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Abstract. Gons and holes in point sets have been extensively studied in the literature.
For simple drawings of the complete graph a generalization of the Erdős–Szekeres theorem
is known and empty triangles have been investigated. We introduce a notion of k-holes
for simple drawings and survey generalizations thereof, like empty k-cycles. We present
a family of simple drawings without 4-holes and prove a generalization of Gerken’s empty
hexagon theorem for convex drawings. A crucial intermediate step is the structural
investigation of pseudolinear subdrawings in convex drawings. With respect to empty
k-cycles, we show the existence of empty 4-cycles in every simple drawing of Kn and
give a construction that admits only Θ(n2) of them.

1 Introduction

A classic theorem from combinatorial geometry is the Erdős–Szekeres theorem [19]. It states that
for every k ∈ N every sufficiently large point set in general position (that is, no three points on a
line) contains a subset of k points that are the vertices of a convex polygon, a so called k-gon. In
this article we focus on a prominent variant of the Erdős–Szekeres theorem suggested by Erdős
himself [18], which asks for the existence of empty k-gons, also known as k-holes. A k-hole H in a
point set P is a k-gon with the property that there are no points of P in the interior of the convex
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hull of H. It is known that every sufficiently large point set contains a 6-hole [23, 30] and that
there are arbitrarily large point sets without 7-holes [28].

Point sets in general position are in correspondence with geometric drawings of the complete
graph where vertices are mapped to points and edges are drawn as straight-line segments between
the vertices. In this article we generalize the notion of holes to simple drawings of the complete
graph Kn. In a simple drawing, vertices are mapped to distinct points in the plane (or on the
sphere) and edges are mapped to simple curves connecting the two corresponding vertices such that
two edges have at most one point in common, which is either a common vertex or a proper crossing.
In the course of this article, we will see that many important properties do not depend on the full
drawing but only on the underlying combinatorics, more specifically, on the isomorphism class of a
drawing. We call two simple drawings of the same graph isomorphic1 if there is a bijection between
their vertex sets such that the corresponding pairs of edges cross. Note that this isomorphism is
independent of the choice of the outer cell and thus only encodes the simple drawing on the sphere.

To study k-holes, we first extend the notion of k-gons to simple drawings of Kn. A k-gon2 Ck is
a subdrawing isomorphic to the geometric drawing on k points in convex position; see Figure 1(a)
for a depiction of an n-gon. In terms of crossings, a k-gon Ck is a (sub)drawing with vertices
v1, . . . , vk such that {vi, vℓ} crosses {vj , vm} if and only if i < j < ℓ < m. In contrast to the
geometric setting where every sufficiently large geometric drawing contains a k-gon, simple drawings
of complete graphs do not necessarily contain k-gons [25]. For example, the twisted drawing Tn
depicted in Figure 1(b) does not contain any 5-gon. In terms of crossings, Tn can be characterized as
a drawing of Kn with vertices v1, . . . , vn such that {vi, vm} crosses {vj , vℓ} exactly if i < j < ℓ < m.
A theorem by Pach, Solymosi and Tóth [33] states that, for every k, every sufficiently large simple
drawing of Kn contains Ck or Tk. The currently best known estimate is due to Suk and Zeng [39]

who showed that every simple drawing of Kn with n > 29·log2(a) log2(b)a
2b2 contains Ca or Tb. Convex

drawings, which we define in the next paragraph, are a class of drawings nested between geometric
drawings and simple drawings. In particular, convex drawings do not contain T5 as a subdrawing.
Hence every convex drawing of Kn contains a k-gon Ck for some k = (log n)1/2−o(1).
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Figure 1: A drawing of (a) an n-gon Cn and (b) a twisted Tn for n ≥ 4. The largest hole in these drawings,
an n-hole and a 4-hole respectively, is shaded in gray.

1This isomorphism is often referred to as “weak isomorphism” since there also exist stronger notions.
2We keep the terminology from the geometric setting and trust that this does not lead to any confusion.
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In the last decades, holes were intensively studied for the setting of point sets. Our focus lies
on determining the existence of holes in convex drawings, the most general class of the convexity
hierarchy introduced by Arroyo, McQuillan, Richter, and Salazar [6], which gives a more fine-
grained layering between geometric drawings and simple drawings. The basis to define convexity
are triangles, which are subdrawings induced by three vertices. Since in a simple drawing incident
edges do not cross, a triangle separates the plane (respectively the sphere) into two connected
components. The closure of each of the components is called a side of the triangle. A side S is
convex if, for every pair of vertices in S, the connecting edge is fully contained in S. A simple
drawing D of Kn is

� convex if every triangle in D has a convex side;

� h-convex (hereditarily convex) if there is a choice of a convex side ST for every triangle T
such that, for every triangle T ′ contained in ST , it holds that ST ′ ⊆ ST ;

� f-convex (face convex) if there is a marking face F in the plane such that for all triangles the
side not containing F is convex.

The class of f-convex drawings is related to pseudolinear drawings. A pseudolinear drawing is a
simple drawing in the plane such that the edges can be extended to an arrangement of pseudolines.
A pseudoline is a simple curve partitioning the plane into two unbounded components and in an
arrangement each pair of pseudolines has exactly one point in common, which is a proper crossing.
As shown by Arroyo, McQuillan, Richter, and Salazar [5], a simple drawing of Kn is pseudolinear if
and only if it is f-convex and the marking face F is the unbounded face. For more details on the
convexity hierarchy and the classes it contains, we refer the reader to [5, 6, 7, 13].

Before we define k-holes, consider the case of 3-holes, also known as empty triangles. A triangle
is empty if one of its two sides does not contain any vertex in its interior. Harborth [25] proved
that every simple drawing of Kn contains at least two empty triangles and conjectured that the
minimum among all simple drawings of Kn is 2n − 4. While 2n − 4 is obtained by Tn and all
generalized twisted drawings [21], the best known lower bound is n [4].

In the geometric setting, the number of empty triangles behaves differently: every point set has
Ω(n2) empty triangles, and this bound is asymptotically optimal [9]. Note that the notion of empty
triangles in point sets slightly differs from the one in simple drawings, where the complement of the
convex hull of a point set can be an empty triangle as well. The class of convex drawings behaves
similarly to the geometric setting: the minimum number of empty triangles is asymptotically
quadratic [5, Theorem 5].

Holes in Simple Drawings. In the drawing Ck with k ≥ 4, every triangle has exactly one
empty side, which is also its unique convex side. The convex side of Ck is the union of convex sides
of its triangles; see the gray shaded regions in Figure 1. Given a k-gon Ck in a simple drawing
of Kn, we call vertices in the interior of the convex side of Ck interior vertices. A k-hole in a simple
drawing of Kn is a k-gon that has no interior vertices. For example, the vertices 1, 2, n− 1, and n
in Tn form a 4-hole; marked gray in Figure 1(b). In convex drawings, as in the geometric setting,
edges from an interior vertex to a vertex of Ck and edges between two interior vertices are contained
in the convex side of Ck [6, Lemma 3.5]; see also Section 2.

In this paper, using the notion of k-holes in simple drawings defined above, we resolve the
questions of existence of 4-, 5- and 6-holes in simple and convex drawings of Kn. In particular, we
show the existence of 6-holes in sufficiently large convex drawings (Theorem 1), generalizing Gerken’s
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empty hexagon theorem [23]. The key ingredient of the proof is that in a convex drawing every
subdrawing induced by a minimal k-gon together with its interior vertices is f-convex (Lemma 5).
This allows to transfer various existential results from the geometric, pseudolinear, and f-convex
settings to convex drawings. Besides the existence of 6-holes, we also show the existence of
monochromatic generalized 4-holes in two-colored convex drawings (Corollary 7), generalizing
a result on bichromatic point sets [3]. For this we discuss two variants of generalized holes
(Section 3) in the setting of simple drawings of Kn and show the existence of empty 4-cycles, that
is, plane cycles of length 4 such that one side does not contain any interior vertices (Theorem 10).
Furthermore, we construct a simple drawing of Kn that does not contain any two interior-disjoint
empty triangles sharing an edge (Proposition 8) and another one containing only Θ(n2) empty
4-cycles (Proposition 12).

2 Holes in Convex Drawings

In this section, we show that convex drawings behave similarly to geometric point sets when it
comes to the existence of holes. We show that every sufficiently large convex drawing contains
a 6-hole and hence a 5-hole and a 4-hole. This is tight, as the construction by Horton [28] gives
arbitrarily large point sets, that is, geometric drawings without 7-holes.

Theorem 1 (Empty hexagon theorem for convex drawings). For every sufficiently large n, every
convex drawing of Kn contains a 6-hole.

For the proof we use the existence of k-gons in sufficiently large convex drawings [33, 39]. Our
key lemma is that the subdrawing induced by a minimal k-gon together with its interior vertices is
f-convex, a fact that had been known only for h-convex drawings [6, Lemma 4.7]. For k fixed, a
k-gon is minimal if its convex side does not contain the convex side of another k-gon.

Arroyo, McQuillan, Richter and Salazar [6, Section 3] started the investigations of interior
vertices of k-gons. An important part is their Lemma 3.5, which we use in the following.

Lemma 2 (cf. [6, Lemma 3.5]). Let Ck be a k-gon in a convex drawing of Kn with vertices v1, . . . , vk
and k ≥ 4. Then for every two vertices u, v contained in the convex side of Ck the edge {u, v} is
contained in the convex side of Ck.

Note that in a k-gon Ck the edges on its convex hull form a plane k-cycle, that is, a cycle of length
k that does not cross itself. This plane cycle divides the plane into two connected components whose
closures we call sides. Furthermore, all chords of that cycle, that is, edges between non-adjacent
vertices of the cycle lie on the same side of the cycle. On the other hand, if all chords of a plane
k-cycle lie on the same side of it, then they cross each other in the exact same pattern as in a
k-gon Ck.

Observation 3. A k-gon Ck is equivalent to a plane k-cycle that has all chords on the same side,
which is the convex side of Ck.

For the sake of readability, we refer to the vertices v1, . . . , vk of a k-gon with indices modulo k.

Lemma 4. Let Ck be a minimal k-gon in a convex drawing D of Kn with vertices v1, . . . , vk and
k ≥ 3. Then for all i there are no interior vertices in the convex side of the triangle {vi, vi+1, vi+2}.
In particular, every minimal 4-gon is a 4-hole and every minimal 3-gon is an empty triangle.
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Proof: Assume there is an interior vertex v in the convex side of the triangle determined by
{vi, vi+1, vi+2}. If k = 3 then, by minimality of Ck = {v1, v2, v3}, the side SN of the triangle
{v1, v2, v} contained in the convex side of Ck cannot be convex. Hence, there exists a vertex z in the
interior of SN such that the subdrawing induced by {v1, v2, v, z} has a crossing [6, Corollary 2.5].
The edge {z, v} cannot cross {v1, v2} since that would contradict the convex side of Ck. Hence,
without loss of generality, let the edge {z, v1} cross {v, v2}; Figure 2(a) gives an illustration. Then,
however, the edge {z, v1} shows that the triangles {v2, v3, v} and {v1, v, v3} both have a unique
convex side, which is the side contained in the convex side of Ck. This is a contradiction to the
minimality of Ck. Thus, a minimal 3-gon is an empty triangle.

For k ≥ 4, clearly the vertices v1, . . . , vi, vi+2, . . . , vk span a (k−1)-gon and the triangle vi, v, vi+2

is not contained in the convex side of that (k − 1)-gon. Moreover all chords of Ck not involving
vi+1 lie in the convex side of that (k − 1)-gon. It remains to consider edges incident to v. Let
j ∈ [k] \ {i, i+ 1, i+ 2} be arbitrary but fixed. By Lemma 2, the edge {v, vj} does not leave the
convex side of Ck and, since D is a simple drawing, {v, vj} crosses {vi, vi+2} and therefore lies in the
convex side of the 4-gon v, vi, vj , vi+2. Figure 2(b) gives an illustration. This shows that v1, . . . , vi,
v, vi+2, . . . , vk span a plane k-cycle with all chords on the same side and hence, by Observation 3,
they span a k-gon C′

k. Furthermore, the convex side of C′
k is contained in the convex side of Ck,

implying that Ck was not minimal; a contradiction. 2

v1 v2

v3

v

z

(a)

v

vi

vi+1

vi+2

vj

(b)

Figure 2: (a) If the convex side of a triangle is not empty, it contains the convex side of another triangle.
(b) A k-gon with an interior vertex v in the convex side of the triangle vi, vi+1, vi+2.

Lemma 5 (Key lemma). Let Ck be a minimal k-gon in a convex drawing D of Kn with n ≥ k ≥ 3.
Then the subdrawing D′ induced by the vertices in the convex side of Ck is f-convex.

Proof: For k ≤ 4, by Lemma 4, a minimal k-gon is empty and thus D′ is clearly f-convex.
So let k ≥ 5, let v1, . . . , vk be the vertices of the minimal k-gon Ck in D, and let F be a face

contained in the non-convex side of Ck. We show that for every triangle spanned by three vertices
of the convex side of Ck, the side not containing F is convex and hence D′ is f-convex. Suppose
towards a contradiction that there exists a triangle T spanned by vertices t1, t2, t3 from the convex
side of Ck, such that the side not containing F is not convex. Then this non-convex side SN of T is
the side contained in the convex side of Ck. Since D is convex, the other side of T , containing F
and all vertices v1, . . . , vk, is convex and is denoted by SC . If we additionally assume that SN is
not contained in (the closure of) a single cell of the subdrawing induced by Ck, then some edge
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{vi, vj} has a crossing with one of the edges {tℓ, tm} of T . This shows that SC is not convex; a
contradiction. Hence, SN lies in (the closure of) a cell of Ck.

Since Ck is minimal, by Lemma 4, there are no interior vertices in the convex side of a triangle
{vi, vi+1, vi+2}.

Since all cells in the convex side of Ck incident to the vertex vi+1 are inside this triangle, the
vertex vi+1 is not part of the triangle T spanned by t1, t2, t3. This holds for every i = 1, . . . , k and
hence the vertices t1, t2, t3 are interior vertices of Ck and SN lies in a cell of the convex side of
Ck that is not covered by the convex side of any triangle {vi, vi+1, vi+2}. Since SN is not convex,
there exists a vertex z in the interior of SN such that the subdrawing induced by {t1, t2, t3, z} has
a crossing [6, Corollary 2.5]. We assume without loss of generality that the edge {t1, z} crosses
{t2, t3}. Moreover, exactly one of the following two conditions holds: Either the triangle {t1, t3, z}
separates t2 and F or the triangle {t1, t2, z} separates t3 and F . We assume that the former holds
as otherwise we exchange the roles of t2 and t3. Figure 3 gives an illustration.

zt1

t3

t2
vi+1

vi
F

Figure 3: The non-convex side (shaded gray) of the triangle {t1, t2, t3} (red vertices) is witnessed by the
edge {t1, z} (blue), and the triangle {t1, t3, z} separates t2 and F . Then the triangle {t2, vi, vi+1} (red
edges) has no convex side.

Now we consider all edges from t2 to the vertices v1, . . . , vk of Ck. Since SC is convex and
contains v1, . . . , vk, the edges {t2, vi} are contained in SC . This shows that none of the edges
{t2, vi} crosses any of the triangle edges and, in particular, they do not cross {t1, t3}.

The edges {t2, v1}, . . . , {t2, vk} partition the convex side of Ck into triangles {t2, vi, vi+1}. Hence
there is an index i such that the three vertices t1, t3, z lie in the side of the triangle {t2, vi, vi+1},
which is contained in the convex side of Ck. However, the edge {t1, z} is not fully contained in
this side; a contradiction to its convexity. Moreover, the other side of that triangle is not convex
either: Since t2 is not inside the triangle {vi, vi+1, vi+2} the edge {vi, vi+2} crosses {t2, vi+1}, so it
is not fully contained in this side. This is a contradiction to the convexity of the drawing and thus
completes the proof. 2

Recently, Heule and Scheucher [27] used SAT to show that every set of 30 points has a 6-hole.
Since their result is about the more general case of pseudoconfigurations of points, it holds for
pseudolinear drawings. To prove Theorem 1, we combine this fact with Lemma 5.

Proof: [Theorem 1] Let D be a convex drawing of Kn with n > 29·5
2 log2(5)·30

2 log2(30). Since convex
drawings do not contain the twisted drawing T5, it follows from [39] that D contains a 30-gon. To
find a 6-hole in D, we choose a minimal 30-gon C30. By Lemma 5, the subdrawing D′ induced by
C30 and its interior vertices is f-convex. Since the existence of holes is invariant under the choice of
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the outer cell, we can assume without loss of generality that D′ is pseudolinear as we may otherwise
choose the face F as the unbounded face. According to [8], D′ corresponds to a pseudoconfiguration
of points, and hence there exists a 6-hole C6 in D′ [27]. Hence the convex side of C6 does not contain
any vertex of D′. Moreover, every vertex of D in the convex side of C6 would be an interior vertex
of C30 and therefore belong to D′. This shows that C6 is also a 6-hole in D. 2

The existence of 6-holes further implies the existence of 4- and 5-holes. However, it remains a
challenging task to determine the smallest integer n(k) such that every convex drawing of Kn with
n ≥ n(k) contains a k-hole for k ∈ {5, 6}. The case k = 4 we resolve below.

For 6-holes, one can slightly improve the estimate from Theorem 1 by utilizing the fact
that every 9-gon in a point set yields a 6-hole [23]. As shown in [37], this result transfers to
pseudolinear drawings. It then follows from [39] and Lemma 5 that every convex drawing of Kn

with n > 518 225·log2(9) contains a 6-hole.
A similar improvement is possible for 5-holes: as the textbook proof for the existence of 5-holes

in every 6-gon of a point set (see for example Section 3.2 in [29]) applies to pseudolinear drawings,
every convex drawing with more than 58100·log2(6) vertices contains a 5-hole.

For 4-holes, we can combine the proof of Bárány and Füredi [9, Theorem 3.3] for the quadratic
number of 4-holes in point sets and the proof of Arroyo, McQuillan, Richter, and Salazar [5,
Theorem 5] for the quadratic number of empty triangles in convex drawings to obtain:

Lemma 6. Every crossed edge in a convex drawing of Kn is a chord of a 4-hole, that is, it is one
of the crossing edges of a 4-hole.

Proof: Let D be a convex drawing of Kn. Let e be an edge that is crossed by another edge f . The
subdrawing induced by the four end-vertices of e and f is a 4-gon, and we denote it by C4. We
assume that the vertices are labeled with v1, v2, v3, v4 such that e = {v1, v3} and f = {v2, v4}. If
C4 is minimal, it is a 4-hole by Lemma 4.

Hence, we assume that there is an interior vertex x of C4 as illustrated in Figure 4. By the
properties of a 4-gon, x lies in the convex side of exactly two of its triangles. Without loss of
generality, we assume that x is in the convex side of the two triangles {v1, v2, v3} and {v2, v3, v4}.
By Lemma 2, the edges {x, vi} are fully contained in the convex side of C4. Since the edge {x, v4}
is fully contained in the convex side of {v2, v3, v4}, but has to leave the triangle {v1, v2, v3} to get
to v4, it crosses the edge e = {v1, v3}. Hence v1, x, v3, v4 span another 4-gon in which {v1, v3} is one
of the crossing edges. Furthermore, since the edges {x, v1}, {x, v2}, and {x, v3} are fully contained
in the convex side of C4, the convex side of the 4-gon {v1, x, v3, v4} is fully contained in the convex
side of C4.

v1

v3

v4

v2

x

Figure 4: If a 4-gon {v1, v2, v3, v4} with chord e = {v1, v3} is not empty, then it contains a smaller 4-gon
{v1, x, v3, v4} still with chord e.

This shows that every 4-gon that is minimal subject to the restriction that e is one of its chords
is actually a minimal 4-gon without restriction. Consequently, by Lemma 4, every crossed edge e
gives a 4-hole whose diagonal is e, which completes the proof. 2
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Note that there are
(
n
2

)
edges in a drawing of the complete graph, at most 2n− 2 of which are

uncrossed [36]. Since every 4-hole is counted at most twice, the total number of 4-holes in a convex
drawing of Kn is at least 1

2

((
n
2

)
− 2n+ 2

)
= 1

4n
2 − 5

4n+ 1.

Since every drawing of K5 contains a crossing, Lemma 6 also implies that every convex drawing
of Kn with n ≥ 5 contains a 4-hole. In contrast to the convex setting, 4-holes can be avoided in
simple drawings as we show in the next section.

3 Generalized Holes

Devillers, Hurtado, Károlyi, and Seara [17] showed that sufficiently large two-colored point sets
in general position contain a monochromatic 3-hole and constructed arbitrarily large two-colored
sets without monochromatic 5-holes. The existence of monochromatic 4-holes, however, remains
a longstanding open problem [16, Problem 8.2.7]. A weaker version was shown by Aichholzer,
Hackl, Huemer, Hurtado, and Vogtenhuber [3]. They proved that every two-colored point set
P = A ∪̇ B contains a monochromatic generalized 4-hole. A generalized k-hole is a simple polygon
(not necessarily convex) which is spanned by k points of P and does not contain any point of P in
its interior.

To define generalized k-holes in simple drawings we consider plane cycles. Recall that a plane
cycle divides the plane into two connected components whose closures we call sides. An empty
k-cycle in a simple drawing is a plane cycle of length k such that one of its sides contains no vertices
in its interior. For k = 3 this definition coincides with empty triangles. Since polygons in point sets
can be triangulated, we say that an empty k-cycle is an empty k-triangulation if its empty side is
the disjoint union of empty triangles.

Since the proof in [3] only relies on triangle orientations and not on the exact geometry of the
point set, their result transfers to the pseudolinear setting. This allows us to generalize it to convex
drawings in the same way as the Empty Hexagon Theorem (Theorem 1) using Lemma 5.

Corollary 7. Every sufficiently large convex drawing on vertices V = A ∪̇ B has an empty
4-triangulation induced only by vertices from A or only by vertices from B.

As the following construction (Figure 5) shows, there exist simple drawings of Kn without any
empty 4-triangulation. For the construction, we start with the twisted drawing Tn and reroute
some edges such that the drawing is still crossing maximal, that is, every 4-tuple contains a crossing.
The resulting drawing T ′

n then does not contain any empty 4-triangulation and thus no 4-hole.

Proposition 8. For n ≥ 6 the simple drawing T ′
n contains no empty 4-triangulation.

Proof: We start by giving the exact crossing edge pairs in T ′
n and thus describing the drawing up

to isomorphism. The vertices 1, 3, 4, . . . , n form a twisted drawing Tn−1 and hence every 4-tuple
from [n]\{2} contains a crossing, giving

(
n−1
4

)
crossings. More specifically, the edges {i, ℓ} and

{j, k} cross for i, j, k, ℓ ∈ [n] \ {2} with i < j < k < ℓ.

It remains to describe the crossings in 4-tuples which do contain vertex 2. The edge {2, 1}
crosses the edges {3, n}, {4, i} for i = 5, . . . n, and {3, 4}, which are n− 2 crossings. The edge {2, 3}
has no crossings and the edge {2, 4} crosses only the edge {3, n}. For j = 5, . . . , n − 1 the edge
{2, j} crosses the two edges {3, n} and {1, 3}, the n− j edges {1, j + 1}, . . . , {1, n}, and the edges
{i, k} for 2 < i < k < j, of which there are

(
j−3
2

)
. Finally, the edge {2, n} crosses the

(
n−4
2

)
edges

{i, j} for 3 < i < j < n.
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. . .1
2

3
4 n

Figure 5: The drawing T ′
n without empty 4-triangulations for n ≥ 6.

In total there are(
n− 1

4

)
+ (n− 2) + 1 +

n−1∑
j=5

(
2 + (n− j) +

(
j − 3

2

))
+

(
n− 4

2

)

=

(
n− 1

4

)
+ 3n− 11 +

(
n− 4

2

)
+

n−4∑
j=2

(
j

2

)
+

(
n− 4

2

)

=

(
n− 1

4

)
+ 2n− 7 +

(
n− 3

2

)
+

(
n− 3

3

)
+

(
n− 4

2

)
=

(
n− 1

4

)
+ 1 + (n− 4) +
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=
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crossings because of the well-known identities

∑n
j=r

(
j
r

)
=

(
n+1
r+1

)
and

∑m
k=0

(
n+k
k

)
=

(
n+m+1

m

)
.

Hence T ′
n is crossing maximal.

Because of this crossing maximality every empty 4-triangulation is a 4-hole since the drawing
of the four induced vertices has a crossing. In the twisted subdrawing Tn−1 induced by 1, 3, . . . , n
the empty triangles are {1, 3, i} for i = 4, . . . , n and {i, n− 1, n} for i = 1, 3 . . . n− 2 and the only
4-hole is {1, 3, n− 1, n}, which is not a 4-hole in T ′

n because we placed the vertex 2 into the triangle
{3, n− 1, n}. Hence if there is a 4-hole, it consists of the vertex 2 and the three vertices of an empty
triangle of the induced subdrawing Tn−1. However, since all empty triangles from the induced
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subdrawing Tn−1 have either both 1 and 3 or both n− 1 and n as vertices, at least one of the two
triangles {1, 2, 3} or {2, n− 1, n} must be empty. This is not the case in the constructed drawing;
the triangle {1, 2, 3} has 4 on one side and all other vertices on the other side and the triangle
{2, n− 1, n} has 3 on one side and all other vertices on the other side. This completes the proof. 2

In contrast to this construction, if instead of empty 4-triangulations we only ask for empty
4-cycles, then we can actually guarantee their existence in all simple drawings of Kn. This resolves
one case of a recent conjecture by Bergold, Felsner, M. Reddy, Orthaber, and Scheucher [11]. They
showed that every convex drawing contains an empty k-cycle for all 3 ≤ k ≤ n and conjectured
that this also holds for simple drawings.

Conjecture 9 ([11]). Every simple drawing of Kn contains an empty k-cycle for each 3 ≤ k ≤ n.

While the case k = 3 follows by Harborth’s result [25], the case k = n coincides with Rafla’s
conjecture concerning the existence of plane Hamiltonian cycles in all simple drawings of Kn [35].
For the proof of the case k = 4 we use results on plane subdrawings by Garćıa, Pilz, and Tejel [20].

Theorem 10. Let D be a simple drawing of Kn with n ≥ 4 and let v be a vertex of D. Then D
contains an empty 4-cycle passing through v.

Proof: For a fixed vertex v, we consider the spanning star Sv centered at v. By [20, Corollary 3.4],
there is a plane subdrawing D′ of D that consists of the star Sv and some spanning tree T on
the other n − 1 vertices. Note that D′ has exactly 2n − 3 edges and n − 1 faces. Every face F
of D′ contains v on its boundary because the tree T is cycle-free and since D′ is 2-connected [20,
Theorem 3.1], F is bounded by exactly two edges of Sv.

If there is a face of D′ with exactly 4 boundary edges or if there are two adjacent triangular
faces, we obtain an empty 4-cycle passing through v and the statement follows. Otherwise we count
the number of edges |E| in D′: At most half of the n− 1 faces are triangles so that none of them
are adjacent. All other faces have at least 5 boundary edges. Since every edge is incident to exactly
two faces, we have |E| ≥ 1

2

(
5(n− 1)− 2

⌊
n−1
2

⌋)
≥ 2n− 2. This is a contradiction to the fact that

D′ contains exactly 2n− 3 edges. 2

The above theorem implies a linear lower bound on the number of empty 4-cycles. This is
similar to the minimum number of empty triangles which is asymptotically linear as well [4].

Corollary 11. Every simple drawing of Kn with n ≥ 4 contains at least ⌈n
4 ⌉ empty 4-cycles.

While the twisted drawing Tn is conjectured to minimize the number of empty triangles, it
contains Θ(n3) empty 4-cycles, since the cycles (i, j, l, k) for i < j < k < l separate the elements
between j and k from the rest, whereas all other 4-cycles are crossing themselves. This is certainly
not minimal as, in the following, we construct drawings with Θ(n2) empty 4-cycles; see Figure 6.

Proposition 12. There is a simple drawing of Kn that admits 1
8n

2 +O(n) empty 4-cycles.

Note that this is strictly less than the lower bound of 5
2n

2 − Θ(n) for the number of empty
4-cycles in geometric drawings shown in [2]. Moreover, in the geometric setting, the number of
empty k-cycles with k ≥ 4 is actually conjectured to be super-quadratic [1].

Proof: We start with the drawing D5 = C5 with vertices 1, . . . , 5 labeled counter-clockwise. We
then recursively construct the drawing Dn+1 from Dn as follows: We add a new vertex n+ 1 ≥ 6
close to the vertex n in a chosen cell cn next to the edge en := {n, in} for some choice of in. We
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connect n + 1 and n with an uncrossed edge. Then we add the edges {n + 1, j} for j < n by
making them cross all edges between en and {n, j} incident to n close to n and then follow the
edge {n, j} from n to j. In particular, the edge {n+ 1, in} crosses all edges incident to n except en
and {n+ 1, n} before following en to in. As shown by Harborth and Mengersen [26] the resulting
drawing Dn+1 is crossing maximal for all choices of in and cells cn next to it. Also note that by
construction n+ 1 and n have the same rotation (ignoring the edge between them).

n

n− 2 n− 1

n+ 1

n+ 2

1

2

3 4

5

67

i j

empty triangle?

Figure 6: Constructing the drawing Dn+2 of Kn+2 with few empty 4-cycles for n odd. The small circle
indicates the cell where the additional vertices n+ 3 and n+ 4 will be put in the next step.

For our construction, we assume that n is odd and we perform two steps at once, hence producing
drawings Dn+1 and Dn+2. In the first step from n to n+ 1, we choose in = n− 2 and the cell cn
not to be incident to {n, n− 1}. This is well-defined for the base case n = 5 and also for all larger
odd n, as we make sure in the following that n and n+ 1 are consecutive in the rotation of n+ 2.
In the second step from n+ 1 to n+ 2, we choose in+1 = n and cn+1 to be the cell not incident to
{n+ 1, n− 2}. This cell is well-defined as we added the previous vertex n+ 1 in the cell incident to
en = {n, n− 2}. We start with some general observations:

� Since the drawings are crossing maximal, every 4-tuple of vertices can produce at most one
empty 4-cycle.

� The vertices n, n+1, and n+2 have the exact same rotation (ignoring the edges between them),
that is, removing a non-trivial subset of them from Dn+2 results in a drawing isomorphic to
Dn or Dn+1.

� Every empty 4-cycle in Dn involving vertex n that is still empty in Dn+2 produces two other
empty 4-cycles in Dn+2 involving vertex n + 1 and n + 2 respectively. These are the only
4-cycles involving exactly one of n, n+ 1, and n+ 2.

� An empty 4-cycle in Dn still exists in Dn+2 if and only if it does not contain the cell cn+1. In
particular, only empty 4-cycles of Dn incident to n are destroyed by n+ 1 and n+ 2 as cn+1

is incident to n and any other 4-cycle containing them would contain n as well.
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We are left to characterize the empty 4-cycles involving at least 2 of n, n+ 1, and n+ 2: The
cycle (i, n, n+ 1, n+ 2) is empty for all i ≤ n− 1; it is actually a 4-hole. In particular, the empty
side contains {n, n+ 2} completely, so this empty 4-cycle will be destroyed in the next step when
we introduce vertices just next to that edge. See Figure 7 for an illustration.

i

n+ 1

n i

n

j i

n+ 1n+ 1

n

j

n+ 2
n+ 2 n+ 2

Figure 7: The empty triangles and 4-cycles incident to n+ 2 that will not be empty anymore, once n+ 3
is added to the drawing. The empty side of these cycles is orange, while n+ 3 will be put at the location of
the small circle.

Finally the 4-cycles (i, j, x, y), i < j < n ≤ x < y are empty if and only if {i, j, n} is an empty
triangle in Dn+2. See Figure 6 for an illustration. Notably, empty triangles {i, j, n} from Dn that
contain n+1 or n+2 also do not leave empty triangles nor empty 4-cycles with n+1 and/or n+2
since those contain n.

It is therefore important to also consider which empty triangles are incident to n+ 2 after one
step. The ones of the form {i, j, n+ 2}, i < j < n exist if and only if triangle {i, j, n} is still empty
in Dn+2 because of the second observation and the argumentation in the last paragraph. Since
{i, n, n+ 1, n+ 2} is a 4-hole for all i < n, all other triangles are empty as well.

However, the empty 4-cycles of the form (i, j, x, n+2) as well as triangles of the form {i, x, n+2}
are again destroyed in the next step. See Figure 7 for an illustration. If x = n, this is true because
for n+ 1 not to be in the empty side, since {n+ 1, n+ 2} is uncrossed, the empty side has to be on
the other side of {n, n+ 2} = en+2. If x = n+ 1, we know {n, n+ 2} = en+2 is crossed only by
edges incident to n+ 1 such as {i, n+ 1} and {j, n+ 1} so the empty side has to contain the first
segment of it completely.

Thus the only empty 4-cycles introduced in this step, which will stay empty through the next
step are of the form (i, j, n, n+ 1) for each empty triangle {i, j, n}, whereas the empty triangles
{i, j, n} that are still empty after that step give rise to empty triangles {i, j, n+ 2} and there is a
single additional empty triangle {n, n+ 1, n+ 2}. From Figure 6 it is easy to convince yourself,
that after the first step, the only empty triangles that vertex 5 is still incident to are {1, 2, 5} and
{3, 4, 5}. Thus the empty triangles incident to the last vertex n are going to be all triangles of
the kind {2k − 1, 2k, n} for some k < n

2 and the empty 4-cycles that will stay are of the form

(2i − 1, 2i, 2j − 1, 2j) for i < j ≤ n
2 . These are only

(⌊n
2 ⌋
2

)
= 1

8n
2 + O(n) empty 4-cycles and the

linear number of additional empty 4-cycles incident to n of the forms (i, n− 2, n− 1, n), i < n− 2
and (2k − 1, 2k, x, n), k < n−2

2 , x ∈ {n− 2, n− 1} do not change these asymptotics. 2
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4 Conclusion

We have shown that every convex drawing of Kn with n ≥ 5 contains a quadratic number of 4-holes
and that sufficiently large convex drawings contain 5- and 6-holes, while 7-holes do not exist in
general. For k ∈ {5, 6} given, it remains an interesting open question to determine the smallest
integer n(k) such that every convex drawing of Kn with n ≥ n(k) contains a k-hole.

In the geometric setting, Harborth [24] showed that 10 points are sufficient to contain a 5-hole
and since recently it is known that 30 points in general position always contain a 6-hole [27, 32].
Note that for larger point sets we can find a 6-hole in the 30 leftmost points, which is still a 6-hole
in the whole point set. By this argument, containing a k-hole is a monotone property for point
sets. In contrast to that, we used the SAT framework from [15] to find convex drawings for n ≤ 10
and n = 12 without 5-holes, while proving that every convex drawing for n = 11 and 13 ≤ n ≤ 16
contains a 5-hole. This shows that containing a k-hole is in general not a monotone property for
convex drawings. Based on the computational data, however, we conjecture that every convex
drawing on at least 13 vertices contains a 5-hole.

It would further be interesting to obtain better bounds on the size of a largest k-gon and on the
size of a largest f -convex subdrawing in a convex drawing of Kn. The currently best estimate for a
k-gon is by Suk and Zeng [39], which yields Ω((log n)1/2−o(1)), and combining this with Lemma 5
yields an f -convex drawing of the same size.

Furthermore, it would be intriguing to define some kind of twisted hole of size k based on the
twisted drawing Tk. Then, in the flavor of the result that every simple drawing of Kn contains
either a k-gon or twisted subdrawing of a certain size [33, 39], one could try to show the existence
of a 6-hole or twisted hole of size 6 in every simple drawing of Kn. Clearly a twisted hole of size k
would have to be defined via a plane k-cycle. However, while in a k-gon the plane k-cycle is unique,
the twisted drawing Tk contains exponentially many plane k-cycles [31] and it is unclear which of
them would be a somehow canonical choice.

Finally, while our construction for few empty 4-cycles shows a clear difference to the geometric
setting, it remains an open question whether a sub-quadratic or even just a linear number of empty
4-cycles is possible in a simple drawing of Kn.
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[17] O. Devillers, F. Hurtado, G. Károlyi, and C. Seara. Chromatic variants of the Erdős–Szekeres
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