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Abstract. Since Beineke’s work in 1968 on linegraphs, attention has focused on the
classification of graphs as linegraphs. It is known that every graph G is the linegraph
of an hypergraph, and the question is to characterize that root graph. We introduce
the C), 4 classes, defined as sets of graphs where each vertex can be covered by at most
p cliques, and each edge belongs to at most ¢ cliques. These classes provide a com-
prehensive classification of linegraphs through a unified and parameterized approach.
They describe previously known graph classes - such as linegraphs of simple graphs,
p-uniform hypergraphs and p-uniform 1-linear hypergraphs - while being capable of
generalization. We study the complexity of determining the membership and edit dis-
tance of a graph to one of these classes. We prove the first Fixed Parameter Tractable
algorithm with respect to treewidth to compute the edit distance.

1 Introduction

The linegraph L(G) of a (hyper) graph G = (V, E) has a set of nodes E and two nodes of L(G) are
connected if the intersection of the two corresponding (hyper) edges in G is not empty [21]. The link
between a (hyper) graph and its linegraph has been widely studied. Various works, for example,
have been devoted to determining whether a graph is a linegraph and, if so, to discovering the
graph of which it is the linegraph (referred to as the root graph of the linegraph) [2, 12, 28, 34, 39].

In this work, a characterization of linegraphs is provided. It gathers and uniformizes, among
others, various classes of linegraphs including those of simple graphs, multigraphs, and hypergraphs.
We also address the question of the edit distance from any graph to any graph belonging to this
class. These two subjects are related, but for the sake of clarity, we will present them one after
the other, introducing the state of the art and our results each time.
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1.1 Characterization

A characterization of the linegraphs of simple graphs was introduced by Beineke [2, 3]. Tt relies on a
on a finite set of forbidden induced subgraphs. By using different sets of forbidden subgraphs, this
method has been extended to characterize the classes of linegraphs of multigraphs [8], multigraphs
with restricted multiplicities of edges [41], bipartite graphs [20] or bipartite multigraphs [42]. An
algorithm [46] has been developed to generate a set of forbidden induced subgraphs for character-
izing linegraphs belonging to any hereditary class'.

The situation is more intricate for linegraphs of hypergraphs. There is no finite set of forbidden
induced subgraphs that can be used to characterize linegraphs of 3-uniform® hypergraphs [7].
However there exists a finite set for linegraphs of 3-uniform linear® hypergraphs whose vertex
degree it at least 19 [32]. The complexity of determining whether a graph G belongs to linegraphs
of r-uniform hypergaphs is NP-complete [29], where both G and r are inputs. For 3-uniform
hypergaphs, the question is open* but it is known it is NP-complete for the linegraphs of a 3-
uniform 1-linear hypergraphs [33].

Another approach to characterize linegraphs is based on clique covering. A graph H is a
linegraph of a simple graph® if and only if the edges of H can be parted into a set of cliques, where
each vertex of the graph belongs to at most two of these cliques [27, 28, 43]. We can generalize this
characterization by allowing a vertex to appear in an arbitrary number p of cliques. If p = 1, we
characterize the cluster graphs, the union of complete graphs, which are the linegraphs of union
of stars. Determining whether a graph belongs to this class is trivially polynomial. If p > 3, we
characterize the linegraphs of 1-linear p-uniform hypergraphs [5]. Determining if a graph belongs
to this class is NP-complete [36].

If the edge-constraint is relaxed, that is if we still search for a covering of the edges with cliques
but an edge may belong to more than one clique, then the linegraphs of all p-uniform hypergraphs
can be characterized, including those that are not 1-linear. For p = 2, it has been demonstrated
that determining the membership of a graph in this class is polynomial problem [23, 24, 44].
However, for p > 4, it becomes an NP-complete problem [36]. The question of membership for
p = 3 remains an open problem, and its complexity is yet to be determined.

In these classifications, the parameter p can vary gradually but either the cliques are required
to be edge-disjoint, meaning each edge is covered by a unique clique, or no constraint is imposed,
allowing an edge to be covered by up to p cliques. We propose introducing a new class denoted as

Cpq (1<qg<p)

Definition 1. A graph G = (V, E) belongs to the class Cp 4 if and only if E can be covered by a
set of cliques

e cach vertex appears in at most p cliques

e cach edge appears in at most q cliques

1A class of graph X is hereditary if and only if G € X = G — v € X for any vertex v of G where G — v denotes
the graph obtained from G by removing v and all edges incident to it.

2a hypergraph G = (V, £) is p-uniform if VE € &, |E| = p.

3a hypergraph G = (V, ) is l-linear if VE;, E; € £,|E; N E;| <1. A 1-linear hypergraph is simply called linear.

4The reduction of [29] is based on the partition of a linegraph into r cliques. One might be tempted to fix r = 3,
since in the general case, partitioning an arbitrary graph into 3 cliques is NP-complete. However, in our case, the
question is to partition a linegraph, and, to the best of our knowledge, no result addresses this specific class of
graphs.

5A simple graph is a 2-uniform 1-linear hypergraph
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Cp.q p=1 p=2 p=3 p>4
g=1 P (trivial) P 2, 3] N P-c [36] N P-c [36]
g=2 P 23, 24, 44] | NP-c (Th. 1) | NP-c (Th. 2)
=3 ? ?

7€ [4,7] NP-c [30]

65

Table 1: Complexity of determining if a graph belongs to a given C, , class. The results in bold
are proven in this paper. For Cp, 3 with p > 3, problems are in NP (Lemma 1) but the question
remains open for the NP-completeness.

This class corresponds to the linegraphs of p-uniform g-linear hypergraphs. This classification
of graphs has proven to be valuable in various fields. One application is the determination of the
minimum value of p for a graph to belong to C, ,, which is known as the local clique problem.
This problem is equivalent to finding the intersection number of an intersection graph [37] which
is NP-complete [35, 26].

The complexity of two classes remains an open question: Cp, for all p > 3 and C, 3 for all
p > 3. In this paper, we provide a proof for the complexity of the first class. The complexity
results known to date, as well as those introduced in this paper, are summarized in Table 1.

Extending clique covering to allow each edge to appear in a maximum of ¢ cliques is a natural
extension. A similar approach is presented in [16], but in that case, the cliques must necessarily
be maximum cliques. Other variants can also be found. For example, in [22], the cliques in the
covering can be partially incomplete. These variations demonstrate the flexibility and applicability
of clique covering in different contexts.

1.2 Edit Distance

While the characterization of graphs is significant, numerous applications focus on the proximity
of a given graph to a specific class of graphs. The main metric for such proximity is the edit
distance [13]. For two graphs G and G’, it is denoted as A(G,G’), and defined as the minimum
number of edge deletions or additions needed to transform G into G’ (since G and G’ are undirected,
it is half of the Hamming distance between their adjacency matrices). In this context, the problem
we consider is the following:

Problem 1 (ED-C,,). Given a graph G and two positive integers p € N and ¢ € [1,p], find a
graph G' € C, 4 such that the edit distance A(G,G’) is minimum.

If p =1 and g = 1, this is the cluster editing problem. It has applications in machine learning [1],
data mining [11] and bioinformatics [31]. The problem has been shown to be NP-complete [4, 40]
but admits a polynomial time algorithm if the distance is bounded by a parameter & [9].

If p = 2 and ¢ = 1, this is the linegraph reconstruction problem. It has applications in networks.
For instance, in the context of energy distribution networks, operators can infer the underlying
topology of the network from electrical flow measurements by deducing correlations between links.
This inference allows them to construct a linegraph L, which, in turn, helps in inferring the root
graph G representing the distribution network [10, 19]. Challenges arise when measurement errors
occur, causing L to deviate from being a valid linegraph. In such cases, it becomes necessary to
correct L in order to obtain a valid linegraph [14, 15].

The linegraph reconstruction problem has been previously studied with slightly different for-
mulations. In [18, 45], only edge deletions are allowed, while in [14], only edge additions are
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Cp.q p=1 p=2| p=3 p=>4
g=1 NP-c [4, 40] ? NP-c* | NP-c*
qg=2 ? ? ?
q=3 ? ?
q € [4,p] NP-c*

Table 2: Complexity of the editing problem ED-C, , restricted to instances where p and g are
fixed. Prior to our work, most of the cases were not addressed, except the case p = ¢ = 1 and the
consequences of known results for the corresponding characterization problems (see Table 1). We
demonstrate, with a unified perspective, that the problem is NP-complete for all cases Th. 3.

considered. In both cases, the problems have been shown to be NP-complete. However, an open
question remains: Is the problem still NP-complete when both edge deletions and additions are
allowed simultaneously? In this paper, we provide a proof that the problem is indeed NP-complete
in this extended setting.

Finally, the editing problem is NP-complete for a given class C, 4 if the recognition problem for
that class is also NP-complete. This was known for Cs 1, C4,1 and Cy 4 [36] but most of the results
were missing (see Table 2). In this paper, we demonstrate, with a unified perspective, that the
problem is NP-complete for all cases, including the open question of linegraphs: Cs ;.

1.3 Parameterized Complexity

Given the complexity of the edit distance problems, it is natural to explore whether the problem
becomes tractable for certain fixed parameter values.

A first parameter is k, the number of editions. For the C; 1 class, an FPT-algorithm [17] exists
based on bounded tree search. The time complexity of this algorithm is O(2.77% + |V |*). However,
to the best of our knowledge, there are no known FPT-algorithms for the Ca ;1 and Cs 2 classes. It is
worth noting that, although specific FPT-algorithms may not be known for these classes, the fact
that they can be characterized by forbidden graphs allows for the construction of straightforward
FPT-algorithms using bounded tree search. As a consequence of the NP-completeness of charac-
terization problems, there are no FPT-algorithms with respect to k, p and ¢ for Cp, , with p > 3,
except possibly for the case where ¢ = 3 which remains an open question.

Another parameter is the size of maximum cliques. However, the cliques involved in reductions
to prove NP-completeness results for the corresponding characterization problems are generally
small. As a result, the size of maximum cliques is not a useful parameter for creating XP or
FPT-algorithms.

The last classical parameter that can make the problem tractable is the treewidth [38]. To
the best of our knowledge, there are no existing results using it. A natural question is whether
Courcelles’s theorem can be used to deduce the existence of an FPT algorithm with respect to
the treewidth. In other words, is it possible to rewrite the problem as an MSO formula? Such a
formulation would allow for the recognition of a linegraph (of a simple graph, that is a graph in Cs 1)
with an MSO formula. To our knowledge, no such formula has ever been given. A naive way to
build such a formula would be to determine these cliques. We would then have a formula starting
with V1 € V,V2 C V.... However, the number of cliques is not bounded by the treewidth.
Then, it does not seem straightforward to write an n-independent size MSO formula that captures
the fact that a graph is a linegraph of a graph.
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This is why, in this paper, we construct a dynamic programming algorithm to answer the
question. We first demonstrate that for given values of p and the treewidth, the size of the maximum
cliques in the edited graph is bounded. This allows us to construct a dynamic programming
algorithm that is the first FPT-algorithm with respect to the treewidth.

1.4 Paper Organization

As we have just presented, this paper compiles and completes the results concerning the complexity
of characterizing linegraphs, editing distance and the associated FPT-algorithms. In the remaining
sections of the paper, we will establish the following new results.

In Section 2, we will demonstrate that characterizing graphs belonging to the class Cs o is an
NP-complete problem. In Section 3, we provide further insights into the complexity of editing
problems, thereby completing the existing knowledge in this area. Specifically, we establish the
NP-completeness of the edit distance problem for Cy; and subsequently extend this result to the
classes Cy 2 and Cp 3 for p > 3. Finally, Section 4 focuses on parameterized complexity, where we
present a dynamic programming algorithm that depends on both p and the treewidth.

2 NP-Completeness of Recognizing a Graph in C;»

To address the NP-completeness of the recognition problem, we need to prove that determining if
a graph belongs to Cs 5 is in NP. We prove a more general result that we will use for other cases.

Lemma 1. Given two integers p and q, determining if a graph G belongs to Cp 4 is in NP.

Proof: If a graph G = (V, E) belongs to a class C, 4, then there exists a set of labels L and a
function A that associates each vertex with a nonempty subset of L, such that

1. Vi € L, the subgraph induced by {v € V/l € A(v)} is a clique;
2. VweV, [A(v)| < p;
3. V{u,v} € E,; 1 <|A(u) N A(v)] < q.

If such a labeling exists, then each vertex is covered by at most p cliques (conditions 1 and 2),
and each edge belongs to at most ¢ cliques (condition 3). This labeling is a certificate that can be
verified in polynomial time. Note that, as each vertex cannot appear in more than p cliques, the
size of L can be bounded by n - p, and thus has a polynomial size. a

Consider now the case p = 3 and ¢ = 2. We present a polynomial reduction from 2P2N-3-SAT, a
variant of 3-SAT where each variable appears twice positively and twice negatively, to the problem
of recognizing if a graph belongs to Cs 2, that is if we can cover all the edges with cliques such that
every node is in at most three cliques and every edge in at most two. 2P2N-3-SAT is NP-Complete
[6]. Let ¢ = (X,C) be a 2P2N-3-SAT formula with a given set of variables X = (z1,22,...,2y)
and a given set of clauses C' = (¢1,¢a, ..., ¢mp). We build a graph G as follows.

We first consider, as done in [36], the wheel W i.e. a cycle of size 6 in which all nodes are
connected to a central seventh node. This node must be covered by three non-consecutive triangles.
We build, for each variable x; € X a gadget by overlapping many wheels and three cliques of size 4
as pictured in figure 1. There are two possible coverings of the gadget, that are used to encode the
truth value of the variable. The gadget contains four boundary nodes v; corresponding to each of
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Figure 1: Gadget for a variable x; in the reduction from 2P2N-3-SAT to the recognition of a graph
in Cs5. This variable appears twice positively in ¢; and ¢z and twice negatively in c3 and c4. The
triangles in the two possible coverings of the gadgets are drawn in gray. To those triangles, we
must add the three cliques of size 4 (aé, b;, c;, d;) for 7 < 3. If (b;»7 c;) is already covered by a gray
triangle, then we must also cover it with the clique (otherwise di will be covered by four cliques).
Thus, we cannot cover that edge with the triangle (b}, ¢}, v?). Thus the edges (b%,v}) and (¢}, v})
may be covered by a triangle if (bz-, c;) is not already covered by another triangle in the wheel to
which it belongs, otherwise we must cover the two edges by two independent cliques.

the four literals of the variable in the formula, where j is the index of the clause containing that
literal.

For each clause cj, we create a linking gadget that connects the variable gadgets together. It
consists of two vertices y; and y; connected as shown in Figure 2.

/

Yj

Figure 2: Gadget for a clause C; = (21 V 22 V x3) in the reduction from 3SAT to the recognition
of a graph in C3 5.
Theorem 1. Determining if a graph G belongs to C3 9 is NP-Complete.

Proof: The problem belongs to NP, as stated in Lemma 1. The previously described reduction is
done in polynomial time, we now prove its correctness.
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Note first that the variable gadget imposes that in any feasible covering, for any two clauses c;,
and c¢;, containing respectively the literals z; and z;, the node v; may be covered by the triangle

(0%, ¢4, 05, ) if and only if v, cannot be covered by (0%, ¢%,,v5,). Tt must instead be covered by
the two edges (b%,,v%,) and ( ¢k, v5,).

Assuming there exist truth values for the variables in X that satisfy all the clauses. We build a
valid covering the following way. For each true variable, we use the version on the left of Figure 1
to cover the corresponding gadget so that the triangles (bZ cj vt ) labeled with x; on the figure
belong to the covering. The right version is used if the varlable is false. Let c; be a clause of
the formula. At least one literal z; or «; in ¢; is true, meaning that the corresponding node vj- is
covered by only one triangle. We add the edges (1);, y;) and (v;'v, y;) to the covering. For each the
two other literals x; or &; in ¢;, we add the triangle (v;, Yis yé) to the covering whatever the truth
value of that literal is. Every node is in at most three cliques and every edge is in at most two.
Then G is in 6372.

We now assume that there exists a valid covering of G. We set x; to true if for at least one
clause ¢; containing the literal z;, the triangle (b;,cj, vj) belongs to the covering. Note that the
variable gadget is such that, if the literal #; is in ¢; and if the covering contains (b’ , cj, vj) then z;
is necessarily false. Let ¢; be a clause, we want to prove that one of the three hterals of ¢; is true.
Without loss of generality, we assume that ¢; = (21 VgV x3). If @1, 29 and 3 are all false, then
the covering must contain the cliques (b;7 ;) and (c}, j) for 7 < 3. As v} is already covered by
two cliques, the covering cannot contain the edges (v},y;) and (v},y}) and must instead contain
the triangle (v§, y;,y;) for i < 3. The edge (y;,y;) is then covered with three cliques which is a
contradiction. Thus either 7, x5 or x3 is true and formula is satisfied. a

Remark 1. We cannot use a similar proof in order to prove that the recognition of Cs 3 is NP-
Complete because there is no longer constraint on the edges of the graph (if we satisfy the constraint
on the nodes). In this reduction, the constraint on the edges {b}, J} and {y;,y;} is essential.

The reduction cannot be modified to handle cases where ¢ > 3. On the contrary, it can be
extended for C, 9 with p > 4 by artificially increasing the number of cliques required to cover each
node.

Theorem 2. Determining if a graph G belongs to Cp 2 is NP-Complete for p > 4.

Proof: The reduction used for C3 2 can be modified by adding one final step. For each vertex v of
the graph, we create p — 3 new vertices v; and connect them to v with p — 3 edges {v,v;}. Each
new edge must be covered by a new clique. The number of cliques covering v is increased by p — 3.

O

3 NP-Completeness of Edit Distance to C,; and C,,

This section is dedicated to the NP-completeness of ED-C, 4, the edit distance to a class Cp, ;. We
introduce the Planar 3-SAT problem, which is NP-complete, and a polynomial time reduction from
Planar 3-SAT to ED-C,, ; for p > 1. We then generalize this result for larger values of q.

Let ¢ = (X,C) be a 3-SAT formula with a given set of variables X and a given set of clauses
C. Let Gy be a graph whose vertices are V3 = X UC and the set of edges Ey is such that for each
variable x € X appearing in a clause ¢ € C' (negated or not) there exists an edge {z, c}. The graph
Gy is called the incidence graph of ¢. The planar 3-SAT problem is, given a formula ¢ and an
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incidence graph G4 with a planar embedding, to determine whether ¢ is satisfiable. This problem
is NP-complete [30].

We present a reduction from an instance ¢ = (X, C) of Planar 3-SAT to an instance of ED-C,, 1,
a graph G = (V, E) that is built as follows. For each clause ¢; € C, we create a node v; connecting
p — 1 triangles of nodes: vj, 5;?, t;’? Vk € [1,p — 1] (this means no triangle for p = 1).

By definition, a Planar 3-SAT instance can be represented with a planar embedding. Given an
embedding, for a given variable x;, we denote by C(z;) the clauses containing z;, sorted by cyclic
ordering of the neighbours in the embedding. Let m; = |C(x;)|. We create in G a cycle of size 4m;;:
ub,uf, ..., uly, 1, uh. Let ¢; be the r-th clause containing the variable ;. If it contains the literal
z;, we add two edges (u},,v;) and (u}, ,,,v;), otherwise, if the clause c; contains the literal Z;, we
add two edges (uy,1,v;) and (uj, o,v;). Finally, for each node uf of the cycle, we create p — 1

leaves Z;-’l, e l;ﬁp_l and add p — 1 edges (u, l;’l), o (ud, l;’p_l) (no leaves for p = 1). Finally we
write m = |C] and we define k¥ = 10m. The gadgets of this reduction are represented on Figure 3.

(a) An embedding of a (b) Inside the dashed circle, the gadget (c) The instance of ED-C3,1 ob-
Planar 3-SAT instance. for a variable x; belonging to three clauses tained by reduction. Each dashed
Clauses are square nodes c1,ce and c3. The literals are x; in c1,c2 circle represents a variable gadget
and variables are circle and Z; in c3. The square nodes are part of (Fig. 3b). The squares are the
nodes. clause gadgets (Fig. 3c). clause gadgets.

Figure 3: Example of a reduction for p = 3.

By definition, a Planar 3-SAT instance has a planar embedding. The reduction satisfies the
cyclic ordering of such embedding, it only consists in replacing the clause nodes by triangle graphs
and the variable nodes by cycles with leaves. Thus, the graph produced by the reduction also has
a planar embedding.

Suppose there exists an assignment of variables satisfying ¢. We can edit G with the following
algorithm to obtain a new graph G’ with edit distance A(G,G") < 10m.

1. For each gadget corresponding to a variable x; assigned to true, we delete all the edges
(UQj+1, UQj+2),Vj S [[0, Zmi — 1ﬂ.

2. For each gadget corresponding to a variable x; assigned to false, we delete all the edges
(u2j, u2j4+1), Y7 € [0,2m; — 1].
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3. As ¢ is satisfied, for each clause ¢;, at least one of the three literals is true (if there are more,
we choose one arbitrarily). We delete the four edges connecting v; to the gadgets of the two
other literals.

We illustrate this algorithm on Figure 4. At steps one and two of this algorithm, for each
variable x;, we delete 2m; edges of the corresponding gadget. As each clause contains exactly
three literals, >, m; = 3m. The total number of edges deleted during these two steps is 6m. At
step three, 4m edges are deleted, 4 edges for each clause. Thus, the edit distance A(G,G’) = 10m.

é;\:\f
e

(a) A part of the graph G: the clause gadget is (b) A possible correction of the graph G. Only
connected to three variable gadgets. The dashed one variable gadget remains connected to the clause
edges indicate that they may be connected to other  gadget. One edge out of two of the cycle of a vari-
clauses. able gadget is deleted.

Figure 4: Example of correction for p = 3.

The graph G’ belongs to Cp1. Each node v; belongs to p triangles (the triangle of the
clause gadget {vj,sé?,t?} for k € [1,p — 1] and the triangle connecting v; to one variable gad-
get: {vj, ulqq, ul o} or {vj,ub, 1, ub, 5} depending on the literal of z* contained in ¢;). Each
node u; either belongs to a triangle and p — 1 edges, or it belongs to p edges. Each edge belongs
to a unique clique: a triangle or an edge.

Suppose now that it is possible to correct G by editing at most 10m edges. Each gadget of a
variable z; contains a cycle of size 4m;. Each node u; of this cycle is covered by p + 1 cliques:
two cliques containing {u_,,u’} or {u},u},} and possibly a vertex v; for some clause c;/, and
p— 1 cliques containing {u;, l;k} Vk € [1,p — 1]. We need to remove 4m; cliques. Adding an edge
or deleting an edge not in the cycle deletes at most one clique, while deleting an edge of the cycle
deletes two cliques. Therefore, 2m; editions are required, and the only solution with that many
edits consists in deleting one edge out of two from the cycle. In total, we thus need at least 6m
editions on the variable gadgets. For those editions, we build an assignment of the variables as
follows: if the edges (ub;,;,ub;,,) have been deleted for every j € [0,m; — 1] then z; is set to
true, else it is set to false.
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As our solution corrects the graph with at most 10m editions, it remains 4m editions. Each
vertex v; belongs to p — 1 triangles containing {s¥,¢*} Vk € [1,p — 1]. For each literal z; in ¢,
if 2; is set to true, the vertex v; belongs to one clique, the triangle {v;,u};, uy;,}. Otherwise, it
belongs to two cliques, the two edges {v;,uj;} and {v;,uy;,}. Similarly for a negative literal. As
a consequence, first, at least 4 deletions are needed to keep v; in exactly p cliques. Since we are
only allowed to remove 4m edges, we must remove exactly 4 incident edges to v;. Secondly, for
each false literal, we must remove the two edges connecting v; to the corresponding cycle. As a
consequence, at most two literals of the clause are set to false by the assignment and the formula
¢ is satisfied.

This concludes our polynomial time reduction. Notice that the maximum degree of node is
2p + 4 (for nodes v;).

Theorem 3. Given two integers p > 1 and q € [1,p], ED-C, 4 is NP-Complete even if G is planar
and the degree of node is less than 2p + 4.

Proof: As stated by Lemma 1, given p > 1, ED-C,, ; is in NP. Moreover, there exists a polynomial
time reduction from Planar 3-SAT to ED-C, ; restricted to planar graphs with degree maximum
2p + 4.

It can be observed that in the reduction for ED-C, 1, an edge always belongs to at most one
clique. Therefore, this reduction remains valid for the problem ED-C,, ,. a

4 FPT with Respect to Treewidth

This section is dedicated to proving that ED-C, , is FPT with respect to p and the treewidth [38]
of the input graph.

4.1 Notations

Given two values p > 1 and ¢ € [1,p], let G = (V, E) be an instance of ED-C, 4. Let 7 be a tree
decomposition of G. In order to avoid any confusion, a node of 7 will be called a bag. We recall
that 7 is a tree, that every node of V belongs to at least one bag, that for each edge (v,w) € E,
there exists a bag of 7 containing v and w, and that the subgraph of 7 induced by all the bags
containing a same node v is connected. For each bag u of 7, we define X, as the set of nodes of V'
contained in the bag.

Without loss of generality, we consider that 7 is a nice tree decomposition [25], i.e. it is a rooted
binary tree with the following types of nodes.

e If 7 is the root or a leaf of 7, then |X,| = 0.
o If u has exactly two children u; and usg, then X,, = X,,, = X,,. We say u is a join bag.
e If u has exactly one child «’ then

— either there exists v € V such that X, = X,v U{v} (u is a introduce bag),
— or there exists v € V such that X,, = X, U {v} (u is a forget bag).

The width of a tree decomposition is the size of its largest bag minus one. The treewidth of
a graph G is the minimum width among all possible tree decompositions of G. It is possible to
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build, from an optimal decomposition, a nice decomposition that is also optimal, with O(]V|) bags
in linear time [25].

Given a rooted nice decomposition, we define Y,, as the union of the nodes of GG in all the bags
descendant from bag u in 7 (including u) and Z,, as the nodes in all ancestor bags (including ).
The treewidth of G is tw = max,e, | Xy| — 1.

4.2 Labeling

We define another way of representing the set of feasible solutions. Each node v € V can be
associated with a nonempty set A(v) of at most p labels in [1,p-n] that identifies the cliques that
should cover v after correcting G. Figure 5 provides an example. Two nodes that share the same
label belong to the same clique and must be connected by an edge. Conversely, if they do not
share a label, they never appear in the same clique and should not be connected by an edge. An
edge (u,v) belongs to ¢ cliques if nodes v and v share ¢ labels.

Given a labeling of the graph G, we can deduce which edges should be added or removed to
transform G into a graph composed of cliques. Then, we can check if no node belongs to more
than p cliques and if no edge belongs to more than ¢ cliques.

Figure 5: Labeling example with p = 2 and ¢ = 1. One edge is removed (as there is no common
label for u and w) and one edge is added to complete the clique numbered with the label 2.

Definition 2. Let X C V, a pg-labeling of X is a function \ associating each vertice of X to a
nonempty subset of at most p integers of [1,p-|X|] (called labels). We write A=1(l) the set of
nodes of X labeled with | (in other words, | € A(v)) and A\=(t) = N A7L(1) for any tuple t of

let
labels.
This labeling is feasible if, for every (q + 1)-tuple t of labels,
A is

A7L(t)| < 1. The weight w()) of

w(A) = [{u,v € X%, u # v such that (u,v) € E and \(u) N \(v) = 0}
+ H{u,v € X% u # v such that (u,v) € E and M(u) N \(v) # 0}
If X\ is not feasible then w(\) = +o0.

Property 1. The edit distance of G = (V, E) to Cp 4 is ; mll)? )\w()\).

If no ambiguity is possible, we will use the word labeling instead of pg-labeling. For readability,
we also use the following notations: given two (possibly equal) sets X and Y, we define

e w(A, X,Y) as w(A) restricted to the couples of X x Y
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e a(X,Y) as |[{(u,v) € X x Y,u # v such that (u,v) ¢ E}|
e 7(X,Y) as |[{(u,v) € X x Y,u # v such that (u,v) € E}|

Note that, if X NY = 0, we have w(\, X,Y) < |X|- Y] and a(X,Y) +r(X,Y) = |X]| - |Y].

4.3 Main Idea of the Algorithm

The dynamic programming algorithm searches for a minimum weight labeling of V. Let u be a
bag of a tree decomposition of G. Given a labeling A of X, we recursively compute the optimal
labeling of Y,, that extends A. By enumerating all ways of labeling X,,, we get the minimum weight
labeling of Y,,. This enumeration is FPT with respect to tw and p as there are at most tw + 1
nodes in X, and p- (tw + 1) possible labels for each node. By applying this technique on the root
bag, we obtain an optimal labeling of G.

However, the labeling of X, is not sufficient for the recursive algorithm. Let’s say we are given
a tree decomposition with a bag u1, the sole child bag us of uy, with X,,, = {v,w}, X,, = {w} and
Y, = {w,z,y} (and thus Yy, = {v,w,z,y}). Assuming ¢ = 1,p = 2 and we want to compute the
minimum weight labeling of V,,, extending A(v) = {1,2} and A(w) = {1, 3}. A recursive algorithm
would compute the minimum weight labelings of Y,, extending A’ for some labeling A" of X,,.
However, by losing the memory of A(v) = {1, 2}, we may accidentally propose to label = or y with
{1, 2} and this would not result in a feasible labeling of Y,,, as ¢ = 1, which implies that |A71(1,2)|
should be lower than 1. Thus, in addition to A\, we must propagate all the (¢ + 1)-tuples ¢ of labels
with [A7H(t)| = 1.

Moreover, assuming v and x are given the same label 1 but are not linked, we have to add
an edge and increase the weight of the label by one. This means that, in some way, we have to
propagate upward the fact that x is labeled with 1.

The next part provides an important result proving that the quantity of information that should
be propagated is FPT in tw and p.

4.4 Preliminary Results and Definitions
4.4.1 Renumbering Labelings

We first reduce the number of labels of a set X C V. Given a labeling A of V, we can assume,
without loss of generality, that the labels in X belong to [1,p|X|]. Indeed, we can renumber all
the labels without changing the corresponding set of added and removed edges. Two labelings A
and A of V are equal if there exists a permutation o of [1,p|V|] with X (v) = {o(])|l € A(v)} for
every node v € V.

4.4.2 Continuous Labelings

We prove here that there exists an optimal labeling in which no label skips a bag.

Definition 3. A labeling A of V is said discontinuous if there exist a bag v and a label | such that
AT N X, =0, A7) N (Y \XL) #0 and A71(1) N (Z,\X.) # 0. Otherwise, the labeling is said
continuous.

Lemma 2. Given a discontinuous optimal labeling A of V', there exists a continuous optimal

labeling X' of V' such that max N1 < max [A"H1)].
g\ of ze[u,pwn]' DOl < lE[[l,p|VH]| ()]
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Proof: Let A be a discontinuous labeling such that there exist k couples of bag and label satisfying
the property in Definition 3. Let [ and w be such a couple. As at least two nodes are labeled
with I, and as there exist n - p labels, there exists an unused label I’. We consider the labeling
N equal to A except that the label [ of every node in v € Y, is replaced with I’. Note that

max _[N7H(l,)| < max (AT,
la€[1,p|V]] la€[1,p|V]]

For readability, we write X = X,,,Y = Y,\X, and Z = Z,\X,. As no label is changed in
any node of X, Z and Y\A71(l) and as no node of X is labeled with [, the replacement of [ to
I' only affects the appearance and disappearance of edges between Y N A~1(l) and Z N A~1(1).
Consequently, w(N) —w(A) <wN, Y NATYHD),ZN A1) —w\, Y NATL(D), Zn A7L(D)).

By definition of the tree decomposition, there is no edge linking Y and Z, otherwise at least one
node of those sets would be in X. Thus w(\, Y NATL(1), ZNA"L(1)) = [YNATL(D)]-|[ZNAL(1)]. As
W\ Y AT, Z0 A7) < Y N AT )| 1Zn A1), we have w(N) —w(X) < 0. By optimality
of A\, then )\ is also optimal.

Note that the labeling A’ contains only k — 1 couples of bag and label satisfying the property
in Definition 3. We operate again this transformation until this number falls to 0. a

4.4.3 Size of A\71(])

We now consider an optimal labeling and prove that the number of nodes labeled with a same
label I depends only on tw and p. To do so, we demonstrate some intermediate lemmas. Lemma 3
identifies for each label [ a special node y; labelled with [ that is one of the deepest nodes in the
tree decomposition. The labels are renumbered to be ordered from the deepest to the highest. The
main argument in this section is that we can derive a recurrence relation between the number of
nodes sharing a label with y;, and the number of nodes sharing a label with ¥y with I’ <. To do
so, we split these sets of nodes into a partition, as done in Definition 4. In Lemmas 4, 5 we prove
the recurrence relation and we use it in Lemma 5 to show the upper bound.

Lemma 3. There exists an optimal labeling A such that we can partition the labels of G into p
consecutive intervals L = [1,14], Lo = [lh +1,12], ..., L, = [lp—1 + 1,1,], with p < n-p, such that
for every i € [1, p], there exist a node y; and a bag u; € T satisfying the following properties

1. y; is labeled with every label in L; but no label in L; for j > i,
2. for alll € L, (Yy,\Xu,) N A7) = {ui},

Proof: Let A be an optimal labeling. Let [ be a label such that A=1(1) # ), we first show that
there exist couples (y,u) containing a node y and a bag u € 7 such that V;,\ X, N A71(l) = {y}.

There exists at least one forget bag u that forgets a node y labeled with [. Indeed, the root
bag is empty and every node must appear in at least one bag of the decomposition. From all the
couples (u,y) satisfying that property, we keep a couple (u,y) maximizing the depth d; of u in
the decomposition. Then no descendant of w is a bag that forgets a node labeled with I. As a
consequence, a node in Y, \{y} is either not labeled with [ or is in X,. Then Y,\ X, NA7(]) = {y}.
Let S be the set of nodes y in the kept couples.

We now build the intervals L;. We sort S by decreasing value of the depth d;. We then remove
from S every node y such that A(y) is covered by the labels of the preceding nodes in S. We set

i—1

y; as the i-th node in S and L; = A(y;)\ U A(y;). Finally, we renumber the labels so that each L;
j=1

becomes an interval. O
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Definition 4. Let i € [1,p]. We write Z; the set of nodes in Z,,\X.,, labeled with at least one
label in Ly, that is: Z; = Zy\Xu, NUjep, A1 (D). Let t C Xy;) with tOL; # 0 and k € [Jt],p]. We

define with Z(Z +,k) the nodes in Z; labeled with every label in t and no label in \(y;)\t, and labeled
with exactly k labels lower than max(L;).

Remark 2. Note that k cannot be less than |t|. Indeed, by Lemma 3, y; is not labeled with any
label in L for j > 4. As L1, Lo, ..., L, are consecutive intervals, we have that every label in t is
lower than max(L;).

Figure 6 gives an illustration of y;, Z; and Z(i,t7k).

ZOXtHn U Ao
lex(y)\t

Yy \ X,

Zu \Xu,

Figure 6: Illustration of the definition of ;, Z; and Z(i’t,k). The node y; is the sole node in Y,,,\ X,
labeled with any label in L;. The gray set contains the nodes labeled with ¢ and at least one label
of A(y) not in ¢. By definition, this set and Z(i7t7k) are disjoint. It contains instead all the sets
Z(p iy where t C t'.

By Lemma 3, any node labeled with I € L; is either y;, in X, or in Z;. The purpose of the
rest of this section is to prove that |Z;| depends only on p and tw. This way, we deduce that the
size of A=1(I) depends only on p and tw.

Given a fixed subset ¢, the sets Z; ) form a partition of Z; N A‘l(t)\UleMy)\t A7L(1) that
consists of the nodes of Z; labeled with ¢ and no label in A(y)\t. Thus, the sets Z(i,t,k) for all
t C A(y), are a partition of Z;.

p
Z; = L‘H L‘HZ(i,t,k)

tCA(y:) k=|t|
tNL;#)

Consequently, we focus on proving that the size of |Z(i,t7 k)| is bounded by a function depending
on p and tw.

Note that, according to the definition of y; in Lemma 3, ¢ cannot contain a label in L; for any
j > 4. Thus ¢ is either included in L; or contains some label in L; for some j < ¢, in which case

min(t) € L; for some j < i. This is why we consider these two possible cases with Lemmas 4 and
5.

Lemma 4.

p
Z Z |Z(i,t,k)| <tw+1

tCL; k=|t|
t#£0
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Proof: For readability, let X = X,,,, Z = Z,,\ Xy, and Y = Y, \(Xy, U {y:}). We build a
secondary labeling \' by changing the labels in L; of y; to unused labels.
The weights of the two labelings are

w(A)
w(N)

wAXUYUZ) 4w\ {y},Y) o\ {y:}, XU Z)
wN, XUYUZ)+wN {y:},Y) +wN, {yi}, XU 2Z)

As no label in X, Y or Z is changed, w(A\, X UY U Z) = w(N, X UY U Z). By definition of y;,
no node of Y is labeled with any label in L;, thus w(X, {y;},Y) = w(N, {y;},Y).
Let X; and Z; be respectively the nodes of X and Z labeled (in \) with some label in L; but
no label in A(y:)\L;. Note that |Zi| = X 3 |Za.oml-
tCL; k=|t|
t£0
Let v be anode in (XUZ)\(X;UZ;). Then either v is labeled (in A) with some label in A(y;)\ L,
or v is not labeled with any label in L;. Only the labels of y; in L; are replaced then, in the two
cases, A(y;) N A(v) # 0 <= XN(y;) N N(v) # 0. Thus, w\, {y:}, XU Z) —wN, {y:},XUZ) =
UJ()\, {yz}; Xl U Zl) - w()\’, {y1}> X1 U Zz)
By optimality of A:

w(A)
w, {yi}, Xi U Zi)

w(X)

<
<wW\ {y}, X, U Z)

For any node v € X;UZ;, A(y)NA(v;) C L; and is not empty, thus w(A, {y;}, X;UZ;) = a({y:}, XiU
Z;). As, in X, all the labels of y in L; are replaced, N (y) NN (v;) = 0. Consequently, w(N, {y;}, X;U
Zz) = T({yi},Xi @] Zz)

a({y:}, Xi U Z;)
a({yi}7 Zi) + a({yi}a XZ)

As a({yi}, Xi) +r({wi}, Xi) < | X5

a({yi}, Zi) +2-a{yi}, Xi) < r({yi}, Zi) + | Xi]

r({u) XU 2)

<
<r({yi}, Zi) + r({yi}, Xi)

As 7 is a tree decomposition, as Z; C Z,,\ X, and y; € Y,,,\X,,, there is no edge between Z; and
Yi
|Zil + 2 a({yi}, Xi) < | X
1Zi| < [Xi]
Finally, as X; C X and |X| < tw + 1, the lemma follows. O

Lemma 5. Let ¢t C A(y;) withtNL; #0 and t ¢ L;, let k € [|t|,p] and let j € [1,i— 1] such that
min(t) € L;.

Zgaw <Y Z | Z . )]

t'CA(y;) k=1t
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Proof: Let v € Z(i,t,k)- Then v is labeled with some label in L;. As a consequence, v € Zj.

As \(v) contains k labels lower than max(L;) and at least one label in L; (not in L;), it contains
at most k£ — 1 labels lower than max(L;). Then, there exists ¢’ C A(y;) and k¥’ < k — 1 such that
OAS Z(j,t/,k’)- |

With the recurrence relation proved in Lemmas 4 and 5, we prove our upper bound.
Lemma 6. For cvery label | € L;, \=1(1) < (2P)P - p! - (tw + 1) + tw + 2.

Proof: By Lemma 3, there are three sets of nodes labeled with {: the node y;, the nodes in X,,, and
the nodes in Z;. There are at most tw+1 nodes in X,,,, we need to prove that |Z;| < (2P)P-p!-(tw+1).

Recall that, as y; is not labeled with any label in L; for j > ¢, then we are either in the case of
Lemma 4 or 5.

We prove by induction on k that, for every i € [1,p] and ¢t C A(y;), [ Zgiep| < (22)F71 - (k —
D (tw + 1).

If k=1, as k > [t| then [t| = k = 1. Consequently, by Lemma 4, |Z(; 1 )| < tw + 1.

We now prove the property for k + 1 assuming it is true for k. Either ¢t C L; and [Z(; 4 j41)] <
tw—+1, by Lemma 4, in which case the property is proven. On the other hand, we can use Lemma 5.
Let j < ¢ be such that min(t) € Lj;.

k
1 Zi k)| < Z Z | Z (00
|

M) k=t
By induction, for every ¢’ C A(y;) and k' < k.

|Z(jrgen| < (20)570 - (k= 1) (tw + 1)

k
|Z(i,t,k+1)‘ < Z Z (2P)F L (k= 1) (tw + 1)

t'CA(y;) K'=It']
There are at most 27 subsets of A(y;) and k values for k. Then

\Zarin) <27 k- (2P)F1 (k= 1! (fw + 1)
| Ziepry| < (2P)F - KL (tw + 1)

Thus the property is proven for all value of k. As k < p, then

Ziery| < @771 (p=1)! - (tw + 1)

~ P
Finally,as Z; = | W Zun

tCA(y:) k=[t|
AL A0
|Zi| < (2°)7-p! - (tw + 1)
Then, the lemma follows. a

With Lemmas 2 and 6, we are now able to build a dynamic programming algorithm working
in time FPT with respect to tw and p.
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4.5 Dynamic Programming Algorithm
4.5.1 State of the Dynamic Programming Algorithm

We define the following state containing all the necessary information that should be stored and
propagated to find an optimal labeling. For readability, let o = (2P)P - p! - (tw + 1) + tw + 2.

Definition 5 (States of a bag). Given a bag u, we define with S(u) the set of tuples containing:

e a pq-labeling \ of X,;

o a mapping & from [1,p|X.l] to [0,0];

e a boolean mapping § from [1,p|X,[]?*! to [0,1].

The mapping k corresponds to the number of nodes in Y,, that should be labeled with the same
labels as in X,,. The boolean mapping ¢ determines whether, for every (¢+ 1)-tuple of labels, there
is a node in Y,, labeled with this tuple.

Lemma 7. Let S = Upqg S(u), then the number of states in S is FPT with respect to tw and p.

Proof: There at O(n) bags in the tree decomposition, then |S| = n-(tw+1)P (WD . (g4 1)p-(twtl).
o (1) s

We now define the weight of a state.
Definition 6. Let (\ k,0) € S(u), then L(u, A\, k,0) is the set of labelings A of Y, such that
1. A is feasible, continuous and for every label I, |A=1(1)| < o;
2. ifw e Xy, AMw) = AMw);
3. for any label | of a node in X, |[A=1(1)| = x(l);
4. for any (q+ 1)-tuple t of labels of the nodes in X, |[A=1(t)] = §(t).

Let L*(u, A\, k,0) be the set of labelings L(u, A\, k,8) with minimum weight w*(u, A\, k,0) (as stated
in Definition 2). We set this value to +00 if L(u, A\, k,0) is empty.

First, we prove that A\, k and ¢ should be coherent.

Lemma 8. Let (A, k,8) € S(u). If there exists | such that k(1) < [A"(1)| or a (¢ + 1)—tuple t of
labels in X, such that 6(t) < [A\"1(t)| then w*(u, \, k,d) = +00.

Proof: Obviously, there is no labeling in L(u, A, &, d). O

We consider in the following subsections only states of S(u) such that the assumptions of
Lemma 8 are not satisfied.



80 Barth et al. Correcting a Graph into a Linegraph Minimizing Distance Edition

4.5.2 Root and Leaves Cases

In this part, we write \g, kg and dp the functions A, x and 6 when |X,| = 0. We recall that 7 is a
nice decomposition, and then that the root and the leaves are empty.

Lemma 9. Let r be the root of T, the edit distance of G to Cp, 4 is w*(r, A, Kg, Ip)-

Proof: AsY, =V and as X, = (}, any feasible continuous labeling A of G satisfying, for every label
I, JA=1(1)| < o belongs to L(r, Ay, rg,dp). By Lemmas 2 and 6, there exists an optimal labeling in
L(r, Mg, kg, 0p), consequently, the optimal weight is w*(r, Ag, kg, 0g)- O

Lemma 10. Let u be a leaf of T, then w*(u, Ay, kg, dy) = 0.

Proof: X, and Y,, are empty, thus the empty labeling is in L(u, Ag, kg, 0yp) and has a weight 0. O

4.5.3 Forget Bag

Let u be a forget bag, with a child v’ in 7 and v such that X,, = X, U {v}. We consider the state
(u, A, K, ) not satisfying the assumptions of Lemma 8.

Let S’ be the set of states (u/, N, k’,§’") where X' coincides with A on X, where x’ coincides
with x on the set of labels (J,,cx, A(w) and where ¢’ coincides with § on the same set of labels.

Lemma 11. w*(u, A\, k,d) = mig w*(s').
s'es’

Proof: Let A be a labeling of L*(u,\, k,0). We show there exists a state s’ € S’ such that
A € A(¢'). Indeed, we consider s’ = (u/, N, k’,8’) € S" where X (v) = A(v), where, for every label
I € Aw)\Uyex, AMw), &'(1) = |[A71(1)] and where, for every (g + 1)-tuple ¢ of labels of X, U {v}
containing at least one label in A(v)\ U, ¢y, A(w), then §'(t) = [A"(t)|. By definition of S" and
s and as A € L*(u, \, k, ) then A satisfies the constraints of Definition 6 for the state s’, and then
A € A(s"). Consequently w*(u, A, k,0) = w(A) > w*(s’) > miél w*(s’). This shows also that if, for
s'es’

all s € 8", w*(s") = +oo then w*(u, A, k, ) = +o0.

On the other hand, we now consider the state s’ € S’ such that w*(s") = I;lelg/ w*(s"). Let A’ be
a labeling of A*(s’). We show that A’ € L(u, A, k,d). This labeling is feasible and continuous and

no label is associated to more than o nodes. Let w € X, then A'(w) = X (w) = A(w). Considering

I € A'(w), then |[A~1(1)] = #’(l) = k(l). Finally, given a (¢ + 1)-tuple ¢ of labels in |J A(w), then
wEX,y,

|[A=(t)] = 8’ (t) = 6(t). Then A’ € L(u, A\, k,6) and w*(u, \, k,0) < w(N) = w*(s') = migl w*(s).
s/e ’

This also shows that, if w*(u, A, k,d) = +oo then, for all s € §', w*(s') = +c0. O

4.5.4 Introduce Bag

Let u be an introduce bag with a child «’ in 7 and v such that X,, = X, U {v}. We consider the
state (u, A, k, d) not satisfying the assumptions of Lemma 8.

Lemma 12. Assuming there exists | € A\(v) such that \=1(1) = {v} and (1) > 1 then w*(u, \, K, ) =
+00.

Proof: Let A € L(u,\, k,0), then |[A"1(I)] = x(I) > 1. Thus, there exists a node w # v of
Y, labeled with [. This node is not in X,s, indeed A(w) = A(w) and A\7'(l) = {v}. Thus
w € Y,\Xy = Yy \Xuw. Since v € Z,\ X, we deduce that A is discontinuous and there is a
contradiction. As a consequence L(u, A, &, ) is empty and w*(u, A, k,9) = +oo. a
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Lemma 13. Assuming there exists | € A(v) with k(1) = 1 and a (q + 1)-tuple t of labels in
Uwex, Mw) with 1l € t, t & \Nv) and 6(t) = 1 then w*(u, A, k,§) = +o0.

Proof: Let A € L(u,\, k,0). Then A=(l) = k(I) = 1. Asl € A(v) = A(v), then v is the sole
node labeled with {. In addition §(¢) = 1, thus, there exists a node labeled with t. As ¢ ¢ A(v),
that node is not v. Finally, because [ € t, there is a contradiction. As a consequence L(u, \, &, )
is empty and w*(u, A, k,§) = +00. a

In this part, we need to manage the labels of v carefully. Contrary to the forget bag case, we
cannot simply remove v from the labeling of X, to get a labeling of X,,. We assume none of the
hypotheses of Lemma 12 or 13 are satisfied (in addition to Lemma 8). We renumber A so that,
first, for every w € X/, I € A(v) and I’ € A(w), then I > I’ and, secondly, there are no labels [ and
I’ such that [ < I, A=1(l) = 0 and A\=1(I’) # (. In other words, we use the smallest labels for X,
first and then for v. We now define two transformations between labeling of Y,, and Y.

Let (v', N, k’,d") be the following state of S(u'):

e for every w € Xy, N(w) = Aw)

k(1) —1ifl € A(v)

k(1) otherwise

o foreveryle J Aw), &'(l) = {
weX

0if t C M(v)

e for every (¢ + 1)-tuple ¢ of labels in | A(w), §'(t) = {5(t) therwi
otherwise

weX
Definition 7 (From Y, to Y,/). Given a labeling A € L*(u, A\, k,0), we build a labeling A’ of Yy
by removing v from A and by renumbering the labels of Y, so that they vary between 1 and p-|Yy,|.
We write f(A) = A'.
More formally, f is the following procedure

o Ifl<p-|Yyl| then N71(1) = A=) N Y, .

e Ifl € p- Y|+ 1,p-|Yul|+p] and A=2(1) N Y, # 0, then there exists an unused label

I' < p-|Yu| in Y (because a mode can have at most p labels), then, N'=1(I') is currently
empty. We then set N'=1(I') = A= (1) N Y, .

Definition 8 (From Y, to Y,). Given a labeling A" € L*(u/, N, k', 4"), we build a labeling A of Yy,

by adding v, labeled with \(v) by paying attention to the special case where there exists | € A(v)

such that A'=1(1) # 0. We write g(A') = A’.
More formally, g is the following procedure

e For every | such that | & \(v) then A=1(1) = A'=1(1)

e For every | such that | € A(v) and k(1) # 1 then A=*(1) = A'~1(I) U {v}

o W)= (hla,- o i) and k(L) = 1, then we set A= (p- |Yor| +4) = A7} (1) and A=} (1;) =
{v}

Example 1. We consider the example of Figure 7. On that example, with p = 2 and q = 1,
A={v—={2,3},va = {1,2}} and k ={1 = 1,2 = 3,3 = 1}, we have A’ = f(A) and A = g(A’).

Note that, when transforming A’ back to A, we have to label v with 2 and 3 as A must coincide
with A on X,,. Then the label 3 on vs and vy must be renumbered.
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® (=) () ()

A 23 1,2 2,7 5,7
A 1,2 2,3 5,3

U u’

Figure 7: From top to bottom, this figure contains a graph G, a (2,1)-labeling A of vy, vs,v3 and
v4, & (2,1)-labeling A’ of vs,v3 and vy, and a decomposition 7 of G with the introduce bag u on
the left, with v = v; and X,y = {v2}.

The six following lemmas from Lemma 14 to 20 are used to prove that f(A) € L(u', N, k', d")
if A € L(u, A, k,0) and, conversely, g(A’) € L(u, A\, k,0) if A" € L(u/, N, K, ).

Lemma 14. If A € L(u,\ k,9) and A" = f(A) or A € LW/, N,K,8") and A = g(A’) then A
is feasible and continuous, with A=*(l) < o for every label | ¢ Uwex, Aw) if and only if A is

feasible and continuous, with N'=*(1) < o for every label I & |J, e , N (w).

Proof: We deduce that result from the fact that, in the two cases, A’ consists in A renumbered
after the deletion of v. a

Lemma 15. If A € L(u, A\, k,0) and A’ = f(A) or A € L(u',XN,k',8") and A = g(\') then for
every w € Xy, AMw) = A(w) = Mw) = N (w) and A(v) = A(v).

Proof: We consider on the first hand that A’ = f(A). Let w € X,y and | € A(w). Then
A € L*(u, A\, k,6) and A(w) = A(w). Recall that we renumbered A so that we use the smallest
possible labels in X,,: if I € A(w), ! € [1,p|Xw|]. As | Xw]| < |V |- We have I < p|Yy/|. Due to the
first rule of Definition 7, A’~1(I) = A=1(I) N Yy, then [ € A’(w). This implies that A(w) C A’(w).
Given now I’ € A'(w) with I’ € A(w), we show there is a contradiction. If A’~1(I") was defined
with the first rule of Definition 7, then A’~*(I') = A=}(I’) NY,,. Then w € A~1(I') which is a
contradiction. Then it was defined with the second rule of Definition 7. There exists a label [ that
greater than p|Y,|+1 such that A’~1(I') = A=1(1)NY,,. Then w € A=1(l). As explained previously,
if w € A=1(I) then [ < p|Y,/| and there is again a contradiction. Consequently, A(w) = A’(w).
Finally, as A(w) = Mw) and A(w) = X (w), the desired result is proved.

On the second hand, we consider the case where A = g(A’). Due to Definition 8, we have
A(v) = A(v). Let w € X, and | € A'(w). If 1 € A(v), or I € A\(v) and k() # 1, then A=1(l) C
A'=1(1) then I € A(w). Otherwise I € A\(v) et k(1) =1. As A’ € L(uv/, N, x’,8") then A'(w) = N (w),
then | € XN(w) = Mw). However [ € A(v) then x(I) = 1 < |A7%(I)|. This is a contradiction
as the hypotheses of Lemma 8 are not satisfied. This implies that A’(w) C A(w). Given now
I € A(w). Then [ < p|Y,/|. Indeed, on the contrary, A=1(l) is defined with the third rule of
Definition 8. In that case, there exists a label I’ € A(v) with (') = 1 and A~1(l) = A’~1(I’), then
I € N(w) = N(w) which is a contradiction (using the same previous argument). Consequently
I <p|Yuw| Asw e A71(l) then A=1(l) # {v} which implies that A=!(l) is defined with the first or
second rule of Definition 8. In the two cases | € A’(w). Consequently, A(w) = A’(w). Finally, as
Alw) = Mw) and A(w) = N (w), the desired result is proved. O
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Lemma 16. If A € L(u, A\, 5,0) and A" = f(A) then, for every label I in \J, ey , A'(w), N7(1) =
A=Y (1) N Yo ’

Proof: Otherwise, A’~1(l) is defined with the second rule of Definition 7. In other words, there
exists i € [1,p] such that A’~1(I) = A= (p|Yu|+i)NY.. Asl € Uwex , A'(w), there exists a node
in w € X, such that w € A=Y (p|Yy/|+4). By Lemma 15, A(w) = /\(w)? therefore p|Yy | +i € AMw).
Given the fact that A uses the smallest possible labels, p|Yy/| +i € [1,p|Xw/|]. As | Xuw| < |V,
there is a contradiction. ad

Lemma 17. IfA € L(u, A, k,0) and A" = f(A) then, for every labell of U,ex , A'(w), [A~L(D)] =
K'(1).

Proof: By Lemma 16, A’~1(I) = A=1(l) N Y,s. Moreover, as A € L(u, \, x,9), |[A=1()| = x(1)

e Case 1 : If | € A\(v) then v € A~1(I). Because v € Y, then |A"71()| = A=Y (1) N Y| =
AT — 1 = k(1) — 1 = K'(1).

o Case 2 : Otherwise, [A""1(1)] = [A1(1) N Yar| = JA1(1)] = &(1) = #'(1).

Lemma 18. If A’ € L(u/, X', /,0") and A = g(A') then for every labell of U, x. AMw), A7 (1) =
k(1).
Proof: As A" € L(u', N, x',0"), if | € U, ex, A(w), A=) = K (1).

We can consider the three following cases

e Case 1 : If I € A(v) then, /() = k(I) and, by Definition 8, |[A=1(1)] = |[A’~1(l)|. Then

AT (D] = &(D).
e Case 2 : If I € A(v) and k(l) = 1 then, by Definition 8, A=*(l) = {v}. Consequently
IATH(D)] = &(D).

e Case 3: If Il € A\(v) and k() # 1 then A71(I) # {v} (as we do not satisfy the hypotheses of
Lemma 12). Then! € J,ex , A(w) = U,ex,, A'(w) by Lemma 15. Consequently [N=HD)| =
/(). Therefore [A'~1(I )U{U}\ |A’~1(1)|+1. Finally, by Definition 8, A=1(l) = A’~L(I)U{v}.
Then [A7(1)| = £/ (1) + 1 = &(1).

|

Lemma 19. If A € L( A K,0) and AN = f(A) then, for every (q + 1)-tuple t of labels in
U Nw), [AH@)] = 0'(2).
weX s
Proof: By Lemma 16, for [ € ¢, A’~1(I ) =A"Y)NY,. Then A'71(t) = A~ (t) N Y.
Moreover A € L(u, A, x,d), then |[A=1(¢)| = 6(t). We can then consider the two following cases
)
at

e Case 1: if t ¢ A(v) then &'(¢ (t). As A € L(u,\ k,d) then A(v) = A(v) D t, thus
v & A~Y(t), which implies that A=1(t) N = A_l(t). Consequently [A71(t) N Y| =
ATH(B)] = 0(t) = 0" (D).

e Case 2 : if t C A(v), then §'(t) = 0. In addition, as we do not satisfy the hypotheses of
Lemma 8, §(¢) = 1. Then |[A~!(¢)| = 1 and thus A~!(¢) = {v}. Consequently |[A~1(t)NY,/| =
0=20(1).

= (¢
A
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|
Lemma 20. If A’ € L(u',N,k',0") and A = g(A’) then, for every (q + 1)-tuple t of labels in
Uwex, Aw), [ATH ()] = o(2).

Proof: Note that ¢’(t) is defined if and only if | € |
N e L(u/ N, K, 6, [N7Lt)| =6 ().
We consider the following cases:

wex,, Nw) for all [ € ¢. In that case, as

e Case 1: ift C A(v), as we do not satisfy the hypotheses of Lemma 8, §(¢) = 1.

— Case 1.1 : we first assume that A=1(l) = {v} for some [ € ¢t. Note that &’(¢) is not
defined. As we do not satisfy the hypotheses of Lemma 12, x(I) = 1. By Lemma 18,
|A=(l)| = 1. Consequently [A=1(t)| = [{v}| =1 =4(t).

— Case 1.2: we now assume that A\=%(l) # {v} for every l € t. Thent C |J A(w). Con-

weX,,
sequently, 6’(¢) is defined and set to 0 and A’~1(¢) = ). In addition, as the hypotheses
of Lemma 8 are not satisfied, (1) > [A\71(l)| > 1 for every | € t. Thus, A~1(l) is defined
with the second rule of Definition 8, |[A~1(¢)| = |[(A'"1(¢) U {v}| = [{v}| = 1. Thus
A1 (E)] = o(t).

e Case 2 : in this case, we assume that ¢ ¢ A(v).

— Case 2.1 : If I € A(v) and A7Y(l) = {v} for some [ € t then, as we do not satisfy the
hypotheses of Lemma 12, k() = 1. In addition, the hypotheses of Lemma 13 are also
not satisfied, 6(¢) = 0. By Lemma 18, |[A~1(I)| = 1 then A=!(I) = {v}. Due to the fact
that v ¢ A=1(I’) for some I’ € ¢, [A71(t)] = 0=4().

— Case 2.2: If I ¢ \(v), orl € A(v) and A=1(1) # {v} for all | € ¢, we deduce with the same
reasoning used in Case 1.2 that ¢'(t) is defined. Ast ¢ A(v) then §(t) = &’(¢). Moreover,
by Definition 8, A=1(l) = A’~(I) U {v} or A’~1(I) (depending on whether | € A(v) or
not). Asl’ ¢ A(v) for some I’ € t then | ) A=L(1)| = |[A7L(t)| = |A7L ()| = 8'(¢) = §(¢).

let

d

Lemma 21. w*(u, A\, x,8) = w*(u/, N, K, 8") + w\, {v}, Xu) + > (k(1) = |[(AED)]).
lex(v)

Proof:
By Lemmas 14, 15, 17, 18, 19, 20 and 21, if A € L(u, A, k,d) and A’ = f(A), then A’ €
L(u', XN, k',¢"). On the other hand A’ € L(v/, N, x’,8’) and A = g(A’) implies that A € L(u, A, &, ).
In the two cases, the weight of A equals the weight of A’ plus:

o w\ {v}, Xu)

o w(A {v}, Y, \X,). This weight may be calculated with A and k. There are £(I) nodes labeled
with [ in A. We must remove from this set the nodes in X, labeled with [ (including v), in
other words |A~!(1)| nodes. Moreover, by definition of a decomposition, G contains no edge
from v to a node in Y\ X,. Thus, if they have a common label, we must add each of those

edges. Thus this weight equals  >_ (x(l) — [A"X()]).
lex(v)
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Consequently

w(A) = w(N) +w {v}, Xu) + D (1) = (A D)

lex(v)

Assuming A’ = f(A), for some A € L*(u, A, , )

w*(u, A, K, 6) = w(A) = w(A/) +w(A, {v}, Xu) + Z (r(1) = |()‘_1(l)|)
lex(v)

> W (', N K 8) +w {v), Xu) + D () = (AT O
IEA(v)

Assuming A = g(A’), for some, A" € L*(u', N, k', 0")

W (u, A, 5,0) < w(A) = w() +wh {vh, Xo)+ Y (5(0) = (AT @)

lex(v)

= w (W, N K8+ wN {o}, Xu) + Y (kD) = (AT
lex(v)

4.5.5 Join Bag

In this section, let u be a join bag in 7 with children v’ and uv”. We recall that X, = X = Xu».
We consider the state (u, A, k,d) not satisfying the assumptions of Lemma 8.
Let S’ be the set of couple of states (u/, A\, k’,0") and (u”, A, £”,§”) such that:

e given / € g{ Aw), &'(1) + &7 (1) — A7L(D)| = &(1)

e given a (¢ + 1)-tuple ¢ in ux Aw), & (t) + 67 () — (A1) = 6(¢)

Lemma 22. w*(u, A, ,0) = (mingy oyes w*(s") +w*(s”)) —w(A).

Proof: Let A be a labeling of L*(u, A, k,5). We consider the states s’ = (u/,\,k’,d’) and s” =
(u”, X\, k7, 0”) such that, for every label € |J A w), x'(1) = [A1(1)NY,| and " (1) = [A~L(]) N
WE X,
Y,»| and where, for every (q + 1)-tuple ¢ of labels in |J A(w) then &'(t) = |[A=1(¢) N Y,/| and
weX,
87 (t) = |A71(t) N Y,»|. We easily prove that (s',s”) € S”.

We consider A" = Ay, and A” = Ajy,,. We renumber the labels of A’ (respectively A”) in the
range from 1 to 2|Y,| (respectively 2|Y,~|). Note that the labels of X, are not renumbered as A
and A coincide on X,,: they vary from 1 to 2|X,| and |X,| < || and | X,| < |Y,»|. Due to the
definitions of ', ¢’, k7 and §”, we check that A’ € L(u/,\,x’,¢") and A” € L(u”, \,K”,87).

Note that, due to the properties of the decomposition, Y, NY,» = X,. Thus weights w(A),
w(A") and w(A”) equal the following sums

w(A) =w(A, X)) + w(A, Xy, Yo\ X)) + 0N, Y\ X)) + w(A, Xy, Vi \ X)) + w(A, Yo \Xy) + w(A, Yo, V)
w(A) = w(N, X)) +w(N, Xy, Yo\ Xy) + w(A, Y\ Xy)
W) =w(N, X)) + w(A, Xy, Yo \Xu) + w(A”, Y\ Xy)
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First A, A’ and A” coincide on X, with )\, secondly, A and A’ coincide on Y, and, thirdly, A and
A” coincide on Y,». Finally, w(A,Y,,Y,») > 0, then

w*(u, A, Kk, 0) = w(A)
> w(A) +w(A”) —w(N)
>( min w"(s') +w"(s”)) —w(N)
(s',8")€S’

We now consider two states (s,s”) € 5" such that w*(s') + w*(s”) = (miny o)es» w*(s") +
w*(s”)). Let A" € L*(u/,\,/,¢") and A” € L*(u”, A\, k”,8”). We build a labeling A of Y, as
follows: foreveryl e |J A'(w), A71(l) = A~'(l)andforeveryle |J A’(w)\ U A" (w),

weY,,r WEY,» \ Xu WEX,,
A=Y+ p|Yur| — plXu]) = A”71(I). Note that the labels of A belong to [1, p|Y,|] and that there is
no common label between nodes in Y,/\ X, and Y,»\X,. We show that A € L(u, A, k,9).

This labeling is feasible and continuous and no label is associated to more than ¢ nodes. Indeed,
if we restrict the labeling on Y, and Y,», the property is true, and there is no common label in
Y\ X, and Y,»\ X,,.

The constraint 2 of Definition 6 is satisfied as A’ and A” coincide with A and A on X,,.

As AN e L*(u/,\,v',¢") and A” € L*(u”,\,K”,9”) then, for every l € |J A(w), the number of

wEX,,
nodes in Y, labeled with [ in A’ (respectively A”) is k’(1) (respectively x”(1)). Thus the number of
nodes in Y,, labeled with [ in A is then #'(1) + " (1) — [A"Y ()N X, | = &' (1) + &7 (1) — [A1()| = &(1])
by definition of S’. Thus Constraint 3 is satisfied. Similarly, the last constraint is satisfied. Thus
A € L(u, A K, 6).
And then w*(u, A, k,0) < w(A) = w(A) +w(A”) —w(A) = (ming oyes w*(s") +w*(s”)) —w(N).
O

4.6 Main Result
Theorem 4. ED-C, , is FPT with respect to p and tw.

Proof: By Lemma 7, the size of S is FPT with respect to p and tw. Assuming we can compute
w*(s) for every state s € S, by Lemma 9, we can deduce the edit distance from G to C, 4.

For every state s € S, we can check Lemma 8 in time O((p - (tw + 1))7+1).

If u is a leaf and s € S(u) then we can compute w*(s) in constant time by Lemma 10.

If u is a forget bag and s € S(u) such that v’ is the child of u, and, assuming w*(s’) is computed
for every s’ € S(u’), then, by Lemma 11, we can compute w*(s) in time O(]S’|) where S’ is the set
defined in that Lemma. We can check if s € S’ in time O((p - (tw + 1))7*1). As S’ C S, we can
build S’ in time O(|S] - (p - (tw + 1))9H1).

If w is a join bag and s € S(u) such that v’ and w” are the children of u, and assuming w*(s’)
and w*(s”) are computed for every s’ € S(u') and S” € S(u”), then, by Lemma 22, we can compute
w*(s) in time O(|S’|) where S’ is the set defined in that Lemma. We can check if (s/,s”) € S’ in
time O((p - (tw + 1))471). As S’ € S2, we can build S’ in time O(|S|? - (p - (tw + 1))7+1).

If u is an introduce bag and s € S(u) such that «’ is the child of u. We can check Lemma 12
and 13 respectively in time O(p) and O((p - (tw + 1))?*1). If the hypotheses are not satisfied and,
assuming w*(s’) is computed for every s’ € S(u'), we can build the state (v', X', &, ¢") considered
in Lemma 21 in time O((p - (tw + 1))9*1). We can then compute w*(s) in constant time.

Recall that, we built a decomposition with O(|V'|) bags. Thus, the complexity of the calculation
of w*(s) for every state s is, on the worst case, O(|V||S]? - (p - (tw + 1))?*!) which is FPT with
respect to tw and p. m|
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5 Conclusion

We present in this paper an approach to categorize the known results regarding graph membership
within a class of linegraphs. This classification allows us to identify the lack of results for specific
classes of linegraphs, notably the linegraphs of p-uniform and ¢-linear hypergraphs with p > 3 and
q € [1;p]. We establish that the membership problems are NP-complete for p > 3 and ¢ = 2.

Our classification allows us to address the graph editing distance problem concerning the classes
of linegraphs. While some results were known for certain classes, there were gaps in our under-
standing. Specifically, for class Cs 1, the linegraphs of simple graphs, the NP-completeness of the
editing problem had only been established when either adding or deleting edges was allowed, but
not in the general case. We prove that the editing problem for any class Cj, ; is NP-complete in
the general case, for any values of p and gq.

Finally, we proposed the first FPT-algorithm with respect to p and treewidth. This algorithm
is important because there cannot be an FPT-algorithm depending only on p. However, some
questions remain open.

e The complexity of determining whether a graph belongs to class Cp 3 for p > 3 and the
existence of an FPT-algorithm for the associated editing problems with respect to the number
of allowed editions k are still unknown.

e Our algorithm does not address the case where k£ and tw are fixed but where p and ¢ are
not. Omne can note that the maximum size of a clique after k editions is bounded if the
two parameters are. However, our dynamic programming algorithm is not polynomial with
respect to p and ¢, thus, we cannot reused it in this case. Possibly a first question that
could be explored is determining whether a graph with fixed treewidth belongs to C, 4 is an
NP-Hard problem. In that case, there is no XP algorithm with respect to tw and k. If the
recognition problem is polynomial, there is at least an XP algorithm consisting in enumerating
the O(n?*) possible editions of the graph and applying the recognition algorithm on each such
graph. Possibly an FPT algorithm could be derived from an algorithm solving the recognition
problem with fixed treewidth.
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