
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 28, no. 1, pp. 439–473 (2024)
DOI: 10.7155/jgaa.v28i1.2997

Finding Near-Optimal Weight Independent Sets at Scale

Ernestine Großmann 1 Sebastian Lamm 2 Christian Schulz 1 Darren Strash 3

1Heidelberg University, Germany
2Karlsruhe Institute of Technology, Germany

3Department of Computer Science, Hamilton College, United States

Submitted: March 2024 Accepted: October 2024 Published: November 2024

Article type: Regular Paper Communicated by: S. Cornelsen

Abstract. Computing maximum weight independent sets in graphs is an impor-
tant NP-hard optimization problem. The problem is particularly difficult to solve in
large graphs for which data reduction techniques do not work well. To be more pre-
cise, state-of-the-art branch-and-reduce algorithms can solve many large-scale graphs
if reductions are applicable. Otherwise, their performance quickly degrades due to
branching requiring exponential time. In this paper, we develop an advanced memetic
algorithm to tackle the problem, which incorporates recent data reduction techniques
to compute near-optimal weight independent sets in huge sparse networks. More pre-
cisely, we use a memetic approach to recursively choose vertices that are likely to be in
a large-weight independent set. We include these vertices into the solution, and further
reduce the graph. We show that identifying and removing vertices likely to be in large-
weight independent sets opens up the reduction space and speeds up the computation
of large-weight independent sets remarkably. Our experimental evaluation indicates
that we are able to outperform state-of-the-art algorithms. For example, our two algo-
rithm configurations compute the best results among all competing algorithms for all
instances tested. Thus, it can be seen as a useful tool when large-weight independent
sets need to be computed in practice.

We acknowledge support by DFG grant SCHU 2567/3-1.

E-mail addresses: e.grossmann@informatik.uni-heidelberg.de (Ernestine Großmann) lamm@ira.uka.de (Sebastian
Lamm) christian.schulz@informatik.uni-heidelberg.de (Christian Schulz) dstrash@hamilton.edu (Darren Strash)

This work is licensed under the terms of the CC-BY license.

http://dx.doi.org/10.7155/jgaa.v28i1.2997
mailto:e.grossmann@informatik.uni-heidelberg.de
mailto:lamm@ira.uka.de
mailto:christian.schulz@informatik.uni-heidelberg.de
mailto:dstrash@hamilton.edu
https://creativecommons.org/licenses/by/4.0/

440 Finding Near-Optimal Weight Independent Sets at Scale Großmann et al.

1 Introduction

For a given graph G = (V,E) an independent set (IS) is defined as a subset I ⊆ V of all vertices
such that each pair of vertices in I are non adjacent. A maximum independent set (MIS) describes
an IS with highest possible cardinality. By transforming the graph G into the complement graph
G the MIS problem results in the maximum clique problem. However, for sparse graphs G, using a
maximum clique solver is impractical as the complement G is very dense and therefore unlikely to
fit in memory for all but the smallest instances. Another related problem is the minimum vertex
cover problem. Note that for an MIS I of G, V \ I is a minimum vertex cover. For a weighted
graph G = (V,E, ω) with non-negative vertex weights given by a function ω : V → R≥0, the
maximum weight independent set (MWIS) problem is to find an independent set I with maximum
weight ω(I) =

∑
v∈I ω(v). The applications of the MWIS problem, as well as the related problems

addressed above, can be used for solving different application problems such as long-haul vehicle
routing [15], the winner determination problem [58] or prediction of structural and functional
sites in proteins [38]. As a detailed example, consider an application of MWIS for map labeling,
where displaying non-overlapping labels throughout dynamic map operations such as zooming and
rotating [21] or while tracking a physical movement of a user or set of moving entities [9] is of high
interest in many applications. In the underlying map labeling problem, the labels are represented
by vertices in a graph, weighted by importance. Each pair of vertices is connected by an edge if
the two corresponding labels would overlap. In this graph, a MWIS describes a high-quality set of
labels, with regard to their importance level, that can be visualized without any overlap.

Since these problems are NP-hard [19], heuristic algorithms are used in practice to efficiently
compute solutions of high quality on large graphs [6, 22, 60]. Depending on the definition of the
neighborhood, local search algorithms are able to explore local solution spaces very effectively.
However, local search algorithms are also prone to get stuck in local optima. As with many other
heuristics, results can be improved if several repeated runs are made with some measures taken to
diversify the search. Still, even a large number of repeated executions can only scratch the surface
of the huge space of possible independent sets for large-scale datasets.

Traditional branch-and-bound methods [20,26,32,44,45,53] may often solve small graphs with
hundreds to thousands of vertices in practice, and medium-sized instances can be solved exactly
in practice using reduction rules to reduce the graph. In particular, it has been observed that if
data reductions work very well, then the instance is likely to be solved. If data reductions do not
work very well, i.e. the size of the reduced graph is large, then the instance can often not be solved.
Even though algorithms such as the struction algorithm, as shown in [20] already manage to solve
many large instances, some remain unsolved.

In order to explore the global solution space extensively, more sophisticated metaheuristics,
such as GRASP [15] or iterated local search [6,40], have been used. In this work, we extend the set
of metaheuristics used for the MWIS problem by introducing a novel memetic algorithm. Memetic
algorithms (MAs) combine genetic algorithms with local search [29] to effectively explore (via global
search) and exploit (via local search) the solution space. The general idea behind genetic algorithms
is to use mechanisms inspired by biological evolution such as selection, mutation, recombination,
and survival of the fittest.

Our Results. Our contribution is two-fold: First, we develop a state-of-the-art memetic algo-
rithm that is based on recombination operations employing graph partitioning techniques. Our
algorithm computes large-weight independent sets by incorporating a wide range of recently de-
veloped advanced reduction rules. In particular, our algorithm uses a wide range of frequently

JGAA, 28(1) 439–473 (2024) 441

used data reduction techniques from [20,32] and also employs a number of recently proposed data
reduction rules by Gu et al. [23].

The algorithm may be viewed as performing two functions simultaneously: (1) reduction rules
for the weighted independent set problem are used to boost the performance of the memetic algo-
rithm and (2) the memetic algorithm opens up the opportunity for further reductions by selecting
vertices that are likely to be in large-weight independent sets. In short, our method applies re-
duction rules to form a reduced graph, then computes vertices to insert into the final solution
and removes these vertices and their neighbors from the graph. Then, further reductions can be
applied. The process is then repeated recursively until the graph is empty. We show that this
technique finds near-optimal weight independent sets much faster than existing local search algo-
rithms, is competitive with state-of-the-art exact algorithms for smaller graphs, and allows us to
compute large-weight independent sets on huge sparse graphs. Overall, our algorithm configura-
tions compute the best results among all competing algorithms for every instance, and thus can be
seen as the dominating tool when large weight independent sets need to be computed in practice.

Our second contribution in this work is the experimental evaluation of the orderings in which
currently available data reductions are applied. We examine the impact of different orderings
on solution size and on running time. One outcome of this evaluation are robust orderings of
reductions for exact reduction rules, as well as a specific ordering which can improve the solution
quality at the expense of computation time.

2 Preliminaries

In this work, a graph G = (V,E) is an undirected graph with n = |V | and m = |E|, where
V = {0, ..., n− 1}. The neighborhood N(v) of a vertex v ∈ V is defined as N(v) = {u ∈ V :
(u, v) ∈ E}. Additionally, N [v] = N(v) ∪ {v}. The same sets are defined for the neighborhood
N(U) of a set of vertices U ⊂ V , i.e. N(U) = ∪v∈UN(v) \ U and N [U] = N(U)∪U . The degree of
a vertex deg(v) is defined as the number of its neighbors deg(v) = |N(v)|. The complement graph
is defined as G = (V,E), where E = {(u, v) : (u, v) /∈ E} is the set of edges not present in G. A
set I ⊆ V is called independent set (IS) if for all vertices v, u ∈ I there is no edge (v, u) ∈ E. For
a given IS I a vertex v /∈ I is called free, if I ∪ {v} is still an independent set. An IS is called
maximal if there are no free vertices. The maximum independent set problem (MIS) is that of
finding an IS with maximum cardinality. The maximum weight independent set problem (MWIS)
is that of finding an IS with maximum weight. The weight of an independent set I is defined
as ω(I) =

∑
v∈I ω(v) and αω(G) denotes the weight of an MWIS of G. The complement of an

independent set is a vertex cover, i.e. a subset C ⊆ V such that every edge e ∈ E is covered by
at least one vertex v ∈ C. An edge is covered if it is incident to one vertex in the set C. The
minimum vertex cover problem, defined as looking for a vertex cover with minimum cardinality, is
thereby complementary to the MIS problem. Another closely related concept are cliques. A clique
is a set Q ⊆ V such that all vertices are pairwise adjacent. A clique in the complement graph G
corresponds to an independent set in the original graph G. A vertex is called simplicial, when its
neighborhood forms a clique.

The subdivision of the set of vertices V into disjoint blocks V1, ..., Vk such that V1∪ ...∪Vk = V
is called a k-way partition (see [13,50]). To ensure the blocks are roughly of the same size, the bal-

ancing constraint |Vi| ≤ Lmax := (1 + ε)
⌈
|V |
k

⌉
with the imbalance parameter ε > 0 is introduced.

While satisfying this balance constraint, the edge separator problem asks for minimizing the total
cut,

∑
i<j ω(Eij), where Eij is defined by Eij := {{u, v} ∈ E : u ∈ Vi, v ∈ Vj}. The edge separator

442 Finding Near-Optimal Weight Independent Sets at Scale Großmann et al.

is the set of all edges in the cut. For the k-vertex separator problem, on the other hand, we look
for a division of V into k + 1 blocks. In addition to the blocks V1, ..., Vk a separator S exists. This
separator has to be chosen such that no edges between the blocks V1, ..., Vk exist, but there is no
balancing constraint on the separator S. However, as for the edge separator problem the balancing

constraint on the blocks |Vi| ≤ Lmax := (1 + ε)
⌈
|V |
k

⌉
has to hold. To solve the problem, the size

of the separator |S| has to be minimized. By removing the separator S from the graph it results
in at least k connected components, since the different blocks Vi are not necessarily connected.

3 Related Work

We give a short overview of existing work on both exact and heuristic procedures. For more details
on data reduction techniques, we refer the reader to the recent survey [3].

3.1 Exact Methods

Exact algorithms usually compute optimal solutions by systematically exploring the solution space.
A frequently used paradigm in exact algorithms for combinatorial optimization problems is called
branch-and-bound [41, 55]. In the case of the MWIS problem, these types of algorithms compute
optimal solutions by case distinctions in which vertices are either included into the current solution
or excluded from it, branching into two or more subproblems and resulting in a search tree. Over the
years, branch-and-bound methods have been improved by new branching schemes or better pruning
methods using upper and lower bounds to exclude specific subtrees [7,8,35]. In particular, Warren
and Hicks [55] proposed three branch-and-bound algorithms that combine the use of weighted clique
covers and a branching scheme first introduced by Balas and Yu [8]. Their first approach extends
the algorithm by Babel [7] by using a more intricate data structures to improve its performance.
The second one is an adaptation of the algorithm of Balas and Yu, which uses a weighted clique
heuristic that yields structurally similar results to the heuristic of Balas and Yu. The last algorithm
is a hybrid version that combines both algorithms and is able to compute optimal solutions on
graphs with hundreds of vertices.

In recent years, reduction rules have frequently been added to branch-and-bound methods
yielding so-called branch-and-reduce algorithms [4]. These algorithms are able to improve the
worst-case runtime of branch-and-bound algorithms by applying reduction rules to the current
graph before each branching step. For the unweighted case, a large number of branch-and-reduce
algorithms have been developed in the past. The currently best exact solver [26], which won
the PACE challenge 2019 [26, 42, 52], uses a portfolio of branch-and-reduce/bound solvers for the
complementary problems. Recently, novel branching strategies have been presented in [25] to
further improve both branch-and-bound as well as branch-and-reduce approaches.

However, for a long time, virtually no weighted reduction rules were known, which is why
hardly any branch-and-reduce algorithms exist for the MWIS problem. The first branch-and-reduce
algorithm for the weighted case was presented by Lamm et al. [32]. The authors first introduce two
meta-reductions called neighborhood removal and neighborhood folding, from which they derive a
new set of weighted reduction rules. On this foundation a branch-and-reduce algorithm is developed
using pruning with weighted clique covers similar to the approach by Warren and Hicks [55] for
upper bounds and an adapted version of the ARW local search [6] for lower bounds.

This algorithm was then extended by Gellner et al. [20] to utilize different variants of the
struction, originally introduced by Ebenegger et al. [16] and later improved by Alexe et al. [5]. In

JGAA, 28(1) 439–473 (2024) 443

contrast to previous reduction rules, these do not necessarily decrease the graph size, but rather
transform the graph which later can lead to even further reduction. Those variants were integrated
into the framework of Lamm et al. [32] in the preprocessing as well as in the reduce step. The
experimental evaluation shows that this algorithm can solve a large set of real-world instances and
outperforms the branch-and-reduce algorithm by Lamm et al. [32], as well as different state-of-the-
art heuristic approaches such as the algorithm HILS presented by Nogueira [40] as well as two other
local search algorithms DynWVC1 and DynWVC2 by Cai et al. [11]. Recently, Xiao et al. [60]
present further data reductions for the weighted case as well as a simple exact algorithm based
on these data reduction rules. Furthermore, in [63] a new reduction-and-branching algorithm was
introduced using two new reduction rules. Recently, Xiao et al. [59] also presented a branch-and-
bound algorithm idea using reduction rules working especially well on sparse graphs. In their
theoretical work they undertake a detailed analysis for the running time bound on special graphs.
With the measure-and-conquer technique they can show that the running time of their algorithm
is O∗(1,1443(0.624x−0.872)n) where x is the average degree of the graph. This is improving previous
time bounds for this problem using polynomial space complexity for graphs of average degree
up to three.

Figiel et al. [18] introduced a new idea added to the state-of-the-art way of applying reductions.
They propose to not only performing reductions, but also the possibility of undoing them during
the reduction process. As they showed in their paper for the unweighted independent set problem,
this can lead to new possibilities to apply further reductions and finally to smaller reduced graphs.

Finally, there are exact procedures which are either based on other extension of the branch-
and-bound paradigm, e.g. [43, 56,57], or on the reformulation into other NP-complete problems,
for which a variety of solvers already exist. For instance, Xu et al. [62] developed an algorithm
called SBMS, which calculates an optimal solution for a given MWVC instance by solving a series
of SAT instances. Also for the MWVC problem a new exact algorithm using the branch-and-bound
idea combined with data reduction rules was recently presented [54]. We additionally note that
there are several recent works on the complementary maximum weighted clique problem that are
able to handle large real-world networks [17,24,27]. However, using these solvers for the MWIS
problem requires computing complement graphs. Since large real-world networks are often very
sparse, processing their complements quickly becomes infeasible due to their memory requirement.

3.2 Heuristic Methods

A widely used heuristic approach is local search, which usually computes an initial solution and
then tries to improve it by simple insertion, removal or swap operations. Although in theory local
search generally offers no guarantees for the solution’s quality, in practice they find high-quality
solutions significantly faster than exact procedures.

For unweighted graphs, the iterated local search (ARW) by Andrade et al. [6], is a very suc-
cessful heuristic. It is based on so-called (1, 2)-swaps which remove one vertex from the solution
and add two new vertices to it, thus improving the current solution by one. Their algorithm uses
special data structures which find such a (1, 2)-swap in linear time in the number of edges or prove
that none exists. Their algorithm is able to find (near-)optimal solutions for small to medium-size
instances in milliseconds, but struggles on massive instances with millions of vertices and edges.

The hybrid iterated local search (HILS) by Nogueira et al. [40] adapts the ARW algorithm
for weighted graphs. In addition to weighted (1, 2)-swaps, it also uses (ω, 1)-swaps that add
one vertex v into the current solution and exclude its ω neighbors. These two types of neigh-
borhoods are explored separately using variable neighborhood descent (VND). Two other local

444 Finding Near-Optimal Weight Independent Sets at Scale Großmann et al.

searches, DynWVC1 and DynWVC2, for the equivalent minimum weight vertex cover problem
are presented by Cai et al. [11]. Their algorithms extend the existing FastWVC heuristic [37]
by dynamic selection strategies for vertices to be removed from the current solution. In practice,
DynWVC1 outperforms previous MWVC heuristics on map labeling instances and large scale
networks, and DynWVC2 provides further improvements on large scale networks but performs
worse on map labeling instances.

Li et al. [36] presented a local search algorithm NuMWVC for the minimum weight vertex
cover (MWVC) problem, which is complementary to the MWIS problem. Their algorithm applies
reduction rules during the construction phase of the initial solution. Furthermore, they adapt the
configuration checking approach [12] to the MWVC problem which is used to reduce cycling, i.e.
returning to a solution that has been visited recently. Finally, they develop a technique called self-
adaptive-vertex-removing, which dynamically adjusts the number of removed vertices per iteration.
Experiments show that their algorithm outperforms state-of-the-art approaches on both graphs of
up to millions of vertices and real-world instances.

Recently, a hybrid method was introduced by Langedal et al. [33] to also solve the MWVC
problem. For this approach they combined elements from exact methods with local search, data
reductions and graph neural networks. In their experiments they achieve definite improvements
compared to DynWVC2 and the HILS algorithm in both solution quality and running time.

With EvoMIS, Lamm et al. [30] presented an evolutionary approach to tackle the maximum
independent set problem. The key feature of their algorithm is to use graph partitioning to come
up with natural combine operations, where whole blocks of solutions to the MIS problem can be
exchanged easily. To these combine operations also local search algorithms were added to improve
the solutions further. Combining the branch-and-reduce approach with the evolutionary algorithm
EvoMIS, a reduction evolution algorithm ReduMIS was presented by Lamm et al. [31]. In their
experiments, ReduMIS outperformed the local search ARW as well as the pure evolutionary
approach EvoMIS. Another reduction based heuristic called HtWIS was presented recently by
Gu et al. [23]. In their framework they repeatedly apply reductions exhaustively and then choose
one vertex by a tie-breaking policy to add to the solution. Now this vertex as well as its neighbors
can be removed from the graph and the reductions can be applied again. Their experiments prove
a significant improvement in running time.

Recently, a new metaheuristic was introduced by Dong et al. [15] in particular for vehicle routing
instances. With their algorithm METAMIS they developed a new local search algorithm using a
new variant of path-relinking to escape local optima. In their experiments they outperform HILS
algorithm on a wide range of instances both in time and solution quality.

4 Algorithm

We now present our memetic algorithm for the MWIS problem, which we call memetic maximum
weight independent set m2wis. This algorithm is inspired by ReduMIS [31] and works in rounds,
where each round can be split up into three parts. In the beginning of each round the exact
reduction step takes place. Here the graph is reduced as far as possible using a wide range of data
reduction rules. On the resulting reduced graph, we apply the memetic part of the algorithm as
the second step. We represent a solution, also referred to as an individual, by using bitvectors.
Where the independent set I is represented as an array s ∈ {0, 1}n. For each array entry it
holds s[v] = 1 iff v ∈ I. The memetic component itself works in rounds as well. Starting with
an initial population P, consisting of a set of individuals, this population is evolved over several
rounds until a stopping criterion is fulfilled. In the third part, we select a subset of vertices to

JGAA, 28(1) 439–473 (2024) 445

Algorithm 1 High Level Structure of m2wis

input graph G = (V,E)
procedure m2wis(G)
W = ∅ // best solution
while G not empty and time limit not reached

(G,W)← ExactReduce(G,W)
if G is empty then return W
if V (G) ≤ nK

W∗ ← try to solve exact(G,texact)
if W∗ optimal then return W∗

create initial population P (adding W∗ if computed)
P ← Evolve(G,P)
(G,W)← HeuristicReduce(G,P,W)

return W

be included in the independent set by considering the resulting population. Here, we implement
different strategies to select vertices for inclusion. Including these vertices in the independent set
enables us to remove them and their neighbors from the instance. This opens up the reduction
space, i.e. further reductions might be applicable after the removal process. The steps of exact
reduction, memetic search, and heuristic reduction are repeated until the remaining graph is empty
or another stopping criterion is fulfilled.

Following the order of the Algorithm 1, we first describe the ExactReduce routine in Section
4.1. Section 4.2 is devoted to the memetic part, followed by the description of different vertex
selection strategies used to heuristically reduce the instance and open up the reduction space
in Section 4.3.

4.1 Exact Reductions

Especially for large instances, applying exact data reductions is a very important technique to
reduce the problem size. In general, reductions identify vertices (1) as part of a solution to the
MWIS problem, (2) as non-solution vertices or (3) as deferred, meaning the decision for this vertex
is depending on additional information about neighboring vertices that will be obtained later. The
resulting reduced graph, after no reduction rule can be applied anymore, we denote by K. Once
an MWIS of K is found, reductions can be undone to reconstruct an MWIS on the original graph.
For the reduction process we apply a large set of reductions which we list in the following. In the
following list of reductions I refers to an MWIS of G, I ′ to an MWIS of the modified graph G′.

Reduction 1 (Degree-One [23,32]) Let v be a degree-one vertex with the neighbor u in G.

� Case 1: if ω(v) ≥ ω(u), v must be contained in some MWIS of G; thus v can be removed from
G, i.e. αω(G) = αω(G

′) + ω(v), where G′ is the graph obtained by removing both v and u.

� Case 2: if ω(v) < ω(u), αω(G) = αω(G
′)+ω(v), where G′ is the graph obtained by removing

v and updating the weight of u to be ω(u) = ω(u)− ω(v). It holds that u ∈ I iff u ∈ I ′.

We note that Case 1 is a special case of Reduction 2.

Reduction 2 (Neighborhood Removal [32]) For any v ∈ V , if ω(v) ≥ ω(N(v)) then v is in
some MWIS of G. Let G′ = G[V \N [v]] and αω(G) = αω(G

′) + ω(v).

446 Finding Near-Optimal Weight Independent Sets at Scale Großmann et al.

Case 1:
v

x y

14

8 10

G \ {v, x, y}

x

v

y

G \ {v, x, y}

14

8 10

Case 2:
v

x y

10

8 14

G \ {v, x, y}

x

v

y

G \ {v, x, y}

10

8 4

Case 3:
v

x y

8

10 14

G \ {v, x, y}

x

v

y

G \ {v, x, y}

8

2 4

Figure 1: Illustration of the three cases of the Triangle Reduction.

Reduction 3 (Triangle [23]) This reduction is illustrated in Figure 1. Let v be a degree-two
vertex with two neighbors x and y in G, where edge {x, y} ∈ E. Without loss of generality, assume
ω(x) ≤ ω(y).

� Case 1: if ω(v) ≥ ω(y), v must be contained in some MWIS of G. This leads to αω(G) =
αω(G

′) + ω(v), where G′ is obtained by removing v, x, y.

� Case 2: if ω(x) ≤ ω(v) < ω(y), αω(G) = αω(G
′) + ω(v), where G′ is the graph obtained by

removing nodes v and x, and updating ω(y) = ω(y)− ω(v). It holds that y ∈ I iff y ∈ I ′.

� Case 3: if ω(v) < ω(x), αω(G) = αω(G
′)+ω(v), where G′ is the graph obtained by removing

v, and updating ω(x) = ω(x) − ω(v) as well as ω(y) = ω(y) − ω(v). It holds for z ∈ {x, y}
that z ∈ I iff z ∈ I ′.

Reduction 4 (Extended V-Shape [23,32]) This reduction is illustrated in Figure 2. Let v
be a degree-two vertex with the neighbors x and y in G, where edge {x, y} /∈ E. Without loss of
generality, assume ω(x) ≤ ω(y).

� Case 1: [32] if ω(v) ≥ ω(y)

– if ω(v) ≥ ω(x) + ω(y), v must be contained in some MWIS of G and this leads to
αω(G) = αω(G

′) + ω(v), where G′ is obtained by removing v, x, y.

– else we fold v, x, y into a vertex v′ with weight ω(v′) = ω(x) + ω(y) − ω(v) forming a
new graph G′. Then αω(G) = αω(G

′) + ω(v). If v′ ∈ I ′ then {x, y} ⊂ I, otherwise
v ∈ I. It holds that {x, y} ⊂ I iff v′ ∈ I ′.

� Case 2: [23] if ω(x) ≤ ω(v) < ω(y), αω(G) = αω(G
′)+ω(v), where G′ is the graph obtained by

removing v, updating N(x) = N(x)∪N(y) and ω(y) = ω(y)− ω(v). It holds that ∀w ∈ {x, y},
w ∈ I iff w ∈ I ′;

� Case 3: [23] if ω(x) > ω(v), αω(G) = αω(G
′) + ω(v), where G′ is the graph obtained by

updating ω(x) = ω(x)− ω(v), ω(y) = ω(y) − ω(v), and N(v) = N(x) ∪N(y). It holds that
{x, y} ⊆ I iff {x, y} ⊆ I ′.

Reduction 5 (Simplicial Vertex Removal [32]) Let v ∈ V be simplicial and maxu∈N(v) ω(u) ≤
ω(v). Then, v is in some MWIS of G. Let G′ = G[V \N [v]] and αω(G) = αω(G

′) + ω(v).

JGAA, 28(1) 439–473 (2024) 447

Case 1: Case 2: Case 3:

Figure 2: Illustration of the three cases of the Extended V-Shape Reduction.

The Basic Single Edge Reduction is a generalization of the Weighted Domination Reduction [32].
Here we can exclude an endpoint of an edge, if the other endpoint would always be the better
option for the solution. The Extended Single Edge Reduction can be applied, when one of the two
endpoints of an edge has to be in the solution.

Reduction 6 (Basic Single-Edge [23]) Given an edge e(u, v) ∈ EG, if ω(v)+ω(N(u)\N [v]) ≤
ω(u), it holds that αω(G) = αω(G

′), where G′ is obtained by removing v from G.

Reduction 7 (Extended Single-Edge [23]) Given an edge e(u, v) ∈ EG, if ω(v) ≥ ω(N(v))−
ω(u), it holds that αω(G) = αω(G

′), where G′ is obtained by removing all vertices in N(u)∩N(v).

The Twin Reduction deals with vertices that have the same, independent neighborhood. De-
pending on the weight of of these vertices and their neighborhood, we can proceed differently.

Reduction 8 (Twin [32]) Let vertices u and v have equal neighborhoods N(u) = N(v), forming
an independent set. We have two cases:

1. If ω({u, v}) ≥ ω(N(v)), then u and v are in some MWIS of G. Let G′ = G[V \N [{u, v}]].

2. If ω({u, v}) < ω(N(v)), but ω({u, v}) > ω(N(v))−minx∈N(v) ω(x), then we can fold u, v, p, q, r
into a new vertex v′ with weight ω(v′) = ω(N(v)) − ω({u, v}) and call this graph G′. Then
we construct an MWIS I of G as follows: if v′ ∈ I ′ then I = (I ′ \ {v′}) ∪N(v), if v′ /∈ I ′

then I = I ′ ∪ {u, v}.

Furthermore, αω(G) = αω(G
′) + ω({u, v}).

The Simplicial Weight Transfer is a generalization of Reduction 5. If we can not identify a
simplicial vertex that is in some MWIS of G, we can still exclude or reduce the weight of some
vertices in the clique.

Reduction 9 (Simplicial Weight Transfer [32]) Let v ∈ V be simplicial, and suppose that the
set of simplicial vertices S(v) ⊆ N(v) is such that ∀u ∈ S(v), ω(v) ≥ ω(u). We

1. remove all u ∈ N(v) such that ω(u) ≤ ω(v), and let the remaining neighbors be denoted by N ′(v),

2. remove v and ∀x ∈ N ′(v) set its new weight to ω′(x) = ω(x)− ω(v), and

let the resulting graph be denoted by G′. Then αω(G) = ω(v) + αω(G
′) and an MWIS I of G

can be constructed from an MWIS I ′ of G′ as follows: if I ′ ∩ N ′(v) = ∅ then I = I ′ ∪ {v},
otherwise I = I ′.

448 Finding Near-Optimal Weight Independent Sets at Scale Großmann et al.

Reduction 10 (CWIS [10]) Let Ic ⊆ V be a critical weighted IS of G, i.e. ω(Ic)− ω(N(Ic)) =
max{ω(I)−ω(N(I)) : I is an IS of G}. Then Ic is in some MWIS of G. We set G′ = G[V \N [Ic]]
and αω(G) = αω(G

′) + ω(Ic).

If the neighborhood of a vertex v is independent and Reduction 2 is not applicable, then,
under certain weight conditions, we can fold the vertex with its neighborhood as explained in the
Neighborhood Folding.

Reduction 11 (Neighborhood Folding [32]) Let v ∈ V , and suppose that N(v) is indepen-
dent. If ω(N(v)) > ω(v), but ω(N(v)) − minu∈N(v){ω(u)} < ω(v), then fold v and N(v) into a
new vertex v′ with weight ω(v′) = ω(N(v))−ω(v). If v′ ∈ I ′ then I = (I ′ \{v′})∪N(v), otherwise
if v ∈ I ′ then I = I ′ ∪ {v}. Furthermore, αω(G) = αω(G

′) + ω(v).

The Heavy Set Reduction is the most general and expensive reduction, which is why we only
apply it after all other reductions have been exhaustively applied. For this reduction rule, we
have to solve multiple independent set problems in the neighborhood of two heavy vertices. Under
certain conditions explained in Reduction 12, we can then include these two heavy vertices. Because
it is computationally expensive, we limit the size of the neighborhood of these heavy vertices.

Reduction 12 (Heavy Set [61]) Let u and v be non-adjacent vertices having at least one com-
mon neighbor x and let the number of their neighbors |N({v, u})| be at most 8. If for any inde-
pendent set I ′ in the induced subgraph G[N({v, u})], ω(N(I ′)) ∩ {u, v} ≥ ω(I ′) there is a MWIS
in G that includes u and v. Then, G′ = G−N [{v, u}] and αω(G) = αω(G

′) + ω(v) + ω(u).

In the ExactReduce routine, we test for each of these reductions whether they are applicable.
The rules are applied in a predefined order. To identify applicable reductions, we employ exhaustive
search, with added pruning for the different rules. If one reduction is successfully applied, then
the process of testing possible reductions starts from the beginning (according to this order). All
reductions, that have been tested already are now only checked in areas of the graph that changed.
If no more reductions can be applied, we obtained the reduced graph and continue with the next
part of Algorithm 1. The order in which reductions are applied has an effect on the weight offset
and the size of the resulting reduced graph, as well as on the time needed for the computation.
We give a detailed analysis in Section 5.1.

If the resulting reduced instance is small enough, i.e. its number of vertices is less than the
threshold nK , we try to solve the instance exactly using Struction by Gellner et al. [20] within
a time limit texact. If it is not solved optimally within this time, the computed solution is added
to the population and we continue.

4.2 Memetic Algorithm

After ExactReduce, we apply the Evolve routine which is described in Algorithm 2 on the
reduced graph K. It starts by generating an initial population of size |P| which we then evolve over
several generational cycles (rounds). For the evolution of the population two individuals from the
population are selected and combined to create an offspring. We also apply a mutation operation
to this new solution by forcing new vertices into the solution and removing neighboring solution
vertices. To keep the population size constant and still add a new offspring to the solution, we look
for fit replacements. In this process, we search for individuals in the population, which have smaller
weights than the new offspring. Among those, we look for the most similar solution by computing
the intersection size of the new and existing individuals. We also added the possibility of forcing

JGAA, 28(1) 439–473 (2024) 449

Algorithm 2 High Level Structure of Evolve(G,P)

input graph G = (V,E), current population P
procedure Evolve(G,P)

while stopping criterion not fulfilled
randomly chose a combine operation combine
k = number of individuals needed for combine
IS ← ∅ // set of individuals
IS ← tournamentSelect(P)
OS ← ∅ // set of offspring
OS ← combine(IS)
if mutate with probability 10%
OS ← mutate({OS})

if suitable replacement (different criteria)
P ← replace(P,O)

return P

individuals into the population if it has not changed over a certain number of iterations, as well as
rejecting the offspring if the solution with the smallest weight is still better than the new offspring.
Note that the size |P| of the population does not change during this process. Additionally, at
any time each individual of our population is an independent set. In the last step of the memetic
algorithm we improve the solution by the HILS algorithm [40]. The stopping criterion for the
memetic procedure is either a specified number of unsuccessful combine operations or a time limit.
In the following we discuss each of these steps in detail. We start with introducing the computation
of the initial solution in Section 4.2.1 and then explain the combine operations for the evolutionary
process in Section 4.2.2 as well as the mutation operation in Section 4.2.3.

4.2.1 Initial Solutions

At the start of our memetic algorithm, we create an initial population of size |P|. To diversify as
much as possible, this population contains solutions computed in six different ways, which we choose
uniformly at random to create an individual. Before applying the strategies we permute the order of
the nodes such that different solutions are obtained for the same strategy by different tie breaking.

RandomMWIS. The first approach works by starting with an empty solution and adding free
vertices uniformly at random until the solution is maximal.

GreedyWeightMWIS . For the GreedyWeightMWIS strategy, we start with an empty solution.
This is extended to a maximal independent set by adding free vertices ordered by their weight.
Starting with the largest weight, we include this vertex and exclude all its neighbors until all
vertices are labeled either included or excluded.

GreedyDegreeMWIS . Via this greedy approach, we create initial solutions by successively choos-
ing the next free vertex with the smallest residual degree. Each time a vertex is included, we label
the neighboring vertices to be excluded.

GreedyWeightVC . In contrast to the previous approaches, here the vertex cover problem, the
complementary problem to the independent set problem, is utilized. Therefore, an empty solution
is extended by vertices of the smallest weight until a vertex cover is computed. As soon as the algo-
rithm terminated, we compute the complement and have an initial solution to the MWIS problem.

GreedyDegreeVC . As in GreedyWeightVC the complementary vertex cover problem is solved.
However, for this approach, we choose those vertices to include in the solution, which cover the
maximum number of currently uncovered edges.

450 Finding Near-Optimal Weight Independent Sets at Scale Großmann et al.

Struction. We also add the possibility to compute an initial solution via the Struction algo-
rithm by Gellner et al. [20]. We set a time limit of 60 seconds and use the configuration CyclicFast.
If we also use Struction to compute initial solutions, we call the algorithm configuration m2wis
+ s. Note that if the algorithm does not solve the instance within the time limit, it returns a
non-optimal solution.

4.2.2 Combine Operations

The common idea of our combine operations which are inspired by the work of Lamm et al. [31], is
to combine whole blocks of independent set vertices. To construct those blocks, we use the graph
partitioning framework KaHIP [47] which computes partitions of the graph V = V1 ∪ ... ∪ Vn. For
j = 1, ..., n the solution blocks Ij are defined by Ij = I ∩ Vj . We created different offspring by
using the following combine operations on those solution blocks.

The parents for the first two combine operations are chosen by two runs of the tournament
selection [39], where the fittest individual i.e. the solution with highest weight gets selected out
of two random individuals from the population. Then we perform one of the combine operations
outlined below and finally, after the combine operation, we use the HILS algorithm [40] to improve
the computed offspring.

I1 I2

V1 V2S

offspring O

Figure 3: The vertex separator combine operation
to create an offspring O out of two individuals I1
and I2.

Vertex Separator Combination. The first
operator works with a vertex separator V =
V1 ∪ V2 ∪ S. We use a vertex separator to
be able to exchange whole blocks of solutions
without violating the independent set property.
This can be done because no vertices belong-
ing to different blocks are adjacent to one an-
other. Neighboring vertices would either be
part of the same block or one of them has to
belong to the separator S. By this property
the combination of those blocks will always re-
sult in a valid solution to the independent set
problem. The two individuals selected by the
tournament I1 and I2 are split up according to
these partitions and are then combined to gen-
erate two offspring O1 = (V1 ∩ I1) ∪ (V2 ∩ I2)
and O2 = (V1 ∩ I2) ∪ (V2 ∩ I1). After that we
add as many free vertices greedily by weight until the solution is maximal, we get a local optimum
via one iteration of the weighted local search. See Figure 3 for an illustration.

Multi-way Vertex Separator Combination. We extended the previous described operator
to the multi-way vertex separator, where multiple solutions can be used and combined. Therefore,
we compute a k-vertex separator V = V1 ∪ ... ∪ Vk ∪ S and select k individuals. Then for every
pair of partition Vi and individual Ij for i, j ∈ {1, ..., k} a score is computed. This score is defined
by

∑
v∈Vi∩Ij

ω(v). We start with the pair resulting in the highest score pair and then select pairs
decreasingly. Once an individual or partition block is selected, we do not use it again. In contrast
to the previous operator, this combination only results in one offspring. We then maximize this
offspring and compute a local maximum.

JGAA, 28(1) 439–473 (2024) 451

Edge Separator Combination. For this operator we exploit the duality to the weighted vertex
cover problem. Starting with a partition V = V1 ∪ V2 the operator computes temporary offspring
for the weighted vertex cover problem. Let I1 and I2 be the individuals selected by the tournament
rule. Let Ci = V \ Ii be the solution to the weighted vertex cover problem for i ∈ {1, 2}. The
new offspring are O1 = (V1 ∩ C1) ∪ (V2 ∩ C2) and O2 = (V1 ∩ C2) ∪ (V2 ∩ C1). However, these
offspring can contain some non-covered edges, which are a subset from the cut edges between the
two partitions. The graph induced by the non-covered cut edges is bipartite. In this graph we
compute a minimum-weight vertex cover using maximum flows.

Multi-way Edge Separator Combination. Similar to the vertex separator also the edge
separator can be extended to use multiple solutions. Therefore, a k-way-partition V = V1∪...∪Vk is
computed. Equivalent to the multi-way vertex separator, we also select k individuals and compute
a score for each pair Vj and Ii. For the scoring function, the complement of an independent set
inside the given block is used to sum up the weights of the vertices of the vertex cover in this block.
For the offspring computation, each block is combined with the individual with the lowest score.
As in the basic edge separator combine operator there can be edges in the cut that are not covered.
Since the induced graph here is not bipartite we handle this problem using a simple greedy strategy.
Afterwards the solution is transformed to get the offspring for the independent set individuals.

4.2.3 Mutation Operation

After each combine operation, a mutation operator can perturb the created offspring. This is
done by forcing new vertices into the solution and removing the adjacent vertices to satisfy the
independent set property. Those vertices are selected at random among all non-solution nodes in
the graph. Afterwards we improve the solution using the HILS algorithm.

4.3 Heuristic Reductions and Recursion

After the memetic algorithm stops, we use a heuristic data reduction to open up the reduction
space (and afterwards the next round of exact data reductions begins). We implemented different
strategies to select vertices that we put into the solution. In each strategy, vertices are ordered by
a rating function. The algorithm inserts a fraction (from only one vertex to 100%) of the vertices
selected by the different strategies. We now explain the different selection strategies.

Vertex Selection by Weight. The first rating function is based on the weight ω(v) of a vertex
v (higher is better). The intuition here is that by adding a vertex, we want to increase the weight of
our solution as much as possible. More precisely, the fittest individual from the population evolved
by the memetic algorithm is selected. The fitness of an individual is defined as the solution weight.
From this individual, we select the x vertices from the independent set that have the highest weight
and add them to our solution. Since we only consider vertices from one individual, x can be freely
chosen without violating the independent set property of our solution. For example, we can choose
to only add the highest weight vertex or select a fraction of those solution vertices.

Vertex Selection by Degree. Similar to the previous vertex selection strategy, we choose the
fittest individual from which we add vertices to our solution. Here, the vertices are rated by their
degree deg(v) (smaller is better). The intuition here is that adding vertices with a small degree to
our solution will not remove too many other vertices from the graph that could be considered later.

452 Finding Near-Optimal Weight Independent Sets at Scale Großmann et al.

Vertex Selection by Weight/Degree. For this selection strategy, we rate the vertices v of

the fittest individual by the fraction ω(v)
deg(v) (higher is better). This way we combine both of the

two previous ratings.

Hybrid Vertex Selection. In the hybrid case, the solution vertices v ∈ V are rated by the
weight difference between a vertex and its neighbors ω(v)−

∑
u∈N(v) ω(u) (higher is better). This

value describes the minimum gain in solution weight we can achieve by adding the vertex v to the
solution. Note that Gu et al. [23] proposed this rule for their algorithm. The key difference here
is that Gu et al. [23] use this function on all vertices, while our algorithm only considers solution
vertices of the fittest solution of the memetic algorithm.

Vertex Selection by Solution Participation. In contrast to the previous strategies, this
strategy considers the whole population. Moreover, here we consider each vertex in the graph. We
check the population and assign each vertex a value according to the number of times it is part
of a solution. The maximum number a vertex can achieve is therefore bounded by the population
size |P|. We can include all vertices that are in each individual, i.e. vertices with a score equal to
|P|, as well as exclude all vertices that are in no solution at all, i.e. vertices with a zero score. Note
that the total number of vertices selected with this strategy differs from the previous strategies,
where we consider all the vertices from the best solution in the population. The vertices selected
by solution participation are only a subset of these. This process is similar to the Merge Search
introduced by Kenny et al. [28].

5 Experimental Evaluation

Methodology. We implemented our algorithm using C++11. The code is compiled using g++
version 12.2 and full optimizations turned on (-O3). We compare our algorithm against the struc-
tion algorithm by Gellner et al. [20] and the (more recent) algorithm HtWIS by Gu et al. [23].
We also compare the results with the branch-and-reduce algorithm by Lamm et al. [32], as well
as the HILS algorithm by Nogueira et al. [40]. In most cases HILS outperforms DynWVC1 and
DynWVC2 [32]. Hence, we omit comparisons to DynWVC1 and DynWVC2. We run each
configuration with four different seeds and a time limit of ten hours and report the mean results.
For all algorithms we always report the time when the best solution was found within this time
limit. The only algorithms which might not use the whole ten hour time is the exact algorithm,
when found and proven an optimal solution and the algorithm HtWIS. Note that this algorithm is
not using any randomness, which would enable us to run it multiple times with different seeds for
using the whole 10 hours, nor does the algorithm have any other parameters that would increase
the solution quality by spending more time. If a solver exceeded a memory threshold of 100 GB
during a time limit of ten hours for an instance we note this with a dash. In general, our algorithm
does not test the time limit in the ExactReduce routine of m2wis or during the calculation of
the separator and partition pool. Hence, if the 10h mark is reached during these steps, the time
limit can be exceeded. We used one core of a machine equipped with a AMD EPYC 7702P (64
cores) processor and 1 TB RAM running Ubuntu 20.04.1. We used the fast configuration of the
KaHIP graph partitioning package [48,49] for the computation of the graph partitions and vertex
separators. We also present extensive experiments regarding the impact of reduction ordering. We
conclude that the order in which we introduce Reductions 1 to 11 is already robust and hence use
it for the remaining experiments.

JGAA, 28(1) 439–473 (2024) 453

Parameter Configuration. Similar to Lamm et al. [31], we set the population size |P| to 250,
the size of the partition and separator pool to 10 and the mutation rate to 10%. Local search is
limited to 15 000 iterations. Finally, for the multi-way combine operations, we bound the number
of blocks used by 64. For the state of the art experiments, we set the parameters as discussed in
Section 5.2 and 5.3.

Data Sets. The set of instances for the experiments is built with graphs from different sources.
We use all the instances used by Gellner et al. [20] and Gu et al. [23]. Our set consists of large social
networks from the Stanford Large Network Dataset Repository (snap) [34]. Additionally, we added
real-world graphs from OpenStreetMaps (osm) [1,9,11]. Furthermore, as in Gu et al. [23] we took
the same 6 graphs from the SuiteSparse Matrix Collection (ssmc) [2,14] where weights correspond
to population data. Each weight was increased by one, to avoid a large number of nodes assigned
with zero weight. Additionally, we used instances from dual graphs of well-known triangle meshes
(mesh) [46], as well as 3d meshes derived from simulations using the finite element method (fe) [51].
For unweighted graphs, we assigned each vertex a random weight that is uniformly distributed in
the interval [1, 200]. We also tested our algorithms on the kernels of osm instances as used by
Dong et al. [15]. We do not compare our algorithm on the VR instances contained therein, as
data reductions do not work on those instances [15] and the reduced graphs are too large to be
sufficiently explored by our memetic algorithm. We list all graphs in Table 15.

5.1 Experiments on Reduction Ordering

Different orderings of applying data reductions yield different sizes of the reduced graph. Addi-
tionally, the ordering effects the running time of the ExactReduce routine from Algorithm 1.
This effect has been described for example by Figiel et al. [18]. We now perform experiments to
evaluate the impact different orderings may have. Here, we run the ExactReduce routine, i.e.
we apply the reductions in a given ordering exhaustively, and report the results.

Baseline: Our starting point is an intuitive ordering, which we constructed by simplicity of the
reductions, from simplest to most complex. Hereby we orientate us towards the ordering chosen
by Akiba and Iwata [4]. This initial ordering is precisely the order in which we introduce the
reductions from Reduction 1 to Reduction 12. In the following experiments, we use this ordering
as a baseline to compare against.

5.1.1 Orderings Based on Impact of Single Reductions

The space of possible orderings of data reductions is very large. We start our evaluation by exam-
ining the impact of disabling single reductions in our baseline, i.e. we run our baseline reductions
and then build a set of reductions where exactly one data reduction of the baseline is disabled.
The ordering of the remaining data reductions remains the same. The time to apply all reductions
exhaustively using our baseline ordering is denoted as tall and the size of the reduced instance by
those reductions is denoted as ωall. Then, we create different data reduction orderings from the
baseline in which a single data reduction is disabled. For each of the available reductions r, we get
a new time tall\r and solution weight ωall\r which corresponds to running all reductions except r
of the baseline (and in its order). Based on these values, we derive three orderings, a time based
ordering, a size based ordering and a combination of both.

454 Finding Near-Optimal Weight Independent Sets at Scale Großmann et al.

Table 1: Comparing geometric mean of running times and reduced graph sizes for different or-
derings, relative to the initial ordering, where |K| is the number of vertices in the reduced graph.
Additionally, we count how often an ordering found the smallest reduced graph in comparison to
the other orderings (# best).

Ordering t/tinitial |K|/|K|initial # best

initial 1,00 1,000 180/207
time 1,06 1,021 161/207
size 1,46 1,074 164/207
time&size 1,60 0,998 191/207

Time-based Ordering. For the time-based ordering we rearranged the reductions such that the
mean tall\r is decreasing. The intuition here is if removing a reduction from the baseline yields
an ordering that has an excessive running time, then this reduction is important for running time
and should be applied before a reduction that has a smaller impact. Reductions with only small
effects, where the mean solution quality ωall\r is equal to the mean solution quality for ωall, are
disabled to further reduce the running time. This results in the ordering (4, 6, 8, 4 (case 3), 2, 7,
1, 5, 3, 10, 12).

Size-based Ordering. For the size-based ordering the reductions are reordered in decreasing
order according to the mean value ωall\r over all graphs. The intuition here is that if ωall\r is
large, then not using r has a large impact on the size of reduced graph and hence should be applied
before a reduction that has a smaller impact. The resulting ordering is (4, 6, 10, 8, 4 (case 3), 12,
5, 3, 1, 2,7, 9, 11).

Time and Size-based Ordering. Here we use a combination with xall\r = tall\r + 10ωall\r
decreasingly to order reductions. We use a factor of 10 here, since solution quality is typically more
important for applications than running time. This results in the following ordering of reductions
(4, 6, 10, 8, 5, 4 (case 3), 12, 3, 1, 2,7, 9, 11).

Discussion. The results for the previous orderings are presented in Table 1. We note that
different orderings do not yield significant differences compared to the initial ordering. We can
observe, that the time as well as the size ordering is not able to improve neither the kernel size, nor
the computation time. The ordering time&size can compute smaller kernel sizes, at an expense
of additional 60% of running time. With this we are able to find 191 out of 207 smallest kernels.
However, the improvement in the geometric mean kernel size compared to the initial ordering
is less than 0.2%. The experiments show, that the initial ordering already yields a good trade
of for running time and kernel size. When examining the positions for the reductions, we note
that there are some reductions that remain at approximately the same position meaning they are
either very important for solution size and quality (or the opposite). For example Reductions 4
and 6 are applied at the beginning, whereas for example Reduction 9 is applied towards the end or
removed. On the other hand there also are reductions that are on completely different positions, e.g.
Reduction 10. In general, our experiments show that the reduction order has an effect on the size
of the reduced instance and especially on the running time. We conclude that the initial ordering
(baseline) is already robust w.r.t. the orderings considered in this section.

JGAA, 28(1) 439–473 (2024) 455

5.1.2 Orderings Based on Impact of Groups of Reductions

We divide the reductions into three groups of roughly similar complexity. The first group contains
Reductions 1 and 2, the second group consists of reductions for vertices of degree two, which are
Reductions 3 and 4. The third group contains all remaining reductions listed in Section 4.1.

Permutation of Ordering of Reductions in First and Second Group. We now examine
all permutations in the first and second group. The permutation in the ordering only takes place
inside the groups. The groups themselves always stay in a fixed order, i.e. Reductions 1 and 2 will
always be the first two reductions applied. Reductions of the third group are applied as in the
initial ordering. Overall, our experiments show that the order of the reductions in the first two
groups has a negligible effect on running time and quality of a solution. Thus, for the remaining
experiments we use the initial ordering.

Permutation of Ordering of Reductions in Third Group. We now examine permutations
in the third group of reductions. We apply additional restrictions to reduce the number of permu-
tations. We apply Reduction 11 always last, and Reduction 6 is always followed by Reduction 7.
The best performing permutation is (1, 2, 3, 4, 4 (case 3), 5, 8, 10, 9, 6, 7, 11). The geometric
mean weight improvement is w/winitial = 1,0023 and the geometric mean time compared to the
initial ordering is t/tinitial = 2,9.

Conclusion. Overall, there are some orderings that perform better than the initial ordering by
complexity, however, these improvements are only on a few instances (and result in significantly
higher running time). In most cases all orderings yielded the similar results. Among those, the
initial ordering remains one of the fastest. We conclude that the initial ordering presents a very
stable reduction ordering. Hence, we use it for the remaining experiments. For some graphs, it
might be worth trying multiple runs of algorithms using one of the other orderings we presented
in this section as well.

5.2 Heuristic Data Reduction Rules

For the heuristic data reduction rules we perform multiple experiments on a subset of our dataset
containing 15 graphs, marked in Table 15. For this we took three large graphs from each class to
evaluate the influence on performance of our parameters. For each instance we use four different
seeds and a time limit of one hour.

We start with comparing the different vertex selection strategies presented in Section 4.3. Each
strategy is evaluated for different fractions. Table 2 summarizes our results. For each configuration
we show the geometric mean quality as well as the geometric mean running time over the subset of
15 graphs. Note that the number of selectable vertices is different between solution participation
and the other strategies. For solution participation, where vertices are only considered if they
are in each or none solution within the whole population the set of vertices selected is only a
subset of the vertices selectable by the other strategies. Adding 100% does result in the same
solution for these strategies, since the best solution is always included completely. Furthermore,
this explains the larger speedup for these other strategies compared to solution participation when
the fraction is increased.

For all strategies we can reduce the mean time. The smallest speedup is observed for solution
participation, as explained in the previous paragraph. Using the other strategies we can achieve
a speedup of 10 by increasing the fraction parameter. The quality using solution participation is

456 Finding Near-Optimal Weight Independent Sets at Scale Großmann et al.

Table 2: m2wis geometric mean solution weight ω and time t (in seconds) required to compute
ω for different vertex selection strategies and fractions f . Note that, f = 1 is adding one vertex,
while the other rows refer to percentages of the solution. The best result among all configurations
are marked bold.

t ω t ω t ω t ω t ω

f degree hybrid solution participation weight weight/degree

1 781,48 4 052 070 753,95 4 052 039 654,53 4 054 053 785,94 4 052 026 610,46 4 052 120
5% 405,97 4 052 805 549,90 4 053 186 798,08 4 052 516 362,88 4 051 708 345,88 4 052 895

25% 208,75 4 052 056 252,43 4 052 409 685,24 4 053 765 135,34 4 051 263 199,10 4 051 819
75% 69,95 4 050 596 100,64 4 050 646 558,72 4 054 196 68,99 4 050 476 69,75 4 050 397

100% 59,60 4 050 453 60,17 4 050 453 515,11 4 054 303 59,82 4 050 453 60,41 4 050 453

increasing with increasing fraction until f = 100%, while the other strategies perform best with
f = 5%. When further increasing the amount of vertices added in these strategies, the solution
quality gets worse. The difference between the best and the worst mean result is around 0,1%.
The overall best mean solution quality is achieved by using the solution participation with adding
100% of the vertices possible. We set this configuration for the next set of our experiments.

5.3 Solving Small Reduced Graphs Exactly

With this experiment we examine whether it is beneficial at some point to solve the reduced
instance exactly. Therefore, we introduced two new parameters. First, we add a threshold nK

determining when to start solving the reduced instance exactly. When the number of vertices in
the reduced graph K is smaller than nK , we apply Struction. The second parameter is a time
limit texact which restricts this exact solver. If the instance is not solved within this time limit, we
continue with the algorithm m2wis.

As in the previous section, we use the same subset of 15 graphs, marked in Table 15 and for
each instance we use four different seeds and an overall time limit of one hour. We present the
summary of the results using different nK from 0 to 15 000 and texact from 10 seconds to no time
limit for m2wis in Table 3 and for m2wis + s in Table 4. We report the time when the best
solution was found. Often the exact solver finds a good solution very fast, but is then not able
to improve the solution. This is why for increasing nK , we can sometimes see an decrease in the
reported time.

In both tables the solution quality does not differ much between the different configurations.
These differences are all less than 0,01%. However, we can see in Table 3 that for m2wis nK =

Table 3: m2wis geometric mean solution weight ω and time t (in seconds) required to compute
ω for different thresholds nK and time limits texact to solve reduced instances exactly. The best
result among all configurations are marked bold.

t ω t ω t ω t ω

nK texact = 10 [s] texact = 100 [s] texact = 1000 [s] no limit

0 515,11 4 054 303 515,11 4 054 303 515,11 4 054 303 515,11 4 054 303
100 519,69 4 054 164 513,77 4 054 313 535,64 4 054 080 533,28 4 054 208
500 509,72 4 054 191 525,53 4 054 337 517,47 4 054 132 532,67 4 054 066

1 000 480,82 4 054 037 501,77 4 054 305 522,39 4 054 213 505,01 4 054 234
5 000 188,45 4 054 285 196,32 4 054 114 205,92 4 053 974 204,50 4 054 138

10 000 79,43 4 054 144 85,13 4 054 367 99,65 4 054 057 114,17 4 054 068
15 000 34,22 4 054 249 37,33 4 054 180 45,45 4 054 229 48,74 4 054 052

JGAA, 28(1) 439–473 (2024) 457

Table 4: m2wis + s geometric mean solution weight ω and time t (in seconds) required to compute
ω for different thresholds nK and time limits texact to solve reduced instances exactly. The best
result among all configurations are marked bold.

t ω t ω t ω t ω

nK texact = 10 [s] texact = 100 [s] texact = 1000 [s] no limit

0 15,58 4 054 480 15,58 4 054 480 15,58 4 054 480 15,58 4 054 480
100 15,37 4 054 599 15,70 4 054 336 15,55 4 054 666 15,90 4 054 579
500 15,31 4 054 530 15,90 4 054 537 15,52 4 054 546 15,60 4 054 439

1 000 15,52 4 054 467 15,52 4 054 520 15,48 4 054 386 15,34 4 054 445
5 000 13,21 4 054 461 12,92 4 054 571 14,18 4 054 628 15,69 4 054 481

10 000 13,23 4 054 538 14,39 4 054 409 18,25 4 054 463 20,90 4 054 377
15 000 13,04 4 054 569 14,04 4 054 492 17,85 4 054 543 20,58 4 054 520

15 000 the mean time is reduced up to a factor of 15 for all time limits texact tested. The threshold
nK = 10 000 yields the best result with a time limit of texact = 100. For m2wis + s in Table 4
we see that the best parameter configuration is nK = 100 and texact =1000 seconds. With this
configuration we also achieved the overall best result when comparing to m2wis.

For the comparison against the state of the art, we use the following configurations: We set the
parameters for m2wis to nK = 15 000 and texact = 100 seconds. We chose this configuration, since
compared to the parameters yielding the best solution quality this configuration is only 0,00002%
worse regarding solution quality, however, it is 2,5 times faster. For m2wis + s we chose the
configuration yielding the best solution quality, which is nK = 100 and texact = 1000 seconds.

5.4 Limiting the Time for Evolve

Additionally to limiting the number of rounds of the evolution cycles, we also restrict the time
used within the evolve procedure. This is especially important for very complex instances where
evolve can take up all the time. We test different limits for evotime starting with 450 seconds
up to 4 hours on the same 15 graphs, marked in Table 15. For each instance we use four different
seeds and, in contrast to the previous experiments, an overall time limit of 10 hours. We present
the geometric mean over the results for both m2wis and m2wis + s in Table 5. Generally, we
see that this parameter has an higher impact on the solution quality compared to the previous
parameters tested. For m2wis + s we set evotime = 900, and for m2wis we set evotime = 1800.
These are the configurations for which our algorithms yielded the best geometric mean solution
quality within the test set.

Table 5: Geometric mean solution weight ω and time t (in seconds) required to compute ω for
different time limits evotime in seconds) for the evolve procedure, see Algorithm 2. The best
result among all configurations are marked bold.

t ω t ω

evotime m2wis + s m2wis

450 15,36 4 055 174 37,55 4 055 028
900 15,85 4 055 342 46,90 4 055 206

1 800 17,59 4 055 150 59,16 4 055 253
3 600 18,11 4 054 872 66,08 4 055 179
7 200 18,22 4 054 202 75,86 4 054 664

14 400 18,70 4 053 447 81,22 4 053 511

458 Finding Near-Optimal Weight Independent Sets at Scale Großmann et al.

Table 6: Average solution weight ω and time t (in seconds) required to compute ω for a repre-
sentative sample of our instances comparing the best performing competitors. The best solutions
among all algorithms are marked bold. Rows are colored gray if branch reduce or struction are
optimal. See Tables 9 to 13 for more details.

t ω t ω t ω t ω t ω t ω

finEl branch reduce HtWIS HILS struction m2wis + s m2wis

body - - 0,04 1 645 650 1 259,67 1 678 510 - - 112,85 1 680 182 901,26 1 680 179

ocean 4,88 7 248 581 0,07 6 803 672 11 142,43 7 075 329 - - 5,20 7 248 581 5,01 7 248 581

pwt - - 0,03 1 153 600 761,52 1 175 437 - - 3 846,33 1 178 734 5 131,59 1 178 583

mesh branch reduce HtWIS HILS struction m2wis + s m2wis

blob 0,14 855 547 0,01 854 484 260,10 854 803 0,02 855 547 0,04 855 547 0,03 855 547

dragon 2,90 7 956 530 0,04 7 950 526 9 026,60 7 947 535 0,17 7 956 530 0,31 7 956 530 0,33 7 956 530

ecat 9,1836 650 298 0,50 36 606 394 36 000,05 36 562 652 1,9236 650 298 2,83 36 650 298 3,01 36 650 298

osm branch reduce HtWIS HILS struction m2wis + s m2wis

flor.-3 1 724,45 237 333 0,13 234 218 216,24 237 333 1,33 237 333 11,20 237 333 9,57 237 333

mas.-3 - - 1,77 144 381 355,93 145 866 - - 77,14 145 866 104,87 145 866

utah-3 239,50 98 847 0,04 97 754 72,21 98 847 0,08 98 847 2,34 98 847 1,94 98 847

snap branch reduce HtWIS HILS struction m2wis + s m2wis

as-skit. - - 1,04124 141 373 36 000,25123 994 141 - - 3 422,79124 157 729 621,62124 157 729

ca-Gr. <0,01 287 919 <0,01 287 850 144,49 287 919 <0,01 287 919 <0,01 287 919 <0,01 287 919

web-BS. 36 000,12 43 891 206 9,94 43 889 843 36 000,10 43 888 267 6,5243 907 482 8,75 43 907 482 9,32 43 907 482

ssmc branch reduce HtWIS HILS struction m2wis + s m2wis

ga2010 36 000,10 4 644 324 0,47 4 639 891 29 522,41 4 642 807 0,62 4 644 417 1,64 4 644 417 1,85 4 644 417

nh2010 36 000,00 581 637 0,03 587 059 2 163,80 588 797 0,11 588 996 0,47 588 996 0,47 588 996

ri2010 36 000,00 447 427 0,02 457 108 782,49 458 489 0,09 459 275 0,62 459 275 0,49 459 275

overall branch reduce HtWIS HILS struction m2wis + s m2wis

best 175/207 97/207 154/207 188/207 204/207 198/207

gmean ω - 153 434 154 355 - 154 430 154 430

gmean t - <0,01 59,18 - 0,03 0,03

5.5 Comparison against the State of the Art

We now compare our algorithm m2wis against a range of algorithms: HtWIS by Gu et al. [23],
both struction configurations by Gellner et al. [20] where we always report the better of the two
results in the column named struction, the branch-and-reduce solver by Lamm et al. [32], andHILS
by Nogueira et al. [40]. Additionally, we test against the vertex cover algorithms NuMWVC by
Li et al. [36] andGNN VC by Langedal et al. [33]. Note that we used the providedGNN VCmodel,
which was trained on instances from the SuiteSparse Matrix Collection [2]. We also include the
variant of our algorithm, called m2wis + s, using Struction from Gellner et al. [20] with a time
limit of 60 seconds to compute individuals for the initial population. We present a representative
sample of our full experiments in Table 6. In the last part we give a summary over all instances.
This consists of the number of instances solved best, the geometric mean time and solution quality
respectively. Detailed per-instance results are presented in the Tables 9 to 13 in the Appendix.

Overall, we see that m2wis + s has the largest number of best solutions for our full set of
207 instances. In particular, it is able to compute the best solution for all but three instances, i.e.
kentucky-3, hawaii-3 (osm) and soc-p.rel. (snap). In these three cases m2wis + s was outperformed
by our other variant m2wis. Additionally, m2wis + s is able to compute the best solutions for
all graphs in the graph classes finiteElement, mesh and ssmc. Finally, for all but 18 of these 207
instances, m2wis + s finds the best solution in less than 100 seconds. Our algorithm m2wis is still

JGAA, 28(1) 439–473 (2024) 459

able to compute the best solution for 198 instances, including hawaii-3, kentucky-3 and soc-p.rel..
The geometric mean running time over all instances of both of our variants is the same.

When looking at the running times, we see that HtWIS achieves the smallest geometric mean
running time. However, the quality is less or equal to the results of m2wis and m2wis + s on all of
the tested instances, with multiple instances having a significant difference in weight–larger than
10 000. If running time is crucial, the competitor HtWIS is noteworthy. However, our algorithm
also computes high quality initial solutions which are then enhanced over time. m2wis + s for
example needs a geometric mean time of 0,0046 seconds to compute initial solutions which are
on average 0,3% better than the solutions computed by HtWIS which needs a geometric mean
time of 0,039 seconds. The best improvement already after the initial computations is found for
greenland-AM3, where we need 3 times as long as HtWIS while getting an improvement of more
than 12% over the result of HtWIS. The running time achieved by the struction-based algorithms
is also to be noted. These are for example the second fastest on ssmc instances, see Table 10.
The struction algorithms solve 47 instances faster than all competitors. However, these only find
188 best solutions overall. The branch reduce solver is able to compute 175 best solutions within
the limitations of the experiment. It works especially good on snap and mesh instances, while
it is not able to solve any of the ssmc instances optimally. When looking at the performance of
the four competing heuristic algorithms, we see that HILS can compute overall the most best
solutions, followed by GNN VC. When comparing HILS and GNN VC directly, the comparison
is highly dependent on the graph class. On the mesh and snap instances for example, GNN VC
beat HILS on every instance regarding solution quality. But since we have 148 osm instances,
where GNN VC was not trained on, overall HILS has the larger number of best solved instances.
Regarding running time, HILS needs on average almost 6 times as long as GNN VC. The overall
fastest competitor HtWIS computed on 97 instances the best solution, while NuMWVC never
computed a best solution within our experimental setup.

In terms of memory requirement, when the struction variants are able to solve the instance very
fast, memory usage is usually below 1 GB and also a bit smaller than the the memory required by
our algorithm. For more difficult instances, as for example body (finiteElement) where m2wis + s
and m2wis have a memory usage of less than 1 GB, the struction algorithm requires more than 100
GB. This high memory consumption compared to our solver can be explained since, particularly
for challenging instances, the struction algorithm reaches a memory-intensive branching phase.

5.6 Comparison against the State of the Art on Reduced Instances

We now compare the same algorithms on the reduced instances computed with the set of reduction
rules presented in Section 4.1. In this experiment, we show the impact of our algorithm apart from
the reduction rules, which can be used as a preprocessing step in general. Table 14 shows the
detailed per instance results. In Table 7, we show the same sample of the results. Especially
for the branch and reduce algorithm by Lamm et al. [32] we can see a lot of improvement over
the results in Table 6. With additionally using the reductions, we are able to solve more of the
ssmc instances optimally as well reducing the memory consumption. For example massachusetts-3
can now be solved without reaching the memory threshold. The other algorithms also benefit
from using the reductions, which can be seen in higher solution qualities and less running time.
Still, our two algorithm variants perform best also on the set of reduced instances. There is only
one reduced snap instance (soc-pokec-relationships), see Table 14, where our algorithms yield a
smaller solution. On this instance, they are outperformed by HILS, but computed the second and
third best solution.

460 Finding Near-Optimal Weight Independent Sets at Scale Großmann et al.

Table 7: Average solution weight ω and time t (in seconds) required to compute ω for a repre-
sentative sample of our instances comparing the best performing competitors. The best solutions
among all algorithms are marked bold. Rows are colored gray if branch reduce or struction are
optimal. See Table 14 for more details.

t ω t ω t ω t ω t ω t ω

redFinEl branch reduce HtWIS HILS struction m2wis + s m2wis

body - - 0,01 222 320 74,81 224 550 - - 60,30 224 744 100,23 224 744
pwt - - 0,07 1 019 262 655,57 1 034 418 - - 1 391,40 1 038 139 4 767,83 1 038 046

redMesh branch reduce HtWIS HILS struction m2wis + s m2wis

ecat 0,02 31 254 <0,01 30 789 8,17 31 254 <0,01 31 254 0,03 31 254 0,03 31 254

redOsm branch reduce HtWIS HILS struction m2wis + s m2wis

florida-3 1 714,07 25 992 0,11 23 471 65,56 25 992 1,34 25 992 8,20 25 992 7,80 25 992
mas.-3 36 000,45 14 610 1,79 13 285 247,66 14 757 - - 74,22 14 757 102,60 14 757
utah-3 200,33 16 090 0,03 15 186 41,05 16 090 0,07 16 090 1,77 16 090 1,64 16 090

redSnap branch reduce HtWIS HILS struction m2wis + s m2wis

as-skitter - - 0,04 134 500 45,35 135 976 - - 1 904,18 135 998 287,87 135 998
web-BerkStan 28,05 135 172 <0,01 133 309 36,21 135 156 0,04 135 172 0,17 135 172 0,15 135 172

redSsmc branch reduce HtWIS HILS struction m2wis + s m2wis

ga2010 159,38 76 316 0,01 76 297 59,10 76 297 0,07 76 316 0,34 76 316 0,33 76 316
nh2010 2,28 26 770 <0,01 26 477 17,20 26 768 0,01 26 770 0,07 26 770 0,05 26 770
ri2010 6 477,22 66 963 <0,01 65 979 32,71 66 960 0,02 66 963 0,15 66 963 0,12 66 963

overall branch reduce HtWIS HILS struction m2wis + s m2wis

best 67/93 14/93 75/93 75/93 88/93 88/93
gmean ω - 15 964 16 683 - 16 688 16 688
gmean t - 0,01 25,01 - 0,60 0,66

5.6.1 Comparison to METAMIS

Recently, Dong et al. [15] presented a novel heuristic for MWIS called METAMIS. Since their
code is not publicly available, we compare the solution quality of our algorithm against the results
presented in their work. Detailed per-instance results can be found in Table 8. We use the same
pre-reduced osm instances as Dong et al. [15]. In their experiments the time limit for METAMIS
is 1 500 seconds. However, as our algorithm unfolds its full potential over a long period of time,
and our algorithm focused on higher-quality solutions and not fast running times, we stayed with
a 10-hour time limit. Moreover, note that the results have been computed on different machines.
Summarizing the results, we are able to compute the same or better solutions for all graphs. In
total we were able to improve three solutions compared to the METAMIS results with both of
our configurations. Especially for large instances, our algorithms outperform the results stated
in [15]. However, it is not clear whether METAMIS would compute equally good solutions for the
instances where m2wis performed better with a longer running time.

6 Conclusion and Future Work

In this work, we developed a novel memetic algorithm for the MWIS problem. It repeatedly
reduces the graph until a high-quality solution to the MWIS problem is found. After applying
exact reductions, we use the best solution computed by the evolutionary algorithm on the reduced
graph to identify vertices likely to be in an MWIS. These are removed from the graph which further

JGAA, 28(1) 439–473 (2024) 461

Table 8: Comparison to quality of METAMIS from [15] for osm instances. Bold numbers indicate
the best solution among the algorithms. As done by Dong et al. [15] we reduced the osm instances
in advance using KaMIS [32]. For METAMIS the best result out of five runs is reported; we
report the best solution out of four runs, each with a 10h time limit.

t ω t ω t ω

redOsm metamis m2wis + s m2wis

alabama-3 5,41 45 449 23,35 45 449 23,30 45 449
district-of-columbia-2 58,38 100 302 128,11 100 302 105,50 100 302
district-of-columbia-3 1 347,00 142 910 4 133,86 143 056 1 674,92 143 056
florida-3 3,08 46 132 7,09 46 132 7,04 46 132
greenland-3 28,02 11 960 2 556,12 11 960 363,89 11 960
hawaii-3 1 207,00 58 819 5 415,14 58 869 4 595,13 58 870
idaho-3 21,23 9 224 1 560,69 9 224 271,12 9 224
kansas-3 3,38 5 694 62,60 5 694 102,45 5 694
kentucky-3 1 387,00 30 789 9 125,55 31 107 6 457,95 31 107
massachusetts-3 2,22 17 224 63,29 17 224 103,09 17 224
north-carolina-3 0,38 13 062 61,20 13 062 116,08 13 062
oregon-3 11,56 34 471 150,93 34 471 230,12 34 471
rhode-island-2 0,27 43 722 0,68 43 722 0,64 43 722
rhode-island-3 449,70 81 013 3 175,87 81 013 1 660,12 81 013
vermont-3 9,33 28 349 1 238,25 28 349 135,12 28 349
virginia-3 9,08 97 873 144,95 97 873 146,12 97 873
washington-3 62,35 118 196 1 357,56 118 196 257,62 118 196

overall metamis m2wis + s m2wis

best 14/17 16/17 17/17
gmean ω 36 153 36 179 36 179
gmean t 20,89 357,31 145,07

opens the reduction space and creates the possibility to apply this process repeatedly.
Overall, our two algorithm configurations compute the same or better results among the com-

petitors. For most instances these results are probably close to the optimum and even small
improvements in solution quality can yield substantial cost reduction for some applications [15].

For future work, we are interested in an island-based approach to obtain a parallelization of our
evolutionary approach, as well as parallelization of the reductions. Both the ExactReduce and
the HeuristicReduce routine can result in a disconnected reduced graph. We are interested in
solving the problem on each of the resulting connected components separately, which also enables
new parallelization possibilities. The code of our work is publicly available under https://github.
com/KarlsruheMIS.

https://github.com/KarlsruheMIS
https://github.com/KarlsruheMIS

462 Finding Near-Optimal Weight Independent Sets at Scale Großmann et al.

References

[1] Openstreetmap. https: // www. openstreetmap. org . URL: https://www.openstreetmap.
org.

[2] Suitesparce matrix collection. https: // sparse. tamu. edu . URL: https://sparse.tamu.
edu.

[3] F. N. Abu-Khzam, S. Lamm, M. Mnich, A. Noe, C. Schulz, and D. Strash. Recent advances
in practical data reduction. In H. Bast, C. Korzen, U. Meyer, and M. Penschuck, editors, Algo-
rithms for Big Data: DFG Priority Program 1736, pages 97–133. Springer Nature Switzerland,
Cham, 2022. doi:10.1007/978-3-031-21534-6_6.

[4] T. Akiba and Y. Iwata. Branch-and-reduce exponential/FPT algorithms in practice: A case
study of vertex cover. Theoretical Computer Science, 609, Part 1:211–225, 2016. doi:10.

1016/j.tcs.2015.09.023.

[5] G. Alexe, P. L. Hammer, V. V. Lozin, and D. de Werra. Struction revisited. Discrete applied
mathematics, 132(1-3):27–46, 2003. doi:10.1016/S0166-218X(03)00388-3.

[6] D. V. Andrade, M. G. Resende, and R. F. Werneck. Fast local search for the maxi-
mum independent set problem. Journal of Heuristics, 18(4):525–547, 2012. doi:10.1007/

s10732-012-9196-4.

[7] L. Babel. A fast algorithm for the maximum weight clique problem. Computing, 52(1):31–38,
1994. doi:10.1007/BF02243394.

[8] E. Balas and C. S. Yu. Finding a maximum clique in an arbitrary graph. SIAM Journal on
Computing, 15(4):1054–1068, 1986. doi:10.1137/0215075.

[9] L. Barth, B. Niedermann, M. Nöllenburg, and D. Strash. Temporal map labeling: A new
unified framework with experiments. In Proceedings of the 24th ACM SIGSPATIAL Interna-
tional Conference on Advances in Geographic Information Systems, GIS ’16, pages 23:1–23:10.
ACM, 2016. doi:10.1145/2996913.2996957.

[10] S. Butenko and S. Trukhanov. Using critical sets to solve the maximum independent set
problem. Operations Research Letters, 35(4):519–524, 2007. doi:10.1016/j.orl.2006.07.

004.

[11] S. Cai, W. Hou, J. Lin, and Y. Li. Improving local search for minimum weight vertex cover by
dynamic strategies. In Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence (IJCAI 2018), pages 1412–1418, 2018. doi:10.24963/ijcai.2018/196.

[12] S. Cai, K. Su, and A. Sattar. Local search with edge weighting and configuration checking
heuristics for minimum vertex cover. Artificial Intelligence, 175(9-10):1672–1696, 2011. doi:
10.1016/j.artint.2011.03.003.

[13] Ü. V. Çatalyürek, K. D. Devine, M. F. Faraj, L. Gottesbüren, T. Heuer, H. Meyerhenke,
P. Sanders, S. Schlag, C. Schulz, D. Seemaier, and D. Wagner. More recent advances in
(hyper)graph partitioning. CoRR, abs/2205.13202, 2022. arXiv:2205.13202, doi:10.48550/
arXiv.2205.13202.

https://www.openstreetmap.org
https://www.openstreetmap.org
https://www.openstreetmap.org
https://sparse.tamu.edu
https://sparse.tamu.edu
https://sparse.tamu.edu
https://doi.org/10.1007/978-3-031-21534-6_6
https://doi.org/10.1016/j.tcs.2015.09.023
https://doi.org/10.1016/j.tcs.2015.09.023
https://doi.org/10.1016/S0166-218X(03)00388-3
https://doi.org/10.1007/s10732-012-9196-4
https://doi.org/10.1007/s10732-012-9196-4
https://doi.org/10.1007/BF02243394
https://doi.org/10.1137/0215075
https://doi.org/10.1145/2996913.2996957
https://doi.org/10.1016/j.orl.2006.07.004
https://doi.org/10.1016/j.orl.2006.07.004
https://doi.org/10.24963/ijcai.2018/196
https://doi.org/10.1016/j.artint.2011.03.003
https://doi.org/10.1016/j.artint.2011.03.003
https://arxiv.org/abs/2205.13202
https://doi.org/10.48550/arXiv.2205.13202
https://doi.org/10.48550/arXiv.2205.13202

JGAA, 28(1) 439–473 (2024) 463

[14] T. A. Davis and Y. Hu. The university of florida sparse matrix collection. ACM Transactions
on Mathematical Software (TOMS), 38(1):1–25, 2011.

[15] Y. Dong, A. V. Goldberg, A. Noe, N. Parotsidis, M. G. C. Resende, and Q. Spaen. A lo-
cal search algorithm for large maximum weight independent set problems. In S. Chechik,
G. Navarro, E. Rotenberg, and G. Herman, editors, 30th Annual European Symposium on
Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany, volume 244 of
LIPIcs, pages 45:1–45:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:

10.4230/LIPIcs.ESA.2022.45.

[16] C. Ebenegger, P. Hammer, and D. De Werra. Pseudo-boolean functions and stability of
graphs. In North-Holland mathematics studies, volume 95, pages 83–97. Elsevier, 1984. doi:
10.1016/S0304-0208(08)72955-4.

[17] Z. Fang, C. Li, and K. Xu. An exact algorithm based on maxsat reasoning for the maximum
weight clique problem. J. Artif. Intell. Res., 55:799–833, 2016. URL: https://doi.org/10.
1613/jair.4953, doi:10.1613/JAIR.4953.

[18] A. Figiel, V. Froese, A. Nichterlein, and R. Niedermeier. There and back again: On applying
data reduction rules by undoing others. In S. Chechik, G. Navarro, E. Rotenberg, and G. Her-
man, editors, 30th Annual European Symposium on Algorithms, ESA 2022, September 5-9,
2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages 53:1–53:15. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ESA.2022.53.

[19] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[20] A. Gellner, S. Lamm, C. Schulz, D. Strash, and B. Zaválnij. Boosting data reduction for the
maximum weight independent set problem using increasing transformations. In M. Farach-
Colton and S. Storandt, editors, Proceedings of the Symposium on Algorithm Engineering
and Experiments, ALENEX 2021, Virtual Conference, January 10-11, 2021, pages 128–142.
SIAM, 2021. doi:10.1137/1.9781611976472.10.

[21] A. Gemsa, M. Nöllenburg, and I. Rutter. Evaluation of labeling strategies for rotating maps.
ACM J. Exp. Algorithmics, 21(1):1.4:1–1.4:21, 2016. doi:10.1145/2851493.

[22] A. Grosso, M. Locatelli, andW. Pullan. Simple Ingredients Leading to Very Efficient Heuristics
for the Maximum Clique Problem. J. Heuristics, 14(6):587–612, 2008.

[23] J. Gu, W. Zheng, Y. Cai, and P. Peng. Towards computing a near-maximum weighted inde-
pendent set on massive graphs. In F. Zhu, B. C. Ooi, and C. Miao, editors, KDD ’21: The
27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event,
Singapore, August 14-18, 2021, pages 467–477. ACM, 2021. doi:10.1145/3447548.3467232.

[24] S. Held, W. J. Cook, and E. C. Sewell. Maximum-weight stable sets and safe lower bounds
for graph coloring. Math. Program. Comput., 4(4):363–381, 2012. URL: https://doi.org/
10.1007/s12532-012-0042-3, doi:10.1007/S12532-012-0042-3.

[25] D. Hespe, S. Lamm, and C. Schorr. Targeted branching for the maximum independent set
problem. In D. Coudert and E. Natale, editors, 19th International Symposium on Experimental
Algorithms, SEA 2021, June 7-9, 2021, Nice, France, volume 190 of LIPIcs, pages 17:1–17:21.

https://doi.org/10.4230/LIPIcs.ESA.2022.45
https://doi.org/10.4230/LIPIcs.ESA.2022.45
https://doi.org/10.1016/S0304-0208(08)72955-4
https://doi.org/10.1016/S0304-0208(08)72955-4
https://doi.org/10.1613/jair.4953
https://doi.org/10.1613/jair.4953
https://doi.org/10.1613/JAIR.4953
https://doi.org/10.4230/LIPIcs.ESA.2022.53
https://doi.org/10.1137/1.9781611976472.10
https://doi.org/10.1145/2851493
https://doi.org/10.1145/3447548.3467232
https://doi.org/10.1007/s12532-012-0042-3
https://doi.org/10.1007/s12532-012-0042-3
https://doi.org/10.1007/S12532-012-0042-3

464 Finding Near-Optimal Weight Independent Sets at Scale Großmann et al.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.SEA.2021.

17.

[26] D. Hespe, S. Lamm, C. Schulz, and D. Strash. Wegotyoucovered: The winning solver
from the PACE 2019 challenge, vertex cover track. In H. M. Bücker, X. S. Li, and
S. Rajamanickam, editors, Proceedings of the SIAM Workshop on Combinatorial Scien-
tific Computing, CSC 2020, Seattle, USA, February 11-13, 2020, pages 1–11. SIAM, 2020.
doi:10.1137/1.9781611976229.1.

[27] H. Jiang, C. Li, and F. Manyà. An exact algorithm for the maximum weight clique problem
in large graphs. In S. Singh and S. Markovitch, editors, Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA,
pages 830–838. AAAI Press, 2017. URL: https://doi.org/10.1609/aaai.v31i1.10648,
doi:10.1609/AAAI.V31I1.10648.

[28] A. Kenny, X. Li, and A. T. Ernst. A merge search algorithm and its application to the
constrained pit problem in mining. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference, GECCO ’18, page 316–323, New York, NY, USA, 2018. Association for
Computing Machinery. doi:10.1145/3205455.3205538.

[29] J. Kim, I. Hwang, Y. H. Kim, and B. R. Moon. Genetic Approaches for Graph Partitioning: A
Survey. In Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference
(GECCO’11), pages 473–480. ACM, 2011.

[30] S. Lamm, P. Sanders, and C. Schulz. Graph partitioning for independent sets. In E. Bampis,
editor, Experimental Algorithms - 14th International Symposium, SEA 2015, Paris, France,
June 29 - July 1, 2015, Proceedings, volume 9125 of Lecture Notes in Computer Science, pages
68–81. Springer, 2015. doi:10.1007/978-3-319-20086-6_6.

[31] S. Lamm, P. Sanders, C. Schulz, D. Strash, and R. F. Werneck. Finding near-optimal
independent sets at scale. Journal of Heuristics, 23(4):207–229, 2017. doi:10.1007/

s10732-017-9337-x.

[32] S. Lamm, C. Schulz, D. Strash, R. Williger, and H. Zhang. Exactly solving the maximum
weight independent set problem on large real-world graphs. In S. G. Kobourov and H. Meyer-
henke, editors, Proceedings of the Twenty-First Workshop on Algorithm Engineering and Ex-
periments, ALENEX 2019, San Diego, CA, USA, January 7-8, 2019, pages 144–158. SIAM,
2019. doi:10.1137/1.9781611975499.12.

[33] K. Langedal, J. Langguth, F. Manne, and D. T. Schroeder. Efficient minimum weight
vertex cover heuristics using graph neural networks. In C. Schulz and B. Uçar, editors,
20th International Symposium on Experimental Algorithms, SEA 2022, July 25-27, 2022,
Heidelberg, Germany, volume 233 of LIPIcs, pages 12:1–12:17. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.SEA.2022.12,
doi:10.4230/LIPICS.SEA.2022.12.

[34] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection. URL
http://snap.stanford.edu/data, June 2014.

[35] C.-M. Li, H. Jiang, and F. Manyà. On minimization of the number of branches in branch-
and-bound algorithms for the maximum clique problem. Computers & Operations Research,
84:1–15, 2017. doi:10.1016/j.cor.2017.02.017.

https://doi.org/10.4230/LIPIcs.SEA.2021.17
https://doi.org/10.4230/LIPIcs.SEA.2021.17
https://doi.org/10.1137/1.9781611976229.1
https://doi.org/10.1609/aaai.v31i1.10648
https://doi.org/10.1609/AAAI.V31I1.10648
https://doi.org/10.1145/3205455.3205538
https://doi.org/10.1007/978-3-319-20086-6_6
https://doi.org/10.1007/s10732-017-9337-x
https://doi.org/10.1007/s10732-017-9337-x
https://doi.org/10.1137/1.9781611975499.12
https://doi.org/10.4230/LIPIcs.SEA.2022.12
https://doi.org/10.4230/LIPICS.SEA.2022.12
http://snap.stanford.edu/data
https://doi.org/10.1016/j.cor.2017.02.017

JGAA, 28(1) 439–473 (2024) 465

[36] R. Li, S. Hu, S. Cai, J. Gao, Y. Wang, and M. Yin. Numwvc: A novel local search for
minimum weighted vertex cover problem. J. Oper. Res. Soc., 71(9):1498–1509, 2020. doi:

10.1080/01605682.2019.1621218.

[37] Y. Li, S. Cai, and W. Hou. An efficient local search algorithm for minimum weighted
vertex cover on massive graphs. In Asia-Pacific Conference on Simulated Evolution and
Learning (SEAL 2017), volume 10593 of LNCS, pages 145–157. 2017. doi:10.1007/

978-3-319-68759-9_13.

[38] F. Mascia, E. Cilia, M. Brunato, and A. Passerini. Predicting structural and functional
sites in proteins by searching for maximum-weight cliques. In M. Fox and D. Poole, editors,
Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010,
Atlanta, Georgia, USA, July 11-15, 2010, pages 1274–1279. AAAI Press, 2010. URL: https:
//doi.org/10.1609/aaai.v24i1.7495, doi:10.1609/AAAI.V24I1.7495.

[39] B. L. Miller and D. E. Goldberg. Genetic Algorithms, Tournament Selection, and the Effects
of Noise. Evolutionary Computation, 4(2):113–131, 1996.

[40] B. Nogueira, R. G. S. Pinheiro, and A. Subramanian. A hybrid iterated local search heuristic
for the maximum weight independent set problem. Optimization Letters, 12(3):567–583, 2018.
doi:10.1007/s11590-017-1128-7.

[41] P. R. Österg̊ard. A fast algorithm for the maximum clique problem. Discrete Applied Mathe-
matics, 120(1-3):197–207, 2002. doi:10.1016/S0166-218X(01)00290-6.

[42] P. Prosser and J. Trimble. Peaty: An exact solver for the vertex cover problem, 2019. doi:

10.5281/zenodo.3082356.

[43] S. Rebennack, M. Oswald, D. O. Theis, H. Seitz, G. Reinelt, and P. M. Pardalos. A branch
and cut solver for the maximum stable set problem. Journal of combinatorial optimization,
21(4):434–457, 2011. doi:10.1007/s10878-009-9264-3.

[44] P. San Segundo, F. Matia, D. Rodriguez-Losada, and M. Hernando. An improved bit parallel
exact maximum clique algorithm. Optimization Letters, 7(3):467–479, 2013. URL: http:
//dx.doi.org/10.1007/s11590-011-0431-y, doi:10.1007/s11590-011-0431-y.

[45] P. San Segundo, D. Rodŕıguez-Losada, and J. Agust́ın. An exact bit-parallel algorithm
for the maximum clique problem. Computers & Operations Research, 38(2):571–581, 2011.
URL: http://www.sciencedirect.com/science/article/pii/S0305054810001504, doi:

http://dx.doi.org/10.1016/j.cor.2010.07.019.

[46] P. V. Sander, D. Nehab, E. Chlamtac, and H. Hoppe. Efficient traversal of mesh edges
using adjacency primitives. ACM Transactions on Graphics (TOG), 27(5):1–9, 2008. doi:

10.1145/1409060.1409097.

[47] P. Sanders and C. Schulz. KaHIP – Karlsruhe High Qualtity Partitioning Homepage. http:
//algo2.iti.kit.edu/documents/kahip/index.html.

[48] P. Sanders and C. Schulz. Engineering Multilevel Graph Partitioning Algorithms. In 19th
European Symposium on Algorithms, volume 6942 of LNCS, pages 469–480. Springer, 2011.

https://doi.org/10.1080/01605682.2019.1621218
https://doi.org/10.1080/01605682.2019.1621218
https://doi.org/10.1007/978-3-319-68759-9_13
https://doi.org/10.1007/978-3-319-68759-9_13
https://doi.org/10.1609/aaai.v24i1.7495
https://doi.org/10.1609/aaai.v24i1.7495
https://doi.org/10.1609/AAAI.V24I1.7495
https://doi.org/10.1007/s11590-017-1128-7
https://doi.org/10.1016/S0166-218X(01)00290-6
https://doi.org/10.5281/zenodo.3082356
https://doi.org/10.5281/zenodo.3082356
https://doi.org/10.1007/s10878-009-9264-3
http://dx.doi.org/10.1007/s11590-011-0431-y
http://dx.doi.org/10.1007/s11590-011-0431-y
https://doi.org/10.1007/s11590-011-0431-y
http://www.sciencedirect.com/science/article/pii/S0305054810001504
https://doi.org/http://dx.doi.org/10.1016/j.cor.2010.07.019
https://doi.org/http://dx.doi.org/10.1016/j.cor.2010.07.019
https://doi.org/10.1145/1409060.1409097
https://doi.org/10.1145/1409060.1409097
http://algo2.iti.kit.edu/documents/kahip/index.html
http://algo2.iti.kit.edu/documents/kahip/index.html

466 Finding Near-Optimal Weight Independent Sets at Scale Großmann et al.

[49] P. Sanders and C. Schulz. Advanced multilevel node separator algorithms. In Experimental
Algorithms - 15th International Symposium, (SEA), Proceedings, volume 9685 of LNCS, pages
294–309. Springer, 2016. doi:10.1007/978-3-319-38851-9_20.

[50] C. Schulz and D. Strash. Graph partitioning: Formulations and applications to big data.
In Encyclopedia of Big Data Technologies, pages 858–864. Springer International Publishing,
2019. doi:10.1007/978-3-319-77525-8_312.

[51] A. J. Soper, C. Walshaw, and M. Cross. A combined evolutionary search and mul-
tilevel optimisation approach to graph-partitioning. J. Glob. Optim., 29(2):225–241,
2004. URL: https://doi.org/10.1023/B:JOGO.0000042115.44455.f3, doi:10.1023/B:

JOGO.0000042115.44455.F3.

[52] S. Szabó and B. Zavalnij. Combining algorithms for vertex cover and clique search. In
Proceedings of the 22nd International Multiconference INFORMATION SOCIETY – IS 2019,
Volume I: Middle-European Conference on Applied Theoretical Computer Science, pages 71–
74, 2019.

[53] E. Tomita, Y. Sutani, T. Higashi, S. Takahashi, and M.Wakatsuki. A simple and faster branch-
and-bound algorithm for finding a maximum clique. In M. S. Rahman and S. Fujita, editors,
WALCOM: Algorithms and Computation, volume 5942 of LNCS, pages 191–203. Springer
Berlin Heidelberg, 2010. URL: http://dx.doi.org/10.1007/978-3-642-11440-3_18, doi:
10.1007/978-3-642-11440-3_18.

[54] L. Wang, C.-M. Li, J. Zhou, B. Jin, and M. Yin. An exact algorithm for minimum weight vertex
cover problem in large graphs. Computing Research Repository (CoRR), abs/1903.05948, 2019.
doi:10.48550/ARXIV.1903.05948.

[55] J. S. Warren and I. V. Hicks. Combinatorial branch-and-bound for the maximum weight
independent set problem. 2006. URL: https://www.caam.rice.edu/~ivhicks/jeff.rev.
pdf.

[56] D. Warrier. A branch, price, and cut approach to solving the maximum weighted independent
set problem. PhD thesis, Texas A&M University, 2007. doi:1969.1/5814.

[57] D. Warrier, W. E. Wilhelm, J. S. Warren, and I. V. Hicks. A branch-and-price approach
for the maximum weight independent set problem. Networks: An International Journal,
46(4):198–209, 2005. doi:10.1002/net.20088.

[58] Q. Wu and J.-K. Hao. Solving the winner determination problem via a weighted maximum
clique heuristic. Expert Systems with Applications, 42(1):355–365, 2015. doi:10.1016/j.

eswa.2014.07.027.

[59] M. Xiao, S. Huang, and X. Chen. Maximum weighted independent set: Effective reductions
and fast algorithms on sparse graphs. Algorithmica, 86(5):1293–1334, 2024. URL: https:
//doi.org/10.1007/s00453-023-01197-x, doi:10.1007/S00453-023-01197-X.

[60] M. Xiao, S. Huang, Y. Zhou, and B. Ding. Efficient reductions and a fast algorithm of
maximum weighted independent set. In J. Leskovec, M. Grobelnik, M. Najork, J. Tang, and
L. Zia, editors, WWW ’21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia,
April 19-23, 2021, pages 3930–3940. ACM / IW3C2, 2021. doi:10.1145/3442381.3450130.

https://doi.org/10.1007/978-3-319-38851-9_20
https://doi.org/10.1007/978-3-319-77525-8_312
https://doi.org/10.1023/B:JOGO.0000042115.44455.f3
https://doi.org/10.1023/B:JOGO.0000042115.44455.F3
https://doi.org/10.1023/B:JOGO.0000042115.44455.F3
http://dx.doi.org/10.1007/978-3-642-11440-3_18
https://doi.org/10.1007/978-3-642-11440-3_18
https://doi.org/10.1007/978-3-642-11440-3_18
https://doi.org/10.48550/ARXIV.1903.05948
https://www.caam.rice.edu/~ivhicks/jeff.rev.pdf
https://www.caam.rice.edu/~ivhicks/jeff.rev.pdf
https://doi.org/1969.1/5814
https://doi.org/10.1002/net.20088
https://doi.org/10.1016/j.eswa.2014.07.027
https://doi.org/10.1016/j.eswa.2014.07.027
https://doi.org/10.1007/s00453-023-01197-x
https://doi.org/10.1007/s00453-023-01197-x
https://doi.org/10.1007/S00453-023-01197-X
https://doi.org/10.1145/3442381.3450130

JGAA, 28(1) 439–473 (2024) 467

[61] M. Xiao, S. Huang, Y. Zhou, and B. Ding. Efficient reductions and a fast algorithm of
maximum weighted independent set. In J. Leskovec, M. Grobelnik, M. Najork, J. Tang, and
L. Zia, editors, WWW ’21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia,
April 19-23, 2021, pages 3930–3940. ACM / IW3C2, 2021. doi:10.1145/3442381.3450130.

[62] H. Xu, T. S. Kumar, and S. Koenig. A new solver for the minimum weighted vertex cover
problem. In International Conference on AI and OR Techniques in Constriant Programming
for Combinatorial Optimization Problems, pages 392–405. Springer, 2016. doi:10.1007/

978-3-319-33954-2_28.

[63] W. Zheng, J. Gu, P. Peng, and J. X. Yu. Efficient weighted independent set computation
over large graphs. In IEEE Intl. Conf. on Data Engineering (ICDE), pages 1970–1973, 2020.
doi:10.1109/ICDE48307.2020.00216.

https://doi.org/10.1145/3442381.3450130
https://doi.org/10.1007/978-3-319-33954-2_28
https://doi.org/10.1007/978-3-319-33954-2_28
https://doi.org/10.1109/ICDE48307.2020.00216

4
68

F
in
d
in
g
N
ear-O

p
tim

al
W
eigh

t
In
d
ep

en
d
en
t
S
ets

at
S
cale

G
ro
ß
m
a
n
n
et

a
l.

7 Detailed Per-Instance Results for State of the Art Comparison

Table 9: Average solution weight ω and time t in seconds required to compute ω for our set of finite element instances. Bold
numbers indicate the best solution among all algorithms. Rows have a gray background color, if branch reduce or struction
computed an exact solution. We also report the number of best solutions and the geometric mean time needed to find the best
solution over all instances.

t ω t ω t ω t ω t ω t ω t ω t ω

finEl branch reduce GNN VC HILS HtWIS NuMWVC struction m2wis + s m2wis

body - - 3 112,38 1 678 235 1 259,67 1 678 510 0,04 1 645 650 289,44 1 654 412 - - 112,85 1 680 182 901,26 1 680 179
ocean 4,88 7 248 581 1 018,08 7 210 228 11 142,43 7 075 329 0,07 6 803 672 840,54 7 071 829 - - 5,20 7 248 581 5,01 7 248 581
pwt - - 2 754,08 1 174 472 761,52 1 175 437 0,03 1 153 600 396,97 1 149 919 - - 3 846,33 1 178 734 5 131,59 1 178 583
rotor - - 5 559,60 2 643 669 6 503,27 2 650 018 0,24 2 591 456 1 071,61 2 569 961 - - 29 249,04 2 662 247 24 255,33 2 661 514
sphere - - 51,71 615 017 257,42 615 958 0,02 608 401 171,28 613 128 0,57 617 816 1,96 617 816 2,25 617 816

overall branch reduce GNN VC HILS HtWIS NuMWVC struction m2wis + s m2wis

best 1/5 0/5 0/5 0/5 0/5 1/5 5/5 2/5
gmean ω - 1 873 906 1 868 676 1 827 149 1 841 892 - 1 882 030 1 881 878
gmean t - 1 201,98 1 780,48 0,05 446,40 - 166,87 263,30

JG
A
A
,
28(1)

439–473
(2024)

469

Table 10: Average solution weight ω and time t in seconds required to compute ω for our set of ssmc instances. Bold numbers
indicate the best solution among all algorithms. Rows have a gray background color, if branch reduce or struction computed an
exact solution. We also report the number of best solutions and the geometric mean time needed to find the best solution over all
instances.

t ω t ω t ω t ω t ω t ω t ω t ω

ssmc branch reduce GNN VC HILS HtWIS NuMWVC struction m2wis + s m2wis

ca2010 - - 4 702,04 16 817 567 36 000,07 16 828 547 0,47 16 792 827 21 336,94 16 053 480 6,18 16 869 550 28,32 16 869 550 10 985,99 16 869 127
fl2010 36 000,10 8 638 961 883,37 8 721 942 36 000,05 8 732 113 0,44 8 719 272 14 712,40 8 248 077 2,02 8 743 506 13,57 8 743 506 7 492,86 8 743 474
ga2010 36 000,10 4 644 324 18 636,56 4 637 542 29 522,41 4 642 807 0,16 4 639 891 7 492,19 4 437 269 0,62 4 644 417 1,64 4 644 417 1,85 4 644 417
il2010 36 000,10 5 852 296 4 106,19 5 981 072 36 000,00 5 983 871 0,31 5 963 974 13 341,29 5 776 584 2,33 5 998 539 22,98 5 998 539 13 136,79 5 998 288
nh2010 36 000,00 581 637 2 328,87 586 642 2 163,80 588 797 0,03 587 059 758,10 568 188 0,11 588 996 0,47 588 996 0,47 588 996
ri2010 36 000,00 447 427 717,01 457 288 782,49 458 489 0,02 457 108 371,27 454 423 0,09 459 275 0,62 459 275 0,49 459 275

overall branch reduce GNN VC HILS HtWIS NuMWVC struction m2wis + s m2wis

best 0/6 0/6 0/6 0/6 0/6 6/6 6/6 3/6
gmean ω - 3 208 739 3 213 935 3 206 698 3 093 453 3 218 537 3 218 537 3 218 499
gmean t - 2 845,45 11 515,77 0,13 4 546,46 0,75 4,02 88,11

Table 11: Average solution weight ω and time t in seconds required to compute ω for our set of mesh instances. Bold numbers
indicate the best solution among all algorithms. Rows have a gray background color, if branch reduce or struction computed an
exact solution. We also report the number of best solutions and the geometric mean time needed to find the best solution over all
instances.

t ω t ω t ω t ω t ω t ω t ω t ω

mesh branch reduce GNN VC HILS HtWIS NuMWVC struction m2wis + s m2wis

blob 0,14 855 547 20 854,69 854 991 260,10 854 803 0,01 854 484 190,14 853 616 0,02 855 547 0,04 855 547 0,03 855 547
buddha 51,87 57 555 880 1 439,13 57 497 819 36 000,07 57 258 790 0,47 57 508 556 29 022,48 55 973 791 1,57 57 555 880 4,83 57 555 880 2 417,30 57 555 864
bunny 0,48 3 686 960 1 582,74 3 683 941 1 927,84 3 680 587 0,03 3 682 356 817,06 3 659 471 0,09 3 686 960 0,17 3 686 960 0,15 3 686 960
cow 0,04 269 543 6 571,10 269 402 52,05 269 336 <0,01 269 304 15,62 269 220 0,01 269 543 0,01 269 543 0,01 269 543
dragon 2,90 7 956 530 555,32 7 949 744 9 026,60 7 947 535 0,04 7 950 526 1 922,25 7 846 579 0,17 7 956 530 0,31 7 956 530 0,33 7 956 530
dragonsub 4,76 32 213 898 619,21 32 182 406 36 000,07 32 148 544 0,24 32 163 872 16 990,27 31 294 908 0,93 32 213 898 2,10 32 213 898 1,93 32 213 898
ecat 9,18 36 650 298 431,79 36 616 204 36 000,05 36 562 652 0,50 36 606 394 16 759,95 35 603 546 1,92 36 650 298 2,83 36 650 298 3,01 36 650 298
face 0,16 1 219 418 480,83 1 218 552 403,52 1 218 433 0,01 1 218 515 199,42 1 213 445 0,02 1 219 418 0,04 1 219 418 0,03 1 219 418
fandisk 0,04 463 288 146,07 462 910 114,01 462 794 <0,01 462 765 67,53 462 463 0,01 463 288 0,02 463 288 0,01 463 288
feline 0,34 2 207 219 450,92 2 205 443 794,54 2 204 454 0,02 2 204 947 474,86 2 189 581 0,05 2 207 219 0,10 2 207 219 0,09 2 207 219
gameguy 0,10 2 325 878 27,44 2 324 222 789,78 2 322 814 0,02 2 324 088 431,10 2 306 182 0,04 2 325 878 0,06 2 325 878 0,05 2 325 878
gargoyle 0,22 1 059 559 1 748,69 1 058 724 346,19 1 058 536 0,01 1 058 656 283,58 1 055 563 0,02 1 059 559 0,04 1 059 559 0,03 1 059 559
turtle 3,98 14 263 005 3 342,67 14 249 692 20 430,40 14 245 854 0,09 14 247 883 5 991,49 13 962 425 0,35 14 263 005 0,74 14 263 005 0,73 14 263 005
venus 0,02 305 749 298,23 305 571 59,48 305 556 <0,01 305 182 26,18 305 457 0,01 305 749 0,01 305 749 0,01 305 749

overall branch reduce GNN VC HILS HtWIS NuMWVC struction m2wis + s m2wis

best 14/14 0/14 0/14 0/14 0/14 14/14 14/14 13/14
gmean ω 3 054 726 3 052 303 3 050 072 3 051 422 3 020 035 3 054 726 3 054 726 3 054 726
gmean t 0,50 827,18 1 418,48 0,03 682,18 0,07 0,14 0,19

4
70

F
in
d
in
g
N
ear-O

p
tim

al
W
eigh

t
In
d
ep

en
d
en
t
S
ets

at
S
cale

G
ro
ß
m
a
n
n
et

a
l.

Table 12: Average solution weight ω and time t in seconds required to compute ω for our set of osm instances. Displayed as single
row are only instances with |V | ≥ 1 000 , the summary includes all instances. Bold numbers indicate the best solution among all
algorithms. Rows have a gray background color, if branch reduce or struction computed an exact solution. We also report the
number of best solutions and the geometric mean time needed to find the best solution over all instances.

t ω t ω t ω t ω t ω t ω t ω t ω

osm branch reduce GNN VC HILS HtWIS NuMWVC struction m2wis + s m2wis

alabama-2 0,35 174 309 867,30 174 124 41,71 174 309 0,01 172 797 0,89 172 871 0,01 174 309 0,03 174 309 0,03 174 309
alabama-3 36 000,00 185 707 32 238,96 181 548 321,23 185 744 0,40 182 667 39,57 180 461 1,53 185 744 32,67 185 744 28,53 185 744
district-of-columbia-1 - - 11 408,24 196 341 41,16 196 475 0,01 193 364 19,42 196 044 0,47 196 475 1,50 196 475 1,26 196 475
district-of-columbia-2 - - 11 021,45 204 843 985,93 209 131 2,25 198 327 178,71 202 111 - - 184,04 209 132 107,25 209 132
district-of-columbia-3 36 000,20 207 787 6 233,48 212 734 9 278,60 227 634 351,94 210 461 681,32 212 583 - - 4 283,28 227 682 3 231,32 227 681
florida-2 0,01 230 595 294,75 230 595 42,92 230 595 <0,01 230 008 4,65 229 496 <0,01 230 595 0,01 230 595 0,01 230 595
florida-3 1 724,45 237 333 3 533,44 232 105 216,24 237 333 0,13 234 218 25,20 234 940 1,33 237 333 11,20 237 333 9,57 237 333
georgia-3 1 772,88 222 652 269,99 219 891 101,22 222 652 0,09 218 573 15,81 218 610 0,77 222 652 7,55 222 652 6,13 222 652
greenland-3 36 000,00 13 894 261,66 12 561 1 226,78 14 011 32,75 12 505 122,36 12 494 - - 521,57 14 011 185,01 14 011
hawaii-2 8,20 125 284 1 311,40 124 466 203,81 125 284 0,14 123 173 42,44 123 757 0,07 125 284 0,46 125 284 0,36 125 284
hawaii-3 36 003,35 132 806 3 568,95 132 562 17 330,34 141 045 1 577,65 134 703 - - - - 6 516,88 141 056 5 124,22 141 058
idaho-3 36 000,00 77 122 180,84 75 831 1 549,78 77 145 52,16 75 527 42,76 75 901 - - 2 142,01 77 145 410,29 77 145
kansas-3 36 001,02 87 963 23 741,49 87 688 759,69 87 976 2,43 87 424 137,89 87 497 16,79 87 976 65,05 87 976 104,24 87 976
kentucky-2 63,34 97 397 3 595,24 96 550 319,15 97 397 0,74 97 362 141,39 96 838 0,20 97 397 0,83 97 397 0,68 97 397
kentucky-3 36 001,57 100 311 2 502,83 98 310 28 313,04 100 508 3 508,49 97 906 - - - - 13 121,68 100 508 8 865,42 100 510
louisiana-3 22,52 60 024 7 238,25 59 473 62,47 60 024 0,02 59 040 7,55 58 854 0,05 60 024 0,60 60 024 0,47 60 024
maryland-3 9,48 45 496 628,67 44 988 95,12 45 496 0,04 44 539 12,53 45 081 0,10 45 496 0,73 45 496 0,68 45 496
massachusetts-2 0,37 140 095 1 186,63 140 051 51,59 140 095 0,02 139 799 6,05 139 697 0,04 140 095 0,09 140 095 0,09 140 095
massachusetts-3 - - 4 622,32 144 140 355,93 145 866 1,77 144 381 79,71 143 984 - - 77,14 145 866 104,87 145 866
mexico-3 921,72 97 663 2 969,21 95 902 90,92 97 663 0,05 96 700 1,38 95 999 0,86 97 663 14,73 97 663 14,07 97 663
new-hampshire-3 14,46 116 060 40,64 115 734 51,78 116 060 0,01 115 161 2,76 112 771 0,04 116 060 1,69 116 060 1,40 116 060
north-carolina-3 36 000,05 49 563 1 658,84 48 309 205,78 49 720 0,42 49 253 51,48 48 306 37,25 49 720 142,20 49 720 117,07 49 720
oregon-2 0,03 165 047 91,84 164 144 74,19 165 047 0,03 164 786 7,18 164 006 0,01 165 047 0,02 165 047 0,01 165 047
oregon-3 36 001,90 175 078 1 735,05 170 748 1 120,13 175 078 27,87 172 813 435,08 171 321 - - 292,46 175 078 266,55 175 078
pennsylvania-3 107,51 143 870 111,17 143 406 60,62 143 870 0,02 142 472 2,39 140 352 0,06 143 870 2,30 143 870 2,01 143 870
rhode-island-2 - - 18 480,55 182 234 166,18 184 596 0,36 179 366 48,37 183 127 0,38 184 596 1,39 184 596 1,46 184 596
rhode-island-3 36 000,20 196 173 21 044,39 192 449 3 899,85 201 751 280,42 190 341 162,00 189 587 - - 3 319,95 201 769 1 964,28 201 768
utah-3 239,50 98 847 14 144,18 97 033 72,21 98 847 0,04 97 754 9,95 96 251 0,08 98 847 2,34 98 847 1,94 98 847
vermont-3 36 000,45 63 305 25 708,04 59 773 842,04 63 304 3,81 60 518 167,97 60 454 - - 1 855,99 63 312 142,43 63 312
virginia-2 0,60 295 867 1 341,69 294 149 87,88 295 867 0,02 290 535 3,56 295 171 0,02 295 867 0,12 295 867 0,12 295 867
virginia-3 36 000,80 307 981 35,87 296 735 482,02 308 305 1,14 300 335 82,45 298 038 - - 1 021,68 308 305 172,77 308 305
washington-2 5,67 305 619 2 794,95 301 157 199,38 305 619 0,06 300 195 18,68 303 632 0,05 305 619 0,23 305 619 0,19 305 619
washington-3 - - 9,58 295 610 1 946,06 314 288 11,74 305 019 168,96 297 908 - - 2 731,64 314 288 327,63 314 288
west-virginia-3 36 000,27 47 927 9 801,99 46 791 147,10 47 927 0,25 46 344 0,37 45 499 2,35 47 927 64,82 47 927 104,41 47 927

overall branch reduce GNN VC HILS HtWIS NuMWVC struction m2wis + s m2wis

best 132/148 101/148 142/148 86/148 0/148 136/148 146/148 146/148
gmean ω - 39 597 39 823 39 520 - - 39 823 39 823
gmean t - 4,92 12,49 <0,01 - - 0,01 0,01

JG
A
A
,
28(1)

439–473
(2024)

471

Table 13: Average solution weight ω and time t in seconds required to compute ω for our set of snap instances. Bold numbers
indicate the best solution among all algorithms. Rows have a gray background color, if branch reduce or struction computed an
exact solution. We also report the number of best solutions and the geometric mean time needed to find the best solution over all
instances.

t ω t ω t ω t ω t ω t ω t ω t ω

snap branch reduce GNN VC HILS HtWIS NuMWVC struction m2wis + s m2wis

as-skitter - - 1 166,25 124 155 73736 000,25123 994 141 1,04 124 141 37334 265,33123 594 776 - -3 422,79124 157 729 621,62124 157 729
ca-AstroPh 0,02 797 510 1,02 797 510 924,29 797 508 0,02 797 363 315,84 796 125 0,02 797 510 0,04 797 510 0,04 797 510
ca-CondMat 0,02 1 147 950 0,34 1 147 950 1 015,80 1 147 947 0,01 1 147 950 430,29 1 146 066 0,01 1 147 950 0,02 1 147 950 0,02 1 147 950
ca-GrQc <0,01 287 919 0,21 287 919 144,49 287 919<0,01 287 850 59,07 287 638 <0,01 287 919 <0,01 287 919 <0,01 287 919
ca-HepPh 0,01 581 039 18,03 581 039 589,17 581 039 0,01 580 864 212,89 580 439 0,01 581 039 0,02 581 039 0,02 581 039
ca-HepTh 0,01 562 004 0,17 562 004 279,70 562 004<0,01 561 736 150,18 561 331 <0,01 562 004 0,01 562 004 0,01 562 004
com-amazon 0,48 19 271 031 2,64 19 271 03133 178,00 19 270 284 0,14 19 270 07810 316,17 19 083 928 0,36 19 271 031 0,56 19 271 031 0,53 19 271 031
com-youtube 0,76 90 295 294 4,96 90 295 29436 000,10 90 289 947 0,34 90 295 28511 288,89 89 986 918 0,69 90 295 294 0,90 90 295 294 0,97 90 295 294
email-Enron 0,02 2 461 254 0,40 2 461 254 1 432,11 2 461 242 0,01 2 461 254 587,52 2 459 380 0,02 2 461 254 0,03 2 461 254 0,03 2 461 254
email-EuAll 0,07 25 286 322 0,73 25 286 32217 439,9325 286 322 0,03 25 265 214 2 089,93 25 285 560 0,04 25 286 322 0,11 25 286 322 0,11 25 286 322
loc-gowalla e. - - 985,50 12 276 92217 018,50 12 275 375 0,08 12 276 781 3 886,18 12 203 398 1,32 12 276 929 3,89 12 276 929 4,71 12 276 929
p2p-G.04 0,01 679 111 0,18 679 111 250,11 679 110<0,01 679 085 123,87 678 920 0,01 679 111 0,01 679 111 0,01 679 111
p2p-G.05 0,01 554 943 0,18 554 943 192,45 554 943<0,01 554 943 76,17 554 757 <0,01 554 943 0,01 554 943 0,01 554 943
p2p-G.06 0,01 548 612 0,20 548 612 183,91 548 612<0,01 548 612 70,78 548 449 <0,01 548 612 0,01 548 612 0,01 548 612
p2p-G.08 <0,01 434 577 0,13 434 577 109,72 434 577<0,01 434 577 14,93 434 513 <0,01 434 577 <0,01 434 577 <0,01 434 577
p2p-G.09 <0,01 568 439 0,16 568 439 152,25 568 439<0,01 568 439 20,44 568 351 <0,01 568 439 0,01 568 439 0,01 568 439
p2p-G.24 0,01 1 984 567 0,15 1 984 567 569,39 1 984 567 0,01 1 984 567 339,70 1 984 248 0,01 1 984 567 0,02 1 984 567 0,01 1 984 567
p2p-G.25 0,01 1 701 967 0,13 1 701 967 467,31 1 701 967 0,01 1 701 967 129,05 1 701 819 0,01 1 701 967 0,01 1 701 967 0,01 1 701 967
p2p-G.30 0,02 2 787 907 0,18 2 787 907 810,63 2 787 907 0,01 2 787 902 285,78 2 787 660 0,01 2 787 907 0,02 2 787 907 0,02 2 787 907
p2p-G.31 0,03 4 776 986 0,28 4 776 986 1 795,27 4 776 969 0,01 4 776 925 789,92 4 776 386 0,02 4 776 986 0,04 4 776 986 0,04 4 776 986
roadNet-CA 279,50111 360 828 3 911,60 111 337 97936 000,15109 991 788 0,61 111 325 52435 932,85108 909 808 1,54111 360 828 5,02111 360 828 4,67111 360 828
roadNet-PA 16,44 61 731 589 7 394,67 61 719 90036 000,07 61 549 659 0,33 61 710 60623 724,64 60 461 602 0,85 61 731 589 2,19 61 731 589 2,38 61 731 589
roadNet-TX 15,76 78 599 946 3 846,17 78 586 67836 000,10 78 164 327 0,42 78 575 46034 979,99 76 992 375 1,05 78 599 946 2,81 78 599 946 2,90 78 599 946
soc-Epinions1 0,05 5 690 970 0,59 5 690 970 2 813,40 5 690 859 0,02 5 690 970 1 043,52 5 686 352 0,05 5 690 970 0,07 5 690 970 0,06 5 690 970
soc-LiveJ. 36 002,35 284 008 87716 424,34 284 026 90836 000,67281 688 778 12,20 283 922 214 - - - - 779,88284 036 2391 738,22284 036 239
soc-pokec-rel. 36 059,01 82 778 21423 661,02 83 924 15036 000,42 83 696 885 55,41 83 920 37031 310,08 83 187 970634,61 79 620 9799 691,59 83 939 4049 038,95 83 944 926
soc-S.0811 0,06 5 660 899 0,63 5 660 899 4 106,47 5 660 734 0,02 5 660 899 1 091,76 5 655 800 0,06 5 660 899 0,08 5 660 899 0,08 5 660 899
soc-S.0902 0,07 5 971 849 0,62 5 971 849 4 260,67 5 971 574 0,02 5 971 821 1 082,17 5 965 971 0,07 5 971 849 0,08 5 971 849 0,13 5 971 849
web-BerkStan 36 000,12 43 891 206 472,62 43 904 99936 000,10 43 888 267 9,94 43 889 84312 844,27 43 473 969 6,52 43 907 482 8,75 43 907 482 9,32 43 907 482
web-Google 2,33 56 326 504 45,40 56 326 47636 000,15 56 319 614 0,65 56 323 382 9 398,74 56 023 547 1,52 56 326 504 2,40 56 326 504 2,47 56 326 504
web-NotreD. 496,64 26 016 941 1 596,06 26 016 64227 389,91 26 014 810 0,12 26 013 830 7 659,14 25 928 547 1,36 26 016 941 0,99 26 016 941 1,09 26 016 941
web-Stanford - - 1 746,45 17 792 66435 324,07 17 789 989 0,50 17 789 430 8 338,97 17 605 207 1,36 17 792 930 1,84 17 792 930 1,93 17 792 930
wiki-Talk 1,08235 837 346 16,94235 837 34636 000,12235 837 287 0,41235 837 34634 505,67235 822 182 0,95235 837 346 1,39235 837 346 1,53235 837 346
wiki-Vote 0,01 500 079 5,21 500 079 201,84 500 079 0,01 499 740 24,84 499 993 0,01 500 079 0,02 500 079 0,02 500 079

overall branch reduce GNN VC HILS HtWIS NuMWVC struction m2wis + s m2wis

best 28/34 23/34 12/34 11/34 0/34 31/34 33/34 34/34

fastest 8/34 0/34 0/34 33/34 0/34 14/34 3/34 4/34

gmean ω - 6 678 015 6 671 408 6 677 139 - - 6 678 187 6 678 200
gmean t - 8,06 3 338,88 0,06 - - 0,25 0,24

4
72

F
in
d
in
g
N
ear-O

p
tim

al
W
eigh

t
In
d
ep

en
d
en
t
S
ets

at
S
cale

G
ro
ß
m
a
n
n
et

a
l.

Table 14: Average solution weight ω and time t in seconds required to compute ω for all, not completely reduced instances with the
reductions stated in Section 4.1. Only instances with |V | ≥ 1 000 are detailed, the summary includes all. Bold numbers indicate
the best solution among all algorithms. Rows have a gray background color, if an algorithm computed an exact solution. We also
report the number of best solutions and the geometric mean time needed to find the best solution over all instances.

t ω t ω t ω t ω t ω t ω t ω t ω

redFinEl branch reduce GNN VC HILS HtWIS NuMWVC struction m2wis + s m2wis

body - - 717,66 223 946 74,81 224 550 0,01 222 320 45,36 224 168 - - 60,30 224 744 100,23 224 744
pwt - - 13 585,64 1 034 567 655,57 1 034 418 0,07 1 019 262 174,21 1 014 280 - - 1 391,40 1 038 139 4 767,83 1 038 046
rotor 36 000,10 2 483 283 8 029,89 2 632 254 3 078,32 2 639 734 0,67 2 580 529 1 034,92 2 553 422 - - 29 550,69 2 651 439 23 323,54 2 651 735
sphere 36 000,00 461 060 16,72 472 884 179,43 474 290 0,01 467 030 161,77 472 508 0,24 475 344 1,20 475 344 1,28 475 344

redMesh branch reduce GNN VC HILS HtWIS NuMWVC struction m2wis + s m2wis

buddha 0,01 23 026 0,36 23 026 6,85 23 026 <0,01 22 726 0,86 22 937 <0,01 23 026 0,03 23 026 0,02 23 026
ecat 0,02 31 254 0,24 31 254 8,17 31 254 <0,01 30 789 1,12 31 121 <0,01 31 254 0,03 31 254 0,03 31 254

redOsm branch reduce GNN VC HILS HtWIS NuMWVC struction m2wis + s m2wis

alabama-3 36 000,00 35 944 1 780,24 34 715 107,88 35 968 0,23 34 667 4,58 33 440 1,12 35 968 30,52 35 968 29,27 35 968
california-3 821,86 13 689 15 006,79 13 253 37,87 13 689 0,03 13 058 3,31 12 534 0,22 13 689 20,57 13 689 19,89 13 689
canada-3 55,19 17 591 6 069,32 17 487 19,42 17 591 0,01 16 063 0,50 16 892 0,13 17 591 2,43 17 591 2,30 17 591
colorado-3 0,14 9 580 0,17 9 580 7,11 9 580 <0,01 9 274 0,14 9 221 0,01 9 580 0,05 9 580 0,04 9 580
d.o.c.-1 - - 31,71 55 063 12,13 55 063 0,01 52 450 1,41 54 803 0,43 55 063 1,63 55 063 1,53 55 063
d.o.c.-2 - - 9 513,25 93 988 403,56 96 318 2,02 88 932 41,91 94 839 - - 182,18 96 322 106,23 96 322
d.o.c.-3 36 000,10 119 502 11 779,45 124 774 4 626,91 138 744 283,13 124 431 254,73 127 833 - - 3 810,44 138 795 2 788,96 138 797
florida-3 1 714,07 25 992 4 482,86 25 700 65,56 25 992 0,11 23 471 5,62 25 375 1,34 25 992 8,20 25 992 7,80 25 992
georgia-3 763,74 33 714 14 126,14 31 934 54,48 33 714 0,08 30 570 5,13 32 412 0,76 33 714 6,78 33 714 6,63 33 714
greenland-2 16,22 3 537 310,67 3 537 19,18 3 537 0,01 3 142 0,30 3 390 0,05 3 537 1,13 3 537 0,98 3 537
greenland-3 36 000,00 11 419 495,96 10 304 836,96 11 581 43,14 9 905 33,53 10 508 - - 478,88 11 581 161,78 11 581
hawaii-2 1,42 11 617 203,72 11 595 16,62 11 617 0,01 11 410 0,81 11 452 0,01 11 617 0,22 11 617 0,22 11 617
hawaii-3 36 001,92 50 612 460,52 52 089 13 683,70 58 812 1 747,34 52 595 424,67 52 169 - - 4 965,81 58 858 3 845,37 58 861
idaho-3 36 000,80 9 221 2 850,49 7 891 1 128,20 9 224 55,91 8 139 19,64 8 488 - - 2 103,78 9 224 375,21 9 224
kansas-3 36 001,72 5 681 8 074,38 5 512 410,05 5 694 1,80 5 173 19,38 5 459 12,08 5 694 62,66 5 694 102,59 5 694
kentucky-2 17,08 7 019 8 979,49 6 981 30,49 7 019 0,02 6 979 0,26 6 816 0,04 7 019 0,52 7 019 0,43 7 019
kentucky-3 36 001,50 26 198 6 103,84 24 580 23 202,28 26 397 4 335,68 24 614 - - - - 9 536,24 26 397 5 679,08 26 398
louisiana-3 2,52 9 326 5,30 9 094 16,06 9 326 <0,01 8 977 0,74 9 151 0,02 9 326 0,25 9 326 0,26 9 326
maryland-3 1,83 7 105 466,86 7 070 13,94 7 105 <0,01 6 561 0,45 6 153 0,09 7 105 0,42 7 105 0,40 7 105
mas.-2 0,32 7 938 14,41 7 938 9,80 7 938 <0,01 7 650 0,12 7 797 0,03 7 938 0,08 7 938 0,08 7 938
mas.-3 36 000,45 14 610 13 976,78 13 673 247,66 14 757 1,79 13 285 29,15 14 085 - - 74,22 14 757 102,60 14 757
mexico-3 551,33 16 137 12 688,47 14 623 48,35 16 137 0,04 15 598 2,79 14 745 0,28 16 137 8,90 16 137 8,12 16 137

JG
A
A
,
28(1)

439–473
(2024)

473

t ω t ω t ω t ω t ω t ω t ω t ω

redOsm branch reduce GNN VC HILS HtWIS NuMWVC struction m2wis + s m2wis

minnesota-3 8,04 4 343 20,69 4 343 12,04 4 343 <0,01 4 104 0,14 4 281 0,02 4 343 0,50 4 343 0,50 4 343
montana-3 874,67 5 116 10 322,49 4 991 66,85 5 116 0,10 5 094 7,32 5 015 0,19 5 116 3,85 5 116 3,72 5 116
new-hamp.-3 6,69 11 473 13,97 11 473 14,40 11 473 <0,01 11 104 0,63 10 597 0,04 11 473 1,03 11 473 1,12 11 473
new-york-2 0,22 4 540 3,77 4 540 8,43 4 540 <0,01 4 540 <0,01 4 163 0,01 4 540 0,03 4 540 0,04 4 540
new-york-3 9 493,18 5 897 9 405,58 5 832 76,89 5 897 0,15 4 922 2,78 5 552 0,29 5 897 60,80 5 897 100,98 5 897
north-car.-3 36 000,07 11 073 359,98 10 044 166,57 11 191 0,43 10 653 11,23 10 582 67,23 11 191 141,71 11 191 116,51 11 191
ohio-3 7,08 5 213 157,84 5 170 13,05 5 213 <0,01 4 794 0,23 4 050 0,01 5 213 0,61 5 213 0,61 5 213
oregon-3 36 002,17 23 422 17 211,78 21 920 804,84 23 427 28,97 20 386 98,83 22 395 - - 249,18 23 427 268,10 23 427
pennsyl.-3 11,45 14 766 27,10 14 766 15,90 14 766 <0,01 13 921 0,14 13 745 0,03 14 766 1,31 14 766 1,25 14 766
puerto-r.-3 194,64 3 544 905,34 3 544 20,06 3 544 0,01 3 527 0,13 3 176 0,05 3 544 5,69 3 544 5,19 3 544
rhode-i.-2 4 746,44 42 587 7 789,73 42 526 62,79 42 587 0,17 39 486 7,04 41 619 0,28 42 587 0,98 42 587 1,03 42 587
rhode-i.-3 36 000,20 70 873 18 572,74 66 854 3 225,06 76 431 394,81 65 468 23,92 68 350 - - 3 229,68 76 458 1 348,52 76 458
utah-3 200,33 16 090 980,62 15 018 41,05 16 090 0,03 15 186 3,58 15 167 0,07 16 090 1,77 16 090 1,64 16 090
vermont-2 17,92 4 308 5 549,13 4 290 25,14 4 308 0,01 3 343 0,94 3 862 0,02 4 308 1,04 4 308 0,99 4 308
vermont-3 36 000,20 22 804 16 180,19 21 215 457,32 22 813 3,66 20 011 51,72 21 726 - - 1 849,27 22 813 133,53 22 813
virginia-2 0,26 23 680 2,80 23 680 9,70 23 680 <0,01 23 275 0,13 23 081 0,01 23 680 0,06 23 680 0,05 23 680
virginia-3 36 000,77 90 854 291,78 80 459 285,12 91 046 1,37 83 975 21,52 86 081 - - 1 014,80 91 046 304,16 91 046
wash.-2 4,24 33 415 37,83 33 415 20,71 33 415 0,01 32 185 0,15 32 965 0,02 33 415 0,17 33 415 0,19 33 415
wash.-3 - - 534,33 98 789 1 592,22 113 514 23,64 104 692 71,86 103 006 - - 2 101,05 113 516 289,58 113 516
west-virg.-3 32 129,35 16 666 17 644,66 15 573 135,05 16 666 0,32 15 290 2,42 14 996 2,35 16 666 64,48 16 666 104,57 16 666

redSnap branch reduce GNN VC HILS HtWIS NuMWVC struction m2wis + s m2wis

as-skitter - - 21 606,10 135 910 45,35 135 976 0,04 134 500 26,37 135 783 - - 1 904,18 135 998 287,87 135 998
loc-gowalla e. 294,11 16 521 25,68 16 521 8,40 16 521 <0,01 16 521 0,15 16 479 0,64 16 521 0,94 16 521 0,78 16 521
soc-LiveJ. - - 5 669,30 277 920 180,88 278 532 0,13 273 672 76,47 277 988 - - 308,08 278 532 145,28 278 532
soc-pokec-rel. 36 038,1434 227 442 18 389,5235 219 027 36 000,1535 242 470 81,1835 205 509 7 035,1834 828 738 644,9832 989 873 8 238,0535 225 724 7 259,9935 230 752
web-BerkStan 28,05 135 172 15,35 134 942 36,21 135 156 <0,01 133 309 14,97 134 676 0,04 135 172 0,17 135 172 0,15 135 172
web-Google 0,13 20 182 1,69 20 182 9,22 20 182 <0,01 20 091 0,67 20 171 0,01 20 182 0,05 20 182 0,04 20 182
web-NotreD. 0,33 29 145 22,52 29 145 11,67 29 145 <0,01 28 640 0,56 29 061 0,07 29 145 0,11 29 145 0,09 29 145
web-Stanford 4 832,78 31 695 793,53 31 668 11,21 31 695 <0,01 31 427 2,36 31 617 0,01 31 695 0,04 31 695 0,05 31 695

redSsmc branch reduce GNN VC HILS HtWIS NuMWVC struction m2wis + s m2wis

ca2010 - - 2 873,13 1 979 294 1 470,66 1 980 551 0,16 1 951 444 916,03 1 951 636 1,471 989 209 5,791 989 209 8 652,80 1 989 106
fl2010 36 000,00 649 704 84,54 682 793 932,09 684 214 0,10 673 852 563,46 676 284 0,83 686 985 3,82 686 985 5 130,54 686 946
ga2010 159,38 76 316 492,05 76 214 59,10 76 297 0,01 75 201 26,71 76 001 0,07 76 316 0,34 76 316 0,33 76 316
il2010 - - 3 714,46 998 051 1 290,10 996 126 0,14 981 297 740,62 985 582 0,701 001 624 4,651 001 624 8 983,65 1 001 415
nh2010 2,28 26 770 44,27 26 737 17,20 26 768 <0,01 26 477 4,56 26 687 0,01 26 770 0,07 26 770 0,05 26 770
ri2010 6 477,22 66 963 1 008,11 66 672 32,71 66 960 <0,01 65 979 19,66 66 743 0,02 66 963 0,15 66 963 0,12 66 963

overall branch reduce GNN VC HILS HtWIS NuMWVC struction m2wis + s m2wis

best 67/93 46/93 75/93 14/93 0/93 75/93 88/93 88/93
gmean ω - 16 357 16 683 15 964 - - 16 688 16 688
gmean t - 35,30 25,01 0,01 - - 0,60 0,66

474 Finding Near-Optimal Weight Independent Sets at Scale Großmann et al.

Table 15: Graph properties. Bold graphs where used to determine the best parameters. The set
redOsm are the osm instances used for the metamis comparison reduced using KaMIS [32].

finEl |V | |E| osm |V | |E| osm |V | |E| ssmc |V | |E|
body 45 087 327 468 iowa-1 90 328 puerto-rico-1 60 126 ca2010 710 145 3 489 366
ocean 143 437 819 186 iowa-2 155 1 908 puerto-rico-2 165 2 570 fl2010 484 481 2 346 294
pwt 36 519 289 588 kansas-1 190 800 puerto-rico-3 494 53 852 ga2010 291 086 1 418 056
rotor 99 617 1 324 862 kansas-2 602 32 948 rhode-is.-1 455 3 946 il2010 451 554 2 164 464
sphere 16 386 98 304 kansas-3 2 732 1 613 824 rhode-is.-2 2 866 590 976 nh2010 48 837 234 550

mesh |V | |E| kentucky-1 381 4 804 rhode-is.-3 15 12425 244 438 ri2010 25 181 125 750

blob 16 068 48 204 kentucky-2 2 453 1 286 856 south-car.-1 75 138 redOsm |V | |E|
buddha 1 087 716 3 263 148 kentucky-3 19 095119 067 260 south-car.-2 165 1 426 alabama-3 1 614 117 426
bunny 68 790 206 034 louisiana-1 157 362 south-car.-3 317 9 016 d.o.c.-2 6 360 592 457
cow 5 036 14 732 louisiana-2 436 6 222 tennessee-1 49 78 d.o.c.-3 33 36717 459 296
dragon 150 000 450 000 louisiana-3 1 162 74 154 tennessee-2 100 836 florida-3 1 069 62 088
dragonsub 600 000 1 800 000 maine-1 38 58 tennessee-3 212 6 430 greenland-3 3 942 2 348 539
ecat 684 496 2 053 488 maine-2 81 486 utah-1 230 618 hawaii-3 24 43640 724 109
face 22 871 68 108 maine-3 143 1 700 utah-2 589 9 384 idaho-3 3 208 2 864 466
fandisk 8 634 25 636 maryland-1 104 432 utah-3 1 339 85 744 kansas-3 1 605 408 108
feline 41 262 123 786 maryland-2 316 9 430 vermont-1 128 836 kentucky-3 16 87154 160 431
gameguy 42 623 127 700 maryland-3 1 018 190 830 vermont-2 766 75 214 massach.-3 2 008 373 537
gargoyle 20 000 60 000 massach.-1 413 2 178 vermont-3 3 436 2 272 328 north-car.-3 1 178 189 362
turtle 267 534 802 356 massach.-2 1 339 70 898 virginia-1 570 2 960 oregon-3 3 670 1 958 180
venus 5 672 17 016 massach.-3 3 703 1 102 982 virginia-2 2 279 120 080 rhode-is.-2 1 103 81 688

osm |V | |E| mexico-1 175 716 virginia-3 6 185 1 331 806 rhode-is.-3 13 03111 855 557

alabama-1 320 1 162 mexico-2 516 18 822 washington-1 713 4 632 vermont-3 2 630 811 482

alabama-2 1 164 38 772 mexico-3 1 096 94 262 washington-2 3 025 304 898 virginia-3 3 867 485 330
alabama-3 3 504 619 328 michigan-1 133 224 washington-3 10 022 4 692 426 washington-3 8 030 2 120 696
alaska-1 31 62 michigan-2 241 1 500 w-virg.-1 65 300
alaska-2 54 312 michigan-3 376 4 918 w-virg.-2 317 16 656
alaska-3 86 950 minnesota-1 86 272 w-virg.-3 1 185 251 240
arkansas-1 26 38 minnesota-2 253 5 160 wisconsin-1 54 102
arkansas-2 55 466 minnesota-3 683 68 376 wisconsin-2 89 438
arkansas-3 103 2 752 mississippi-1 74 120 wisconsin-3 136 1 176
california-1 77 260 mississippi-2 151 732 wyoming-1 7 22
california-2 231 6 148 mississippi-3 242 2 232 wyoming-2 8 32
california-3 587 55 072 missouri-1 10 12 wyoming-3 12 84

canada-1 189 480 missouri-2 13 24 snap |V | |E|
canada-2 449 5 894 missouri-3 17 48 as-skitter 1 696 41522 190 596
canada-3 943 40 482 montana-1 109 388 ca-AstroPh 18 772 396 100
colorado-1 128 464 montana-2 307 10 308 ca-CondMat 23 133 186 878
colorado-2 283 4 052 montana-3 837 138 586 ca-GrQc 5 242 28 968
colorado-3 538 16 730 nebraska-1 40 92 ca-HepPh 12 008 236 978
connec.-1 87 192 nebraska-2 93 1 468 ca-HepTh 9 877 51 946
connec.-2 211 1 950 nebraska-3 145 4 336 com-amazon 334 863 1 851 738
connec.-3 367 7 538 nevada-1 89 186 com-youtube 1 134 890 5 975 248
delaware-1 2 2 nevada-2 242 3 062 email-Enron 36 692 367 662
delaware-2 3 6 nevada-3 569 30 032 email-EuAll 265 214 728 962
delaware-3 5 18 new-hamp.-1 195 604 loc-gowalla 196 591 1 900 654
d.o.c.-1 2 500 49 302 new-hamp.-2 514 6 738 p2p-G.04 10 876 79 988
d.o.c.-2 13 597 3 219 590 new-hamp.-3 1 107 36 042 p2p-G.05 8 846 63 678
d.o.c.-3 46 22155 458 274 new-jersey-1 4 12 p2p-G.06 8 717 63 050
florida-1 475 2 554 new-jersey-2 4 12 p2p-G.08 6 301 41 554
florida-2 1 254 33 872 new-jersey-3 4 12 p2p-G.09 8 114 52 026
florida-3 2 985 308 086 new-mex.-1 3 6 p2p-G.24 26 518 130 738

georgia-1 294 868 new-mex.-2 3 6 p2p-G.25 22 687 109 410
georgia-2 746 15 506 new-mex.-3 3 6 p2p-G.30 36 682 176 656
georgia-3 1 680 148 252 new-york-1 42 236 p2p-G.31 62 586 295 784

greenland-1 77 682 new-york-2 224 12 798 roadNet-CA 1 965 206 5 533 214
greenland-2 686 100 436 new-york-3 837 177 456 roadNet-PA 1 088 092 3 083 796

greenland-3 4 986 7 304 722 north-car.-1 93 300 roadNet-TX 1 379 917 3 843 320
hawaii-1 411 2 846 north-car.-2 398 20 232 soc-Ep.1 75 879 811 480
hawaii-2 2 875 530 316 north-car.-3 1 557 473 478 soc-LiveJ.1 4 847 57185 702 474
hawaii-3 28 00698 889 842 ohio-1 78 192 soc-Sl.0811 77 360 938 360
idaho-1 136 416 ohio-2 211 3 630 soc-Sl.0902 82 168 1 008 460

idaho-2 552 70 442 ohio-3 482 22 752 soc-p.-rel. 1 632 80344 603 928
idaho-3 4 064 7 848 160 oregon-1 381 1 992 web-BS. 685 23013 298 940
illinois-1 113 404 oregon-2 1 325 115 034 web-Google 875 713 8 644 102

illinois-2 261 4 276 oregon-3 5 588 5 825 402 web-ND. 325 729 2 180 216
indiana-1 2 2 penns.-1 193 552 web-Stanford 281 903 3 985 272
indiana-2 2 2 penns.-2 521 7 624 wiki-Talk 2 394 385 9 319 130
indiana-3 4 12 penns.-3 1 148 52 928 wiki-Vote 7 115 201 524

	Introduction
	Preliminaries
	Related Work
	Exact Methods
	Heuristic Methods

	Algorithm
	Exact Reductions
	Memetic Algorithm
	Initial Solutions
	Combine Operations
	Mutation Operation

	Heuristic Reductions and Recursion

	Experimental Evaluation
	Experiments on Reduction Ordering
	Orderings Based on Impact of Single Reductions
	Orderings Based on Impact of Groups of Reductions

	Heuristic Data Reduction Rules
	Solving Small Reduced Graphs Exactly
	Limiting the Time for Evolve
	Comparison against the State of the Art
	Comparison against the State of the Art on Reduced Instances
	Comparison to METAMIS

	Conclusion and Future Work
	Detailed Per-Instance Results for State of the Art Comparison

