

Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 28, no. 1, pp. 439–473 (2024) DOI: 10.7155/jgaa.v28i1.2997

Finding Near-Optimal Weight Independent Sets at Scale

Ernestine Großmann¹ Sebastian Lamm² Christian Schulz¹ Darren Strash³

¹Heidelberg University, Germany ²Karlsruhe Institute of Technology, Germany ³Department of Computer Science, Hamilton College, United States

Submitted: March	2024 Accepted:	October 2024 Publish	ed:	November 2024
Article type:	Regular Paper	Communicated by:	S.	Cornelsen

Abstract. Computing maximum weight independent sets in graphs is an important NP-hard optimization problem. The problem is particularly difficult to solve in large graphs for which data reduction techniques do not work well. To be more precise, state-of-the-art branch-and-reduce algorithms can solve many large-scale graphs if reductions are applicable. Otherwise, their performance quickly degrades due to branching requiring exponential time. In this paper, we develop an advanced memetic algorithm to tackle the problem, which incorporates recent data reduction techniques to compute near-optimal weight independent sets in huge sparse networks. More precisely, we use a memetic approach to recursively choose vertices that are likely to be in a large-weight independent set. We include these vertices into the solution, and further reduce the graph. We show that identifying and removing vertices likely to be in largeweight independent sets opens up the reduction space and speeds up the computation of large-weight independent sets remarkably. Our experimental evaluation indicates that we are able to outperform state-of-the-art algorithms. For example, our two algorithm configurations compute the best results among all competing algorithms for all instances tested. Thus, it can be seen as a useful tool when large-weight independent sets need to be computed in practice.

E-mail addresses: e.grossmann@informatik.uni-heidelberg.de (Ernestine Großmann) lamm@ira.uka.de (Sebastian Lamm) christian.schulz@informatik.uni-heidelberg.de (Christian Schulz) dstrash@hamilton.edu (Darren Strash)

This work is licensed under the terms of the CC-BY license.

We acknowledge support by DFG grant SCHU 2567/3-1.

1 Introduction

For a given graph G = (V, E) an *independent set* (IS) is defined as a subset $I \subseteq V$ of all vertices such that each pair of vertices in I are non adjacent. A maximum independent set (MIS) describes an IS with highest possible cardinality. By transforming the graph G into the complement graph \overline{G} the MIS problem results in the maximum clique problem. However, for sparse graphs G, using a maximum clique solver is impractical as the complement \overline{G} is very dense and therefore unlikely to fit in memory for all but the smallest instances. Another related problem is the *minimum vertex cover* problem. Note that for an MIS \mathcal{I} of $G, V \setminus \mathcal{I}$ is a minimum vertex cover. For a weighted graph $G = (V, E, \omega)$ with non-negative vertex weights given by a function $\omega : V \to \mathbb{R}_{>0}$, the maximum weight independent set (MWIS) problem is to find an independent set \mathcal{I} with maximum weight $\omega(\mathcal{I}) = \sum_{v \in \mathcal{I}} \omega(v)$. The applications of the MWIS problem, as well as the related problems addressed above, can be used for solving different application problems such as long-haul vehicle routing [15], the winner determination problem [58] or prediction of structural and functional sites in proteins [38]. As a detailed example, consider an application of MWIS for map labeling, where displaying non-overlapping labels throughout dynamic map operations such as zooming and rotating [21] or while tracking a physical movement of a user or set of moving entities [9] is of high interest in many applications. In the underlying map labeling problem, the labels are represented by vertices in a graph, weighted by importance. Each pair of vertices is connected by an edge if the two corresponding labels would overlap. In this graph, a MWIS describes a high-quality set of labels, with regard to their importance level, that can be visualized without any overlap.

Since these problems are NP-hard [19], heuristic algorithms are used in practice to efficiently compute solutions of high quality on *large* graphs [6, 22, 60]. Depending on the definition of the neighborhood, local search algorithms are able to explore local solution spaces very effectively. However, local search algorithms are also prone to get stuck in local optima. As with many other heuristics, results can be improved if several repeated runs are made with some measures taken to diversify the search. Still, even a large number of repeated executions can only scratch the surface of the huge space of possible independent sets for large-scale datasets.

Traditional branch-and-bound methods [20, 26, 32, 44, 45, 53] may often solve small graphs with hundreds to thousands of vertices in practice, and medium-sized instances can be solved exactly in practice using reduction rules to reduce the graph. In particular, it has been observed that if data reductions work very well, then the instance is likely to be solved. If data reductions do not work very well, i.e. the size of the reduced graph is large, then the instance can often not be solved. Even though algorithms such as the struction algorithm, as shown in [20] already manage to solve many large instances, some remain unsolved.

In order to explore the global solution space extensively, more sophisticated metaheuristics, such as GRASP [15] or iterated local search [6,40], have been used. In this work, we extend the set of metaheuristics used for the MWIS problem by introducing a novel memetic algorithm. Memetic algorithms (MAs) combine genetic algorithms with local search [29] to effectively explore (via global search) and exploit (via local search) the solution space. The general idea behind genetic algorithms is to use mechanisms inspired by biological evolution such as selection, mutation, recombination, and survival of the fittest.

Our Results. Our contribution is two-fold: First, we develop a state-of-the-art memetic algorithm that is based on recombination operations employing graph partitioning techniques. Our algorithm computes large-weight independent sets by incorporating a wide range of recently developed advanced reduction rules. In particular, our algorithm uses a wide range of frequently

used data reduction techniques from [20, 32] and also employs a number of recently proposed data reduction rules by Gu et al. [23].

The algorithm may be viewed as performing two functions simultaneously: (1) reduction rules for the weighted independent set problem are used to boost the performance of the memetic algorithm and (2) the memetic algorithm opens up the opportunity for further reductions by selecting vertices that are likely to be in large-weight independent sets. In short, our method applies reduction rules to form a reduced graph, then computes vertices to insert into the final solution and removes these vertices and their neighbors from the graph. Then, further reductions can be applied. The process is then repeated recursively until the graph is empty. We show that this technique finds near-optimal weight independent sets much faster than existing local search algorithms, is competitive with state-of-the-art exact algorithms for smaller graphs, and allows us to compute large-weight independent sets on huge sparse graphs. Overall, our algorithm configurations compute the best results among all competing algorithms for every instance, and thus can be seen as the dominating tool when large weight independent sets need to be computed in practice.

Our second contribution in this work is the experimental evaluation of the orderings in which currently available data reductions are applied. We examine the impact of different orderings on solution size and on running time. One outcome of this evaluation are robust orderings of reductions for exact reduction rules, as well as a specific ordering which can improve the solution quality at the expense of computation time.

2 Preliminaries

In this work, a graph G = (V, E) is an undirected graph with n = |V| and m = |E|, where $V = \{0, ..., n-1\}$. The neighborhood N(v) of a vertex $v \in V$ is defined as $N(v) = \{u \in V : v \in V\}$ $(u, v) \in E$. Additionally, $N[v] = N(v) \cup \{v\}$. The same sets are defined for the neighborhood N(U) of a set of vertices $U \subset V$, i.e. $N(U) = \bigcup_{v \in U} N(v) \setminus U$ and $N[U] = N(U) \cup U$. The degree of a vertex $\deg(v)$ is defined as the number of its neighbors $\deg(v) = |N(v)|$. The complement graph is defined as $\overline{G} = (V, \overline{E})$, where $\overline{E} = \{(u, v) : (u, v) \notin E\}$ is the set of edges not present in G. A set $I \subseteq V$ is called *independent set* (IS) if for all vertices $v, u \in I$ there is no edge $(v, u) \in E$. For a given IS \mathcal{I} a vertex $v \notin \mathcal{I}$ is called free, if $\mathcal{I} \cup \{v\}$ is still an independent set. An IS is called maximal if there are no free vertices. The maximum independent set problem (MIS) is that of finding an IS with maximum cardinality. The maximum weight independent set problem (MWIS) is that of finding an IS with maximum weight. The weight of an independent set \mathcal{I} is defined as $\omega(\mathcal{I}) = \sum_{v \in \mathcal{I}} \omega(v)$ and $\alpha_{\omega}(G)$ denotes the weight of an MWIS of G. The complement of an independent set is a vertex cover, i.e. a subset $C \subseteq V$ such that every edge $e \in E$ is covered by at least one vertex $v \in C$. An edge is *covered* if it is incident to one vertex in the set C. The minimum vertex cover problem, defined as looking for a vertex cover with minimum cardinality, is thereby complementary to the MIS problem. Another closely related concept are cliques. A *clique* is a set $Q \subseteq V$ such that all vertices are pairwise adjacent. A clique in the complement graph G corresponds to an independent set in the original graph G. A vertex is called *simplicial*, when its neighborhood forms a clique.

The subdivision of the set of vertices V into disjoint blocks $V_1, ..., V_k$ such that $V_1 \cup ... \cup V_k = V$ is called a k-way partition (see [13,50]). To ensure the blocks are roughly of the same size, the balancing constraint $|V_i| \leq L_{max} \coloneqq (1 + \varepsilon) \left\lceil \frac{|V|}{k} \right\rceil$ with the imbalance parameter $\varepsilon > 0$ is introduced. While satisfying this balance constraint, the edge separator problem asks for minimizing the total cut, $\sum_{i < j} \omega(E_{ij})$, where E_{ij} is defined by $E_{ij} \coloneqq \{\{u, v\} \in E : u \in V_i, v \in V_j\}$. The edge separator

is the set of all edges in the cut. For the k-vertex separator problem, on the other hand, we look for a division of V into k + 1 blocks. In addition to the blocks $V_1, ..., V_k$ a separator S exists. This separator has to be chosen such that no edges between the blocks $V_1, ..., V_k$ exist, but there is no balancing constraint on the separator S. However, as for the edge separator problem the balancing constraint on the blocks $|V_i| \leq L_{max} \coloneqq (1 + \varepsilon) \left\lceil \frac{|V|}{k} \right\rceil$ has to hold. To solve the problem, the size of the separator |S| has to be minimized. By removing the separator S from the graph it results in at least k connected components, since the different blocks V_i are not necessarily connected.

3 Related Work

We give a short overview of existing work on both exact and heuristic procedures. For more details on data reduction techniques, we refer the reader to the recent survey [3].

3.1 Exact Methods

Exact algorithms usually compute optimal solutions by systematically exploring the solution space. A frequently used paradigm in exact algorithms for combinatorial optimization problems is called *branch-and-bound* [41,55]. In the case of the MWIS problem, these types of algorithms compute optimal solutions by case distinctions in which vertices are either included into the current solution or excluded from it, branching into two or more subproblems and resulting in a search tree. Over the years, branch-and-bound methods have been improved by new branching schemes or better pruning methods using upper and lower bounds to exclude specific subtrees [7,8,35]. In particular, Warren and Hicks [55] proposed three branch-and-bound algorithms that combine the use of weighted clique covers and a branching scheme first introduced by Balas and Yu [8]. Their first approach extends the algorithm by Babel [7] by using a more intricate data structures to improve its performance. The second one is an adaptation of the algorithm of Balas and Yu, which uses a weighted clique heuristic that yields structurally similar results to the heuristic of Balas and Yu. The last algorithm is a hybrid version that combines both algorithms and is able to compute optimal solutions on graphs with hundreds of vertices.

In recent years, reduction rules have frequently been added to branch-and-bound methods yielding so-called *branch-and-reduce* algorithms [4]. These algorithms are able to improve the worst-case runtime of branch-and-bound algorithms by applying reduction rules to the current graph before each branching step. For the unweighted case, a large number of branch-and-reduce algorithms have been developed in the past. The currently best exact solver [26], which won the PACE challenge 2019 [26, 42, 52], uses a portfolio of branch-and-reduce/bound solvers for the complementary problems. Recently, novel branching strategies have been presented in [25] to further improve both branch-and-bound as well as branch-and-reduce approaches.

However, for a long time, virtually no weighted reduction rules were known, which is why hardly any branch-and-reduce algorithms exist for the MWIS problem. The first branch-and-reduce algorithm for the weighted case was presented by Lamm et al. [32]. The authors first introduce two meta-reductions called neighborhood removal and neighborhood folding, from which they derive a new set of weighted reduction rules. On this foundation a branch-and-reduce algorithm is developed using pruning with weighted clique covers similar to the approach by Warren and Hicks [55] for upper bounds and an adapted version of the ARW local search [6] for lower bounds.

This algorithm was then extended by Gellner et al. [20] to utilize different variants of the struction, originally introduced by Ebenegger et al. [16] and later improved by Alexe et al. [5]. In

contrast to previous reduction rules, these do not necessarily decrease the graph size, but rather transform the graph which later can lead to even further reduction. Those variants were integrated into the framework of Lamm et al. [32] in the preprocessing as well as in the reduce step. The experimental evaluation shows that this algorithm can solve a large set of real-world instances and outperforms the branch-and-reduce algorithm by Lamm et al. [32], as well as different state-of-theart heuristic approaches such as the algorithm HILS presented by Nogueira [40] as well as two other local search algorithms DYNWVC1 and DYNWVC2 by Cai et al. [11]. Recently, Xiao et al. [60] present further data reductions for the weighted case as well as a simple exact algorithm based on these data reduction rules. Furthermore, in [63] a new reduction-and-branching algorithm was introduced using two new reduction rules. Recently, Xiao et al. [59] also presented a branch-andbound algorithm idea using reduction rules working especially well on sparse graphs. In their theoretical work they undertake a detailed analysis for the running time bound on special graphs. With the measure-and-conquer technique they can show that the running time of their algorithm is $\mathcal{O}^*(1,1443^{(0.624x-0.872)n})$ where x is the average degree of the graph. This is improving previous time bounds for this problem using polynomial space complexity for graphs of average degree up to three.

Figiel et al. [18] introduced a new idea added to the state-of-the-art way of applying reductions. They propose to not only performing reductions, but also the possibility of undoing them during the reduction process. As they showed in their paper for the unweighted independent set problem, this can lead to new possibilities to apply further reductions and finally to smaller reduced graphs.

Finally, there are exact procedures which are either based on other extension of the branchand-bound paradigm, e.g. [43, 56, 57], or on the reformulation into other \mathcal{NP} -complete problems, for which a variety of solvers already exist. For instance, Xu et al. [62] developed an algorithm called SBMS, which calculates an optimal solution for a given MWVC instance by solving a series of SAT instances. Also for the MWVC problem a new exact algorithm using the branch-and-bound idea combined with data reduction rules was recently presented [54]. We additionally note that there are several recent works on the complementary maximum weighted clique problem that are able to handle large real-world networks [17, 24, 27]. However, using these solvers for the MWIS problem requires computing complement graphs. Since large real-world networks are often very sparse, processing their complements quickly becomes infeasible due to their memory requirement.

3.2 Heuristic Methods

A widely used heuristic approach is local search, which usually computes an initial solution and then tries to improve it by simple insertion, removal or swap operations. Although in theory local search generally offers no guarantees for the solution's quality, in practice they find high-quality solutions significantly faster than exact procedures.

For unweighted graphs, the iterated local search (ARW) by Andrade et al. [6], is a very successful heuristic. It is based on so-called (1, 2)-swaps which remove one vertex from the solution and add two new vertices to it, thus improving the current solution by one. Their algorithm uses special data structures which find such a (1, 2)-swap in linear time in the number of edges or prove that none exists. Their algorithm is able to find (near-)optimal solutions for small to medium-size instances in milliseconds, but struggles on massive instances with millions of vertices and edges.

The hybrid iterated local search (HILS) by Nogueira et al. [40] adapts the ARW algorithm for weighted graphs. In addition to weighted (1,2)-swaps, it also uses (ω , 1)-swaps that add one vertex v into the current solution and exclude its ω neighbors. These two types of neighborhoods are explored separately using variable neighborhood descent (VND). Two other local searches, DYNWVC1 and DYNWVC2, for the equivalent minimum weight vertex cover problem are presented by Cai et al. [11]. Their algorithms extend the existing FASTWVC heuristic [37] by dynamic selection strategies for vertices to be removed from the current solution. In practice, DYNWVC1 outperforms previous MWVC heuristics on map labeling instances and large scale networks, and DYNWVC2 provides further improvements on large scale networks but performs worse on map labeling instances.

Li et al. [36] presented a local search algorithm NUMWVC for the minimum weight vertex cover (MWVC) problem, which is complementary to the MWIS problem. Their algorithm applies reduction rules during the construction phase of the initial solution. Furthermore, they adapt the configuration checking approach [12] to the MWVC problem which is used to reduce cycling, i.e. returning to a solution that has been visited recently. Finally, they develop a technique called self-adaptive-vertex-removing, which dynamically adjusts the number of removed vertices per iteration. Experiments show that their algorithm outperforms state-of-the-art approaches on both graphs of up to millions of vertices and real-world instances.

Recently, a hybrid method was introduced by Langedal et al. [33] to also solve the MWVC problem. For this approach they combined elements from exact methods with local search, data reductions and graph neural networks. In their experiments they achieve definite improvements compared to DYNWVC2 and the HILS algorithm in both solution quality and running time.

With EvoMIS, Lamm et al. [30] presented an evolutionary approach to tackle the maximum independent set problem. The key feature of their algorithm is to use graph partitioning to come up with natural combine operations, where whole blocks of solutions to the MIS problem can be exchanged easily. To these combine operations also local search algorithms were added to improve the solutions further. Combining the branch-and-reduce approach with the evolutionary algorithm EvoMIS, a reduction evolution algorithm REDUMIS was presented by Lamm et al. [31]. In their experiments, REDUMIS outperformed the local search ARW as well as the pure evolutionary approach EvoMIS. Another reduction based heuristic called HTWIS was presented recently by Gu et al. [23]. In their framework they repeatedly apply reductions exhaustively and then choose one vertex by a tie-breaking policy to add to the solution. Now this vertex as well as its neighbors can be removed from the graph and the reductions can be applied again. Their experiments prove a significant improvement in running time.

Recently, a new metaheuristic was introduced by Dong et al. [15] in particular for vehicle routing instances. With their algorithm METAMIS they developed a new local search algorithm using a new variant of path-relinking to escape local optima. In their experiments they outperform HILS algorithm on a wide range of instances both in time and solution quality.

4 Algorithm

We now present our memetic algorithm for the MWIS problem, which we call memetic maximum weight independent set M^2 WIS. This algorithm is inspired by REDUMIS [31] and works in rounds, where each round can be split up into three parts. In the beginning of each round the exact reduction step takes place. Here the graph is reduced as far as possible using a wide range of data reduction rules. On the resulting reduced graph, we apply the memetic part of the algorithm as the second step. We represent a solution, also referred to as an individual, by using bitvectors. Where the independent set \mathcal{I} is represented as an array $s \in \{0,1\}^n$. For each array entry it holds s[v] = 1 iff $v \in \mathcal{I}$. The memetic component itself works in rounds as well. Starting with an initial population \mathcal{P} , consisting of a set of individuals, this population is evolved over several rounds until a stopping criterion is fulfilled. In the third part, we select a subset of vertices to

Algorithm 1 High Level Structure of M²WIS

```
\begin{aligned} & \text{input graph } G = (V, E) \\ & \text{procedure } M^2 \text{WIS}(G) \\ & \mathcal{W} = \emptyset \quad // \text{ best solution} \\ & \text{while } G \text{ not empty and time limit not reached} \\ & (G, \mathcal{W}) \leftarrow \text{EXACTREDUCE}(G, \mathcal{W}) \\ & \text{if } G \text{ is empty then return } \mathcal{W} \\ & \text{if } V(G) \leq n_K \\ & \mathcal{W}^* \leftarrow \text{try.to.solve}\_\text{exact}(G, t_{exact}) \\ & \text{if } \mathcal{W}^* \text{ optimal then return } \mathcal{W}^* \\ & \text{create initial population } \mathcal{P} \text{ (adding } \mathcal{W}^* \text{ if computed}) \\ & \mathcal{P} \leftarrow \text{EVOLVE}(G, \mathcal{P}) \\ & (G, \mathcal{W}) \leftarrow \text{HEURISTICREDUCE}(G, \mathcal{P}, \mathcal{W}) \\ & \text{return } \mathcal{W} \end{aligned}
```

be included in the independent set by considering the resulting population. Here, we implement different strategies to select vertices for inclusion. Including these vertices in the independent set enables us to remove them and their neighbors from the instance. This opens up the reduction space, i.e. further reductions might be applicable after the removal process. The steps of exact reduction, memetic search, and heuristic reduction are repeated until the remaining graph is empty or another stopping criterion is fulfilled.

Following the order of the Algorithm 1, we first describe the EXACTREDUCE routine in Section 4.1. Section 4.2 is devoted to the memetic part, followed by the description of different vertex selection strategies used to heuristically reduce the instance and open up the reduction space in Section 4.3.

4.1 Exact Reductions

Especially for large instances, applying exact data reductions is a very important technique to reduce the problem size. In general, reductions identify vertices (1) as part of a solution to the MWIS problem, (2) as non-solution vertices or (3) as deferred, meaning the decision for this vertex is depending on additional information about neighboring vertices that will be obtained later. The resulting reduced graph, after no reduction rule can be applied anymore, we denote by \mathcal{K} . Once an MWIS of \mathcal{K} is found, reductions can be undone to reconstruct an MWIS on the original graph. For the reduction process we apply a large set of reductions which we list in the following. In the following list of reductions \mathcal{I} refers to an MWIS of G, \mathcal{I}' to an MWIS of the modified graph G'.

Reduction 1 (Degree-One [23, 32]) Let v be a degree-one vertex with the neighbor u in G.

- Case 1: if $\omega(v) \ge \omega(u)$, v must be contained in some MWIS of G; thus v can be removed from G, i.e. $\alpha_{\omega}(G) = \alpha_{\omega}(G') + \omega(v)$, where G' is the graph obtained by removing both v and u.
- Case 2: if ω(v) < ω(u), α_ω(G) = α_ω(G') + ω(v), where G' is the graph obtained by removing v and updating the weight of u to be ω(u) = ω(u) ω(v). It holds that u ∈ I iff u ∈ I'.

We note that Case 1 is a special case of Reduction 2.

Reduction 2 (Neighborhood Removal [32]) For any $v \in V$, if $\omega(v) \ge \omega(N(v))$ then v is in some MWIS of G. Let $G' = G[V \setminus N[v]]$ and $\alpha_{\omega}(G) = \alpha_{\omega}(G') + \omega(v)$.

Figure 1: Illustration of the three cases of the Triangle Reduction.

Reduction 3 (Triangle [23]) This reduction is illustrated in Figure 1. Let v be a degree-two vertex with two neighbors x and y in G, where edge $\{x, y\} \in E$. Without loss of generality, assume $\omega(x) \leq \omega(y)$.

- Case 1: if $\omega(v) \ge \omega(y)$, v must be contained in some MWIS of G. This leads to $\alpha_{\omega}(G) = \alpha_{\omega}(G') + \omega(v)$, where G' is obtained by removing v, x, y.
- Case 2: if $\omega(x) \leq \omega(v) < \omega(y)$, $\alpha_{\omega}(G) = \alpha_{\omega}(G') + \omega(v)$, where G' is the graph obtained by removing nodes v and x, and updating $\omega(y) = \omega(y) \omega(v)$. It holds that $y \in \mathcal{I}$ iff $y \in \mathcal{I}'$.
- Case 3: if $\omega(v) < \omega(x)$, $\alpha_{\omega}(G) = \alpha_{\omega}(G') + \omega(v)$, where G' is the graph obtained by removing v, and updating $\omega(x) = \omega(x) \omega(v)$ as well as $\omega(y) = \omega(y) \omega(v)$. It holds for $z \in \{x, y\}$ that $z \in \mathcal{I}$ iff $z \in \mathcal{I}'$.

Reduction 4 (Extended V-Shape [23,32]) This reduction is illustrated in Figure 2. Let v be a degree-two vertex with the neighbors x and y in G, where edge $\{x, y\} \notin E$. Without loss of generality, assume $\omega(x) \leq \omega(y)$.

- Case 1: [32] if $\omega(v) \ge \omega(y)$
 - $-if \ \omega(v) \ge \omega(x) + \omega(y), v \text{ must be contained in some MWIS of } G \text{ and this leads to} \\ \alpha_{\omega}(G) = \alpha_{\omega}(G') + \omega(v), \text{ where } G' \text{ is obtained by removing } v, x, y.$
 - else we fold v, x, y into a vertex v' with weight $\omega(v') = \omega(x) + \omega(y) \omega(v)$ forming a new graph G'. Then $\alpha_{\omega}(G) = \alpha_{\omega}(G') + \omega(v)$. If $v' \in \mathcal{I}'$ then $\{x, y\} \subset \mathcal{I}$, otherwise $v \in \mathcal{I}$. It holds that $\{x, y\} \subset \mathcal{I}$ iff $v' \in \mathcal{I}'$.
- Case 2: [23] if $\omega(x) \leq \omega(v) < \omega(y)$, $\alpha_{\omega}(G) = \alpha_{\omega}(G') + \omega(v)$, where G' is the graph obtained by removing v, updating $N(x) = N(x) \cup N(y)$ and $\omega(y) = \omega(y) \omega(v)$. It holds that $\forall w \in \{x, y\}$, $w \in \mathcal{I}$ iff $w \in \mathcal{I}'$;
- Case 3: [23] if $\omega(x) > \omega(v)$, $\alpha_{\omega}(G) = \alpha_{\omega}(G') + \omega(v)$, where G' is the graph obtained by updating $\omega(x) = \omega(x) \omega(v)$, $\omega(y) = \omega(y) \omega(v)$, and $N(v) = N(x) \cup N(y)$. It holds that $\{x, y\} \subseteq \mathcal{I}$ iff $\{x, y\} \subseteq \mathcal{I}'$.

Reduction 5 (Simplicial Vertex Removal [32]) Let $v \in V$ be simplicial and $\max_{u \in N(v)} \omega(u) \leq \omega(v)$. Then, v is in some MWIS of G. Let $G' = G[V \setminus N[v]]$ and $\alpha_{\omega}(G) = \alpha_{\omega}(G') + \omega(v)$.

Figure 2: Illustration of the three cases of the Extended V-Shape Reduction.

The Basic Single Edge Reduction is a generalization of the Weighted Domination Reduction [32]. Here we can exclude an endpoint of an edge, if the other endpoint would always be the better option for the solution. The Extended Single Edge Reduction can be applied, when one of the two endpoints of an edge has to be in the solution.

Reduction 6 (Basic Single-Edge [23]) Given an edge $e(u, v) \in E_G$, if $\omega(v) + \omega(N(u) \setminus N[v]) \le \omega(u)$, it holds that $\alpha_{\omega}(G) = \alpha_{\omega}(G')$, where G' is obtained by removing v from G.

Reduction 7 (Extended Single-Edge [23]) Given an edge $e(u, v) \in E_G$, if $\omega(v) \ge \omega(N(v)) - \omega(u)$, it holds that $\alpha_{\omega}(G) = \alpha_{\omega}(G')$, where G' is obtained by removing all vertices in $N(u) \cap N(v)$.

The Twin Reduction deals with vertices that have the same, independent neighborhood. Depending on the weight of these vertices and their neighborhood, we can proceed differently.

Reduction 8 (Twin [32]) Let vertices u and v have equal neighborhoods N(u) = N(v), forming an independent set. We have two cases:

- 1. If $\omega(\{u, v\}) \ge \omega(N(v))$, then u and v are in some MWIS of G. Let $G' = G[V \setminus N[\{u, v\}]]$.
- 2. If $\omega(\{u,v\}) < \omega(N(v))$, but $\omega(\{u,v\}) > \omega(N(v)) \min_{x \in N(v)} \omega(x)$, then we can fold u, v, p, q, rinto a new vertex v' with weight $\omega(v') = \omega(N(v)) - \omega(\{u,v\})$ and call this graph G'. Then we construct an MWIS \mathcal{I} of G as follows: if $v' \in \mathcal{I}'$ then $\mathcal{I} = (\mathcal{I}' \setminus \{v'\}) \cup N(v)$, if $v' \notin \mathcal{I}'$ then $\mathcal{I} = \mathcal{I}' \cup \{u,v\}$.

Furthermore, $\alpha_{\omega}(G) = \alpha_{\omega}(G') + \omega(\{u, v\}).$

The Simplicial Weight Transfer is a generalization of Reduction 5. If we can not identify a simplicial vertex that is in some MWIS of G, we can still exclude or reduce the weight of some vertices in the clique.

Reduction 9 (Simplicial Weight Transfer [32]) Let $v \in V$ be simplicial, and suppose that the set of simplicial vertices $S(v) \subseteq N(v)$ is such that $\forall u \in S(v), \omega(v) \ge \omega(u)$. We

- 1. remove all $u \in N(v)$ such that $\omega(u) \leq \omega(v)$, and let the remaining neighbors be denoted by N'(v),
- 2. remove v and $\forall x \in N'(v)$ set its new weight to $\omega'(x) = \omega(x) \omega(v)$, and

let the resulting graph be denoted by G'. Then $\alpha_{\omega}(G) = \omega(v) + \alpha_{\omega}(G')$ and an MWIS \mathcal{I} of G can be constructed from an MWIS \mathcal{I}' of G' as follows: if $\mathcal{I}' \cap N'(v) = \emptyset$ then $\mathcal{I} = \mathcal{I}' \cup \{v\}$, otherwise $\mathcal{I} = \mathcal{I}'$.

Reduction 10 (CWIS [10]) Let $I_c \subseteq V$ be a critical weighted IS of G, i.e. $\omega(\mathcal{I}_c) - \omega(N(\mathcal{I}_c)) = \max\{\omega(\mathcal{I}) - \omega(N(\mathcal{I})) : \mathcal{I} \text{ is an IS of } G\}$. Then \mathcal{I}_c is in some MWIS of G. We set $G' = G[V \setminus N[\mathcal{I}_c]]$ and $\alpha_{\omega}(G) = \alpha_{\omega}(G') + \omega(\mathcal{I}_c)$.

If the neighborhood of a vertex v is independent and Reduction 2 is not applicable, then, under certain weight conditions, we can fold the vertex with its neighborhood as explained in the Neighborhood Folding.

Reduction 11 (Neighborhood Folding [32]) Let $v \in V$, and suppose that N(v) is independent. If $\omega(N(v)) > \omega(v)$, but $\omega(N(v)) - \min_{u \in N(v)} \{\omega(u)\} < \omega(v)$, then fold v and N(v) into a new vertex v' with weight $\omega(v') = \omega(N(v)) - \omega(v)$. If $v' \in \mathcal{I}'$ then $\mathcal{I} = (\mathcal{I}' \setminus \{v'\}) \cup N(v)$, otherwise if $v \in \mathcal{I}'$ then $\mathcal{I} = \mathcal{I}' \cup \{v\}$. Furthermore, $\alpha_{\omega}(G) = \alpha_{\omega}(G') + \omega(v)$.

The Heavy Set Reduction is the most general and expensive reduction, which is why we only apply it after all other reductions have been exhaustively applied. For this reduction rule, we have to solve multiple independent set problems in the neighborhood of two heavy vertices. Under certain conditions explained in Reduction 12, we can then include these two heavy vertices. Because it is computationally expensive, we limit the size of the neighborhood of these heavy vertices.

Reduction 12 (Heavy Set [61]) Let u and v be non-adjacent vertices having at least one common neighbor x and let the number of their neighbors $|N(\{v, u\})|$ be at most 8. If for any independent set \mathcal{I}' in the induced subgraph $G[N(\{v, u\})]$, $\omega(N(\mathcal{I}')) \cap \{u, v\} \ge \omega(\mathcal{I}')$ there is a MWIS in G that includes u and v. Then, $G' = G - N[\{v, u\}]$ and $\alpha_{\omega}(G) = \alpha_{\omega}(G') + \omega(v) + \omega(u)$.

In the EXACTREDUCE routine, we test for each of these reductions whether they are applicable. The rules are applied in a predefined order. To identify applicable reductions, we employ exhaustive search, with added pruning for the different rules. If one reduction is successfully applied, then the process of testing possible reductions starts from the beginning (according to this order). All reductions, that have been tested already are now only checked in areas of the graph that changed. If no more reductions can be applied, we obtained the reduced graph and continue with the next part of Algorithm 1. The order in which reductions are applied has an effect on the weight offset and the size of the resulting reduced graph, as well as on the time needed for the computation. We give a detailed analysis in Section 5.1.

If the resulting reduced instance is small enough, i.e. its number of vertices is less than the threshold n_K , we try to solve the instance exactly using STRUCTION by Gellner et al. [20] within a time limit t_{exact} . If it is not solved optimally within this time, the computed solution is added to the population and we continue.

4.2 Memetic Algorithm

After EXACTREDUCE, we apply the EVOLVE routine which is described in Algorithm 2 on the reduced graph \mathcal{K} . It starts by generating an initial *population* of size $|\mathcal{P}|$ which we then evolve over several generational cycles (rounds). For the evolution of the population two *individuals* from the population are selected and combined to create an *offspring*. We also apply a mutation operation to this new solution by forcing new vertices into the solution and removing neighboring solution vertices. To keep the population size constant and still add a new offspring to the solution, we look for fit replacements. In this process, we search for individuals in the population, which have smaller weights than the new offspring. Among those, we look for the most similar solution by computing the intersection size of the new and existing individuals. We also added the possibility of forcing

 Algorithm 2 High Level Structure of EVOLVE(G, \mathcal{P})

 input graph G = (V, E), current population \mathcal{P}

 procedure EVOLVE(G, \mathcal{P})

 while stopping criterion not fulfilled

 randomly chose a combine operation COMBINE

 k = number of individuals needed for COMBINE

 $\mathcal{IS} \leftarrow \emptyset //$ set of individuals

 $\mathcal{IS} \leftarrow \top OURNAMENTSELECT(\mathcal{P})$
 $\mathcal{OS} \leftarrow \emptyset //$ set of offspring

 $\mathcal{OS} \leftarrow \text{COMBINE}(\mathcal{IS})$

 if mutate with probability 10%

 $\mathcal{OS} \leftarrow \text{MUTATE}(\{\mathcal{OS}\})$

 if suitable replacement (different criteria)

 $\mathcal{P} \leftarrow \text{REPLACE}(\mathcal{P}, \mathcal{O})$

 return \mathcal{P}

individuals into the population if it has not changed over a certain number of iterations, as well as rejecting the offspring if the solution with the smallest weight is still better than the new offspring. Note that the size $|\mathcal{P}|$ of the population does not change during this process. Additionally, at any time each individual of our population is an independent set. In the last step of the memetic algorithm we improve the solution by the HILS algorithm [40]. The stopping criterion for the memetic procedure is either a specified number of unsuccessful combine operations or a time limit. In the following we discuss each of these steps in detail. We start with introducing the computation of the initial solution in Section 4.2.1 and then explain the combine operations for the evolutionary process in Section 4.2.2 as well as the mutation operation in Section 4.2.3.

4.2.1 Initial Solutions

At the start of our memetic algorithm, we create an initial population of size $|\mathcal{P}|$. To diversify as much as possible, this population contains solutions computed in six different ways, which we choose uniformly at random to create an individual. Before applying the strategies we permute the order of the nodes such that different solutions are obtained for the same strategy by different tie breaking.

RandomMWIS. The first approach works by starting with an empty solution and adding free vertices uniformly at random until the solution is maximal.

GreedyWeightMWIS. For the *GreedyWeightMWIS* strategy, we start with an empty solution. This is extended to a maximal independent set by adding free vertices ordered by their weight. Starting with the largest weight, we include this vertex and exclude all its neighbors until all vertices are labeled either included or excluded.

GreedyDegreeMWIS. Via this greedy approach, we create initial solutions by successively choosing the next free vertex with the smallest residual degree. Each time a vertex is included, we label the neighboring vertices to be excluded.

Greedy Weight VC. In contrast to the previous approaches, here the vertex cover problem, the complementary problem to the independent set problem, is utilized. Therefore, an empty solution is extended by vertices of the smallest weight until a vertex cover is computed. As soon as the algorithm terminated, we compute the complement and have an initial solution to the MWIS problem.

GreedyDegreeVC. As in GreedyWeightVC the complementary vertex cover problem is solved. However, for this approach, we choose those vertices to include in the solution, which cover the maximum number of currently uncovered edges.

Struction. We also add the possibility to compute an initial solution via the STRUCTION algorithm by Gellner et al. [20]. We set a time limit of 60 seconds and use the configuration *CyclicFast*. If we also use STRUCTION to compute initial solutions, we call the algorithm configuration $M^2WIS + s$. Note that if the algorithm does not solve the instance within the time limit, it returns a non-optimal solution.

4.2.2 Combine Operations

The common idea of our combine operations which are inspired by the work of Lamm et al. [31], is to combine whole blocks of independent set vertices. To construct those blocks, we use the graph partitioning framework KaHIP [47] which computes partitions of the graph $V = V_1 \cup ... \cup V_n$. For j = 1, ..., n the solution blocks \mathcal{I}_j are defined by $\mathcal{I}_j = \mathcal{I} \cap V_j$. We created different offspring by using the following combine operations on those solution blocks.

The parents for the first two combine operations are chosen by two runs of the tournament selection [39], where the fittest individual i.e. the solution with highest weight gets selected out of two random individuals from the population. Then we perform one of the combine operations outlined below and finally, after the combine operation, we use the HILS algorithm [40] to improve the computed offspring.

Vertex Separator Combination. The first operator works with a vertex separator V = $V_1 \cup V_2 \cup S$. We use a vertex separator to be able to exchange whole blocks of solutions without violating the independent set property. This can be done because no vertices belonging to different blocks are adjacent to one another. Neighboring vertices would either be part of the same block or one of them has to belong to the separator S. By this property the combination of those blocks will always result in a valid solution to the independent set problem. The two individuals selected by the tournament \mathcal{I}_1 and \mathcal{I}_2 are split up according to these partitions and are then combined to generate two offspring $O_1 = (V_1 \cap \mathcal{I}_1) \cup (V_2 \cap \mathcal{I}_2)$ and $O_2 = (V_1 \cap \mathcal{I}_2) \cup (V_2 \cap \mathcal{I}_1)$. After that we

Figure 3: The vertex separator combine operation to create an offspring \mathcal{O} out of two individuals \mathcal{I}_1 and \mathcal{I}_2 .

add as many free vertices greedily by weight until the solution is maximal, we get a local optimum via one iteration of the weighted local search. See Figure 3 for an illustration.

Multi-way Vertex Separator Combination. We extended the previous described operator to the multi-way vertex separator, where multiple solutions can be used and combined. Therefore, we compute a k-vertex separator $V = V_1 \cup ... \cup V_k \cup S$ and select k individuals. Then for every pair of partition V_i and individual \mathcal{I}_j for $i, j \in \{1, ..., k\}$ a score is computed. This score is defined by $\sum_{v \in V_i \cap I_j} \omega(v)$. We start with the pair resulting in the highest score pair and then select pairs decreasingly. Once an individual or partition block is selected, we do not use it again. In contrast to the previous operator, this combination only results in one offspring. We then maximize this offspring and compute a local maximum. Edge Separator Combination. For this operator we exploit the duality to the weighted vertex cover problem. Starting with a partition $V = V_1 \cup V_2$ the operator computes temporary offspring for the weighted vertex cover problem. Let \mathcal{I}_1 and \mathcal{I}_2 be the individuals selected by the tournament rule. Let $C_i = V \setminus \mathcal{I}_i$ be the solution to the weighted vertex cover problem for $i \in \{1, 2\}$. The new offspring are $O_1 = (V_1 \cap C_1) \cup (V_2 \cap C_2)$ and $O_2 = (V_1 \cap C_2) \cup (V_2 \cap C_1)$. However, these offspring can contain some non-covered edges, which are a subset from the cut edges between the two partitions. The graph induced by the non-covered cut edges is bipartite. In this graph we compute a minimum-weight vertex cover using maximum flows.

Multi-way Edge Separator Combination. Similar to the vertex separator also the edge separator can be extended to use multiple solutions. Therefore, a k-way-partition $V = V_1 \cup ... \cup V_k$ is computed. Equivalent to the multi-way vertex separator, we also select k individuals and compute a score for each pair V_j and \mathcal{I}_i . For the scoring function, the complement of an independent set inside the given block is used to sum up the weights of the vertices of the vertex cover in this block. For the offspring computation, each block is combined with the individual with the lowest score. As in the basic edge separator combine operator there can be edges in the cut that are not covered. Since the induced graph here is not bipartite we handle this problem using a simple greedy strategy. Afterwards the solution is transformed to get the offspring for the independent set individuals.

4.2.3 Mutation Operation

After each combine operation, a mutation operator can perturb the created offspring. This is done by forcing new vertices into the solution and removing the adjacent vertices to satisfy the independent set property. Those vertices are selected at random among all non-solution nodes in the graph. Afterwards we improve the solution using the HILS algorithm.

4.3 Heuristic Reductions and Recursion

After the memetic algorithm stops, we use a heuristic data reduction to open up the reduction space (and afterwards the next round of exact data reductions begins). We implemented different strategies to select vertices that we put into the solution. In each strategy, vertices are ordered by a rating function. The algorithm inserts a fraction (from only one vertex to 100%) of the vertices selected by the different strategies. We now explain the different selection strategies.

Vertex Selection by Weight. The first rating function is based on the weight $\omega(v)$ of a vertex v (higher is better). The intuition here is that by adding a vertex, we want to increase the weight of our solution as much as possible. More precisely, the fittest individual from the population evolved by the memetic algorithm is selected. The fitness of an individual is defined as the solution weight. From this individual, we select the x vertices from the independent set that have the highest weight and add them to our solution. Since we only consider vertices from one individual, x can be freely chosen without violating the independent set property of our solution. For example, we can choose to only add the highest weight vertex or select a fraction of those solution vertices.

Vertex Selection by Degree. Similar to the previous vertex selection strategy, we choose the fittest individual from which we add vertices to our solution. Here, the vertices are rated by their degree deg(v) (smaller is better). The intuition here is that adding vertices with a small degree to our solution will not remove too many other vertices from the graph that could be considered later.

Vertex Selection by Weight/Degree. For this selection strategy, we rate the vertices v of the fittest individual by the fraction $\frac{\omega(v)}{\deg(v)}$ (higher is better). This way we combine both of the two previous ratings.

Hybrid Vertex Selection. In the hybrid case, the solution vertices $v \in V$ are rated by the weight difference between a vertex and its neighbors $\omega(v) - \sum_{u \in N(v)} \omega(u)$ (higher is better). This value describes the minimum gain in solution weight we can achieve by adding the vertex v to the solution. Note that Gu et al. [23] proposed this rule for their algorithm. The key difference here is that Gu et al. [23] use this function on all vertices, while our algorithm only considers solution vertices of the fittest solution of the memetic algorithm.

Vertex Selection by Solution Participation. In contrast to the previous strategies, this strategy considers the *whole* population. Moreover, here we consider *each vertex* in the graph. We check the population and assign each vertex a value according to the number of times it is part of a solution. The maximum number a vertex can achieve is therefore bounded by the population size $|\mathcal{P}|$. We can include all vertices that are in each individual, i.e. vertices with a score equal to $|\mathcal{P}|$, as well as exclude all vertices that are in no solution at all, i.e. vertices with a zero score. Note that the total number of vertices selected with this strategy differs from the previous strategies, where we consider all the vertices from the best solution in the population. The vertices selected by solution participation are only a subset of these. This process is similar to the Merge Search introduced by Kenny et al. [28].

5 Experimental Evaluation

Methodology. We implemented our algorithm using C++11. The code is compiled using g++version 12.2 and full optimizations turned on (-O3). We compare our algorithm against the struction algorithm by Gellner et al. [20] and the (more recent) algorithm HTWIS by Gu et al. [23]. We also compare the results with the branch-and-reduce algorithm by Lamm et al. [32], as well as the HILS algorithm by Nogueira et al. [40]. In most cases HILS outperforms DYNWVC1 and DYNWVC2 [32]. Hence, we omit comparisons to DYNWVC1 and DYNWVC2. We run each configuration with four different seeds and a time limit of ten hours and report the mean results. For all algorithms we always report the time when the best solution was found within this time limit. The only algorithms which might not use the whole ten hour time is the exact algorithm, when found and proven an optimal solution and the algorithm HTWIS. Note that this algorithm is not using any randomness, which would enable us to run it multiple times with different seeds for using the whole 10 hours, nor does the algorithm have any other parameters that would increase the solution quality by spending more time. If a solver exceeded a memory threshold of 100 GB during a time limit of ten hours for an instance we note this with a dash. In general, our algorithm does not test the time limit in the EXACTREDUCE routine of M^2WIS or during the calculation of the separator and partition pool. Hence, if the 10h mark is reached during these steps, the time limit can be exceeded. We used one core of a machine equipped with a AMD EPYC 7702P (64 cores) processor and 1 TB RAM running Ubuntu 20.04.1. We used the fast configuration of the KaHIP graph partitioning package [48, 49] for the computation of the graph partitions and vertex separators. We also present extensive experiments regarding the impact of reduction ordering. We conclude that the order in which we introduce Reductions 1 to 11 is already robust and hence use it for the remaining experiments.

Parameter Configuration. Similar to Lamm et al. [31], we set the population size $|\mathcal{P}|$ to 250, the size of the partition and separator pool to 10 and the mutation rate to 10%. Local search is limited to 15000 iterations. Finally, for the multi-way combine operations, we bound the number of blocks used by 64. For the state of the art experiments, we set the parameters as discussed in Section 5.2 and 5.3.

Data Sets. The set of instances for the experiments is built with graphs from different sources. We use all the instances used by Gellner et al. [20] and Gu et al. [23]. Our set consists of large social networks from the Stanford Large Network Dataset Repository (snap) [34]. Additionally, we added real-world graphs from OpenStreetMaps (osm) [1,9,11]. Furthermore, as in Gu et al. [23] we took the same 6 graphs from the SuiteSparse Matrix Collection (ssmc) [2,14] where weights correspond to population data. Each weight was increased by one, to avoid a large number of nodes assigned with zero weight. Additionally, we used instances from dual graphs of well-known triangle meshes (mesh) [46], as well as 3d meshes derived from simulations using the finite element method (fe) [51]. For unweighted graphs, we assigned each vertex a random weight that is uniformly distributed in the interval [1, 200]. We also tested our algorithms on the kernels of osm instances as used by Dong et al. [15]. We do not compare our algorithm on the VR instances contained therein, as data reductions do not work on those instances [15] and the reduced graphs are too large to be sufficiently explored by our memetic algorithm. We list all graphs in Table 15.

5.1 Experiments on Reduction Ordering

Different orderings of applying data reductions yield different sizes of the reduced graph. Additionally, the ordering effects the running time of the EXACTREDUCE routine from Algorithm 1. This effect has been described for example by Figiel et al. [18]. We now perform experiments to evaluate the impact different orderings may have. Here, we run the EXACTREDUCE routine, i.e. we apply the reductions in a given ordering exhaustively, and report the results.

Baseline: Our starting point is an intuitive ordering, which we constructed by simplicity of the reductions, from simplest to most complex. Hereby we orientate us towards the ordering chosen by Akiba and Iwata [4]. This initial ordering is precisely the order in which we introduce the reductions from Reduction 1 to Reduction 12. In the following experiments, we use this ordering as a baseline to compare against.

5.1.1 Orderings Based on Impact of Single Reductions

The space of possible orderings of data reductions is very large. We start our evaluation by examining the impact of disabling single reductions in our baseline, i.e. we run our baseline reductions and then build a set of reductions where exactly one data reduction of the baseline is disabled. The ordering of the remaining data reductions remains the same. The time to apply all reductions exhaustively using our baseline ordering is denoted as t_{all} and the size of the reduced instance by those reductions is denoted as ω_{all} . Then, we create different data reduction orderings from the baseline in which a single data reduction is disabled. For each of the available reductions r, we get a new time $t_{all\setminus r}$ and solution weight $\omega_{all\setminus r}$ which corresponds to running all reductions except rof the baseline (and in its order). Based on these values, we derive three orderings, a time based ordering, a size based ordering and a combination of both. Table 1: Comparing geometric mean of running times and reduced graph sizes for different orderings, relative to the initial ordering, where $|\mathcal{K}|$ is the number of vertices in the reduced graph. Additionally, we count how often an ordering found the smallest reduced graph in comparison to the other orderings (# best).

Ordering	$t/t_{initial}$	$ K / K _{initial}$	# best
initial	1,00	1,000	180/207
time	1,06	1,021	161/207
size	1,46	1,074	164/207
time&size	$1,\!60$	0,998	191/207

Time-based Ordering. For the *time-based ordering* we rearranged the reductions such that the mean $\bar{t}_{all\setminus r}$ is decreasing. The intuition here is if removing a reduction from the baseline yields an ordering that has an excessive running time, then this reduction is important for running time and should be applied before a reduction that has a smaller impact. Reductions with only small effects, where the mean solution quality $\overline{\omega_{all\setminus r}}$ is equal to the mean solution quality for $\overline{\omega_{all}}$, are disabled to further reduce the running time. This results in the ordering (4, 6, 8, 4 (case 3), 2, 7, 1, 5, 3, 10, 12).

Size-based Ordering. For the size-based ordering the reductions are reordered in decreasing order according to the mean value $\overline{\omega}_{all\backslash r}$ over all graphs. The intuition here is that if $\overline{\omega}_{all\backslash r}$ is large, then not using r has a large impact on the size of reduced graph and hence should be applied before a reduction that has a smaller impact. The resulting ordering is (4, 6, 10, 8, 4 (case 3), 12, 5, 3, 1, 2, 7, 9, 11).

Time and Size-based Ordering. Here we use a combination with $x_{all\backslash r} = \overline{t}_{all\backslash r} + 10\overline{\omega}_{all\backslash r}$ decreasingly to order reductions. We use a factor of 10 here, since solution quality is typically more important for applications than running time. This results in the following ordering of reductions (4, 6, 10, 8, 5, 4 (case 3), 12, 3, 1, 2, 7, 9, 11).

Discussion. The results for the previous orderings are presented in Table 1. We note that different orderings do not yield significant differences compared to the initial ordering. We can observe, that the *time* as well as the *size* ordering is not able to improve neither the kernel size, nor the computation time. The ordering *time&size* can compute smaller kernel sizes, at an expense of additional 60% of running time. With this we are able to find 191 out of 207 smallest kernels. However, the improvement in the geometric mean kernel size compared to the initial ordering is less than 0.2%. The experiments show, that the initial ordering already yields a good trade of for running time and kernel size. When examining the positions for the reductions, we note that there are some reductions that remain at approximately the same position meaning they are either very important for solution size and quality (or the opposite). For example Reductions 4 and 6 are applied at the beginning, whereas for example Reduction 9 is applied towards the end or removed. On the other hand there also are reductions that are on completely different positions, e.g. Reduction 10. In general, our experiments show that the reduction order has an effect on the size of the reduced instance and especially on the running time. We conclude that the initial ordering (baseline) is already robust w.r.t. the orderings considered in this section.

5.1.2 Orderings Based on Impact of Groups of Reductions

We divide the reductions into three groups of roughly similar complexity. The first group contains Reductions 1 and 2, the second group consists of reductions for vertices of degree two, which are Reductions 3 and 4. The third group contains all remaining reductions listed in Section 4.1.

Permutation of Ordering of Reductions in First and Second Group. We now examine all permutations in the first and second group. The permutation in the ordering only takes place inside the groups. The groups themselves always stay in a fixed order, i.e. Reductions 1 and 2 will always be the first two reductions applied. Reductions of the third group are applied as in the initial ordering. Overall, our experiments show that the order of the reductions in the first two groups has a negligible effect on running time and quality of a solution. Thus, for the remaining experiments we use the initial ordering.

Permutation of Ordering of Reductions in Third Group. We now examine permutations in the third group of reductions. We apply additional restrictions to reduce the number of permutations. We apply Reduction 11 always last, and Reduction 6 is always followed by Reduction 7. The best performing permutation is (1, 2, 3, 4, 4 (case 3), 5, 8, 10, 9, 6, 7, 11). The geometric mean weight improvement is $w/w_{initial} = 1,0023$ and the geometric mean time compared to the initial ordering is $t/t_{initial} = 2,9$.

Conclusion. Overall, there are some orderings that perform better than the initial ordering by complexity, however, these improvements are only on a few instances (and result in significantly higher running time). In most cases all orderings yielded the similar results. Among those, the initial ordering remains one of the fastest. We conclude that the initial ordering presents a very stable reduction ordering. Hence, we use it for the remaining experiments. For some graphs, it might be worth trying multiple runs of algorithms using one of the other orderings we presented in this section as well.

5.2 Heuristic Data Reduction Rules

For the heuristic data reduction rules we perform multiple experiments on a subset of our dataset containing 15 graphs, marked in Table 15. For this we took three large graphs from each class to evaluate the influence on performance of our parameters. For each instance we use four different seeds and a time limit of one hour.

We start with comparing the different vertex selection strategies presented in Section 4.3. Each strategy is evaluated for different fractions. Table 2 summarizes our results. For each configuration we show the geometric mean quality as well as the geometric mean running time over the subset of 15 graphs. Note that the number of selectable vertices is different between *solution participation* and the other strategies. For *solution participation*, where vertices are only considered if they are in each or none solution within the *whole* population the set of vertices selected is only a subset of the vertices selectable by the other strategies. Adding 100% does result in the same solution for these strategies, since the best solution is always included completely. Furthermore, this explains the larger speedup for these other strategies compared to *solution participation* when the fraction is increased.

For all strategies we can reduce the mean time. The smallest speedup is observed for *solution* participation, as explained in the previous paragraph. Using the other strategies we can achieve a speedup of 10 by increasing the fraction parameter. The quality using *solution participation* is

Table 2: M^2WIS geometric mean solution weight ω and time t (in seconds) required to compute ω for different vertex selection strategies and fractions f. Note that, f = 1 is adding one vertex, while the other rows refer to percentages of the solution. The best result among all configurations are marked **bold**.

	t	ω	t	ω	t	ω	t	ω	t	ω
f	de	egree	hy	vbrid	solution	participation	w	eight	weigh	t/degree
1	781,48	4052070	753,95	4052039	654,53	4054053	785,94	4052026	610, 46	4052120
5%	405,97	4052805	549,90	4053186	798,08	4052516	362,88	4051708	345,88	4052895
25%	208,75	4052056	252,43	4052409	685,24	4053765	135,34	4051263	199,10	4051819
75%	69,95	4050596	100,64	4050646	558,72	4054196	68,99	4050476	69,75	4050397
100%	59,60	4050453	60,17	4050453	515, 11	4054303	59,82	4050453	60,41	4050453

increasing with increasing fraction until f = 100%, while the other strategies perform best with f = 5%. When further increasing the amount of vertices added in these strategies, the solution quality gets worse. The difference between the best and the worst mean result is around 0,1%. The overall best mean solution quality is achieved by using the *solution participation* with adding 100% of the vertices possible. We set this configuration for the next set of our experiments.

5.3 Solving Small Reduced Graphs Exactly

With this experiment we examine whether it is beneficial at some point to solve the reduced instance exactly. Therefore, we introduced two new parameters. First, we add a threshold n_K determining when to start solving the reduced instance exactly. When the number of vertices in the reduced graph K is smaller than n_K , we apply STRUCTION. The second parameter is a time limit t_{exact} which restricts this exact solver. If the instance is not solved within this time limit, we continue with the algorithm M^2 WIS.

As in the previous section, we use the same subset of 15 graphs, marked in Table 15 and for each instance we use four different seeds and an overall time limit of one hour. We present the summary of the results using different n_K from 0 to 15 000 and t_{exact} from 10 seconds to no time limit for M²WIS in Table 3 and for M²WIS + s in Table 4. We report the time when the best solution was found. Often the exact solver finds a good solution very fast, but is then not able to improve the solution. This is why for increasing n_K , we can sometimes see an decrease in the reported time.

In both tables the solution quality does not differ much between the different configurations. These differences are all less than 0,01%. However, we can see in Table 3 that for M²WIS $n_K =$

Table 3: M^2 WIS geometric mean solution weight ω and time t (in seconds) required to compute ω for different thresholds n_K and time limits t_{exact} to solve reduced instances exactly. The best result among all configurations are marked **bold**.

	t	ω	t	ω	t	ω	t	ω
n_K	t_{exact}	= 10 [s]	texact	= 100 [s]	$t_{exact} =$	= 1 000 [s]	no	limit
0	515,11	4054303	515,11	4054303	515,11	4054303	515,11	4054303
100	$519,\!69$	4054164	513,77	4054313	$535,\!64$	4054080	533,28	4054208
500	509,72	4054191	525, 53	4054337	517,47	4054132	532,67	4054066
1000	480,82	4054037	501,77	4054305	522,39	4054213	505,01	4054234
5000	188,45	4054285	196, 32	4054114	205,92	4053974	204,50	4054138
10000	79,43	4054144	85,13	4054367	99,65	4054057	114, 17	4054068
15000	34,22	4054249	37,33	4054180	$45,\!45$	4054229	48,74	4054052

Table 4: $M^2WIS + S$ geometric mean solution weight ω and time t (in seconds) required to compute ω for different thresholds n_K and time limits t_{exact} to solve reduced instances exactly. The best result among all configurations are marked **bold**.

	t	ω	t	ω	t	ω	t	ω
n_K	texac	t = 10 [s]	texact	$= 100 \ [s]$	texact	= 1000 [s]	no	limit
0	15,58	4054480	15,58	4054480	15,58	4054480	15,58	4054480
100	15,37	4054599	15,70	4054336	15,55	4054666	15,90	4054579
500	15,31	4054530	15,90	4054537	15,52	4054546	15,60	4054439
1000	15,52	4054467	15,52	4054520	15,48	4054386	15,34	4054445
5000	13,21	4054461	12,92	4054571	14, 18	4054628	15,69	4054481
10 000	13,23	4054538	14,39	4054409	18,25	4054463	20,90	4054377
15000	13,04	4054569	14,04	4054492	17,85	4054543	20,58	4054520

15 000 the mean time is reduced up to a factor of 15 for all time limits t_{exact} tested. The threshold $n_K = 10\,000$ yields the best result with a time limit of $t_{exact} = 100$. For M²WIS + s in Table 4 we see that the best parameter configuration is $n_K = 100$ and $t_{exact} = 1000$ seconds. With this configuration we also achieved the overall best result when comparing to M²WIS.

For the comparison against the state of the art, we use the following configurations: We set the parameters for M^2 WIS to $n_K = 15\,000$ and $t_{exact} = 100$ seconds. We chose this configuration, since compared to the parameters yielding the best solution quality this configuration is only 0,00002% worse regarding solution quality, however, it is 2,5 times faster. For M^2 WIS + s we chose the configuration yielding the best solution quality, which is $n_K = 100$ and $t_{exact} = 1\,000$ seconds.

5.4 Limiting the Time for Evolve

Additionally to limiting the number of rounds of the evolution cycles, we also restrict the time used within the EVOLVE procedure. This is especially important for very complex instances where EVOLVE can take up all the time. We test different limits for *evotime* starting with 450 seconds up to 4 hours on the same 15 graphs, marked in Table 15. For each instance we use four different seeds and, in contrast to the previous experiments, an overall time limit of 10 hours. We present the geometric mean over the results for both M^2WIS and $M^2WIS + S$ in Table 5. Generally, we see that this parameter has an higher impact on the solution quality compared to the previous parameters tested. For $M^2WIS + S$ we set *evotime* = 900, and for M^2WIS we set *evotime* = 1 800. These are the configurations for which our algorithms yielded the best geometric mean solution quality within the test set.

Table 5: Geometric mean solution weight ω and time t (in seconds) required to compute ω for different time limits *evotime* in seconds) for the EVOLVE procedure, see Algorithm 2. The best result among all configurations are marked **bold**.

	t	ω	t	ω
evotime	M ²	wis + s	1	M ² WIS
450	15,36	4055174	37,55	4055028
900	15,85	4055342	46,90	4055206
1800	17,59	4055150	59,16	4055253
3600	18,11	4054872	66,08	4055179
7200	18,22	4054202	75,86	4054664
14400	18,70	4053447	81,22	4053511

Table 6: Average solution weight ω and time t (in seconds) required to compute ω for a representative sample of our instances comparing the best performing competitors. The best solutions among all algorithms are marked **bold**. Rows are colored **gray** if branch reduce or struction are optimal. See Tables 9 to 13 for more details.

	t	ω	t	ω	t	ω	t	ω	t	ω	t	ω
finEl	branch	ı reduce	Н	TWIS	H	ILS	stı	ruction	M^2	wis + s	N	¹² WIS
body	-	-	0,04	1645650	1 259,67	1678510	-	-	112,85	1680182	901,26	1680179
ocean	4,88	7248581	0,07	6803672	$11142,\!43$	7075329	-	-	5,20	7248581	5,01	7248581
pwt	-	-	0,03	1153600	761,52	1175437	-	-	3 846,33	1178734	$5131,\!59$	1178583
\mathbf{mesh}	branch	reduce	Н	TWIS	H	ILS	stı	ruction	M^2	wis + s	Ν	² WIS
blob	0,14	855547	0,01	854484	260,10	854803	0,02	855547	0,04	855 547	0,03	855547
dragon	2,90	7956530	0,04	7950526	$9026,\!60$	7947535	0,17	7956530	0,31	7956530	0,33	7956530
ecat	9,18	36 650 298	0,50	36606394	36000,05	36562652	1,92	36 650 298	2,83	36650298	3,01	36650298
\mathbf{osm}	branch	reduce	Н	TWIS	H	ILS	sti	ruction	M ²	wis + s	N	¹² WIS
flor3	1724,45	237 333	0,13	234218	216,24	237333	1,33	237 333	11,20	237 333	9,57	237 333
mas3	-	-	1,77	144381	355,93	145866	-	-	77,14	145866	104,87	145866
utah-3	239,50	98847	0,04	97754	72,21	98847	0,08	98847	2,34	98847	1,94	98847
snap	branch	reduce	Н	TWIS	H	ILS	sti	ruction	M ²	wis + s	N	1 ² WIS
as-skit.	-	-	1,04	124141373	36 000,25	123994141	-	-	3422,79	124157729	621,62	124157729
ca- Gr .	< 0,01	287919	< 0,01	287850	144,49	287919	< 0,01	287919	< 0,01	287919	< 0,01	287919
web- BS .	$36000,\!12$	43891206	9,94	43889843	36000, 10	43888267	6,524	43907482	8,75	43907482	9,32	43907482
ssmc	branch	reduce	Н	TWIS	H	ILS	sti	ruction	M ²	wis + s	N	¹² WIS
ga2010	36 000,10	4644324	0,47	4639891	29522,41	4642807	$0,\!62$	4644417	1,64	4644417	1,85	4644417
nh2010	36 000,00	581637	0,03	587059	$2163,\!80$	588797	0,11	588996	0,47	588996	0,47	588996
ri2010	$36000,\!00$	447427	0,02	457108	782,49	458489	0,09	$459\ 275$	0,62	459275	0,49	459275
overall	branch	reduce	Н	TWIS	H	ILS	sti	ruction	M ²	wis + s	N	1 ² WIS
# best		175/207		97/207		154/207		188/207		204/207		198/207
gmean ω	,	-		153434		154355		,		154430		154430
gmean t		-		< 0,01		59,18		-		0,03		0,03

5.5 Comparison against the State of the Art

We now compare our algorithm M^2WIS against a range of algorithms: HTWIS by Gu et al. [23], both struction configurations by Gellner et al. [20] where we always report the better of the two results in the column named struction, the branch-and-reduce solver by Lamm et al. [32], and HILS by Nogueira et al. [40]. Additionally, we test against the vertex cover algorithms NUMWVC by Li et al. [36] and GNN VC by Langedal et al. [33]. Note that we used the provided GNN VC model, which was trained on instances from the SuiteSparse Matrix Collection [2]. We also include the variant of our algorithm, called $M^2WIS + S$, using STRUCTION from Gellner et al. [20] with a time limit of 60 seconds to compute individuals for the initial population. We present a representative sample of our full experiments in Table 6. In the last part we give a summary over all instances. This consists of the number of instance solved best, the geometric mean time and solution quality respectively. Detailed per-instance results are presented in the Tables 9 to 13 in the Appendix.

Overall, we see that $M^2WIS + S$ has the largest number of best solutions for our full set of 207 instances. In particular, it is able to compute the best solution for all but three instances, i.e. *kentucky-3, hawaii-3* (osm) and *soc-p.rel.* (snap). In these three cases $M^2WIS + S$ was outperformed by our other variant M^2WIS . Additionally, $M^2WIS + S$ is able to compute the best solutions for all graphs in the graph classes finiteElement, mesh and ssmc. Finally, for all but 18 of these 207 instances, $M^2WIS + S$ finds the best solution in less than 100 seconds. Our algorithm M^2WIS is still

able to compute the best solution for 198 instances, including *hawaii-3*, *kentucky-3* and *soc-p.rel*.. The geometric mean running time over all instances of both of our variants is the same.

When looking at the running times, we see that HTWIS achieves the smallest geometric mean running time. However, the quality is less or equal to the results of M^2WIS and $M^2WIS + S$ on all of the tested instances, with multiple instances having a significant difference in weight–larger than 10000. If running time is crucial, the competitor HTWIS is noteworthy. However, our algorithm also computes high quality initial solutions which are then enhanced over time. $M^2WIS + S$ for example needs a geometric mean time of 0,0046 seconds to compute initial solutions which are on average 0.3% better than the solutions computed by HTWIS which needs a geometric mean time of 0,039 seconds. The best improvement already after the initial computations is found for greenland-AM3, where we need 3 times as long as HTWIS while getting an improvement of more than 12% over the result of HTWIS. The running time achieved by the struction-based algorithms is also to be noted. These are for example the second fastest on ssmc instances, see Table 10. The struction algorithms solve 47 instances faster than all competitors. However, these only find 188 best solutions overall. The branch reduce solver is able to compute 175 best solutions within the limitations of the experiment. It works especially good on *snap* and *mesh* instances, while it is not able to solve any of the *ssmc* instances optimally. When looking at the performance of the four competing heuristic algorithms, we see that HILS can compute overall the most best solutions, followed by GNN VC. When comparing HILS and GNN VC directly, the comparison is highly dependent on the graph class. On the mesh and snap instances for example, GNN VC beat HILS on every instance regarding solution quality. But since we have 148 osm instances, where GNN VC was not trained on, overall HILS has the larger number of best solved instances. Regarding running time, HILS needs on average almost 6 times as long as GNN VC. The overall fastest competitor HTWIS computed on 97 instances the best solution, while NUMWVC never computed a best solution within our experimental setup.

In terms of memory requirement, when the struction variants are able to solve the instance very fast, memory usage is usually below 1 GB and also a bit smaller than the the memory required by our algorithm. For more difficult instances, as for example *body* (finiteElement) where $M^2WIS + S$ and M^2WIS have a memory usage of less than 1 GB, the struction algorithm requires more than 100 GB. This high memory consumption compared to our solver can be explained since, particularly for challenging instances, the struction algorithm reaches a memory-intensive branching phase.

5.6 Comparison against the State of the Art on Reduced Instances

We now compare the same algorithms on the reduced instances computed with the set of reduction rules presented in Section 4.1. In this experiment, we show the impact of our algorithm apart from the reduction rules, which can be used as a preprocessing step in general. Table 14 shows the detailed per instance results. In Table 7, we show the same sample of the results. Especially for the branch and reduce algorithm by Lamm et al. [32] we can see a lot of improvement over the results in Table 6. With additionally using the reductions, we are able to solve more of the ssmc instances optimally as well reducing the memory consumption. For example massachusetts-3 can now be solved without reaching the memory threshold. The other algorithms also benefit from using the reductions, which can be seen in higher solution qualities and less running time. Still, our two algorithm variants perform best also on the set of reduced instances. There is only one reduced snap instance (*soc-pokec-relationships*), see Table 14, where our algorithms yield a smaller solution. On this instance, they are outperformed by HILS, but computed the second and third best solution.

Table 7: Average solution weight ω and time t (in seconds) required to compute ω for a representative sample of our instances comparing the best performing competitors. The best solutions among all algorithms are marked **bold**. Rows are colored **gray** if branch reduce or struction are optimal. See Table 14 for more details.

	t	ω	t	ω	t	ω	t	ω	t	ω	t	ω
redFinEl	branch	reduce	Нт	WIS	H	ILS	stru	iction	M ² WI	s + s	M ²	WIS
$body \\ pwt$	-	-	0,01 0,07	$222320\\1019262$	74,81 655,57	224 550 1 034 418	-	-	60,30 1 391,40	224 744 1 038 139	100,23 4 767,83	224 744 1 038 046
$\mathbf{redMesh}$	branch	reduce	Нт	WIS	H	ILS	stru	iction	M^2W	s + s	M^2	WIS
ecat	0,02	31254	< 0,01	30 789	8,17 31 254		<0,01 31 254		0,03	31254	0,03	31254
redOsm	branch	reduce	Нт	WIS	H	ILS	stru	iction	M ² W	is + s	M ²	WIS
florida-3 mas3 utah-3	1714,07 36000,45 200,33	25 992 14 610 16 090	$0,11 \\ 1,79 \\ 0,03$	$\begin{array}{r} 23471 \\ 13285 \\ 15186 \end{array}$	$65,56 \\ 247,66 \\ 41,05$	$25992 \\ 14757 \\ 16090$	1,34 - 0,07	25 992 - 16 090	$8,20 \\ 74,22 \\ 1,77$	$\begin{array}{c} 25992 \\ 14757 \\ 16090 \end{array}$	7,80 102,60 1,64	$\begin{array}{c} 25992 \\ 14757 \\ 16090 \end{array}$
redSnap	branch	reduce	HTWIS		HILS		stru	ction	M^2W	s + s	M^2	WIS
as-skitter web -BerkStan	28,05	135172	$\begin{array}{c cccc} 0,04 & 134500 \\ <0,01 & 133309 \end{array}$		45,35 36,21	$\begin{array}{rrr} 45,35 & 135976 \\ 36,21 & 135156 \end{array}$		135172	1 904,18 0,17	$\frac{135998}{135172}$	287,87 0,15	$\frac{135998}{135172}$
$\mathbf{redSsmc}$	branch	reduce	Нт	WIS	H	HILS		struction		s + s	M^2WIS	
ga2010 nh2010 ri2010	$159,38 \\ 2,28 \\ 6477,22$	76 316 26 770 66 963	$0,01 \\ < 0,01 \\ < 0,01$	$\begin{array}{c} 76297 \\ 26477 \\ 65979 \end{array}$	59,10 17,20 32,71	$\begin{array}{r} 76297 \\ 26768 \\ 66960 \end{array}$	$0,07 \\ 0,01 \\ 0,02$	76 316 26 770 66 963	$0,34 \\ 0,07 \\ 0,15$	$76316\26770\66963$	$0,33 \\ 0,05 \\ 0,12$	$\begin{array}{c} 76\ 316\\ 26\ 770\\ 66\ 963 \end{array}$
overall	branch	reduce	Нт	WIS	H	ILS	stru	ction	M ² W	s + s	M^2	WIS
# best gmean ω gmean t		67/93		$14/93 \\ 15964 \\ 0,01$		75/93 16 683 25,01		75/93		88/93 16688 0,60		88/93 16688 0,66

5.6.1 Comparison to METAMIS

Recently, Dong et al. [15] presented a novel heuristic for MWIS called METAMIS. Since their code is not publicly available, we compare the solution quality of our algorithm against the results presented in their work. Detailed per-instance results can be found in Table 8. We use the same pre-reduced osm instances as Dong et al. [15]. In their experiments the time limit for METAMIS is 1500 seconds. However, as our algorithm unfolds its full potential over a long period of time, and our algorithm focused on higher-quality solutions and not fast running times, we stayed with a 10-hour time limit. Moreover, note that the results have been computed on different machines. Summarizing the results, we are able to compute the same or better solutions for all graphs. In total we were able to improve three solutions compared to the METAMIS results with both of our configurations. Especially for large instances, our algorithms outperform the results stated in [15]. However, it is not clear whether METAMIS would compute equally good solutions for the instances where M²WIS performed better with a longer running time.

6 Conclusion and Future Work

In this work, we developed a novel memetic algorithm for the MWIS problem. It repeatedly reduces the graph until a high-quality solution to the MWIS problem is found. After applying exact reductions, we use the best solution computed by the evolutionary algorithm on the reduced graph to identify vertices likely to be in an MWIS. These are removed from the graph which further

Table 8: Comparison to quality of METAMIS from [15] for osm instances. **Bold** numbers indicate the best solution among the algorithms. As done by Dong et al. [15] we reduced the osm instances in advance using KAMIS [32]. For METAMIS the best result out of five runs is reported; we report the best solution out of four runs, each with a 10h time limit.

-	t	ω	t	ω	t	ω
redOsm	met	amis	M ² WI	s + s	M ²	WIS
alabama-3	5,41	45449	23,35	45449	23,30	45449
district-of-columbia-2	$58,\!38$	100302	128, 11	100302	$105,\!50$	100302
district-of-columbia-3	$1347,\!00$	142910	$4133,\!86$	143056	$1674,\!92$	143056
florida-3	3,08	46132	7,09	46132	7,04	46132
green land-3	28,02	11960	2556, 12	11960	$363,\!89$	11960
hawaii-3	$1207,\!00$	58819	$5415,\!14$	58869	$4595,\!13$	58870
idaho-3	21,23	9224	$1560,\!69$	9224	271,12	$\mathbf{9224}$
kansas-3	3,38	5694	$62,\!60$	5694	$102,\!45$	5694
kentucky-3	$1387,\!00$	30789	$9125,\!55$	31107	$6457,\!95$	31107
massachusetts-3	2,22	17224	$63,\!29$	17224	103,09	17224
north- $carolina$ - 3	0,38	13062	61,20	13062	116,08	13062
oregon-3	11,56	$\mathbf{34471}$	150,93	$\mathbf{34471}$	230, 12	$\mathbf{34471}$
rhode- $island$ - 2	$0,\!27$	43722	$0,\!68$	43722	$0,\!64$	43722
rhode- $island$ - 3	449,70	81013	$3175,\!87$	81013	1660, 12	81013
vermont-3	9,33	$\mathbf{28349}$	$1238,\!25$	$\mathbf{28349}$	135, 12	28349
virginia-3	9,08	97873	144,95	97873	146, 12	$\boldsymbol{97873}$
washington-3	$62,\!35$	118196	$1357,\!56$	118196	$257,\!62$	118196
overall	met	amis	M^2WI	s + s	M^2	WIS
# best		14/17		16/17		17/17
gmean ω		36153		36179		36179
gmean t		20,89		357, 31		$145,\!07$

opens the reduction space and creates the possibility to apply this process repeatedly.

Overall, our two algorithm configurations compute the same or better results among the competitors. For most instances these results are probably close to the optimum and even small improvements in solution quality can yield substantial cost reduction for some applications [15].

For future work, we are interested in an island-based approach to obtain a parallelization of our evolutionary approach, as well as parallelization of the reductions. Both the EXACTREDUCE and the HEURISTICREDUCE routine can result in a disconnected reduced graph. We are interested in solving the problem on each of the resulting connected components separately, which also enables new parallelization possibilities. The code of our work is publicly available under https://github.com/KarlsruheMIS.

References

- Openstreetmap. https://www.openstreetmap.org. URL: https://www.openstreetmap. org.
- [2] Suitesparce matrix collection. https://sparse.tamu.edu. URL: https://sparse.tamu.edu.
- [3] F. N. Abu-Khzam, S. Lamm, M. Mnich, A. Noe, C. Schulz, and D. Strash. Recent advances in practical data reduction. In H. Bast, C. Korzen, U. Meyer, and M. Penschuck, editors, *Algorithms for Big Data: DFG Priority Program 1736*, pages 97–133. Springer Nature Switzerland, Cham, 2022. doi:10.1007/978-3-031-21534-6_6.
- [4] T. Akiba and Y. Iwata. Branch-and-reduce exponential/FPT algorithms in practice: A case study of vertex cover. *Theoretical Computer Science*, 609, Part 1:211-225, 2016. doi:10. 1016/j.tcs.2015.09.023.
- [5] G. Alexe, P. L. Hammer, V. V. Lozin, and D. de Werra. Struction revisited. Discrete applied mathematics, 132(1-3):27-46, 2003. doi:10.1016/S0166-218X(03)00388-3.
- [6] D. V. Andrade, M. G. Resende, and R. F. Werneck. Fast local search for the maximum independent set problem. *Journal of Heuristics*, 18(4):525–547, 2012. doi:10.1007/ s10732-012-9196-4.
- [7] L. Babel. A fast algorithm for the maximum weight clique problem. Computing, 52(1):31–38, 1994. doi:10.1007/BF02243394.
- [8] E. Balas and C. S. Yu. Finding a maximum clique in an arbitrary graph. SIAM Journal on Computing, 15(4):1054–1068, 1986. doi:10.1137/0215075.
- [9] L. Barth, B. Niedermann, M. Nöllenburg, and D. Strash. Temporal map labeling: A new unified framework with experiments. In *Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems*, GIS '16, pages 23:1–23:10. ACM, 2016. doi:10.1145/2996913.2996957.
- S. Butenko and S. Trukhanov. Using critical sets to solve the maximum independent set problem. Operations Research Letters, 35(4):519-524, 2007. doi:10.1016/j.orl.2006.07. 004.
- [11] S. Cai, W. Hou, J. Lin, and Y. Li. Improving local search for minimum weight vertex cover by dynamic strategies. In *Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI 2018)*, pages 1412–1418, 2018. doi:10.24963/ijcai.2018/196.
- [12] S. Cai, K. Su, and A. Sattar. Local search with edge weighting and configuration checking heuristics for minimum vertex cover. *Artificial Intelligence*, 175(9-10):1672-1696, 2011. doi: 10.1016/j.artint.2011.03.003.
- [13] U. V. Çatalyürek, K. D. Devine, M. F. Faraj, L. Gottesbüren, T. Heuer, H. Meyerhenke, P. Sanders, S. Schlag, C. Schulz, D. Seemaier, and D. Wagner. More recent advances in (hyper)graph partitioning. *CoRR*, abs/2205.13202, 2022. arXiv:2205.13202, doi:10.48550/ arXiv.2205.13202.

- [14] T. A. Davis and Y. Hu. The university of florida sparse matrix collection. ACM Transactions on Mathematical Software (TOMS), 38(1):1–25, 2011.
- [15] Y. Dong, A. V. Goldberg, A. Noe, N. Parotsidis, M. G. C. Resende, and Q. Spaen. A local search algorithm for large maximum weight independent set problems. In S. Chechik, G. Navarro, E. Rotenberg, and G. Herman, editors, 30th Annual European Symposium on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages 45:1–45:16. Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2022. doi: 10.4230/LIPIcs.ESA.2022.45.
- [16] C. Ebenegger, P. Hammer, and D. De Werra. Pseudo-boolean functions and stability of graphs. In North-Holland mathematics studies, volume 95, pages 83–97. Elsevier, 1984. doi: 10.1016/S0304-0208(08)72955-4.
- [17] Z. Fang, C. Li, and K. Xu. An exact algorithm based on maxsat reasoning for the maximum weight clique problem. J. Artif. Intell. Res., 55:799-833, 2016. URL: https://doi.org/10. 1613/jair.4953, doi:10.1613/JAIR.4953.
- [18] A. Figiel, V. Froese, A. Nichterlein, and R. Niedermeier. There and back again: On applying data reduction rules by undoing others. In S. Chechik, G. Navarro, E. Rotenberg, and G. Herman, editors, 30th Annual European Symposium on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages 53:1-53:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ESA.2022.53.
- [19] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.
- [20] A. Gellner, S. Lamm, C. Schulz, D. Strash, and B. Zaválnij. Boosting data reduction for the maximum weight independent set problem using increasing transformations. In M. Farach-Colton and S. Storandt, editors, *Proceedings of the Symposium on Algorithm Engineering* and Experiments, ALENEX 2021, Virtual Conference, January 10-11, 2021, pages 128–142. SIAM, 2021. doi:10.1137/1.9781611976472.10.
- [21] A. Gemsa, M. Nöllenburg, and I. Rutter. Evaluation of labeling strategies for rotating maps. ACM J. Exp. Algorithmics, 21(1):1.4:1–1.4:21, 2016. doi:10.1145/2851493.
- [22] A. Grosso, M. Locatelli, and W. Pullan. Simple Ingredients Leading to Very Efficient Heuristics for the Maximum Clique Problem. J. Heuristics, 14(6):587–612, 2008.
- [23] J. Gu, W. Zheng, Y. Cai, and P. Peng. Towards computing a near-maximum weighted independent set on massive graphs. In F. Zhu, B. C. Ooi, and C. Miao, editors, KDD '21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore, August 14-18, 2021, pages 467–477. ACM, 2021. doi:10.1145/3447548.3467232.
- [24] S. Held, W. J. Cook, and E. C. Sewell. Maximum-weight stable sets and safe lower bounds for graph coloring. *Math. Program. Comput.*, 4(4):363–381, 2012. URL: https://doi.org/ 10.1007/s12532-012-0042-3, doi:10.1007/S12532-012-0042-3.
- [25] D. Hespe, S. Lamm, and C. Schorr. Targeted branching for the maximum independent set problem. In D. Coudert and E. Natale, editors, 19th International Symposium on Experimental Algorithms, SEA 2021, June 7-9, 2021, Nice, France, volume 190 of LIPIcs, pages 17:1–17:21.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.SEA.2021. 17.

- [26] D. Hespe, S. Lamm, C. Schulz, and D. Strash. Wegotyoucovered: The winning solver from the PACE 2019 challenge, vertex cover track. In H. M. Bücker, X. S. Li, and S. Rajamanickam, editors, *Proceedings of the SIAM Workshop on Combinatorial Scientific Computing, CSC 2020, Seattle, USA, February 11-13, 2020*, pages 1–11. SIAM, 2020. doi:10.1137/1.9781611976229.1.
- [27] H. Jiang, C. Li, and F. Manyà. An exact algorithm for the maximum weight clique problem in large graphs. In S. Singh and S. Markovitch, editors, *Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA*, pages 830–838. AAAI Press, 2017. URL: https://doi.org/10.1609/aaai.v31i1.10648, doi:10.1609/AAAI.V31I1.10648.
- [28] A. Kenny, X. Li, and A. T. Ernst. A merge search algorithm and its application to the constrained pit problem in mining. In *Proceedings of the Genetic and Evolutionary Computation Conference*, GECCO '18, page 316–323, New York, NY, USA, 2018. Association for Computing Machinery. doi:10.1145/3205455.3205538.
- [29] J. Kim, I. Hwang, Y. H. Kim, and B. R. Moon. Genetic Approaches for Graph Partitioning: A Survey. In Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference (GECCO'11), pages 473–480. ACM, 2011.
- [30] S. Lamm, P. Sanders, and C. Schulz. Graph partitioning for independent sets. In E. Bampis, editor, Experimental Algorithms - 14th International Symposium, SEA 2015, Paris, France, June 29 - July 1, 2015, Proceedings, volume 9125 of Lecture Notes in Computer Science, pages 68–81. Springer, 2015. doi:10.1007/978-3-319-20086-6_6.
- [31] S. Lamm, P. Sanders, C. Schulz, D. Strash, and R. F. Werneck. Finding near-optimal independent sets at scale. *Journal of Heuristics*, 23(4):207–229, 2017. doi:10.1007/ s10732-017-9337-x.
- [32] S. Lamm, C. Schulz, D. Strash, R. Williger, and H. Zhang. Exactly solving the maximum weight independent set problem on large real-world graphs. In S. G. Kobourov and H. Meyerhenke, editors, *Proceedings of the Twenty-First Workshop on Algorithm Engineering and Experiments, ALENEX 2019, San Diego, CA, USA, January 7-8, 2019*, pages 144–158. SIAM, 2019. doi:10.1137/1.9781611975499.12.
- [33] K. Langedal, J. Langguth, F. Manne, and D. T. Schroeder. Efficient minimum weight vertex cover heuristics using graph neural networks. In C. Schulz and B. Uçar, editors, 20th International Symposium on Experimental Algorithms, SEA 2022, July 25-27, 2022, Heidelberg, Germany, volume 233 of LIPIcs, pages 12:1–12:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.SEA.2022.12, doi:10.4230/LIPICS.SEA.2022.12.
- [34] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection. URL http://snap.stanford.edu/data, June 2014.
- [35] C.-M. Li, H. Jiang, and F. Manyà. On minimization of the number of branches in branchand-bound algorithms for the maximum clique problem. *Computers & Operations Research*, 84:1–15, 2017. doi:10.1016/j.cor.2017.02.017.

- [36] R. Li, S. Hu, S. Cai, J. Gao, Y. Wang, and M. Yin. Numwvc: A novel local search for minimum weighted vertex cover problem. J. Oper. Res. Soc., 71(9):1498–1509, 2020. doi: 10.1080/01605682.2019.1621218.
- [37] Y. Li, S. Cai, and W. Hou. An efficient local search algorithm for minimum weighted vertex cover on massive graphs. In Asia-Pacific Conference on Simulated Evolution and Learning (SEAL 2017), volume 10593 of LNCS, pages 145–157. 2017. doi:10.1007/ 978-3-319-68759-9_13.
- [38] F. Mascia, E. Cilia, M. Brunato, and A. Passerini. Predicting structural and functional sites in proteins by searching for maximum-weight cliques. In M. Fox and D. Poole, editors, *Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010*, pages 1274–1279. AAAI Press, 2010. URL: https: //doi.org/10.1609/aaai.v24i1.7495, doi:10.1609/AAAI.V24I1.7495.
- [39] B. L. Miller and D. E. Goldberg. Genetic Algorithms, Tournament Selection, and the Effects of Noise. *Evolutionary Computation*, 4(2):113–131, 1996.
- [40] B. Nogueira, R. G. S. Pinheiro, and A. Subramanian. A hybrid iterated local search heuristic for the maximum weight independent set problem. *Optimization Letters*, 12(3):567–583, 2018. doi:10.1007/s11590-017-1128-7.
- [41] P. R. Ostergård. A fast algorithm for the maximum clique problem. Discrete Applied Mathematics, 120(1-3):197-207, 2002. doi:10.1016/S0166-218X(01)00290-6.
- [42] P. Prosser and J. Trimble. Peaty: An exact solver for the vertex cover problem, 2019. doi: 10.5281/zenodo.3082356.
- [43] S. Rebennack, M. Oswald, D. O. Theis, H. Seitz, G. Reinelt, and P. M. Pardalos. A branch and cut solver for the maximum stable set problem. *Journal of combinatorial optimization*, 21(4):434-457, 2011. doi:10.1007/s10878-009-9264-3.
- [44] P. San Segundo, F. Matia, D. Rodriguez-Losada, and M. Hernando. An improved bit parallel exact maximum clique algorithm. *Optimization Letters*, 7(3):467–479, 2013. URL: http: //dx.doi.org/10.1007/s11590-011-0431-y, doi:10.1007/s11590-011-0431-y.
- [45] P. San Segundo, D. Rodríguez-Losada, and J. Agustín. An exact bit-parallel algorithm for the maximum clique problem. *Computers & Operations Research*, 38(2):571-581, 2011. URL: http://www.sciencedirect.com/science/article/pii/S0305054810001504, doi: http://dx.doi.org/10.1016/j.cor.2010.07.019.
- [46] P. V. Sander, D. Nehab, E. Chlamtac, and H. Hoppe. Efficient traversal of mesh edges using adjacency primitives. ACM Transactions on Graphics (TOG), 27(5):1–9, 2008. doi: 10.1145/1409060.1409097.
- [47] P. Sanders and C. Schulz. KaHIP Karlsruhe High Quality Partitioning Homepage. http: //algo2.iti.kit.edu/documents/kahip/index.html.
- [48] P. Sanders and C. Schulz. Engineering Multilevel Graph Partitioning Algorithms. In 19th European Symposium on Algorithms, volume 6942 of LNCS, pages 469–480. Springer, 2011.

- 466 Finding Near-Optimal Weight Independent Sets at Scale Großmann et al.
- [49] P. Sanders and C. Schulz. Advanced multilevel node separator algorithms. In Experimental Algorithms - 15th International Symposium, (SEA), Proceedings, volume 9685 of LNCS, pages 294–309. Springer, 2016. doi:10.1007/978-3-319-38851-9_20.
- [50] C. Schulz and D. Strash. Graph partitioning: Formulations and applications to big data. In *Encyclopedia of Big Data Technologies*, pages 858–864. Springer International Publishing, 2019. doi:10.1007/978-3-319-77525-8_312.
- [51] A. J. Soper, C. Walshaw, and M. Cross. A combined evolutionary search and multilevel optimisation approach to graph-partitioning. J. Glob. Optim., 29(2):225-241, 2004. URL: https://doi.org/10.1023/B:JOG0.0000042115.44455.f3, doi:10.1023/B:JOG0.0000042115.44455.f3.
- [52] S. Szabó and B. Zavalnij. Combining algorithms for vertex cover and clique search. In Proceedings of the 22nd International Multiconference INFORMATION SOCIETY – IS 2019, Volume I: Middle-European Conference on Applied Theoretical Computer Science, pages 71– 74, 2019.
- [53] E. Tomita, Y. Sutani, T. Higashi, S. Takahashi, and M. Wakatsuki. A simple and faster branchand-bound algorithm for finding a maximum clique. In M. S. Rahman and S. Fujita, editors, WALCOM: Algorithms and Computation, volume 5942 of LNCS, pages 191–203. Springer Berlin Heidelberg, 2010. URL: http://dx.doi.org/10.1007/978-3-642-11440-3_18, doi: 10.1007/978-3-642-11440-3_18.
- [54] L. Wang, C.-M. Li, J. Zhou, B. Jin, and M. Yin. An exact algorithm for minimum weight vertex cover problem in large graphs. *Computing Research Repository (CoRR)*, abs/1903.05948, 2019. doi:10.48550/ARXIV.1903.05948.
- [55] J. S. Warren and I. V. Hicks. Combinatorial branch-and-bound for the maximum weight independent set problem. 2006. URL: https://www.caam.rice.edu/~ivhicks/jeff.rev. pdf.
- [56] D. Warrier. A branch, price, and cut approach to solving the maximum weighted independent set problem. PhD thesis, Texas A&M University, 2007. doi:1969.1/5814.
- [57] D. Warrier, W. E. Wilhelm, J. S. Warren, and I. V. Hicks. A branch-and-price approach for the maximum weight independent set problem. *Networks: An International Journal*, 46(4):198–209, 2005. doi:10.1002/net.20088.
- [58] Q. Wu and J.-K. Hao. Solving the winner determination problem via a weighted maximum clique heuristic. *Expert Systems with Applications*, 42(1):355–365, 2015. doi:10.1016/j.eswa.2014.07.027.
- [59] M. Xiao, S. Huang, and X. Chen. Maximum weighted independent set: Effective reductions and fast algorithms on sparse graphs. *Algorithmica*, 86(5):1293–1334, 2024. URL: https: //doi.org/10.1007/s00453-023-01197-x, doi:10.1007/S00453-023-01197-X.
- [60] M. Xiao, S. Huang, Y. Zhou, and B. Ding. Efficient reductions and a fast algorithm of maximum weighted independent set. In J. Leskovec, M. Grobelnik, M. Najork, J. Tang, and L. Zia, editors, WWW '21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021, pages 3930–3940. ACM / IW3C2, 2021. doi:10.1145/3442381.3450130.

- [61] M. Xiao, S. Huang, Y. Zhou, and B. Ding. Efficient reductions and a fast algorithm of maximum weighted independent set. In J. Leskovec, M. Grobelnik, M. Najork, J. Tang, and L. Zia, editors, WWW '21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021, pages 3930–3940. ACM / IW3C2, 2021. doi:10.1145/3442381.3450130.
- [62] H. Xu, T. S. Kumar, and S. Koenig. A new solver for the minimum weighted vertex cover problem. In International Conference on AI and OR Techniques in Constriant Programming for Combinatorial Optimization Problems, pages 392–405. Springer, 2016. doi:10.1007/ 978-3-319-33954-2_28.
- [63] W. Zheng, J. Gu, P. Peng, and J. X. Yu. Efficient weighted independent set computation over large graphs. In *IEEE Intl. Conf. on Data Engineering (ICDE)*, pages 1970–1973, 2020. doi:10.1109/ICDE48307.2020.00216.

7 Detailed Per-Instance Results for State of the Art Comparison

Table 9: Average solution weight ω and time t in seconds required to compute ω for our set of finite element instances. Bold numbers indicate the best solution among all algorithms. Rows have a gray background color, if branch reduce or struction computed an exact solution. We also report the number of best solutions and the geometric mean time needed to find the best solution over all instances.

	t	ω	t	ω	t	ω	t	ω	t	ω	t	ω	t	ω	t	ω
finEl	branc	h reduce	GNN	N VC	HI	LS	Н	ItWIS	NuM	WVC	stru	ction	M^2W	ıs + s	M^2	WIS
body	-	-	3112,38	1678235	1259,67	1678510	0,04	1645650	289,44	1654412	-	-	112,85	1680182	901,26	1680179
ocean	4,88 7	248581	1018,08	7210228	11142,43	7075329	0,07	6803672	840,54	7071829	-	-	5,20	7248581	5,01	7248581
pwt	-	-	2754,08	1174472	761,52	1175437	0,03	1153600	396,97	1149919	-	-	3846,33	1178734	5131,59	1178583
rotor	-	-	5559,60	2643669	6503,27	2650018	0,24	2591456	1071, 61	2569961	-	-	29249,04	2662247	24255,33	2661514
sphere	-	-	51,71	615017	257,42	615958	0,02	608401	171,28	613128	0,57 6	517816	1,96	617816	2,25	617816
overall	branc	h reduce	GNN	I VC	HI	LS	H	ItWIS	NuM	WVC	stru	ction	M ² W	ıs + s	M ²	WIS
# best		1/5		0/5		0/5		0/5		0/5		1/5		5/5		2/5
$g^{}$ mean ω		<i>′</i> –		1873906		1868676		1827149		1841892		<i>′</i> -		1882030		1881878
\overline{g} mean t		-		$1201,\!98$		1780,48		0,05		446,40		-		166, 87		263,30

Table 10: Average solution weight ω and time t in seconds required to compute ω for our set of ssmc instances. Bold numbers indicate the best solution among all algorithms. Rows have a gray background color, if branch reduce or struction computed an exact solution. We also report the number of best solutions and the geometric mean time needed to find the best solution over all instances.

	t	ω	t	ω	t	ω	t	ω	t	ω	t	ω	t	ω	t	ω
\mathbf{ssmc}	branch	reduce	GNN VC		HILS		I	ItWIS	NuMWVC		struction		$M^2WIS + S$		M ² WIS	
ca2010	-	-	4702,04	16817567	36 000,07	16828547	0,47	16792827	21 3 36,94	16053480	6,18	16869550	28,32	16 869 550	10985,99	16869127
fl2010	36 000,10	8638961	883,37	8721942	36 000,05	8732113	0,44	8719272	14712,40	8248077	2,02	8743506	13,57	8743506	7492,86	8743474
ga2010	36 000,10	4644324	$18636,\!56$	4637542	29522,41	4642807	0,16	4639891	7492,19	4437269	0,62	4644417	1,64	4644417	1,85	4644417
il2010	36 000,10	5852296	4106, 19	5981072	36000,00	5983871	0,31	5963974	$13341,\!29$	5776584	2,33	5998539	22,98	5998539	13136,79	5998288
nh2010	36000,00	581637	$2328,\!87$	586642	$2163,\!80$	588797	0,03	587059	758,10	568188	0,11	588996	0,47	588996	0,47	588996
ri2010	36000,00	447427	717,01	457288	782,49	458489	0,02	457108	371,27	454423	0,09	459275	0,62	459275	0,49	459275
overall	branch	reduce	GNN	I VC	HI	LS	H	ItWIS	NuM	WVC	st	ruction	M ²	wis + s	M ²	WIS
# best		0/6		0/6		0/6		0/6		0/6		6/6		6/6		3/6
gmean ω		- 1		3208739		3213935		3206698		3093453		3218537		3218537		3218499
gmean t		-		$2845,\!45$		$11515,\!77$		0,13		$4546,\!46$		0,75		4,02		88,11

Table 11: Average solution weight ω and time t in seconds required to compute ω for our set of mesh instances. Bold numbers indicate the best solution among all algorithms. Rows have a gray background color, if branch reduce or struction computed an exact solution. We also report the number of best solutions and the geometric mean time needed to find the best solution over all instances.

	t	ω	t	ω	t	ω	t	ω	t	ω	t	ω	t	ω	t	ω
\mathbf{mesh}	bran	ich reduce	GNN	I VC	HI	LS	H	tWIS	NuM	WVC	s	truction	М	2 WIS + S	M	² WIS
blob	0,14	855547	20854,69	854991	260,10	854803	0,01	854484	190,14	853616	0,02	855547	0,04	855547	0,03	855547
buddha	51,87	57 555 880	1439,13	57497819	36 000,07	57258790	0,47	57508556	29022,48	55973791	1,57	57 555 880	4,83	57 555 880	2417,30	57555864
bunny	$0,\!48$	3686960	1582,74	3683941	$1927,\!84$	3680587	0,03	3682356	817,06	3659471	0,09	3686960	$0,\!17$	3686960	0,15	3686960
cow	0,04	269543	6571,10	269402	52,05	269336	< 0,01	269304	15,62	269220	0,01	269543	0,01	269543	0,01	269543
dragon	2,90	7956530	555,32	7949744	$9026,\!60$	7947535	0,04	7950526	1922,25	7846579	0,17	7956530	0,31	7956530	0,33	7956530
dragonsub	4,76	32213898	619,21	32182406	36000,07	32148544	0,24	32163872	16990,27	31294908	0,93	32213898	2,10	32213898	1,93	32213898
ecat	9,18	36 650 298	431,79	36616204	36000,05	36562652	0,50	36606394	16759,95	35603546	1,92	36 650 298	2,83	36 650 298	3,01	36 650 298
face	0,16	1219418	480,83	1218552	403,52	1218433	0,01	1218515	199,42	1213445	0,02	1219418	0,04	1219418	0,03	1219418
fandisk	0,04	463288	146,07	462910	114,01	462794	< 0,01	462765	67,53	462463	0,01	463288	0,02	463288	0,01	463288
feline	0,34	2207219	450,92	2205443	794,54	2204454	0,02	2204947	474,86	2189581	0,05	2207219	0,10	2207219	0,09	2207219
gameguy	0,10	2325878	27,44	2324222	789,78	2322814	0,02	2324088	431,10	2306182	0,04	2325878	0,06	2325878	0,05	2325878
gargoyle	0,22	1059559	$1748,\!69$	1058724	346, 19	1058536	0,01	1058656	283,58	1055563	0,02	1059559	0,04	1059559	0,03	1059559
turtle	3,98	14263005	$3342,\!67$	14249692	20430,40	14245854	0,09	14247883	5991,49	13962425	0,35	14263005	0,74	14263005	0,73 :	14263005
venus	0,02	305749	298,23	305571	59,48	305556	< 0,01	305182	26,18	305457	0,01	305749	0,01	305749	0,01	305749
overall	bran	ich reduce	GNN	I VC	HI	LS	H	tWIS	NuM	WVC	s	truction	М	2 WIS + S	M	² WIS
# best		14/14		0/14		0/14		0/14		0/14		14/14		14/14		13/14
gmean ω		3054726		3052303		3050072		3051422		3020035		3054726		3054726		3054726
gmean t		0,50		827,18		1 418,48		0,03		682,18		0,07		0,14		0,19

Table 12: Average solution weight ω and time t in seconds required to compute ω for our set of osm instances. Displayed as single row are only instances with $|V| \ge 1\,000$, the summary includes all instances. **Bold** numbers indicate the best solution among all algorithms. Rows have a gray background color, if branch reduce or struction computed an exact solution. We also report the number of best solutions and the geometric mean time needed to find the best solution over all instances.

	t	ω	t	ω	t	ω	t	ω	t	ω	t	ω	t	ω	t	ω
osm	branch	reduce	GNN	VC	HII	lS	HtW	' IS	NuM	WVC	stru	ction	M ² WIS	+ s	M ²	WIS
alabama-2	0.35	174309	867,30	174124	41,71	174309	0,01	172797	0,89	172871	0,01	174309	0.03	174309	0,03	174309
alabama-3	36 000,00	185707	32 238,96	181548	321,23	185744	0,40	182667	39.57	180461	1,53	185744	32,67	185744	28,53	185744
district-of-columbia-1	í –	-	11408,24	196341	41,16	196475	0,01	193364	19,42	196044	0,47	196475	1,50	196475	1,26	196475
district-of-columbia-2	-	-	11021,45	204843	985,93	209131	2,25	198327	178,71	202 111	-	-	184,04	209 132	107,25	209132
district-of-columbia-3	36 000,20	207787	6233,48	212734	9278,60	227634	351,94 2	210461	681,32	212583	-	-	4283,282	227682	3 2 3 1, 3 2	227681
florida-2	0,01	230595	294,75	230595	42,92	230595	< 0,01	230 008	4,65	229496	< 0,01	230595	0,01	230595	0,01	230595
florida-3	1724,45	237333	3533,44	232105	216,24	237333	0,13	234218	25,20	234940	1,33	237 333	11,20	237 333	9,57	237 333
georgia-3	1772,88	222652	269,99	219891	101,22	222652	0,09 1	218573	15,81	218610	0,77	222652	7,55	222652	6,13	222652
greenland-3	36 000,00	13894	261,66	12561	1226,78	14011	32,75	12505	122,36	12494	-	-	521,57	14011	185,01	14011
hawaii-2	8,20	125284	1 311,40	124466	203,81	125284	0,14	123173	42,44	123757	0,07	125284	0,46	125284	0,36	125284
hawaii-3	36003,35	132806	3568,95	132562	17330,34	141045	1 577,65	134703	-	-	-	-	$6516,\!88$	141056	$5124,\!22$	141058
idaho-3	36000,00	77122	180,84	75831	1549,78	77145	52,16	75527	42,76	75901	-	-	2142,01	77145	410,29	77145
kansas-3	36001,02	87963	23741,49	87688	759,69	87976	2,43	87424	137,89	87497	16,79	87976	65,05	87976	104,24	87 976
kentucky-2	63,34	97397	3595,24	96550	319,15	97397	0,74	97362	141,39	96838	0,20	97397	0,83	97397	0,68	97397
kentucky-3	36001,57	100311	2502,83	98310	$28313,\!04$	100508	$3508,\!49$	97906	-	-	-	-	$13121,\!68$	100508	8865,42	100510
louisiana-3	22,52	60024	7238,25	59473	62,47	60024	0,02	59040	7,55	58854	0,05	60024	0,60	60024	0,47	60024
maryland-3	9,48	45496	628, 67	44988	95,12	45496	0,04	44539	12,53	45081	0,10	45496	0,73	45496	$0,\!68$	45496
massachusetts-2	0,37	140095	1186,63	140051	51,59	140095	0,02	139799	6,05	139697	0,04	140095	0,09	140095	0,09	140095
massachusetts-3	-	-	4622,32	144140	355,93	145866	1,77	144381	79,71	143984	-	-	77,14	145866	104,87	145866
mexico-3	921,72	97663	2969,21	95902	90,92	97663	0,05	96700	1,38	95999	0,86	97663	14,73	97663	14,07	97663
new-hampshire-3	14,46	116060	40,64	115734	51,78	116060	0,01	115161	2,76	112771	0,04	116060	1,69	116060	1,40	116060
north- $carolina$ - 3	36000,05	49563	$1658,\!84$	48309	205,78	49720	0,42	49253	51,48	48306	37,25	49720	142,20	49720	117,07	49720
oregon-2	0,03	165047	91,84	164144	74,19	165047	0,03	164786	7,18	164006	0,01	165047	0,02	165047	0,01	165047
oregon-3	$36001,\!90$	175078	$1735,\!05$	170748	1120, 13	175078	27,87	172813	435,08	171321	-	-	292,46	175078	266,55	175078
pennsylvania-3	107,51	143870	111,17	143406	60,62	143870	0,02	142472	2,39	140352	0,06	143870	2,30	143870	2,01	143870
rhode-island-2	-	-	18480,55	182234	166, 18	184596	0,36	179366	48,37	183127	0,38	184596	1,39	184596	1,46	184596
rhode-island-3	36000,20	196173	21044,39	192449	3899,85	201751	280,42	190341	162,00	189587	-	-	3319,95	201769	1964,28	201768
utah-3	239,50	98847	14 144,18	97033	72,21	98847	0,04	97754	9,95	96251	0,08	98847	2,34	98847	1,94	98847
vermont-3	36000,45	63305	25708,04	59773	842,04	63304	3,81	60518	167, 97	60454	-	-	1855,99	63312	142,43	63312
virginia-2	0,60	295867	1341,69	294149	87,88	295867	0,02 3	290535	3,56	295171	0,02	295867	0,12	295867	0,12	295867
virginia-3	36000,80	307981	35,87	296735	482,02	308 305	1,14	300 335	82,45	298038	-	-	1021,68	308305	172,77	308305
washington-2	5,67	305619	2794,95	301157	199,38	305619	0,063	300 195	18,68	303632	0,05	305619	0,23	305619	0,19	305619
washington-3	-	-	9,58	295610	1946,06	314 288	11,74 :	305 019	168,96	297908	-	-	2731,64	314288	327,63	314288
west- $virginia$ - 3	36 000,27	47927	$9801,\!99$	46791	147,10	47927	0,25	46 344	0,37	45499	2,35	47927	64,82	47927	104,41	47927
overall	branch	reduce	GNN	VC	HII	lS	HtW	IS	NuM	WVC	stru	ction	M ² WIS	+ s	M^2	WIS
# best		132/148		101/148		142/148		86/148		0/148		136/148		146/148		146/148
gmean ω		· -		39597		39823		39520		· -		, -		39823		39823
\bar{g} mean t		-		4,92		12,49		< 0,01		-		-		0,01		0,01

Table 13: Average solution weight ω and time t in seconds required to compute ω for our set of snap instances. Bold numbers indicate the best solution among all algorithms. Rows have a gray background color, if branch reduce or struction computed an exact solution. We also report the number of best solutions and the geometric mean time needed to find the best solution over all instances. t ω t ω t ω t+ (v) t +

	L	ω	ι	ω	ι	ω	ι	ω	ι	ω	ι	ω	ι	ω	ι	ω
snap	branc	h reduce	GN	N VC	H	ILS	I	ItWIS	NuM	WVC	st	ruction	M ² ,	wis + s	М	² _{WIS}
as-skitter	-	-	1166,25	1241557373	86 000,25	123994141	1,04	124 141 373	34 265,33	123594776	-	- :	3 422,79	124157729	621,621	124157729
ca-AstroPh	0,02	797510	1,02	797510	924,29	797508	0,02	797363	315,84	796125	0,02	797510	0,04	797510	0,04	797510
ca- $CondMat$	0,02	1147950	0,34	1147950	1015,80	1147947	0,01	1147950	430,29	1146066	0,01	1147950	0,02	1147950	0,02	1147950
ca- $GrQc$	< 0,01	287919	0,21	287919	144,49	287919	< 0,01	287850	59,07	287638	< 0,01	287919	< 0,01	287919	< 0,01	287919
ca-HepPh	0,01	581039	18,03	581039	589,17	581039	0.01	580864	212,89	580439	0,01	581039	0,02	581039	0,02	581039
ca-HepTh	0,01	562004	0,17	562004	279,70	562004	< 0,01	561736	150, 18	561331	< 0,01	562004	0,01	562004	0,01	562004
com-amazon	0,48	19271031	2,64	19 271 031 3	3178,00	19270284	0,14	19 270 078	10 316,17	19083928	0,36	19271031	0,56	19271031	0,53	19271031
com-youtube	0,76	90295294	4,96	90 295 2943	86 000,10	90289947	0,34	90 295 285	11 288,89	89986918	0,69	90295294	0,90	90295294	0,97	90295294
email-Enron	0,02	2461254	0,40	2461254	1 4 3 2, 1 1	2461242	0,01	2461254	587,52	2459380	0,02	2461254	0,03	2461254	0,03	2461254
email-EuAll	0,07	25286322	0,73	25 286 3221	7 439,932	25 286 322	0,03	25265214	2 0 8 9, 9 3	25285560	0,04	25286322	0,11	25286322	0,11	25 286 322
loc-qowalla_e.	-	-	985,50	122769221	7 018,50	12275375	0,08	12276781	3 886,18	12203398	1,32	12276929	3,89	12276929	4,71	12276929
p2p-G.04	0,01	679111	0,18	679111	250,11	679110	< 0,01	679085	123,87	678920	0,01	679111	0,01	679111	0,01	679111
p2p-G.05	0,01	554943	0,18	554943	192,45	554943	< 0.01	554943	76,17	554757	< 0,01	554943	0,01	554943	0,01	554943
$p_{2p}-G.06$	0,01	548612	0,20	548612	183,91	548612	< 0.01	548612	70,78	548449	< 0.01	548612	0,01	548612	0,01	548612
p2p-G.08	< 0,01	434577	0,13	434577	109,72	434577	< 0.01	434577	14,93	434513	< 0.01	434577	< 0,01	434577	< 0.01	434577
p2p-G.09	< 0.01	568439	0.16	568439	152.25	568439	< 0.01	568439	20,44	568351	< 0.01	568439	0.01	568439	0.01	568439
p2p-G.24	0.01	1984567	0.15	1984567	569.39	1984567	0.01	1984567	339.70	1984248	0.01	1984567	0.02	1984567	0.01	1984567
p2p-G.25	0.01	1 701 967	0.13	1 701 967	467.31	1 701 967	0.01	1 701 967	129.05	1 701 819	0.01	1701967	0.01	1701967	0.01	1 701 967
p2p-G.30	0,02	2787907	0,18	2787907	810,63	2787907	0,01	2787902	285,78	2787660	0,01	2787907	0,02	2787907	0,02	2 787 907
p2p-G.31	0,03	4776986	0,28	4776986	1 795,27	4776969	0,01	4776925	789,92	4776386	0,02	4776986	0,04	4776986	0,04	4776986
roadNet-CA	279,50	111 360 828	3 911,60	111 337 9793	86 000,15	109 991 788	0,61	111 325 5243	35 932,851	108 909 808	1,541	111 360 828	5,023	111 360 828	4,671	111 360 828
roadNet-PA	16,44	61731589	7 394,67	61 719 9003	86 000,07	61549659	0,33	61 710 6063	23 724,64	60461602	0,85	61731589	2,19	61731589	2,38	61731589
roadNet-TX	15,76	78599946	3846.17	785866783	6 000.10	78164327	0.42	785754603	34 979.99	76992375	1.05	78599946	2.81	78599946	2,90	78599946
soc-Epinions1	0.05	5690970	0.59	5690970	2813.40	5690859	0.02	5690970	1043.52	5686352	0.05	5690970	0.07	5690970	0.06	5690970
soc-LiveJ.	36 002.35	284 008 877	16424.34	284 026 908 3	6 000.67	281 688 778	12.20	283922214		_		_	779.88	284 036 239	738.222	284 036 239
soc-pokec-rel.	36 059,01	82778214	23 661,02	839241503	86 000,42	83696885	55,41	83 920 370	31 310,08	83 187 970	634, 61	796209799	9 691.59	83 939 404 9	038,95	83944926
soc-S.0811	0.06	5660899	0.63	5660899	4106.47	5660734	0.02	5660899	1 0 9 1.76	5655800	0.06	5660899	0.08	5660899	0.08	5660899
soc-S.0902	0.07	5971849	0.62	5971849	4260.67	5971574	0.02	5971821	1 082.17	5965971	0.07	5971849	0.08	5971849	0.13	5971849
web-BerkStan	36 000,12	43891206	472,62	43 904 9993	86 000,10	43888267	9,94	43 889 843	12 844,27	43473969	6,52	43907482	8,75	43907482	9,32	43907482
web-Google	2,33	56326504	45,40	563264763	86 000,15	56319614	0,65	56323382	9 398,74	56023547	1,52	56326504	2,40	56326504	2,47	56326504
web-NotreD.	496,64	26016941	1 596.06	26 016 6422	7 389.91	26 014 810	0.12	26013830	7659.14	25928547	1.36	26016941	0.99	26 016 941	1.09	26 016 941
web-Stanford		-	1746,45	177926643	35 324,07	17789989	0,50	17789430	8 338,97	17605207	1,36	17792930	1,84	17 792 930	1,93	17 792 930
wiki-Talk	1.08	235 837 346	16.942	235 837 3463	6 000.12	235 837 287	0.41:	235 837 346	34505.672	235822182	0.95:	235 837 346	1.39:	235837346	1.532	235837346
wiki-Vote	0.01	500 079	5.21	500 079	201.84	500 079	0.01	499740	24.84	499 993	0.01	500 079	0.02	500 079	0.02	500 079
	- / -		- /		- ,-		- / -		7-		-) -		- / -		- / -	
overall	branc	h reduce	GN	N VC	H	ILS	I	ItWIS	NuM	WVC	st	ruction	M ² ,	wis + s	М	² WIS
# best		28/34		23/34		12/34		11/34		0/34		31/34		33/34		34/34
# fastest		8/34		0/34		0/34		33/34		0/34		14/34		3/34		4/34
gmean ω		-,01		6678015		6 671 408		6 677 139						6 678 187		6 6 78 200
gmean t		-		8,06		3 338,88		0,06		-		-		0,25		0,24

Table 14: Average solution weight ω and time t in seconds required to compute ω for all, not completely reduced instances with the
reductions stated in Section 4.1. Only instances with $ V \ge 1000$ are detailed, the summary includes all. Bold numbers indicate
the best solution among all algorithms. Rows have a gray background color, if an algorithm computed an exact solution. We also
report the number of best solutions and the geometric mean time needed to find the best solution over all instances.

-	t	ω	t	ω	\check{t}	ω	t	ω	t	ω	t	ω	t	ω	t	ω
redFinEl	branch	reduce	GNN	VC	HII	LS	HtV	WIS	NuM	WVC	stru	ction	M ² WI	s + s	M ²	WIS
body pwt rotor		- 2 483 283	717,66 13585,64 8029,89	$\begin{array}{r} 223946 \\ 1034567 \\ 2632254 \\ 4\overline{}2004 \end{array}$	74,81 655,57 3 078,32	$\begin{array}{r} 224550 \\ 1034418 \\ 2639734 \\ 454200 \end{array}$	0,01 0,07 0,67	$\begin{array}{r} 222320 \\ 1019262 \\ 2580529 \\ 105000 \\ \end{array}$	$\begin{array}{r} 45,36\\174,21\\1034,92\end{array}$	$\begin{array}{r} 224168 \\ 1014280 \\ 2553422 \\ 10000000000000000000000000000000000$	-		$\begin{array}{r} 60,30 \\ 1391,40 \\ 29550,69 \end{array}$	224 744 1 038 139 2 651 439	$\begin{array}{r} 100,23\\ 4767,83\\ 23323,54 \end{array}$	224 744 1 038 046 2 651 735
sphere	36 000,00	461 060	16,72	472884	179,43	474 290	0,01	467 030	161,77	472 508	0,24	475 344	1,20	475 344	1,28	475 344
$\mathbf{redMesh}$	branch	reduce	GNN	VC	HII	LS	HtWIS		NuMWVC		struction		M ² WIS + S		M ² WIS	
$buddha\ ecat$	$0,01 \\ 0,02$	$23026\ 31254$	$0,36 \\ 0,24$	$23026\ 31254$	$^{6,85}_{8,17}$	$23026\ 31254$	${}^{< 0,01}_{< 0,01}$	$22726 \\ 30789$	$0,86 \\ 1,12$	22937 31121	$^{<0,01}_{<0,01}$	$23026\ 31254$	$\substack{0,03\\0,03}$	$\begin{array}{c} 23026 \\ 31254 \end{array}$	$\substack{0,02\\0,03}$	$23026\ 31254$
redOsm	branch	reduce	GNN	VC	HII	LS	HtV	WIS	NuMWVC		struction		$M^2WIS + S$		M ²	WIS
alabama-3	36 000,00	35944	1780,24	34715	107,88	35968	0,23	34667	4,58	33440	1,12	35 968	$_{30,52}$	35 968	29,27	35 968
california-3	821,86	13 689	15 006,79	13253	37,87	13689	0,03	13 058	3,31	12 534	0,22	13 689	20,57	13689	19,89	13 689
canada 3	0.14	0 5 80	0.009,32	0580	19,42	0 5 80	<0.01	0.274	0,50	0.221	0,13	0 5 80	2,45	0 5 8 0	2,30	0 5 80
$d \circ c = 1$	0,14	3 3 8 0	31 71	55 063	12.13	55 063	0.01	52 450	1 41	54 803	0.43	55 063	1.63	55 063	1.53	55 063
d.o.c2	-	-	9513.25	93 988	403.56	96 318	2.02	88 932	41.91	94 839			182.18	96 322	106.23	96 322
d.o.c3	36 000.10	119502	11779.45	124774	4626.91	138744	283.13	124431	254.73	127833	-	-	3810.44	138795	2788.96	138 797
florida-3	1714,07	25992	4 4 8 2, 8 6	25700	65,56	25992	0,11	23471	5,62	25375	1,34	25992	8,20	25992	7,80	25992
georgia-3	763,74	33714	14126,14	31934	54,48	33714	0,08	30570	5,13	32412	0,76	33714	6,78	33714	6,63	33714
greenland-2	16,22	3537	310,67	3537	19,18	3537	0,01	3142	0,30	3390	0,05	3537	1,13	3537	0,98	3537
greenland-3	36000,00	11419	495,96	10304	836,96	11581	43,14	9905	33,53	10508	-	-	478,88	11581	161,78	11581
hawaii-2	1,42	11617	203,72	11595	16,62	11617	0,01	11410	0,81	11452	0,01	11617	0,22	11617	0,22	11617
hawaii-3	$36001,\!92$	50612	460,52	52089	13683,70	58812	1747,34	52595	$424,\!67$	52169	-	-	$4965,\!81$	58858	3845,37	58861
idaho-3	36 000,80	9 2 2 1	2850,49	7 891	1 1 28,20	9 2 2 4	55,91	8 1 3 9	19,64	8 488	-	-	2103,78	9 2 2 4	375,21	9224
kansas-3	36 001,72	5 681	8074,38	5 512	410,05	5 694	1,80	5173	19,38	5 4 5 9	12,08	5 694	62,66	5 694	102,59	5 6 9 4
kentucky-2	17,08	7 019	8979,49	6 981	30,49	7 019	0,02	6979	0,26	6816	0,04	7 0 1 9	0,52	7 019	0,43	7 019
kentucky-3	36 001,50	26 198	6 103,84	24 580	23 202,28	26 397	4 335,68	24 614	0.74	0151	- 0.00	-	9536,24	26 397	5679,08	26 398
iouisiana-3	2,52	9320	5,30	9 0 9 4	10,00	9320	<0,01	8977	0,74	9151	0,02	9320	0,25	9320	0,26	9320
maryland-3	1,83	7 105	400,80	7070	13,94	7 105	< 0,01	0 001	0,45	0 103	0,09	7 105	0,42	7 105	0,40	7 105
mas2	26,000,45	14610	14,41 12.076.79	12672	9,80	14757	< 0,01	12.90	20.15	14.095	0,03	1938	74.00	1 9 3 8	0,08	14757
marico 8	551 22	16137	12688 47	14 693	48 35	16137	1,79	15 200	29,10	14 080	0.28	16137	8 00	16197	8 12	16197
meanco-0	001,00	10131	12000,47	14020	40,00	10137	0,04	10 0 90	2,19	14140	0,20	10101	0,90	10131	0,12	10131

	t	ω	t	ω	t	ω	t	ω	t	ω	t	ω	t	ω	t	ω
redOsm	branch	reduce	GNN	I VC	H	ILS	Ht	WIS	NuM	WVC	stru	iction	M ² WI	s + s	M^2	WIS
minnesota-3	8,04	4343	20,69	4343	12,04	4343	< 0,01	4104	0,14	4281	0,02	4343	0,50	4 3 4 3	0,50	4343
montana-3	874,67	5116	10 322,49	4991	66,85	5116	0,10	5094	7,32	5015	0,19	5116	3,85	5116	3,72	5116
new-hamp3	6,69	11473	13,97	11473	14,40	11473	< 0,01	11104	0,63	10597	0,04	11473	1,03	11473	1,12	11473
new- $york$ -2	0,22	4540	3,77	4540	8,43	4540	< 0,01	4540	< 0,01	4163	0,01	4540	0,03	4540	0,04	4540
new-york-3	9493,18	5897	9405,58	5832	76,89	5897	0,15	4922	2,78	5552	0,29	5897	60,80	5897	100,98	5897
north-car3	36 000,07	11073	359,98	10044	166,57	11191	0,43	10653	11,23	10582	67,23	11191	141,71	11191	116, 51	11191
ohio-3	7,08	5213	157,84	5170	13,05	5213	< 0,01	4794	0,23	4050	0,01	5213	0,61	5213	0,61	5213
oregon-3	36002,17	23422	17211,78	21920	804,84	23427	28,97	20386	98,83	22395	-	-	249,18	23427	268,10	23427
pennsyl3	11,45	14766	27,10	14766	15,90	14766	< 0,01	13921	0,14	13745	0,03	14766	1,31	14766	1,25	14766
puerto-r3	194,64	3544	905,34	3544	20,06	3544	0,01	3527	0,13	3176	0,05	3544	5,69	3544	5,19	3544
rhode-i2	4746,44	42587	7789,73	42526	62,79	42587	0,17	39486	7,04	41619	0,28	42587	0,98	42587	1,03	42587
rhode-i3	36000,20	70873	18572,74	66854	3225,06	76431	394,81	65468	23,92	68350	-		3229,68	76458	1348,52	76458
utah-3	200,33	16 090	980,62	15018	41,05	16 090	0,03	15186	3,58	15167	0,07	16 090	1,77	16 090	1,64	16 090
vermont-2	17,92	4308	5549,13	4290	25,14	4308	0,01	3343	0,94	3862	0,02	4308	1,04	4308	0,99	4308
vermont-3	36000,20	22804	16 180,19	21215	457,32	22813	3,66	20011	51,72	21726	-	-	1849,27	22813	133,53	22813
virginia-2	0,26	23680	2,80	23680	9,70	23680	< 0,01	23275	0,13	23081	0,01	23680	0,06	23680	0,05	23680
virginia-3	36 000,77	90854	291,78	80459	285,12	91046	1,37	83975	21,52	86081	-	-	1014,80	91046	304,16	91046
wash2	4,24	33415	37,83	33415	20,71	33415	0,01	32185	0,15	32965	0,02	33415	0,17	33415	0,19	33415
wash3	-	-	534,33	98789	1592,22	113514	23,64	104692	71,86	103006	-	- 1	2101,05	113516	289,58	113516
west- $virg$ 3	32129,35	16666	17 644,66	15573	$135,\!05$	16666	0,32	15290	2,42	14996	2,35	16666	64, 48	16666	104,57	16666
redSnap	branch	reduce	GNN	I VC	H	ILS	Ht	WIS	NuM	WVC	stru	iction	M^2WI	s + s	M^2	WIS
as-skitter	-	-	21606.10	135910	45.35	135976	0.04	134500	26.37	135783	-	-	1904.18	135998	287.87	135998
loc-gowalla_e.	294.11	16521	25.68	16521	8.40	16521	< 0.01	16521	0.15	16479	0.64	16521	0.94	16521	0.78	16521
soc-LiveJ.	- , -	-	5669.30	277920	180.88	278532	0.13	273672	76.47	277988	- ,	-	308.08	278532	145.28	278532
soc-pokec-rel.	36 038.143	34227442	18389.523	35 219 027	36 000.15	35 242 470	81.183	35205509	7 035.183	34 828 738 6	544.983	32989873	8 238.05 3	5225724	7 259,993	35230752
web-BerkStan	28.05	135172	15.35	134 942	36.21	135156	< 0.01	133309	14.97	134676	0.04	135172	0.17	135172	0.15	135172
web-Google	0.13	20182	1.69	20 182	9.22	20182	< 0.01	20091	0.67	20171	0.01	20182	0.05	20182	0.04	20182
web-NotreD.	0.33	29145	22.52	29145	11.67	29145	< 0.01	28640	0.56	29061	0.07	29145	0.11	29145	0.09	29145
web-Stanford	4832,78	31695	793,53	31668	11,21	31695	< 0,01	31427	2,36	31617	0,01	31695	0,04	31695	0,05	31695
$\mathbf{redSsmc}$	branch	reduce	GNN	I VC	H	ILS	Ht	WIS	NuM	WVC	stru	iction	M ² WI	s + s	M^2	WIS
0010													5 70 1	989 209	8 652 80	1 989 106
ca2010	_		287313	1 979 294	1 470 66	1 980 551	0.16	1 951 444	916.03	1 951 636	1 471	989209			5002,00	686.046
ca2010 fl2010	-	- 649 704	2873,13 8454	$1979294 \\ 682793$	1470,66 932.09	1980551 684 214	$0,16 \\ 0,10$	$1951444 \\ 673852$	916,03 563 46	1951636 676 284	1,471 0.83	686 985	3.82	686 985	513054	
ca2010 fl2010 ca2010	- 36 000,00 159 38	- 649704 76316	2873,13 84,54 492.05	$1979294 \\ 682793 \\ 76214$	1470,66 932,09 59,10	1980551 684214 76297	$0,16 \\ 0,10 \\ 0.01$	$1951444\\673852\\75201$	916,03 563,46 26,71	$1951636 \\ 676284 \\ 76001$	1,471 0,83 0.07	686 985 76 316	3,82 0.34	686 985 76 316	5 130,54	76 316
ca2010 fl2010 ga2010 il2010	36 000,00 159,38	649 704 76 316	2873,13 84,54 492,05 3714,46	$ \begin{array}{r} 1979294 \\ 682793 \\ 76214 \\ 998051 \\ \end{array} $	1470,66 932,09 59,10 1290,10	$ \begin{array}{r} 1980551 \\ 684214 \\ 76297 \\ 996126 \end{array} $	$0,16 \\ 0,10 \\ 0,01 \\ 0,14$	$1 \begin{array}{c} 951 \\ 673 \\ 852 \\ 75 \\ 201 \\ 981 \\ 297 \end{array}$	916,03 563,46 26,71 740,62	$1951636 \\ 676284 \\ 76001 \\ 985582$	1,471 0,83 0,07 0,701	686 985 76 316	3,82 0,34 4,651	686 985 76 316 001 624	5 130,54 0,33 8 983 65	76 316
ca2010 fl2010 ga2010 il2010 nb2010	36 000,00 159,38	649 704 76 316 26 770	2873,13 84,54 492,05 3714,46 44.27	$\begin{array}{r}1979294\\682793\\76214\\998051\\26737\end{array}$	1470,66 932,09 59,10 1290,10 17,20	$\begin{array}{r}1980551\\684214\\76297\\996126\\26768\end{array}$	0,16 0,10 0,01 0,14	$1 \begin{array}{c} 951 \\ 444 \\ 673 \\ 852 \\ 75 \\ 201 \\ 981 \\ 297 \\ 26 \\ 477 \end{array}$	916,03 563,46 26,71 740,62 4,56	$1951636 \\ 676284 \\ 76001 \\ 985582 \\ 26687$	1,471 0,83 0,07 0,701 0,01	686 985 76 316 001 624 26 770	3,82 0,34 4,651	$\begin{array}{r} 686985\\ 76316\\ 001624\\ 26770 \end{array}$	5130,54 0,33 8983,65 0.05	76 316 1 001 415 26 770
ca2010 fl2010 ga2010 il2010 nh2010 ri2010	$36\ 000,00\ 159,38$ - 2,28 6 477,22	649 704 76 316 - 26 770 66 963	2873,13 84,54 492,05 3714,46 44,27 1008,11	$1 \begin{array}{c} 979 \\ 294 \\ 682 \\ 793 \\ 76 \\ 214 \\ 998 \\ 051 \\ 26 \\ 737 \\ 66 \\ 672 \end{array}$	$1 470,66 \\932,09 \\59,10 \\1 290,10 \\17,20 \\32,71$	$\begin{array}{c}1980551\\684214\\76297\\996126\\26768\\66960\end{array}$	$0,16 \\ 0,10 \\ 0,01 \\ 0,14 \\ <0,01 \\ <0,01$	$1 \begin{array}{c} 951 \\ 444 \\ 673 \\ 852 \\ 75 \\ 201 \\ 981 \\ 297 \\ 26 \\ 477 \\ 65 \\ 979 \end{array}$	$916,03 \\ 563,46 \\ 26,71 \\ 740,62 \\ 4,56 \\ 19,66$	$\begin{array}{r}1951636\\676284\\76001\\985582\\26687\\66743\end{array}$	1,4710,830,070,7010,010,02	$\begin{array}{c} 1989209\\ 686985\\ 76316\\ 1001624\\ 26770\\ 66963\end{array}$	3,79 3,82 0,34 4,651 0,07 0,15	$\begin{array}{c} 686985\\ 686985\\ 76316\\ 001624\\ 26770\\ 66963 \end{array}$	5130,54 0,33 8983,65 0,05 0,12	76 316 1 001 415 26 770 66 963
ca2010 fl2010 ga2010 il2010 nh2010 ri2010 overall	36 000,00 159,38 2,28 6 477,22 branch	- 649 704 76 316 - 26 770 66 963 reduce	2 873,13 84,54 492,05 3 714,46 44,27 1 008,11 GNN	1 979 294 682 793 76 214 998 051 26 737 66 672	1 470,66 932,09 59,10 1 290,10 17,20 32,71 HI	1 980 551 684 214 76 297 996 126 26 768 66 960	$\begin{array}{c} 0.16 \\ 0.10 \\ 0.01 \\ 0.14 \\ < 0.01 \\ < 0.01 \\ \end{array}$	1 951 444 673 852 75 201 981 297 26 477 65 979 WIS	916,03 563,46 26,71 740,62 4,56 19,66 NuM	1 951 636 676 284 76 001 985 582 26 687 66 743 WVC	1,471 0,83 0,07 0,701 0,01 0,02 stru	686 985 76 316 001 624 26 770 66 963	3,79 3,82 0,34 4,65 0,07 0,15 M ² WI	686 985 76 316 001 624 26 770 66 963 s + s	5130,54 0,33 8983,65 0,05 0,12 M^2	76 316 1 001 415 26 770 66 963
ca2010 fl2010 ga2010 il2010 nh2010 ri2010 overall	36 000,00 159,38 2,28 6 477,22 branch	649 704 76 316 26 770 66 963 reduce	2 873,13 84,54 492,05 3 714,46 44,27 1 008,11 GNN	1 979 294 682 793 76 214 998 051 26 737 66 672	1 470,66 932,09 59,10 1 290,10 17,20 32,71 H1	1 980 551 684 214 76 297 996 126 26 768 66 960 ILS	$0,16 \\ 0,10 \\ 0,01 \\ 0,14 \\ <0,01 \\ <0,01 \\ Ht$	1 951 444 673 852 75 201 981 297 26 477 65 979 WIS	916,03 563,46 26,71 740,62 4,56 19,66 NuM	1 951 636 676 284 76 001 985 582 26 687 66 743 WVC	1,471 0,83 0,07 0,701 0,01 0,02 stru	686 985 76 316 001 624 26 770 66 963	3,79 3,82 0,34 4,65 0,07 0,15 M ² WI	$ \begin{array}{r} 686 \ 985 \\ 76 \ 316 \\ 001 \ 624 \\ 26 \ 770 \\ 66 \ 963 \\ 8 + 8 \\ \hline 90 \ 62 \end{array} $	$5 130,54 \\ 0,33 \\ 8 983,65 \\ 0,05 \\ 0,12 \\ M^2$	76 316 1 001 415 26 770 66 963 WIS
ca2010 fl2010 ga2010 il2010 nh2010 ri2010 overall # best	36 000,00 159,38 2,28 6 477,22 branch	- 649 704 76 316 26 770 66 963 reduce 67/93	2 873,13 84,54 492,05 3 714,46 44,27 1 008,11 GNN	1 979 294 682 793 76 214 998 051 26 737 66 672 VC 46/93	1 470,66 932,09 59,10 1 290,10 17,20 32,71 HI	1980551684214762979961262676866960ILS75/93	$0,16 \\ 0,10 \\ 0,01 \\ <0,01 \\ <0,01 \\ <0,01 \\ Ht$	1 951 444 673 852 75 201 981 297 26 477 65 979 WIS 14/93	916,03 563,46 26,71 740,62 4,56 19,66 NuM	$ \begin{array}{r} 1 951 636 \\ 676 284 \\ 76 001 \\ 985 582 \\ 26 687 \\ 66 743 \\ \hline WVC \\ \hline 0/93 \\ \end{array} $	1,471 0,83 0,07 0,701 0,01 0,02 stru	1 989 209 686 985 76 316 1 001 624 26 770 66 963 action 75/93	3,791 3,82 0,34 4,651 0,07 0,15 M ² WI	$ \begin{array}{r} 686 985 \\ 76 316 \\ 001 624 \\ 26 770 \\ 66 963 \\ s + s \\ \hline 88/93 \\ 1020 \end{array} $	5 130,54 0,33 8 983,65 0,05 0,12 M ²	76 316 1 001 415 26 770 66 963 WIS 88/93 10200
$\begin{array}{c} ca2010 \\ fl2010 \\ ga2010 \\ il2010 \\ nh2010 \\ ri2010 \\ \\ \textbf{overall} \\ \\ \# \ \text{best} \\ \text{gmean } \omega \end{array}$	36 000,00 159,38 2,28 6 477,22 branch	649 704 76 316 26 770 66 963 reduce 67/93	2 873,13 84,54 492,05 3 714,46 44,27 1 008,11 GNN	$\begin{array}{c} 1979294\\ 682793\\ 76214\\ 998051\\ 26737\\ 66672\\ \hline VC\\ \hline 46/93\\ 16356\\ 72\\ \hline 3567\\ 72\\ 72\\ 72\\ 72\\ 72\\ 72\\ 72\\ 72\\ 72\\ 7$	1 470,66 932,09 59,10 1 290,10 17,20 32,71 HJ	1980551684214762979961262676866960ILS75/9316682	$0,16 \\ 0,10 \\ 0,01 \\ 0,14 \\ <0,01 \\ <0,01 \\ Ht$	1951444673852752019812972647765979WIS14/9315964	916,03 563,46 26,71 740,62 4,56 19,66 NuM	1 951 636 676 284 76 001 985 582 26 687 66 743 WVC 0/93	1,471 0,83 0,07 0,701 0,01 0,02 stru	1 989 209 686 985 76 316 1 001 624 26 770 66 963 action 75/93	3,82 0,34 4,651 0,07 0,15 M ² WI	$\begin{array}{c} 686\ 985\\ 76\ 316\\ 001\ 624\\ 26\ 770\\ 66\ 963\\ 8\ +\ 8\\ \hline 88/93\\ 16\ 688\\ 9\ 66\\ 9\ 66\\ 9\ 66\\ 8\ 68\\ 8\ 68\\ 8\ 68\\ 9\ 68\\ 8\ 8\ 8\ 8\ 8\ 8\ 8\ 8\ 8\ 8\ 8\ 8\ 8\ $	5 130,54 0,33 8 983,65 0,05 0,12 M ²	76 316 1 001 415 26 770 66 963 WIS 88/93 16 688 0 62

finEl	V	E	\mathbf{osm}	V	E	\mathbf{osm}	V	E	ssmc	V	E
body	45087	327468	iowa-1	90	328	puerto-rico-1	60	126	ca2010	710145	3489366
ocean	143437	819186	iowa-2	155	1 908	puerto-rico-2	165	2570	fl2010	484481	2346294
pwt	36519	289588	kansas-1	190	800	puerto-rico-3	494	53852	aa2010	291086	1418056
rotor	99.617	1 324 862	kansas-2	602	32.948	rhode-is -1	455	3 9 4 6	il2010	451 554	2164464
aphono	16 296	08 204	kanaga 2	0.720	1612994	mbode is 9	200	500.076	mb 0010	401 004	2104404
spitere meast	10 550	50504	l	2102	1013024	-h-d-i- 0	15 1944	530 310	-:0010	95 191	105 750
mesn	10000	10,001	kentucky-1	361	4 804	moae-is5	151242	20 244 430	112010	23 181	125750
blob	16 068	48 204	kentucky-2	2 4 5 3	1 286 856	south-car1	75	138	redOsm		
buddha	1087716	3263148	kentucky-3	190951	119067260	south- car 2	165	1426	a labama-3	1614	117426
bunny	68790	206034	louisiana-1	157	362	south- car 3	317	9016	d.o.c2	6360	592457
cow	5036	14732	louisiana-2	436	6222	tennessee-1	49	78	d.o.c3	33 367	17459296
dragon	150000	450000	louisiana-3	1162	74154	tennessee-2	100	836	florida-3	1069	62088
dragonsub	600 000	1800000	maine-1	38	58	tennessee-3	212	6430	areenland-3	3942	2348539
ecat	684 496	2053488	maine-2	81	486	utah-1	230	618	hawaii-3	24 436	40 724 109
face	22 871	68 108	maine 8	1/3	1 700	utah 2	580	0384	idaho 8	3 208	2864466
fandisk	22071	25.626	manuland 1	104	120	atah 2	1 2 2 0	95 744	hanaaa 2	1 605	409 109
Junuisk	41.000	20 000	maryiana-1	2104	432	utun-5	100	00744	Kunsus-5	1005	408 108
Jeine	41 262	123 /80	marylana-z	310	9430	vermont-1	128	830	kentucky-3	168/13	54 160 431
gameguy	42623	127700	maryland-3	1018	190 830	vermont-2	766	75214	massach3	2008	373537
gargoyle	20000	60000	massach1	413	2178	vermont-3	3436	2272328	north-car3	1178	189362
turtle	267534	802356	massach2	1339	70898	virginia-1	570	2960	oregon-3	3670	1958180
venus	5672	17016	massach3	3703	1102982	virginia-2	2279	120080	rhode-is2	1103	81688
osm	V	E	mexico-1	175	716	virginia-3	6185	1331806	rhode-is3	13 031	11855557
alabama-1	320	1 162	mexico-2	516	18822	washinaton-1	713	4632	vermont-3	2630	811482
alahama-2	1164	38 772	merico-3	1.096	94 262	washington-2	3 0 2 5	304 898	virainia-3	3867	485 330
alabama- 3	3 504	619 328	michiaan-1	133	224	washington-9	10.022	4 692 426	washington-9	2 8 0 3 0	2 1 2 0 6 9 6
alaska 1	21	62	michigan 0	241	1 500	www.	65	200	wushington-o	0.000	2120000
uluska-1	51	210	nnenigun-2	241	1 0 1 0	w-virg1	0.0	10.050			
alaska-z	54	312	micnigan-3	370	4918	w-virgz	317	10 0 0 0			
alaska-3	86	950	minnesota-1	86	272	w- $virg$ 3	1 1 8 5	251240			
arkansas-1	26	38	minnesota-2	253	5160	wisconsin-1	54	102			
arkansas-2	55	466	minnesota-3	683	68376	wisconsin-2	89	438			
arkansas-3	103	2752	mississippi-1	74	120	wisconsin-3	136	1176			
california-1	77	260	mississippi-2	151	732	wyoming-1	7	22			
california-2	231	6148	mississippi-3	242	2232	wuomina-2	8	32			
california-3	587	55.072	missouri-1	10	12	wuomina-3	12	84			
canada 1	180	480	miccouri 2	13	24	enon	V				
cunuuu-1	103	= 904	missouri-2	17	49	snap	1 606 415 5	121			
canaaa-z	449	0 894	missouri-3	100	40	as-skiller	10904152	22 190 590			
canada-3	943	40 482	montana-1	109	388	ca-AstroPh	18772	396 100			
colorado-1	128	464	montana-2	307	10 308	ca- $CondMat$	23133	186 878			
colorado-2	283	4052	montana-3	837	138586	ca- $GrQc$	5242	28968			
colorado-3	538	16730	nebraska-1	40	92	ca-HepPh	12008	236978			
connec1	87	192	nebraska-2	93	1468	ca-HepTh	9877	51946			
connec2	211	1950	nebraska-3	145	4336	com-amazon	334863	1851738			
connec3	367	7538	nevada-1	89	186	com-voutube	1134890	5975248			
delaware-1	2	2	nevada-2	242	3062	email-Enron	36692	367662			
delaware-2	3	6	nevada-9	569	30.032	email-Eu All	265 214	728 962			
delaware 2	5	19	new hamp 1	105	604	loo gowalla	106 501	1000654			
ueiuwuie-5	9 500	40.200	new-nump1	195	004	ioc-yowana	10.070	1 900 034			
a.o.c1	2 500	49302	new-nampz	514	6738	pzp-G.04	10876	79 988			
d.o.c2	13 597	3 219 590	new-hamp3	1 107	36 042	p2p-G.05	8846	63678			
d.o.c3	46221	55458274	new-jersey-1	4	12	p2p-G.06	8717	63050			
florida-1	475	2554	new-jersey-2	4	12	p2p-G.08	6301	41554			
florida-2	1254	33872	new-jersey-3	4	12	p2p-G.09	8114	52026			
florida-3	2985	308086	new- mex 1	3	6	p2p-G.24	26518	130738			
georgia-1	294	868	new-mex2	3	6	p2p-G.25	22687	109410			
aeoraia-2	746	15506	new-mex3	3	6	p2p-G.30	36682	176656			
aeoraia-3	1 680	148 252	new-uork-1	42	236	$n2n-G_{-}31$	62.586	295784			
georgia-0 greenland 1	77	682	new york 2	224	12708	roadNet CA	1 965 206	5 5 3 3 9 1 4			
greentand-1	696	100 426	new-york-2	027	177 456	nondNet DA	1 088 002	2 082 706			
greenland-2	4000	100 430	new-y01%-3	001	111400	Journet-FA	1 270 017	0 0 0 0 1 90			
greenland-3	4 986	1304722	nortn-car1	93	300	roaanet-TX	13/9917	3 843 320			
nawaii-1	411	2846	north-car2	398	20 232	soc-Ep.1	75879	811480			
hawaii-2	2875	530316	north-car3	1557	473478	soc-LiveJ.1	48475718	35702474			
hawaii-3	28006	98889842	ohio-1	78	192	soc- $Sl.0811$	77360	938360			
idaho-1	136	416	ohio-2	211	3630	soc-Sl.0902	82168	1008460			
idaho-2	552	70442	ohio-3	482	22752	soc-prel.	1 632 803 4	14603928			
idaho-3	4064	7848160	oregon-1	381	1992	web-BS.	685 230	13 298 940			
illinois-1	113	404	oregon-2	1325	115034	web-Gooale	875 713	8 644 102			
illinois-9	261	4 276	oregon-9	5 588	5825402	web-ND	325 720	2180 216			
indiana 1	201	+210	nenne 1	102	5020402	web Stanford	281 002	3085 272			
india	2	2	penno1	190	7604	web-stanjora	201 202	0 210 120			
inaiana-2	2	2	pennsz	021	1024	wiki-1alk	∠ 394 383 7 1 1 -	9 3 1 9 1 3 0			
indiana-3	4	12	penns3	1148	52 928	wiki-Vote	7 1 1 5	201524			

Table 15: Graph properties. **Bold** graphs where used to determine the best parameters. The set *redOsm* are the osm instances used for the metamis comparison reduced using KaMIS [32].