 + 1)n

2/2 · n! · n3 ·min{|L|, n2} · log |L|
)
time.

Proof: Let F be a Boolean table with one entry for each consistent sublist L′ of L such that
F (L′) = true if and only if L′ is feasible. This table can be �lled by means of a dynamic
programming recursion. The empty list is feasible. Let L′ be a consistent sublist of L with |L′| ≥ 1
and assume that for each strict sublist of L′, the corresponding entry in F has already been
determined. A sublist L̃ of L is feasible if and only if there is a realizing tangle of L̃ of height |L̃|+1.
For each (i, j) swap in L′, we check if there is a tangle realizing L′ of height |L′|+1 such that (i, j)
is the last swap. If no such swap exists, then L′ is infeasible, otherwise it is feasible. To perform
the check for a particular (i, j) swap, we consider the strict sublist L′′ of L′ that is identical to L′

except an (i, j) swap is missing. If L′′ is not consistent, we continue with the next swap. Otherwise,
we check the entry F (L′′). If F (L′′) = true, we compute the �nal positions of i and j with respect
to L′′ (see Section 3). The desired tangle exists if and only if these positions di�er by exactly one.
In this case, we set F (L′) = true. Otherwise, we continue with the next swap. If there is no such
swap, we set F (L′) = false.

The number of consistent sublists of L is upperbounded by (|L|/n2 + 1)n
2/2 · n!, see the proof

of Section 3.2. For each consistent sublist, we have to check O(n2) swaps. To check a swap, we
have to compute the �nal positions of two wires, which can be done in O(n log |L|) time. We can
store F as a min{|L|,

(
n
2

)
}-dimensional array where each dimension represents a potential swap

occurring in L. Hence, addressing a cell in L takes time O(min{|L|, n2}), which yields an overall

running time of O
(
(|L|/n2 + 1)n

2/2 · n! · n3 ·min{|L|, n2} log |L|
)
. 2

Next we introduce a tangle-shortening construction. We use the following lemma that follows
from odd-even sort and is well known [12].

Lemma 5 For each integer n ≥ 2 and each pair of permutations π, σ ∈ Sn, we can construct in
O(n2) time a tangle T of height at most n+ 1 that starts with π, ends in σ, and whose list L(T )
is simple.

We use Section 4.1 in order to shorten lists without changing their type.

Lemma 6 Let n be a positive integer, let T = ⟨π1, π2 . . . , πh⟩ be a tangle of n wires, let L =
L(T ) = (lij), and let P ⊆ {π1, π2, . . . , πh} such that {π1, πh} ⊆ P . If, for every 1 ≤ i < j ≤ n and
lij > 0, there exists a permutation π ∈ P with π(j) < π(i), then we can construct a tangle T ′ with
L′ = L(T ′) = (l′ij) such that l′ij ≤ min{lij , |P | − 1} and 2(L′) = 2(L).

Proof: We construct the tangle T ′ as follows. Let p = |P | and consider the elements of P in
the order of �rst occurrence in T , that is, P = {π′

1, π
′
2, . . . , π

′
p} = {πm1

, πm2
, . . . , πmp

} such that
1 = m1 < m2 < · · · < mp = h. For every two consecutive elements π′

k and π′
k+1 with k ∈ [p− 1],

we create a tangle T ′
k that starts from π′

k, ends at π
′
k+1, and whose list L(T ′

k) = (l′k,ij) is simple.
Note that, by Section 4.1, we can always construct such a tangle of height at most n+ 1, where n
is the number of wires in T . Now let T ′ = ⟨T ′

1, T
′
2, . . . , T

′
p−1⟩. For each k ∈ [p − 1], let Tk be the

subtangle of T that starts at π′
k and ends at π′

k+1. Note that both these permutations are in T .
Let L(Tk) = (lk,ij). The simplicity of the list L(T ′

k) implies that, for every i, j ∈ [n], l′k,ij ≤ lk,ij .
Then, for every i, j ∈ [n], l′ij ≤ min{lij , p − 1}. Since the tangles T ′ and T have common start
and �nal permutations, for every i, j ∈ [n], the numbers lij and l′ij have the same parity, that is,
1(L′) = 1(L). Recall that, for every 1 ≤ i < j ≤ n and lij > 0, there exists a permutation π ∈ P
with π(j) < π(i). In other words, if lij > 0, then l′ij > 0. Hence, 2(L′) = 2(L). 2
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We want to upperbound the entries of a minimal feasible list. We �rst give a simple bound,
which we then improve by a factor of roughly 2.

Proposition 1 If L = (lij) is a minimal feasible list of order n, then lij ≤
(
n
2

)
+ 1 for each

i, j ∈ [n].

Proof: The list L is feasible, so there is a tangle T = ⟨π1, π2, . . . , πh⟩ realizing L. We construct a
set P of permutations of T , starting with P = {π1, πh}. Then, for each pair (i, j) with 1 ≤ i < j ≤ n
and lij > 0, we add to P a permutation πij from T such that πij(j) = πij(i)+1. Note that T must
contain such a permutation since we assume that lij > 0 and that π1 = idn. Clearly, |P | ≤

(
n
2

)
+2.

Now Section 4.1 yields a tangle T ′ with L′ = L(T ′) = (l′ij) such that l′ij ≤ min{lij , |P | − 1}
and 2(L′) = 2(L). Hence, L′ → L. The list L is minimal, so L = L′. Thus, since |P | ≤

(
n
2

)
+ 2,

lij = l′ij ≤ |P | − 1 ≤
(
n
2

)
+ 1 for each i, j ∈ [n]. 2

Now we improve this bound by a factor of roughly 2.

Proposition 2 If L = (lij) is a minimal feasible list of order n, then lij ≤ n2/4 + 1 for each
i, j ∈ [n].

Proof: The list L is feasible, so there is a tangle T = ⟨π1, π2, . . . , πh⟩ realizing L. We again
construct a set P of permutations of T , starting from P = {π1, πh} as follows.

Let G be the graph with vertex set [n] that has an edge for each pair {i, j} with lij > 0. The
edge ij, if it exists, has weight |i− j|. For an edge ij with i < j, we say that a permutation π of T
witnesses the edge ij of G (or the swap (i, j) of L) if π(j) < π(i).

We repeat the following step until every edge of G is colored. Pick any non-colored edge of
maximum weight and color it red. Let i and j with i < j be the endpoints of this edge. Since
lij > 0 and the tangle T realizes the list L, T contains a permutation π with π(j) < π(i). Note
that π witnesses the edge ij. Add π to P . Now for each k with i < k < j, do the following. Since
π1 = idn and π(j) < π(i), it holds that π(k) < π(i) or π(j) < π(k) (or both). In other words, π
witnesses the edge ki, the edge jk, or both. We color each witnessed edge blue.

The coloring algorithm ensures that the graph G has no red triangles, so, by Tur�an's theo-
rem [18], G has at most n2/4 red edges. Hence |P | ≤ 2+n2/4. By construction, every edge of G is
witnessed by a permutation in P . Thus, Section 4.1 can be applied to P . This yields a tangle T ′

with L′ = L(T ′) = (l′ij) such that l′ij ≤ min{lij , |P | − 1} and 2(L′) = 2(L). Hence, L′ → L. The

list L is minimal, therefore L′ = L. Since each entry of the list L′ is at most |P | − 1 ≤ n2/4 + 1,
the same holds for the entries of the list L. 2

Combining Proposition 2 and our exact algorithm from Section 4.1 yields a �xed-parameter
tractable algorithm with respect to n.

Theorem 5 There is a �xed-parameter algorithm for List-Feasibility with respect to the pa-
rameter n. Given a list L of order n, the algorithm tests whether L is feasible in O

(
(n/

√
8)n

2 ·n! ·
n5 log n+ n2 log |L|

)
time.

Proof: Given the list L = (lij), let L
′ = (l′ij) with l

′
ij = min{lij , n2/4 + 1} for each i, j ∈ [n]. We

use our exact algorithm described in the proof of Section 4.1 to check whether the list L′ is feasible.
Since our algorithm checks the feasibility of every consistent sublist L′′ of L′, it su�ces to combine
this with checking whether 2(L′′) = 2(L). If we �nd a feasible sublist L′′ of the same type as L,
then, by Proposition 2, L is feasible; otherwise, L is infeasible. Checking the type of L′′ is easy. The
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runtime for this check is dominated by the runtime for checking the feasibility of L′′. Constructing
the list L′ takes O(n2 log |L|) time. Note that |L′| ≤

(
n
2

)
· (n2/4 + 1) = n4/8 + n2/2− n3/8− n/2.

For n ≥ 12, 3n2/2−n3/8−n/2 ≤ 0; hence |L′| ≤ n4/8−n2. Plugging this bound on |L′| for |L| into
the runtime O

(
(|L|/n2 + 1)n

2/2 · n! · n3 ·min{|L|, n2} log |L|
)
of our exact algorithm (Section 4.1)

yields a total runtime of O
(
(n/

√
8)n

2 ·n! ·n5 log n
)
, plus the time O(n2 log |L|) needed to construct

the list L′ from the given list L. 2

4.2 Simple Lists

If we restrict our study to simple lists, we can easily decide feasibility.

Proposition 3 A simple list L is feasible if and only if L is consistent. Thus, we can check the
feasibility of L in O(n+ |L|) time, where n is the order of L.

Proof: Clearly, if L is feasible, then L is also consistent. If L is consistent, then idn L is a
permutation. By Section 4.1, there exists a tangle T which starts from idn, ends at idn L, and
the list L(T ) is simple. By Section 3, idn L(T ) = idn L. By Section 3, L(T ) = L. So L is also
feasible. We can check the consistency of L in O(n+ |L|) time, which is equivalent to checking the
feasibility of L. 2

Odd Lists

For odd lists, feasibility reduces to that of simple lists. For a list l and a set A ⊆ [n] of wire labels,
let LA be the (|A| × |A|)-submatrix of L that consists of the rows and columns indexed by A.

Proposition 4 For n ≥ 3 and an odd list L of order n, the following statements are equivalent:

1. The list L is feasible.

2. The list 1(L) is feasible.

3. For each triple A ⊆ [n], the list LA is feasible.

4. For each triple A ⊆ [n], the list 1(LA) is feasible.

5. The list L is consistent.

6. The list 1(L) is consistent.

7. For each triple A ⊆ [n], the list LA is consistent.

8. For each triple A ⊆ [n], the list 1(LA) is consistent.

Proof: We prove the proposition by proving three cycles of implications 1 ⇒ 5 ⇒ 6 ⇒ 2 ⇒ 1,
3 ⇒ 7 ⇒ 8 ⇒ 4 ⇒ 3, and 1 ⇒ 3 ⇒ 2 ⇒ 1.

1 ⇒ 5. Clearly, all feasible lists are consistent.

5 ⇒ 6. Consistency of L means that idn L ∈ Sn. Since idn 1(L) = idn L, the list 1(L) is consistent,
too.

6 ⇒ 2. Follows from Proposition 3 because the list 1(L) is simple.
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2 ⇒ 1. We decompose L into 1(L) and L′ = (L − 1(L)). Note that L′ = (l′ij) is an even list. Let
(i, j) ∈ L′. Then (i, j) ∈ 1(L) because L is odd. Consider a tangle T realizing 1(L). Let π
be the layer in T where the swap (i, j) occurs. Just below π, insert l′ij new layers such that
the di�erence between one such layer and its previous layer is only the swap (i, j). Observe
that every second new layer equals π � in particular the last one, which means that we can
continue the tangle with the remainder of T . Applying this operation to all swaps in L′

yields a tangle realizing L.

3 ⇒ 7. Clearly, all feasible lists are consistent.

7 ⇒ 8. Follows from the equality idn 1(LA) = idn LA.

8 ⇒ 4. Follows from Proposition 3, because the list 1(LA) is simple.

4 ⇒ 3. For every triple A ⊆ [n], we can argue as in the proof (2 ⇒ 1).

1 ⇒ 3. Trivial.

3 ⇒ 2. Let 1 ≤ i < k < j ≤ n. By the equivalence (1 ⇔ 2), the odd list L{i,k,j} is infeasible if and
only if 1(L{i,k,j}) is infeasible, that is, either (i, j) ∈ L and (i, k), (k, j) ̸∈ L, or (i, j) ̸∈ L
and (i, k), (k, j) ∈ L. De�ne a binary relation ≤′ on the set [n] by letting i ≤′ j if and
only if either i ≤ j and (i, j) ̸∈ L, or i > j and (i, j) ∈ L. (Note that ≤′ encodes the �nal
permutation of a tangle that realizes L.) Using the feasibility of LA for all triples A ⊆ [n], it
follows that ≤′ is a linear order. Let π be the (unique) permutation of the set [n] such that
π−1(1) ≤′ π−1(2) ≤′ · · · ≤′ π−1(n). Observe that L(π) = 1(L), so the list 1(L) is feasible.

2

Note that, for a feasible list L, it does not necessarily hold that 2(L) is feasible; see, e.g., for
n ≥ 5, the list Ln from Observation 1.

Even Lists

An even list is always consistent since it does not contain an odd number of swaps and its �nal
permutation is the same as its start permutation. We show that, for su�ciently �rich� lists, non-
separability is su�cient for an even list to be feasible, but in general this is not true.

Proposition 5 Let n be a positive integer, and let L = (lij) be a non-separable even list of order n.
If, for every (i, j) ∈ [n]2, it holds that lij ≥ n− 1 or lij = 0, then L is feasible.

Proof: On the set [n] of wires, we de�ne a binary relation ≤L as follows. For each i, j ∈ [n], we set
i ≤L j if i ≤ j and lij = 0; otherwise, i and j are incomparable. Since the list L is non-separable, the
relation ≤L is transitive, so it is a partial order. The dimension d of a partial order ≤L on the set [n]
is the smallest number d of linear orders ≤1, . . . ,≤d of [n] such that, for each i, j ∈ [n], we have
i ≤L j if and only if, for every k ∈ [d], it holds that i ≤k j. In other words, ≤L can be seen as the
intersection of ≤1, . . . ,≤d. It is known that the dimension d of a poset on [n] is at most ⌈n/2⌉ [9];
we will use 2d ≤ n + 1 below. For each linear order ≤k with k ∈ [d], let πk be the (unique)
permutation of the set [n] such that π−1

k (1) ≤k π
−1
k (2) ≤k · · · ≤k π

−1
k (n) and Lk = L(πk). As a

consequence of Section 3, the list Lk is feasible. Observe that idn(Lk+Lk) = idn and that (Lk+Lk)
is even, where + is the usual matrix addition. Therefore, L′ = L1 + L1 + L2 + L2 + · · ·+ Ld + Ld

is also feasible and even. Let L′ = (l′ij) and let 1 ≤ i < j ≤ n.
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If l′ij = 0 then, for every k ∈ [d], it holds that πk(i) < πk(j), hence, i ≤k j, which means that
i ≤L j and lij = 0.

Otherwise, i and j are incomparable in ≤L and, hence, in at least one linear order k ∈ [d], it
holds that i ≤k j as otherwise j ≤L i, and in at least one linear order k′ ∈ [d], it holds that j ≤k′ i
as otherwise i ≤L j. Hence, 2 ≤ l′ij ≤ 2d− 2 ≤ (n+ 1)− 2 = n− 1 ≤ lij .

We can extend a tangle T ′ realizing L′ such that we execute the remaining (even) number of
lij − l′ij swaps of the wires i and j for each non-zero entry of L after an execution of an (i, j) swap
in T ′. Thus, the feasibility of L follows from the feasibility of L′. 2

In the following we give an example of non-separable lists that are not feasible. Note that any
triple A ⊆ [n] of an even list is feasible if and only if it is non-separable (which is not true for
general lists, e.g., the list L = {12, 23} is not feasible).

Proposition 6 There is an in�nite family (L⋆
m)m≥1 of non-separable lists whose entries are all

zeros or twos such that L⋆
m has 2m wires and is not feasible for every m ≥ 4.

Slightly deviating from our standard notation, we number the wires of L⋆
m from 0 to 2m − 1.

There is no swap between two wires i < j in L⋆
m if each 1 in the binary representation of i also

belongs to the binary representation of j, that is, the bitwise OR of i and j equals j; otherwise,
there are two swaps between i and j. E.g., for m = 4, wire 1 = 00012 swaps twice with wire
2 = 00102, but doesn't swap with wire 3 = 00112.

Each list L⋆
m is clearly non-separable: assume that there exists a swap between two wires

i = (i1i2 . . . im)2 and k = (k1k2 . . . km)2 with k > i + 1. Then there has to be some index a with
ia = 1 and ka = 0. Consider any j = (j1j2 . . . jm)2 with i < j < k. By construction of L⋆

m, if
ja = 0, then there are two swaps between i and j; if ja = 1, then there are two swaps between j
and k.

We used two completely di�erent computer programs2 to verify that L⋆
4 � and hence every

list L⋆
m with m ≥ 4 � is infeasible. Unfortunately, we could not �nd a combinatorial proof showing

this. The list L⋆
m has 1

2

∑m
r=1 3

r−12m−r(2m−r − 1) swaps of multiplicity 2, so L⋆
4 has 55 distinct

swaps. The full list L⋆
4 in matrix form is given below.

L⋆
4 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0
0 0 0 0 2 2 0 0 2 2 0 0 2 2 0 0
0 0 0 0 2 2 2 0 2 2 2 0 2 2 2 0
0 0 0 0 0 0 0 0 2 2 2 2 0 0 0 0
0 0 0 0 0 0 2 0 2 2 2 2 2 0 2 0
0 0 0 0 0 0 0 0 2 2 2 2 2 2 0 0
0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 2 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


2One program is based on combining realizations for triplets of wires [11]; the other is based on a SAT formula-

tion [1]. Both implementations are available on github.
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5 Open Problems

Obviously it would be interesting to design faster algorithms for Tangle-Height Minimization

and List-Feasibility. In particular, for the special case of simple lists, our exact algorithm
running in O(n!φn) time and the algorithm of Baumann [2] running in O(n!ψn) time (where n is
the number of wires, φ ≈ 1.618, and ψ ≈ 1.325) are not satisfactory given that odd-even sort [15]
can compute a solution of height at most one more than the optimum in O(n2) time. This leads
to the question whether height-minimization is NP-hard for simple lists.

For general lists, one can potentially obtain a faster algorithm for List-Feasibility by im-
proving the upper bound for entries of minimal feasible lists (see Proposition 2 for the current
upper bound).

LetN be the number of permutations π ∈ Sn such that there exists a simple consistent sublist L′

of the given list L with idn L
′ = π. Clearly, N ≤ |Sn| = n!. Better bounds for N could improve

the runtime bounds stated in Sections 3.2 and 4.1.

Another research direction is to devise approximation algorithms for Tangle-Height Mini-

mization.

In our setting the start permutation is given. If the task is to �nd a start permutation and a
tangle that realizes the given list, new questions arise. Even in this setting, simple lists are not
always feasible as we will show now. First note that for any permutation π in S6, there exists a
number jπ ∈ {1, 2, 3} that, in π, lies between the other two numbers in the set {1, 2, 3}. Next,
consider the list L = {41, 42, 51, 53, 62, 63} of order 6. This list contains no swap among the wires
in {1, 2, 3}, so in any realization, these never change their order. Moreover, for every ordering
(i, j, k) of the wires in {1, 2, 3}, the list L contains a wire m(j) in {4, 5, 6} that swaps only with i
and k (but not with j). For L to be realizable with start permutation π, however, wire m(jπ)
would need to swap also with wire jπ, which lies between the other two wires in {1, 2, 3} \ {jπ}.
Can this new feasibility problem also be solved e�ciently? What is the complexity of this problem
for general lists?
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