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Abstract. A rectangular drawing of a planar graph G is a planar drawing of
G in which vertices are mapped to grid points, edges are mapped to horizontal and
vertical straight-line segments, and faces are drawn as rectangles. Sometimes this
latter constraint is relaxed for the outer face. In this paper, we study rectangular
drawings in which the edges have unit length. We show a complexity dichotomy for
the problem of deciding the existence of a unit-length rectangular drawing, depending
on whether the outer face must also be drawn as a rectangle or not. Specifically,
we prove that the problem is NP-complete for biconnected graphs when the drawing
of the outer face is not required to be a rectangle, even if the sought drawing must
respect a given combinatorial embedding, whereas it is polynomial-time solvable, both
in the fixed and the variable embedding settings, if the outer face is required to be
drawn as a rectangle. Furthermore, we provide a linear-time algorithm for deciding
whether a plane graph admits an embedding-preserving unit-length rectangular drawing
if the drawing of the outer face is prescribed. As a by-product of our research, we
provide the first polynomial-time algorithm to test whether a planar graph G admits
a rectangular drawing, for general instances of maximum degree 4.

1 Introduction

Among the most celebrated aesthetic criteria in Graph Drawing we have: (i) planarity, (ii) or-
thogonality of the edges, (iii) unit length of the edges, and (iv) convexity of the faces. We focus
on drawings in which all the above aesthetics are pursued at once. Namely, we study orthogonal
drawings where the edges have length one and the faces are rectangular.
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Figure 1: Unit-length embedding-preserving rectangular drawings of a plane graph.

Throughout the paper, any considered graph drawing has the vertices mapped at distinct points
of the plane. Orthogonal representations are a classic research topic in Graph Drawing. A rich
body of literature is devoted to orthogonal drawings of planar [5, 10, 11, 21, 26, 31, 57] and
plane [17, 46, 47, 51, 52] graphs with a minimum number of bends in total or per edge [13, 38, 39].
An orthogonal drawing with no bend is a rectilinear drawing. Several papers address rectilinear
drawings of planar [16, 30, 32, 36, 43, 44] and plane [25, 29, 30, 49, 56] graphs.

When all the faces of a rectilinear drawing have a rectangular shape the drawing is rectangular.
Maximum degree-3 plane graphs admitting rectangular drawings were first characterized in [54, 55].
A linear-time algorithm to find a rectangular drawing of a maximum degree-3 plane graph, provided
it exists, is described in [45] and extended to maximum degree-3 planar graphs in [48]. Surveys on
rectangular drawings can be found in [28, 41, 42]. If only the internal faces are constrained to be
rectangular, then the drawing is called inner-rectangular. In [40] it is shown that a plane graph G
has an inner-rectangular drawing Γ if and only if a special bipartite graph constructed from G has
a perfect matching. Also, Γ can be found in O(n1.5/ log n) time if G has n vertices and a “sketch”
of the outer face is prescribed, i.e., all the convex and concave outer vertices are prescribed.

Computing straight-line drawings whose edges have constrained length is another core topic in
graph drawing [1, 2, 4, 6, 9, 15, 27, 50]. The graphs admitting planar straight-line drawings with all
edges of the same length are also called matchstick graphs. Recognizing matchstick graphs is NP-
hard for biconnected [27] and triconnected [15] graphs, and in fact, even strongly ∃R-complete [1];
see also [50].

A unit-length grid drawing maps vertices to grid points and edges to horizontal or vertical
segments of unit Euclidean length. A grid graph is a graph that admits a unit-length grid drawing1.
Recognizing grid graphs is NP-complete for ternary trees of pathwidth 3 [12], for binary trees [33],
and for trees of pathwidth 2 [34], but solvable in polynomial time on graphs of pathwidth 1 [34]. A
variant of the grid graph recognition problem is when the drawing is constrained to be contained
in the k × r grid. In [34] this problem is shown to be NP-hard when k = 3 even on graphs of
pathwidth 2. The same problem is shown to be fixed-parameter tractable (FPT) parameterized
by k + mcc, where mcc is the maximum size of a connected component of G. An exponential-
time algorithm to compute, for a given weighted planar graph, a rectilinear drawing in which the
Euclidean length of each edge is equal to the edge weight has been presented in [9].

1Note that in some literature the term “grid graph” denotes an “induced” graph, i.e., there is an edge between
any two vertices at distance one. See, for example, [37].
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(a) (b)

Figure 2: (a) A planar rectilinear grid drawing of a graph. (b) A unit-length rectangular grid
drawing of the same graph.

Let G be a planar graph. The Unit-length Inner-Rectangular Drawing Recognition
(for short, UIR) problem asks whether a unit-length inner-rectangular drawing of G exists. Sim-
ilarly, the Unit-length Rectangular Drawing Recognition (for short, UR) problem asks
whether a unit-length rectangular drawing of G exists. Let now H be a plane graph or an em-
bedded graph (i.e., no outer face specified). The Unit-length Inner-Rectangular Drawing
Recognition with Fixed Embedding (for short, UIRFE) problem asks whether a unit-length
inner-rectangular embedding-preserving drawing of H exists. Similarly, the Unit-length Rect-
angular Drawing Recognition with Fixed Embedding (for short, URFE) problem asks
whether a unit-length rectangular embedding-preserving drawing of H exists; Fig. 1 shows different
unit-length rectangular drawings of the same plane graph.

Our contribution. In Section 3 we show NP-completeness for the UIRFE (Section 3) and UIR
(Section 3.3) problems when the input graph is biconnected, which is surprising since a biconnected
graph has degrees of freedom that are more restricted than those of a tree. In Section 4 we provide
a linear-time algorithm for the UIRFE and URFE problems if the drawing of the outer face is
given (Section 4.1). In Section 5 we first show that the URFE problem is cubic-time solvable; the
time bound becomes linear if all internal faces of the input graph have maximum degree 6. These
results hold both when the outer face is prescribed (Section 5) and when it is not (Section 5).
Second, we show a necessary condition for an instance of the UR problem to be positive in terms
of its SPQR-tree (Section 5). Exploiting the above condition, we show that the UR problem
is cubic-time solvable; the running time becomes linear when the SPQR-tree of the input graph
satisfies special conditions (Section 5). Finally, as a by-product of our research, we provide the
first polynomial-time algorithm to test whether a planar graph G admits a rectangular drawing,
for general instances of maximum degree 4 (Section 5).

2 Preliminaries

For basic graph drawing terminology and definitions refer, e.g., to [20, 41].
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Drawings and embeddings. A drawing of a graph maps each vertex to a distinct point on
the plane and each edge to a Jordan arc connecting its end-vertices. A drawing of a graph is
planar if it contains no vertex-edge overlaps and no edge-edge crossings. A planar drawing of a
graph partitions the plane into topologically connected regions called faces. The unbounded face
is called the outer face. Two planar drawings of a connected graph are combinatorially equivalent
if they induce the same counter-clockwise ordering of the edges incident to each vertex. Also, they
are planar equivalent if they are combinatorially equivalent and the clockwise order of the edges
along the boundaries of their outer faces is the same. The equivalence classes of combinatorially
equivalent drawings are called combinatorial embeddings, whereas the equivalence classes of planar
equivalent drawings are called planar embeddings. An embedded graph is a planar graph equipped
with one of its combinatorial embeddings. Similarly, a plane graph is a planar graph equipped
with one of its planar embeddings. Given an embedded graph G (or a plane graph G) and a
combinatorial (resp. planar) embedding E of G, a planar drawing Γ of G is embedding-preserving if
Γ ∈ E . Consider a planar graph G. If G is connected, a combinatorial embedding of G is defined by
the counter-clockwise circular order of the edges incident on each vertex, while a planar embedding
of G is defined by the counter-clockwise circular order of the edges incident on each vertex and by
the choice of the outer face. Instead, ifG is not connected, then a combinatorial (planar) embedding
is defined by a combinatorial (planar) embedding of each of its connected components, together
with the relative placement of each of these components to one another, called relative positions,
which specifies an assignment of each connected component to one face of each other component.

Geometric definitions A polygon is a closed polygonal chain consisting of a finite number of
straight-line segments. A polygon intersects itself if two segments non-adjacent in the chain have
a non-void intersection. A polygon is simple if it does not intersect itself. This implies that there
are no repeated segments or points in the chain. A polygon is weakly simple if, for any ϵ > 0,
the position of every vertex can be perturbed by at most ϵ so to obtain a simple polygon. A
simple polygon is convex if its interior is a convex set. A convex drawing of a planar graph G is
a straight-line planar drawing of G in which all the faces are drawn as convex polygons, including
the outer face. In [24], it has been shown that a planar graph admits a convex drawing only if it
is biconnected. A convex subdivision of a simple polygon P is a partition of the interior of P into
convex sets. Note that a convex drawing defines a convex subdivision of the polygon bounding the
outer face.

Unit-length rectangular drawings. A rectilinear drawing of a graph is a drawing such that
each edge is an horizontal or vertical straight-line segment; see Fig. 2(a). An inner-rectangular
drawing is a rectilinear drawing such that all its faces, except possibly for the outer face, are drawn
as rectangles. An inner-rectangular drawing is rectangular if its outer face is drawn as rectangle.
In a grid drawing, vertices are mapped to points with integer coordinates (i.e., grid points). A
drawing of a graph in which all edges have unit Euclidean length is a unit-length drawing (see
Fig. 2(b) for an example).

Observation 1 A unit-length grid drawing is rectilinear and planar.

Observation 2 A unit-length rectangular (or inner-rectangular) drawing is planar and it is a grid
drawing, up to a rigid transformation.

The following simple property has been proved in [8, Lemma 1].
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Property 1 Every cycle that admits a unit-length grid drawing has even length.

Since (inner) rectangular drawings exist only for maximum-degree-4 graphs, in the remainder,
we assume that all considered graphs satisfy this requirement.

Connectivity. Let G be a graph. A cut-vertex (resp. separation pair) in a graph G is a vertex
(resp. a pair of vertices) whose removal disconnects G. Graph G is biconnected (triconnected) if it
has no cut-vertex (resp. no separation pair). A biconnected component (or block) of a graph G is a
maximal (in terms of vertices and edges) biconnected subgraph of G. A block is trivial if it consists
of a single edge and non-trivial otherwise. A split pair of G is either a pair of adjacent vertices or
a separation pair. The components of G with respect to a split pair {u, v} are defined as follows.
If (u, v) is an edge of G, then it is a component of G with respect to {u, v}. Also, let G1, . . . , Gk

be the connected components of G \ {u, v}. The subgraphs of G induced by V (Gi)∪ {u, v}, minus
the edge (u, v), are components of G with respect to {u, v}, for i = 1, . . . , k.

2.1 SPQR-trees

We provide details of the SPQR-tree data structure introduced by Di Battista and Tamassia [22, 23]
to handle all combinatorial embeddings of a biconnected planar graph H. The SPQR-tree T of H
represents a decomposition of H into triconnected components along its split pairs. Each node µ
of T is associated with a graph, called skeleton of µ, and denoted by sk(µ). The edges of sk(µ) are
either edges of H, which we call real edges, or newly introduced edges, called virtual edges. The
tree T is initialized to a single node µ, whose skeleton, composed only of real edges, is H. Consider
a split pair {u, v} of the skeleton of some node µ of T , and let H1, . . . ,Hk be the components of H
with respect to {u, v} such that H1 is not a single virtual edge and, if k = 2, also H2 is not a single
virtual edge. We introduce a node ν adjacent to µ whose skeleton is the graph H1 + eν,µ, where
eν,µ = (u, v) is a virtual edge; also, we replace the skeleton sk(µ) of µ with the graph

⋃
i̸=1 Hi+eµ,ν ,

where eµ,ν = (u, v) is a virtual edge. We say that eν,µ is the twin virtual edge of eµ,ν , and vice
versa. Applying this replacement iteratively produces a tree with more nodes but smaller skeletons
associated with the nodes. Eventually, when no further replacement is possible, the skeletons of the
nodes of T are of four types: parallels of at least three virtual edges (P -nodes), parallels of exactly
one virtual edge and one real edge (Q-nodes), cycles of exactly three virtual edges (S-nodes), and
triconnected planar graphs (R-nodes). The merge of two adjacent nodes µ and ν in T , replaces µ
and ν in T with a new node τ that is adjacent to all the neighbors of µ and ν, and whose skeleton
is sk(µ)∪ sk(ν) \ {eµ,ν , eν,µ}), where the end-vertices of eµ,ν and eν,µ that correspond to the same
vertices of H are identified. By iteratively merging adjacent S-nodes, we eventually obtain the
(unique) SPQR-tree data structure as introduced by Di Battista and Tamassia [22, 23], where the
skeleton of an S-node is a cycle. The crucial property of this decomposition is that a combinatorial
embedding of H uniquely induces a combinatorial embedding of the skeletons of its nodes and that,
arbitrarily and independently, choosing combinatorial embeddings for all the skeletons uniquely
determines an embedding of H. Observe that the skeletons of S- and Q-nodes have a unique
combinatorial embedding, that the skeleton of R-nodes have two combinatorial embeddings (which
are one the reflection of the other), and that P -nodes have as many combinatorial embedding as
the permutations of their virtual edges. Consider a node ν and a virtual edge eν,µ in sk(ν). Among
the subtrees of T obtained by removing the arc (ν, µ) from T , let Tν,µ be the one that contains
ν. The expansion graph exp (eν,µ) of eν,µ is the subgraph of H obtained by iteratively merging all
the nodes in Tν,µ and by removing the virtual edge eν,µ.
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It is often convenient to orient the arcs of T so that, in the resulting directed tree, one Q-node
ρ is a sink and all other nodes have exactly one outgoing arc. Such an orientation corresponds to
rooting T at ρ, and we call it a normal orientation of T . The next definitions assume a normal
orientation of T . For a node µ ̸= ρ of T , the poles of µ are the endpoints of the virtual edge eν,µ
of sk(µ) where ν is the parent of µ; whereas the poles of ρ are the endpoints of its unique virtual
edge. Consider any planar embedding E of H in which the real edge corresponding to ρ is incident
to the outer face. Then E yields a planar embedding Eµ of the skeleton of each node µ of T in
which the poles of µ are also incident to the outer face of Eµ. This motivates the next definitions.
Consider a node µ ̸= ρ. Also, let u and v be the poles of µ. Let ν be the parent of µ and let eµ,ν
be the virtual edge representing µ in sk(ν). Let Eµ be the restriction of E to exp (eµ,ν) and let Hµ

be the corresponding plane graph. Note that there exist exactly two faces of E that are incident to
edges of the outer face of Hµ. We call such faces the outer faces of Eµ. By convention, we call left
outer face ℓ(Eµ) of Eµ (right outer face r(Eµ) of Eµ) the outer face that is delimited by the path
obtained by walking in clockwise direction (resp. in counter-clockwise direction) from u to v along
the boundary of the outer face of Eµ. The terms left outer face and right outer face come from the
fact that we usually think about Eµ as having the pole u at the bottom and the other pole v at
the top.

IfH has n vertices, then T has O(n) nodes and the total number of virtual edges in the skeletons
of the nodes of T is in O(n). From a computational complexity perspective, T can be constructed
in O(n) time [35].

3 NP-completeness of the UIRFE and UIR problems

In this section we show NP-completeness for both the UIRFE and UIR problems when the input
graph is biconnected. Observe that both problems clearly lie in NP, as a certificate for a biconnected
n-vertex input graph consists of an injective mapping from the vertices of the graph to the points
of a grid whose sides have length bounded by n

2 . In fact, it is possible to verify in polynomial-time
whether such a mapping defines a unit-length rectangular drawing, and in the positive case whether
it respects a given combinatorial embedding. Therefore, in the remainder of the section, we will
focus on establishing polynomial-time reductions to show the NP-hardness of the problems. We
start with the following theorem.

Theorem 1 The Unit-length Inner-Rectangular Drawing Recognition with Fixed
Embedding problem is NP-complete, even for biconnected plane graphs whose internal faces have
maximum size 6.

Let ϕ be a Boolean formula in conjunctive normal form with at most three literals in each
clause. We denote by Gϕ the incidence graph of ϕ, i.e., the graph that has a vertex for each clause
of ϕ, a vertex for each variable of ϕ, and an edge (c, v) for each clause c that contains the positive
literal v or the negated literal v. The formula ϕ is an instance of Planar Monotone 3-SAT if Gϕ

is planar and each clause of ϕ is either positive or negative. A positive clause contains only positive
literals, while a negative clause contains only negated literals. Hereafter, w.l.o.g., we assume that
all the clauses of ϕ contain exactly three literals. In fact, a clause with less than three literals can
be modified by duplicating one of the literals in the clause, without altering the satisfiability of ϕ.
Note that this modification might turn Gϕ into a planar multi-graph.

A monotone rectilinear representation of Gϕ is a drawing that satisfies the following properties
(refer to Fig. 3(a)).
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(a) Γϕ (b) Γ∗
ϕ

Figure 3: (a) A monotone rectilinear representation Γϕ of Gϕ. The rectangles representing
variables and clauses are red, whereas the line segments and rectangles representing the edges of
ϕ are blue. (b) The auxiliary representation Γ∗

ϕ that satisfies the properties D1 to D5.

P1: Variables and clauses are represented by axis-aligned rectangles; the rectangles representing
the variables all have the same height; the rectangles representing the clauses all have the
same height.

P2: The bottom sides of all rectangles representing variables lie on the same horizontal line.

P3: The rectangles representing positive (resp. negative) clauses lie above (resp. below) the rect-
angles representing variables.

P4: Edges connecting variables to clauses are represented by vertical segments.

P5: The drawing is crossing-free.

The Planar Monotone 3-SAT problem is known to be NP-complete, even when the incidence
graph Gϕ of ϕ is provided along with a monotone rectilinear representation Γϕ of Gϕ [18]. We
prove Section 3 by showing how to construct a plane graph Hϕ that is biconnected, has internal
faces of maximum size 6, and admits a unit-length inner-rectangular drawing if and only if ϕ is
satisfiable. Our strategy is to modify Γϕ to create a suitable auxiliary representation Γ∗

ϕ (see Fig. 3)
and then to use the geometric information of Γ∗

ϕ as a blueprint to construct Hϕ. We provide below
a high-level description of the logic behind the reduction.

3.1 The auxiliary monotone rectilinear representation Γ∗
ϕ

Hereafter, let δ+ϕ (resp. δ−ϕ ) be the maximum degree of Gϕ when restricted to nodes representing

variables and positive (resp. negative) clauses. Let δϕ = max(δ+ϕ , δ
−
ϕ ). We denote by |ϕ| the size

of ϕ, that is, the number of variables plus the number of clauses in the formula. The auxiliary
representation has the following properties (refer to Fig. 3):
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D1: The variables, clauses, and edges of Gϕ are represented by axis-aligned rectangles whose
corners have integer coordinates, i.e., they lie at grid points.

D2: The width and height of the bounding box of Γ∗
ϕ are polynomially bounded in |ϕ|.

D3: The rectangles representing variables have O(δϕ) width, constant height, and their bottom
sides lie on a common horizontal grid line.

D4: Each rectangle representing a clause has O(|ϕ| · δϕ) width and constant height.

D5: Each rectangle representing an edge has constant width and O(|ϕ|) height.

We can obtain Γ∗
ϕ by suitably translating and scaling the rectangles that represent the variables,

clauses, and edges of ϕ in Γϕ. Clearly, these transformations can be done in polynomial time in
|ϕ|. We obtain the following lemma.

Lemma 1 Starting from Γϕ, the representation Γ∗
ϕ can be constructed in polynomial time in |ϕ|.

3.1.1 Overview of the reduction.

The reduction is based on three main types of gadgets. A variable v ∈ ϕ is modeled by means
of a variable gadget, a clause c ∈ ϕ by means of an (α, β)-clause gadget, and an edge (v, c) ∈ Gϕ

by means of a λ-transmission gadget. We use the geometric properties of Γ∗
ϕ to determine the

size and structure of each gadget, as well as how to combine the gadgets together to form Hϕ. In
particular, we use the distances between the rectangles representing edges and clauses to compute
the auxiliary parameters α, β and λ, which in turn are used to construct (α, β)-clause gadgets
and λ-transmission gadgets. Finally, the incidences between the rectangles representing variables,
edges, and clauses are used to decide how to join the edges of the gadgets to construct a biconnected
graph.

An example of a unit-length inner-rectangular drawing of Hϕ is shown in Fig. 4; some faces of
Hϕ are omitted. All these missing faces are part of domino components, which admit a constant
number of unit-length inner-rectangular drawings, see Fig. 5; some of these faces are shown filled
in white or blue in Fig. 4.

Detailed illustrations of the variable, (α, β)-clause, and λ-transmission gadgets are in Figs. 6
to 8, respectively. In these figures, the enclosing rectangles of the gadgets are also included, as well
as the faces of Hϕ missing on Fig. 4, which are shown in blue.

The logic behind the construction is as follows. Consider the illustration of a variable gadget
shown in Fig. 6. A variable gadget admits two unit-length inner-rectangular drawings. These
drawings differ from each other on whether the domino components cross the bottom (Fig. 6(a))
or the top (Fig. 6(b)) side of the red enclosing rectangle, and correspond to a true and a false

value assignment to the associated variable, respectively. The truth assignments are propagated
from variable to clause gadgets via λ-transmission gadgets. The illustration of a λ-transmission
gadget is shown in Fig. 7. Consider the auxiliary interior purple rectangle R. A λ-transmission
gadget is modeled in such a way that if a domino component sticking out of a variable gadget
forces the bottom-most (resp. top-most) domino component to lie inside R, then there is a domino
component crossing the top (resp. bottom) side of R. In turn, the crossing domino component
propagates the truth assignment by forcing a drawing of the domino components of the adjacent
(α, β)-clause gadget. An illustration of an (α, β)-clause gadget is shown in Fig. 8. An (α, β)-clause
gadget is designed in such a way that it admits a unit-length inner-rectangular drawing if and
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Figure 4: The graph Hϕ, with some faces omitted. Variable and clause gadgets are enclosed in
light red boxes, while transmission gadgets are enclosed in light blue boxes.

only if the drawings of its three incident λ-transmission gadgets allow for at least one domino
component to cross the red rectangle.

3.2 Description of the gadgets

All the gadgets have internal faces of size either 4 or 6, and are formed by two sets of special
subgraphs we call the frames and the domino components. A frame is a biconnected subgraph
formed by internal faces of size 4, and has a unique unit-length inner-rectangular drawing (up
to rigid transformations). A domino component is instead a biconnected subgraph with internal
faces of size either 4 or 6. We define three different types of domino components: the L-shape,
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(a) L-shape (b) Stick

(c) C-shape

Figure 5: The unit-length grid drawings of the domino components. Frame faces are filled gray.
Domino component faces are filled blue (size 6) and white (size 4).

(a) A true configuration. (b) A false configuration

Figure 6: The variable gadget.
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the C-shape, and the Stick. Such components have constantly-many unit-length inner-rectangular
drawings, shown in Fig. 5. However, the geometry of the construction will force the L-shape
components to have either the first or the last unit-length inner-rectangular drawing in Fig. 5(a)
and the C-shape components to have either the first or the last unit-length inner-rectangular
drawing in Fig. 5(c).

Variable Gadget. Variable gadgets are formed by 2δϕ+2 frames connected together by means of
C-shape components, and a set of L-shape and stick components to propagate the truth assignment
of the corresponding variable. Refer to Fig. 6 for an illustration of the gadget.

Let V denote the variable gadget modeling some variable v ∈ ϕ. There are three crucial
properties of the variable gadget. First, C-shape components are adjacent to frames in such a way
that in every unit-length inner-rectangular drawing of V the drawing of the frames of V is the same.
This implies that the bounding box B of the drawing of the frames of V does not change, regardless
of the drawings of the C-shape components. Second, V admits two unit-length inner-rectangular
drawings that we associate with the true (Fig. 6(a)) and false (Fig. 6(b)) truth assignments of
v. We remark that in the drawing corresponding to the true (resp. false) assignment, there
are δϕ L-shape components crossing the bottom (resp. top) side of B. Finally, the gadget is
constructed in such a way that the width and height of B are the same as those of the rectangle of
Γ∗
ϕ representing v.

λ-transmission Gadget. The λ-transmission gadget is formed by a single frame, and a set of
⌊(λ− 2)/4⌋ L-shape components to propagate truth assignments from variable to clause gadgets.
Refer to Fig. 7 for an illustration of the gadget.

Let L denote the λ-transmission gadget modeling some edge (v, c) of Gϕ that connects a variable
v to a clause c. Consider the auxiliary purple rectangle R, and the L-shape components labeled
with LD and LU in Fig. 7. There are two crucial properties of the λ-transmission gadget. First, in
any unit-length inner-rectangular drawing of L, if LD does not cross R then LU crosses R, and vice
versa. Observe that, if an L-shape component of a variable gadget crosses the top (resp. bottom)
side of its red enclosing rectangle, then LU (resp. LD) crosses R. This is how the truth assignment
for a variable gets propagated through transmission gadgets. Second, the width and height of the
bounding box B of all the unit-length inner-rectangular drawings of L are the same. Moreover,
the width and height of B are less than or equal to the width and height of the rectangle of Γ∗

ϕ

representing (v, c).

(α, β)-clause Gadget. In the following, refer to the example drawings of an (α, β)-clause gadget
shown in Fig. 8. Let C denote the (α, β)-clause gadget modeling a clause c ∈ ϕ. Let R denote
the auxiliary purple rectangle shown in Fig. 8. The gadget C is formed by three disconnected
components. Each component is formed by a frame that, in the final graph Hϕ, is connected to the
frame of a λ-transmission gadget modeling an edge of Gϕ incident to c. The components are also
equipped with L-shape components to propagate the truth assignments coming from λ-transmission
gadgets.

Consider for the moment the three connected subgraphs of C that admit a unit-length inner-
rectangular drawing lying outsideR. Note that they are straightforward extensions of λ-transmission
gadgets. These auxiliary gadgets are used to propagate to R the truth assignments coming from
the boundary of the red enclosing rectangle. Each auxiliary gadget has the property that, in any
unit-length inner-rectangular drawing, if no L-shape component crosses the red enclosing rectangle,
then there is one L-shape component crossing R.
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LU

λ

LD

(a)

LU

λ

LD

(b)

Figure 7: Unit-length inner-rectangular drawings of a λ-transmission gadget for λ = 22. (a) If LD

does not cross the purple rectangle, then LU crosses the purple rectangle. (b) If LU does not cross
the purple rectangle, then LD crosses the purple rectangle.

Consider now the subgraphs of C that admit a unit-length inner-rectangular drawing lying in
the interior of R. The logic of the gadget is implemented by these subgraphs via the following
crucial property: C admits a unit-length inner-rectangular drawing if and only if at least one L-
shape component of the auxiliary gadgets is not crossing R. See for example Fig. 8(a) in which
all the three L-shape components of the auxiliary gadgets cross R, hence the (α, β)-clause gadget
does not admit a unit-length inner-rectangular drawing.

3.3 Combining the gadgets together to form Hϕ

For the purpose of combining two gadgets into a single connected graph, every gadget provides a
set of special edges called attachment edges. In Figs. 6 to 8, the attachment edges are shown as
thick black segments. To combine two gadgets together, we first identify one attachment edge in
each gadget, and then join the attachment edges together so that there is a single edge shared by
both gadgets.

In the following description, the properties D1-D5 of Γ∗
ϕ are exploited to guarantee that, after

combining all the gadgets, Hϕ admits a unit-length inner-rectangular drawing if and only if ϕ is
satisfiable. To obtain Hϕ, we start by constructing the variable gadgets as above. The variable
gadgets are connected together by means of frames, each consisting of a sequence of a constant
number of faces of size 4, so that only faces that are consecutive in the sequence share vertices. Each
of such frames is combined with two variable gadgets by means of the attachment edges lying on
the right and the left sides of their red enclosing rectangles. The process continues by constructing
a λ-transmission gadget for each edge of Gϕ. The value of the parameter λ of each gadget is the
height of the blue rectangle of Γ∗

ϕ representing the associated edge of Gϕ. A λ-transmission gadget
and a variable gadget are combined together joining an attachment edge lying on the top (resp.
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α β

(a) The gadget admits no unit-length inner-rectangular drawing in which no L-shape component crosses the red
rectangle.

α β

(b) The gadget admits a unit-length inner-rectangular drawing in which at least one L-shape component crosses
the red rectangle.

Figure 8: The (α, β)-clause gadget. The values of α and β employed in the picture are smaller
than they should be, for the sake of visibility.

bottom) side of the red enclosing rectangle of the variable gadget, and the attachment edge lying on
the bottom (resp. top) side of the blue enclosing rectangle of the λ-transmission gadget. We finally
construct an (α, β)-clause gadget for each clause of ϕ. We select the parameters α and β according
to the width of the red rectangles representing clauses in Γ∗

ϕ, and the horizontal distances between
the blue rectangles representing the edges incident to the modeled clause. A λ-transmission gadget
and an (α, β)-clause gadget are combined together joining an attachment edge lying on the bottom
(resp. top) side of the red enclosing rectangle of the (α, β)-clause gadget, and the attachment edge
lying on the top (resp. bottom) side of the blue enclosing rectangle of the λ-transmission gadget.

By the construction described above, it is not hard to see that Hϕ is biconnected and admits



416 Alegŕıa et al. Unit-length Rectangular Drawings of Graphs

a unit-length inner-rectangular drawing that preserves the given planar embedding if and only if
ϕ is satisfiable. The crucial property is that the domino components we use are forced to admit
a constant number of unit-length inner-rectangular drawings that are all embedding preserving;
see again Fig. 5.

By showing that the graphHϕ only admits unit-length inner-rectangular drawings that preserve
the same planar embedding, we get the following.

Theorem 2 The Unit-length Inner-Rectangular Drawing Recognition problem is NP-
complete, even for biconnected planar graphs that admit a planar embedding in which the internal
faces have maximum size 6.

Proof: We show that the graph Hϕ only admits unit-length inner-rectangular drawings that
preserve the same planar embedding. Let Γ and Γ′ be two unit-length inner-rectangular drawings
of Hϕ. By construction, every edge of Hϕ belongs to at least a length-4 or a length-6 chordless
cycle. Each such a cycle must necessarily bound an internal face of Γ and Γ′. Therefore, the cycle
bounding the outer face of Γ and Γ′ is the same. Let us call the cycles bounding the internal faces
of Γ and Γ′ the inner cycles of Hϕ. By construction, any inner cycle shares at least an edge with
another inner cycle. Therefore, the orientation of the inner cycles is the same in Γ as in Γ′ (up
to a reflection of the entire drawing). Therefore, all the unit-length inner-rectangular drawings
admitted by Hϕ preserve the same planar embedding, which is unique up to reflections of the
whole drawing. □

Since any unit-length grid drawing of a cycle with 4 or 6 vertices is a rectangle, the previous
theorem implies the following result.

Corollary 1 It is NP-complete to decide whether a biconnected planar graph G admits a unit-
length grid drawing, even if G has a prescribed planar embedding.

4 An Algorithm for the UIRFE and URFE Problems with
a Prescribed Drawing of the Outer Face

In this section, we show a linear-time algorithm for the UIRFE (and consequently for the URFE)
problem in the case in which the drawing of the outer face is prescribed.

We start with two auxiliary lemmata. The first one is an extension of a classical result by
Devillers et al. [19].

Lemma 2 Let G be a connected planar graph and E be a planar embedding of G. A straight-line
drawing Γ of G is planar and respects E if and only if:

� for every face f of E, the walk delimiting f is represented in Γ by a weakly simple polygon,
whose orientation is as prescribed by E;

� for every vertex v of G, the clockwise order of the edges incident to v in Γ is the same as in
E; and

� let Co be the walk delimiting the outer face fo of E, and let Γo be the weakly simple polygon
representing Co in Γ; then every edge not in Co that is incident to a vertex v of Co, leaves v
towards the interior of Γo.
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Proof: The necessity is obvious. We prove the sufficiency. Suppose hence that Γ satisfies the
properties described in the statement. We prove that it is planar and respects E .

Let ρh be equal to 3n−h− 3. Note that ρh is the number of edges of a biconnected internally-
triangulated n-vertex plane graph whose outer face is delimited by a cycle with h vertices. We
prove the lemma by induction on ρk − |E(G)|, where the index k is the number of vertices of the
convex hull of Γo.

If ρk − |E(G)| = 0, then each internal face of E is delimited by a 3-cycle and Co is a k-cycle.
Since (i) each internal face of E is delimited in Γ by a triangle, and Co is represented in Γ by a
convex k-gon, and since (ii) the clockwise order of the edges incident to each vertex in Γ is as
prescribed by E , a classic result by Devillers et al. [19, Lemma 19] implies that Γ is planar and
induces a convex subdivision Γ of Γo (that also respects the combinatorial embedding of G obtained
by disregarding the choice of the outer face of E). Finally, the fact that G is connected and that
every edge not in Co that is incident to a vertex of Co leaves this vertex toward the interior of Γo

implies that Γo bounds the outer face of Γ, and thus Γ respects (the planar embedding) E .
Let us now consider the case in which ρk − |E(G)| > 0. Let f be a face of E such that either

f is an internal face of E of length at least 4 or f = fo if the polygon Γo bounding fo in Γ is not
convex. Then it is possible to draw in f a straight-line segment uv between some pair of vertices
u and v incident to f , such that uv does not cross any edge of f . In particular, uv divides f into
two faces f ′ and f ′′. Let G′ be the plane graph obtained from G by introducing the edge (u, v) so
that it splits the face f into the faces f ′ and f ′′. To define a planar embedding E ′ for G′, it only
remains to specify a choice for its outer face. If f ̸= fo, then fo is the outer face of E ′. Otherwise,
the outer face of E ′ is the unbounded face between f ′ and f ′′. Let Γ′ be the drawing of G′ obtained
from Γ by drawing the edge (u, v) as the straight-line segment uv.

Observe that ρk − |E(G′)| < ρk − |E(G)|. Furthermore, all the conditions of the statement are
satisfied by Γ′, E ′, and G′. Therefore, by induction, Γ′ is planar and respects E ′. The fact that the
restriction of Γ′ to G yields a planar drawing Γ of G that respects E concludes the proof. □

Lemma 3 Let G be a plane graph and let Γo be a unit-length grid drawing of the outer face fo
of G. Then, an embedding-preserving inner-rectangular unit-length drawing of G in which fo is
delimited by Γo, if any, is unique.

Proof: First, we can assume that G is connected. Indeed, if it is not, then the relative positions of
distinct connected components of G are such that each connected component lies in the outer face
of each other, as otherwise obviously G would not admit any inner-rectangular drawing and there
would be nothing to prove. It follows that Γo specifies a unit-length grid drawing of the outer face of
each connected component of G and thus it suffices to prove the lemma for an individual connected
component of G in order to prove it for G itself. So in the rest of the proof we assume that G is
connected. We denote by b(f) the walk of G that bounds a face f . Note that, for any internal face
f , b(f) must be a simple cycle, as otherwise G does not have a unit-length embedding-preserving
inner-rectangular drawing.

We prove the lemma by induction on the number i of internal faces of G. If i = 1, then G
coincides with the cycle b(fo) and it admits a unit-length embedding-preserving inner-rectangular
drawing if and only if Γo is a rectangle oriented as prescribed by the embedding of G.

If i > 1, then consider a vertex v incident to fo with minimum x-coordinate in Γo. Let f be any
internal face of G incident to v and let Pleft be the subgraph of G induced by the vertices of G with
minimum x-coordinate in Γo. Observe that, if Pleft is not a collection of (chordless) paths, then
G does not admit a unit-length embedding-preserving inner-rectangular drawing in which fo is
delimited by Γo, and the statement trivially holds. Let now Pleft(f) := Pleft∩ b(f) be the subgraph
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of Pleft induced by the vertices on the boundary of f . If Pleft(f) consists of multiple connected
components, then f cannot be drawn as a rectangle in any unit-length embedding-preserving
inner-rectangular drawing of G in which fo is delimited by Γo, and the statement trivially holds.
In fact, since v ∈ Pleft(f), we have that the drawing of the left side of a rectangle R representing f
must coincide with the drawing of Pleft(f). This in turn implies that R is prescribed, that is, the
rectangle R representing b(f) in an embedding-preserving inner-rectangular unit-length drawing
of G in which fo is delimited by Γo is univocally determined. Clearly, G does not admit a unit-
length embedding-preserving inner-rectangular drawing in which fo is delimited by Γo if (F1) R
places a vertex in V (f) \ V (fo) on top of vertices in V (fo) \ V (f) or if (F2) R assigns a vertex
on V (f) ∩ V (fo) different coordinates than the ones prescribed by Γo. If any of such conditions
holds, then the statement trivially holds. Suppose now that neither (F1) nor (F2) occurs, and let
Γ′
o be the drawing obtained from Γo by removing the edges of Pleft(f) and all the resulting isolated

vertices, if any. Similarly, let G′ be the plane graph obtained by removing from G all the edges
of Pleft(f) and all the resulting isolated vertices, if any. Note that G′ is the plane subgraph of
G′ whose internal faces are the faces of G different from f and whose outer face f ′

o is obtained
by merging fo and f , which is achieved by removing the edges and vertices of Pleft(f) except
for its end-vertices. Also, note that Γ′

o is a unit-length grid drawing of f ′
o. Therefore, since G′

contains i − 1 internal faces, we can now apply induction. The following two cases are possible.
Case 1: G′ does not admit a unit-length embedding-preserving inner-rectangular drawing in which
f ′
o is delimited by Γ′

o. In this case, G does not admit a unit-length embedding-preserving inner-
rectangular drawing in which fo is delimited by Γo, and the statement holds. Case 2: Let Γ′

be the unique unit-length embedding-preserving inner-rectangular drawing of G′ in which f ′
o is

delimited by Γ′
o; note that, since we are not in Case 1, such a drawing exists and is unique by the

inductive hypothesis. Clearly, by adding R to Γ′ we obtain a unit-length embedding-preserving
inner-rectangular drawing of G in which fo is delimited by Γo, which is unique since the drawing
of R is prescribed and since Γ′ is unique. This concludes the proof. □

Consider a connected instance of the UIRFE problem, i.e., an n-vertex connected plane graph
G; let E be the planar embedding prescribed for G. Let Γo be a unit-length grid drawing of the
walk bounding the outer face fo of E . W.l.o.g, assume that the smallest x- and y- coordinates
of the vertices of Γo are equal to 0. Next, we describe an O(n)-time algorithm, called Rectan-
gular-holes Algorithm, to decide whether G admits a unit-length inner-rectangular drawing
that respects E and in which the walk bounding fo is represented by Γo.

We first check whether each internal face of E is bounded by a simple cycle of even length,
as otherwise the instance is negative by Section 2. This can be trivially done in O(n) time. We
remove from G the bridges incident to the outer face and the resulting isolated vertices.

Now the algorithm processes the internal faces of G one at a time. When a face f is considered,
the algorithm either detects that G is a negative instance or assigns x- and y- coordinates to all
the vertices of f . In the latter case, we say that f is processed and its vertices are placed. Since
the drawing of fo is prescribed, at the beginning each vertex incident to fo is placed, while the
remaining vertices are not. Also, every internal face of E is not processed. The algorithm concludes
that the instance is negative if one of the following conditions holds: (C1) there is a placed vertex
to which the algorithm tries to assign coordinates different from those already assigned to it, or
(C2) there are two placed vertices with the same x-coordinate and the same y-coordinate. If
neither Condition C1 nor C2 occurs, after processing all the internal faces the vertex placement
provides a unit-length inner-rectangular drawing of the input instance.

To process faces, the algorithm maintains some auxiliary data structures:
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(a) Graph H and face f∗

f∗ = fo

(b) Merging f∗ with fo

Figure 9: A step of the Rectangular-holes Algorithm.

� A graph H, called the current graph, which is the subgraph of G composed of the vertices
and of the edges incident to non-processed (internal) faces. Initially, we have H = G. In
particular, we will maintain the invariant that each biconnected component of H is non-
trivial. We will also maintain the outer face of the restriction EH of E to H, which we will
still denote by fo. Given the current graph H, all the vertices incident to the outer face of EH
are already placed, i.e., the drawing of each cycle delimiting the outer face of a biconnected
component of H is determined.

� An array A, called the current outer-sorter, that contains Mx + 1 buckets, each im-
plemented as a double-linked list, where Mx is the largest x-coordinate of a vertex in Γo.
The bucket A[i] contains the placed vertices of H (i.e., those incident to the outer face of H)
whose x-coordinate is equal to i. Moreover, A is equipped with the index xmin of the first
non-empty bucket. To allow removals of vertices in O(1) time, we enrich each placed vertex
with x-coordinate i with a pointer to the corresponding list-item in the list A[i].

� A set of pointers for the edges of H: Each edge (u, v) is equipped with two pointers ℓuv
and ℓvu, that reference the faces of E lying to the left of (u, v), when traversing such an edge
from u to v and from v to u, respectively.

At each iteration the algorithm performs the following steps; see Fig. 9. Retrieve: It retrieves
an internal face f∗ with at least one vertex u with minimum x-coordinate (i.e., xmin) among the
placed vertices of H; such a vertex is incident to the outer face of H. Draw: It assigns coordinates
to all the vertices incident to f∗ in such a way that f∗ is drawn as a rectangle R∗. Note that such
a drawing is unique. Indeed, in any embedding-preserving inner-rectangular unit-length drawing
of H in which the cycle delimiting the outer face of each biconnected component of H is the one
prescribed, the left side of R∗ coincides with the maximal path L containing u that is induced by
the placed vertices of f∗ with x-coordinate equal to xmin. Merge: It merges f∗ with fo by suitably
changing the pointers of every edge incident to f∗, and by removing each edge (u, v) incident to
f∗ with pointers ℓuv = ℓvu = fo, as well as any resulting isolated vertex. Further, it updates A
consequently. Note that, after the merge step, the outer face fo of the new current graph H is
again completely drawn.
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4.1 Details of the Retrieve, Draw, and Merge Steps

We now describe each step in detail.

Retrieve f∗. We take the first vertex u in the non-empty bucket A[xmin]. Since u has the smallest
x-coordinate among the placed vertices of H, then u is incident to fo. Furthermore, since
the blocks of H are non-trivial, u has degree either two, three, or four in H.

Consider first the case in which u has degree 4. Since u is a vertex with smallest x-coordinate
in H and it is incident to fo, its neighbors must be placed with x-coordinates greater than or
equal to xmin. This is not possible since it would imply that two neighbors of u are drawn on
the same grid point. Hence, Condition C2 holds and the algorithm stops giving a negative
result.

Consider now the case in which u has degree either two or three (refer to Fig. 9(a)). Let f∗

be any (of the at most two) internal faces of H incident to u. Let L denote the maximal
path containing u that is induced by all the placed vertices of f∗ with x-coordinate xmin.
Note that the edges of L are incident to fo, and must form the left side of the rectangle R∗

representing f∗ in the unit-length grid drawing of H with the given drawing of fo. Moreover,
since all the vertices of the outer face of H have x-coordinate greater than or equal to xmin,
such side determines the coordinates of all the vertices of f∗ along R∗.

Draw f∗. We traverse the vertices of f∗ while assigning the coordinates determined in the previous
step to each vertex. If there is a vertex of f∗ for which Condition C1 holds, we conclude that
the instance is negative, and terminate the algorithm. Otherwise, each newly placed vertex
that was assigned the x-coordinate i is inserted at the beginning of A[i] (observe that the
vertices placed before drawing f∗ are already in A).

Merge f∗ with fo. We traverse counter-clockwise f∗ and, for each edge (u, v) that is traversed
from u to v, we set ℓuv to point to fo. Then, we remove from H each edge (u, v) with
ℓvu = ℓuv = fo as well as all the resulting isolated vertices, if any (see Fig. 9(b)). To finish
this step we remove from A all the vertices that were removed from H, and update xmin, if
necessary.

The proof of the next theorem exploits the Rectangular-holes Algorithm.

Theorem 3 The Unit-length Inner-Rectangular Drawing Recognition with Fixed
Embedding and Unit-length Rectangular Drawing Recognition with Fixed Embed-
ding problems are O(n)-time solvable for an n-vertex plane graph if the drawing of the outer face
is prescribed.

Proof: First, as noted previously, it suffices to look at a connected plane graph, as distinct
connected components can be dealt with independently. Indeed, the relative positions of such
components in the prescribed planar embedding force them to be one outside the other, as other-
wise the plane graph would not admit any embedding-preserving inner-rectangular drawing. This
implies that the drawing of the outer face is prescribed for each of such components.

In order to prove the theorem, we argue about the correctness and running time of the Rectan-
gular-holes Algorithm.

We start with the correctness. Consider that, if the algorithm terminates without a failure,
then, by construction, (i) each internal face of G has been drawn as a rectangle, (ii) the rotation
system of each vertex has been respected, and (iii) the edges incident to vertices of the cycle
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(a) Double (b) Slim double (c) Fat double (d) Degree-4 (e) Degree-6

Figure 10: Corner faces for the proof of Section 5.

delimiting the outer face are drawn as line segments leaving such a cycle towards the interior of
the prescribed drawing of the outer face. Thus, by Section 4, the drawing is planar. Again by
construction, the coordinates of the vertices on the outer face have not been changed and the edges
are horizontal or vertical segments of unit length, hence the drawing is a unit-length grid drawing.

Otherwise, if a failure condition is reached, then we prove thatG does not admit any embedding-
preserving unit-length grid drawing where each internal face is drawn as a rectangle and the drawing
of the outer face is as prescribed. Assume that the algorithm fails due to Condition C1, i.e., the
algorithm is forced to assign different coordinates to the same vertex. Since by Section 4 if the
drawing exists it is unique, then the instance does not admit a grid realization with the prescribed
properties. Assume instead that the algorithm fails due to Condition C2, i.e., the algorithm is
forced to assign the same coordinates to different vertices. This would imply that the drawing is
not planar, in contradiction with Section 4.

We finally prove that the Rectangular-holes Algorithm runs in O(n) time. The algorithm
performs as many iterations as the internal faces of G. At each iteration on a face f∗, it performs
a number of operations that is linear in the number of vertices and edges of f∗. Hence, each edge
is processed constant number of times, and each vertex is considered at most as many times as the
number of incident faces, i.e., at most four times. □

Section 4.1 contrasts with the NP-hardness results of Sections 3 and 3.3, where the drawing
of the outer face is not prescribed. By again exploiting the observation that any unit-length grid
drawing of a cycle with 4 or 6 vertices is a rectangle, Section 4.1 implies the following result.

Corollary 2 Deciding whether a biconnected plane graph admits a unit-length grid drawing is a
linear-time solvable problem if the drawing of the outer face is prescribed and all the internal faces
have maximum degree 6.

5 Algorithms for the URFE and UR problems

In this section we study the Unit-length Rectangular Drawing Recognition problem.
Since rectangular drawings are convex, the input graphs for the UR problem must be bicon-
nected [24].

Fixed Embedding. We start by considering instances with either a prescribed planar embedding
(Section 5) or a prescribed combinatorial embedding (Section 5).

Theorem 4 The Unit-length Rectangular Drawing Recognition with Fixed Embed-
ding problem is cubic-time solvable for a plane graph G and it is linear-time solvable if all internal
faces of G have maximum degree 6.



422 Alegŕıa et al. Unit-length Rectangular Drawings of Graphs

Proof: If the input is not biconnected, then we can determine that the instance is negative in
linear time [53]. Hence, in the following, we assume that the input is biconnected, which implies
that any face is bounded by a simple cycle.

In order to solve the URFE problem in polynomial time, we guess all the possible rectangular
grid drawings of the outer face fo. For each of them we invoke Section 4.1. We have that the
rectangular grid drawings of fo are in one-to-one correspondence (up to a rotation of 90◦, 180◦,
or 270◦) with the possible choices of two vertices that become consecutive corners of the drawing.
This corresponds to O(n2) choices for the drawing of fo. For each choice the algorithm Rectan-
gular-holes Algorithm finds a unit-length grid rectangular drawing in O(n) time, if it exists.

Assume now that all internal faces have maximum degree 6. Our strategy is to efficiently
determine the drawing of the outer face of the input graph G and then to invoke Section 4.1 to
conclude the proof.

Note that, if G is a 4-cycle or a 6-cycle, then the instance is trivially positive. We henceforth
assume this is not the case. We have also the following simple cases.

� A double corner face is a degree-4 face with three edges incident to fo, see Fig. 10(a).

� A slim double corner face is a degree-6 face with five edges incident to fo, see Fig. 10(b).

� A fat double corner face is a degree-6 face with four edges incident to fo, see Fig. 10(c).

If G has a double, slim double, or fat double corner face, then such a face must provide two
consecutive 270◦ angles incident any realization of f0 as a rectangle, hence the drawing of the
outer face is prescribed and Rectangular-holes Algorithm can be invoked.

Suppose now that none of the aforementioned cases holds. A corner face is a degree-4 face
that has two edges incident to the outer face fo, see Fig. 10(d), or a degree-6 face that has three
edges incident to fo, see Fig. 10(e). Observe that, by the assumption that there is no double, slim
double, or fat double corner face, a face is incident to a corner of a rectangular drawing of fo if and
only if it is a corner face. Hence, there must be exactly four corner faces in order for a rectangular
drawing of the input instance to exist, otherwise the input instance is negative. The four corner
faces can be trivially found in O(n) time. They determine a constant number of possible drawings
of the outer face as follows. If a corner face has degree-4, then its degree-2 vertex must be a corner
of the drawing of the outer face. If a corner face has instead degree-6, then one of its two degree-2
vertices must be a corner of the drawing of the external face. Hence we have at most 24 = O(1)
different possible choices for the drawing of the outer face. We solve the URFE problem in this
setting by invoking Rectangular-holes Algorithm with each choice as the prescribed drawing
of the outer face of G. □

By showing that any combinatorial embedding has a unique candidate outer face supporting a
unit-length rectangular drawing, we get the following.

Theorem 5 The Unit-length Rectangular Drawing Recognition with Fixed Embed-
ding problem is cubic-time solvable for an embedded graph G, and it is linear-time solvable if all
but at most one face of G have maximum degree 6.

Proof: Observe that, given two rectangles R1 and R2, a necessary condition for drawing R2 inside
R1 is that the perimeter of R2 is smaller than the perimeter of R1. Hence, given a connected
embedded graph G, we first compute the faces of G with the maximum number of edges in linear
time. Suppose that there exists exactly one face fo with the maximum number of edges. We invoke
Section 5 for checking in cubic time (linear, if all the faces different from fo have degree 6) if the
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plane graph consisting of G with the prescribed outer face fo is a positive or negative instance of
URFE. Suppose now that there exists more than one face with the maximum number of edges.
If G is just an even-length simple cycle, then we conclude that G is a positive instance of URFE.
Otherwise, we conclude the opposite. □

Variable Embedding. Now, we turn our attention to instances with a variable embedding. We
start by providing some relevant properties of the graphs that admit a rectangular (not necessarily
unit-length or grid) drawing. Let G be one such graph. To avoid degenerate cases, in what follows,
we assume that G is not a cycle, a special case which can be dealt with separately. Let Γ be a
rectangular drawing of G and let Γo be the rectangle delimiting the outer face of Γ. Refer to Fig. 11.
Consider the plane graph GΓ corresponding to Γ. Since Γ is convex, then GΓ is a subdivision of
an internally triconnected plane graph [7, Theorem 1]. That is, every separation pair {u, v} of GΓ

is such that u and v are incident to the outer face and each connected component of GΓ \ {u, v}
contains a vertex incident to the outer face.

Consider a separation pair {u, v} of G. In the following, we provide several useful properties
related to {u, v}.

Property 2 If at least one of u and v is not in Γo, then there exist exactly two components of G
with respect to {u, v}, one of which is a simple path. Also, the vertices of such a path are drawn
on a straight line. See, e.g., the vertices x1 and y1 in Fig. 11.

Proof: The first part of the statement is a consequence of the fact that G is a subdivision of an
internally-triconnected plane graph. The second part, instead, follows immediately from the fact
that Γ is rectangular. □

Property 3 If both u and v are in Γo, then there exist either two or three components of G with
respect to {u, v}.

Proof: The statement follows from the fact that, since u and v are in Γo and since Γo is drawn as
a rectangle, their degree is at most 3. □

Property 4 If both u and v are in Γo and G has three components G1, G2, and G3 with respect
to {u, v}, then there is exactly one component, say G2, such that G2 \ {u, v} does not contain
vertices in Γo. Also, G2 is a simple path whose vertices are drawn on a straight line. Furthermore,
u and v are drawn on opposite sides of Γo. Finally, we have that each of u and v has degree 1
both in G1 and in G3. See, e.g., the vertices x2 and y2 in Fig. 11.

Proof: The component G2 must be a simple path, since G is a subdivision of an internally-
triconnected plane graph. Also, the vertices of such a path must be drawn either along a horizontal
or a vertical line, as otherwise Γ would not be rectangular. Finally, since u and v are incident to
the outer face and since they both have degree 1 in G2, we have that each of u and v has degree 1
both in G1 and in G3. □

Property 5 There exist no two separation pairs {u1, v1} and {u2, v2} of G such that u1 and v1 lie
on opposite sides of Γo, u2 and v2 lie on the opposite side of Γo, and u1 and u2 lie on perpendicular
sides of Γo.

Proof: Suppose for a contradiction that there exist two separation pairs {u1, v1} and {u2, v2} of
G with the properties in the statement. Then there exists an internal face f1 of Γ incident to u1

and to v1, and an internal face f2 of Γ incident to u2 and to v2. However, since Γ is rectangular,
this is possible only if f1 = f2, which contradicts the assumption that G is not a cycle. □
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Property 6 If both u and v are in Γo and G has two components G1 and G2 with respect to {u, v}
such that (i) both G1 and G2 are not simple paths in G, and (ii) both u and v have degree 2 in G1,
then u and v are drawn on opposite sides of Γo and G1 contains a path P1 between u and v, whose
vertices are on a straight line, that is incident to an internal face of Γ. See, e.g., the vertices x3

and y3 in Fig. 11.

Proof: Note that each of u and v is incident to an internal edge that belongs to G1 (possibly
the edge (u, v)) and each such edge must be incident to the same internal face f of Γ. Since f
is rectangular, the vertices of the subpath P1 of f connecting u and v and passing through these
edges must be drawn along a straight line. To complete the proof, we observe that this implies
that u and v must be drawn on opposite sides of Γo. □

The next properties follow directly from the fact that Γ is rectangular.

Property 7 Suppose that G has two components G1 and G2 with respect to {u, v}. If u and v
are on the same side of Γo, then exactly one of G1 and G2 is a path whose vertices lie in Γo on a
straight line. See, e.g., the vertices x4 and y4 in Fig. 11.

Property 8 Suppose that G has two components G1 and G2 with respect to {u, v}. If u and v
are incident to perpendicular sides of Γo, then exactly one of G1 and G2, say G1, is a simple path.
Moreover, G1 is drawn in Γ as an orthogonal polygonal line with a single bend. See, e.g., the
vertices x5 and y5 in Fig. 11.

Property 9 Suppose that G has two components G1 and G2 with respect to {u, v}. If u and v are
on opposite sides of Γo, then each of u and v has degree 1 in at least one of G1 and G2. See, e.g.,
the vertices x6 and y6 in Fig. 11.

A caterpillar is a tree such that removing its leaves results in a path, called spine, possibly
composed of a single node. The pruned SPQR-tree of a biconnected planar graph G, denoted by
T ∗, is the tree obtained from the SPQR-tree T of G, after removing the Q-nodes of T .

Lemma 4 Let G be a graph that admits a rectangular drawing. Then the pruned SPQR-tree T ∗

of G is a caterpillar with the following properties:

(i) All its leaves are S-nodes;

(ii) its spine contains no two adjacent R-nodes;

(iii) its spine contains no two adjacent nodes µ and ν such that µ is a P -node and ν is an R-node;

(iv) each P -node µ has exactly 3 neighbors in T ; and

(v) the skeleton of each S-node of the spine of T ∗ contains two chains of virtual edges corre-
sponding to Q-nodes, separated by two virtual edges, each corresponding to either a P - or an
R-node.

Proof: In the following, we assume that G is not a cycle, as otherwise the statement trivially
holds. With this assumption, T ∗ contains at least one P - or R-node.

Let Γ be a rectangular drawing of G, and let Γo be the drawing of the outer face of Γ. Refer
to Fig. 11.
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Figure 11: A rectangular grid drawing of a planar graph and its pruned SPQR-tree T ∗. S-, P -,
and R-nodes are circles, rhombuses and squares, respectively. The subgraphs corresponding to
S-nodes that are leaves of T ∗ are thick.

Suppose, for a contradiction, that there exist two adjacent R-nodes µ and ν in the spine of T ∗.
Let {u, v} be the separation pair shared by their skeletons, and let eµ,ν and eν,µ be the virtual
edges in sk(ν) and in sk(µ) corresponding to µ and to ν, respectively. By Section 5, both u and v
must lie in Γo. By Section 5, u and v must lie on opposite sides of Γo. Therefore, by Section 5, each
of u and v has degree 1 in at least one of exp (eµ,ν) and exp (eν,µ), which implies that either µ or
ν is an S-node. Therefore, we get a contradiction. This proves Condition (ii) of the statement.

By Section 5, the poles of a P -node of T are incident to Γo. By Section 5, the neighbors of a
P -node are either S- or Q-nodes. This proves Condition (iii).

A P -node µ of T has at least three neighbors in T , by definition. By Section 5, we have that
any node of T has at most three neighbors in T . This proves Condition (iv).

Next, we show that T ∗ is a caterpillar, and that it satisfies Conditions (i) and (v) of the
statement. We distinguish two cases.

Case 1: there exists no separation pair {u, v} of G such that u and v are on opposite sides of
Γo. In this case, by Section 5, T ∗ contains no P -nodes. For any separation pair {u, v} of G, we
have that (i) there exist exactly two components of G with respect to {u, v} and that (ii) exactly
one of the components of G with respect to {u, v} corresponds to an S-node, which is a simple
path. This comes from Section 5 if at least one of u and v is an internal vertex, from Section 5 if u
and v lie on perpendicular sides of Γo, and from Section 5 if u and v lie on the same side of Γo. It
follows that there exist no two R-nodes in T . Note that T , and hence T ∗, contains S-nodes, as the
corners of Γ0 are vertices of G with degree 2. Therefore, T ∗ is a star whose leaves are S-nodes and
whose central vertex is an R-node. This proves Condition (i); also, Condition (v) is vacuously
true.

Case 2: There exists a separation pair {u, v} of G such that u and v are on opposite sides
of Γo. By Section 5, any other separation pair {u′, v′} different from {u, v} where u′ and v′

are on opposite sides of Γo is such that either u and u′ are on the same side of Γo or u and
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v′ are on the same side of Γo. Therefore, after a possible rotation by a multiple of 90◦, in the
following we will assume that u lies on the top side of Γo and v lies on the bottom side of Γo. Let
S = [{u1, v1}, {u2, v2}, . . . , {uk, vk}] be the separation pairs of G such that u1, u2, . . . , uk lie, in
this left-to-right order, on the top side of Γo, such that v1, v2, . . . , vk lie, in this left-to-right order,
on the bottom side of Γo, such that all these vertices have degree 3, and such that ui and vi share
the same x-coordinate, for i = 1, . . . , k. The next claim shows that k ≥ 1.

Claim 1 If there exists a separation pair {u, v} of G such that u and v are on opposite sides of
Γo, then there exists at least one separation pair {u′, v′} such that:

� u′ and v′ are on opposite sides of Γo;

� u′ and v′ share the same x-coordinate in Γ;

� u′ and v′ have degree 3 in G; and

� there exists a path between u′ and v′ drawn along a vertical line that is incident to an inter-
nal face of Γ.

Proof. The proof distinguishes two cases.
Suppose first that at least one of u and v, say v, has degree 3. We show that there exists a

vertex u′ lying along the top side of Γo, where possibly u′ = u, such that the separation pair {u′, v}
satisfies the properties required by the claim. Note that, since v has degree 3 and is incident to
the bottom side of Γo, two of its neighbors lie along the bottom side of Γo. Therefore, the third
neighbor of v, must either be a vertex u∗ incident to the top side of Γo (possibly u∗ = u) or an
internal vertex iv lying vertically above v. In the former case, since Γ is rectangular, we have
that u∗ has degree 3, lies vertically above v in Γ (which implies that u∗ and v have the same
x-coordinate), and is connected to v via a path (indeed, a single edge) drawn along a vertical
line. Thus, setting u′ = u∗ yields the desired separation pair. In the latter case, since {u, v} is a
separation pair, there exists an internal face f shared by u, v, and iv. Let u′ be the first vertex
of the top side of Γo that is encountered when traversing the boundary of f starting at v and
passing through iv. Consider the subpath of f between v and u′ that contains iv. Since iv lies
vertically above v in Γ, and since Γ is rectangular, this path must be drawn as a straight-line
segment between v and u′, which implies that u′ has degree 3 and has the same x-coordinate as v.
Therefore, since both u′ and v belong to f and lie on opposite sides of Γo, they form the sought
separation pair.

Suppose next that both u and v have degree-2. Consider the internal face f of Γ shared by u
and v. We show that there exists a separation pair that satisfies the properties of the statement
whose vertices are incident to f . If f contains no degree-3 vertex incident to the top side of Γo and
no degree-3 vertex incident to the bottom side of Γo, then both the paths of G that form the top
and the bottom side of Γo belong to f , hence G is a cycle, which contradicts the assumptions of
the lemma. Otherwise, f contains a degree-3 vertex u′ incident to the top side of Γo and a vertex
v′ incident to the bottom side of Γo (or a degree-3 vertex v′ incident to the bottom side of Γo and
a vertex u′ incident to the top side of Γo). Then the existence of the sought separation pair can
be deduced as in the first case of the proof, with u′ and v′ playing the role of u and v. ■

We set L = {u0, v0} ◦ S ◦ {uk+1, vk+1}, where u0, v0, uk+1, and vk+1 are the vertices of G lying at
the top-left, bottom-left, top-right, and bottom-right corner of Γo, respectively, where ◦ denotes
the concatenation operator. For i = 0, . . . , k+1, let Pi be the path in G connecting ui and vi that
is drawn along a vertical line in Γ. This path exists by the previous claim, for i = 1, . . . , k, and
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since Γo is a rectangle, for i ∈ {0, k+1}. Also, let Ci be the cycle of G that contains ui, ui+1, vi+1,
and vi, that contains Pi and Pi+1, and that is drawn as a rectangle in Γ. Clearly, any two cycles
Ci and Ci+1 share the path Pi+1. We denote by Gi the subgraph of G induced by the vertices in
the interior and along the boundary of Ci.

We show that T ∗ can be constructed iteratively starting from the empty tree, as follows. At
each point of the construction, T ∗ will be a caterpillar whose spine does not have a P -node as an
end-point. Also, a leaf of T ∗ will be denoted as active and will be used in the subsequent iteration,
if any, as an attachment endpoint to extend T ∗.

The construction of T ∗ starts by considering the following two cases.

� If G0 = C0, we introduce an S-node µ0 in T ∗. In particular, (u1, v1) is a virtual edge of
sk(µ0), and the other virtual edges of sk(µ0) correspond to the edges of C0 incident to Γ0.

� Otherwise, G0 ̸= C0. Consider a separation pair {u, v} of G0. By Section 5 applied to G0

and since {u1, v1} is the first pair in S, we have that u and v do not lie one on the top and
one on the bottom side of Γ. Therefore, by Section 5, one of the two components of G0

with respect to {u, v} is a simple path. Thus, G0 is the subdivision of a triconnected planar
graph. Hence, we introduce an R-node µ0 in T ∗ whose skeleton is obtained by replacing each
maximal induced path in G0 not containing u1 or v1 in its interior with a virtual edge. For
each of such virtual edges that does not correspond to a single real edge, we add to T ∗ an
S-node adjacent to µ0; note that there are at least two S-nodes adjacent to µ0, as u0 and v0
have degree 2 in G. We also introduce in sk(µ0) the virtual edge (u1, v1).

In both cases (i.e., G0 = C0 and G0 ̸= C0), µ0 is the active endpoint of T ∗.
Next, for i = 1, . . . , k, we consider the separation pair {ui, vi}. Denote by ξ the active endpoint

of the spine (right before considering the current index i). Then ξ is either an S-node or an R-node.
Also, sk(ξ) contains a virtual edge (ui, vi); note that this is true for i = 1, as described above. As
before, we distinguish two cases.

� Suppose that Gi = Ci. We have two further cases.

– If ξ is an S-node, then we introduce a P -node µi,1 in T ∗ adjacent to ξ and either one
or two more S-nodes adjacent to µi,1. In particular, the skeleton of µi,1 (in T ) is a
bundle of three parallel edges (ui, vi). If Pi is a single edge, then we add to T ∗ a single
S-node µi,3 adjacent to µi,1, while if Pi is not a single edge, then we add to T ∗ two
more S-nodes µi,2 and µi,3 adjacent to µi,1. If Pi is not a single edge, then the skeleton
of µi,2 is a cycle containing one virtual edge for each edge of the path Pi plus a virtual
edge (ui, vi). The skeleton of µi,3 is a cycle consisting of a virtual edge (ui, vi), followed
by a virtual edge for each horizontal edge in the top side of Ci, followed by one virtual
edge (ui+1, vi+1), followed by a virtual edge for each horizontal edge in the bottom side
of Ci. Finally, we set µ1,3 as the active node of T ∗.

– If ξ is an R-node, then we introduce an S-node µi in T ∗ adjacent to ξ whose skeleton is a
cycle consisting of a virtual edge (ui, vi), followed by one virtual edge for each horizontal
edge in the top side of Ci, followed by a path P ∗ of virtual edges defined below, followed
by one virtual edge for each horizontal edge in the bottom side of Ci. If i < k, then
the path P ∗ consists of the single virtual edge (ui+1, vi+1); otherwise, if i = k, then the
path P ∗ contains a virtual edge for each real edge incident to the right side of Γo (i.e.,
for each edge of the right side of Ck). Finally, we set µi as the active endpoint of T ∗.
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Figure 12: Four planar embeddings of a graph G that support a rectangular drawing of G,
obtained by selecting one of the planar embeddings E1 and E4 of the subgraph G0 of G and one of
the the planar embeddings E2 and E3 of the subgraph G4 of G. Only the embeddings E1 and E2
support a unit-length rectangular drawing.

� Suppose now that Gi ̸= Ci. With the same motivation as for G0, we introduce an R-node
µi in T ∗ adjacent to ξ whose skeleton is obtained by replacing each maximal induced path
in Gi that does not contain ui, vi, ui+1, or vi+1 with a virtual edge. We add an S-node for
each of such virtual edges that does not correspond to a single real edge. Also, we introduce
in sk(µi) the virtual edge (ui, vi) and, unless i = k, the virtual edge (ui+1, vi+1). Finally, we
set µi as the active endpoint of T ∗.

It is easy to observe that, after each step of the inductive construction of T ∗, the tree T ∗

is a caterpillar whose spine connects µ0 with the active endpoint of T ∗, hence T ∗ is eventually
a caterpillar. Also, the construction guarantees that Condition (i) and Condition (v) of the
statement are satisfied. □

Consider a graph G that satisfies the conditions of Section 5. If the spine of the pruned SPQR-
tree of G contains at least two nodes or at least one P -node, we say that G is composite; otherwise,
G is the subdivision of a triconnected planar graph, and we say it is pure. Exploiting Section 5,
we can prove the following; refer to Fig. 12.

Lemma 5 Let G be an n-vertex graph. The following hold:

� All the unit-length rectangular drawings of G, if any, have the same planar embedding E (up
to a reflection), which can be computed in O(n) time.

� If G is composite, all the rectangular drawings of G, if any, have at most four possible planar
embeddings (up to a reflection), which can be computed in O(n) time.
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Proof: We prove the first part of the statement.

Suppose that G has a unit-length rectangular drawing Γ. By Section 5, the pruned SPQR-tree
T ∗ of G is a caterpillar. By Condition (i) of Section 5, all the nodes of T ∗ that are not in the
spine are S-nodes, hence all the combinatorial embeddings of G are obtained by embedding the
skeletons of the P - and R-nodes of the spine of T ∗.

We arbitrarily select a normal orientation T ∗ such that its spine is a directed path, and visit
the spine µ1, . . . , µk of T ∗ according to such an orientation. Note that neither µ1 nor µk can be an
S-node, by Condition (i) of Section 5 and since T does not contain any two adjacent S-nodes.
We construct the planar embedding E of G and select its outer face fo as follows. All the choices
we perform are obliged, as a consequence of Section 5 and of Section 5.

Suppose that µ1 is a P -node. By Section 5, the poles of µ1 are incident to fo. By Section 5, we
have that either (i) exactly one neighbor ν of µ1 is a Q-node, or (ii) exactly one neighbor ν of µ1

is an S-node corresponding to a simple path in G, or (iii) at least two neighbors of µ1 are S-nodes
corresponding to a simple path in G. In cases (i) and (ii), the virtual edge of sk(µ1) corresponding
to ν must lie in between the other two virtual edges. In case (iii), since Γ is rectangular, one
of the simple paths corresponding to the neighbors of µ must be shorter than the others. The
corresponding virtual edge must lie in between the other virtual edges in the embedding of sk(µ1).
Two cases are possible: Either µ1 is the unique node of the spine of T ∗ or not. In the former
case, the virtual edges corresponding to the remaining two neighbors of µ1 in T ∗ can be ordered
arbitrarily. Note that this yields exactly two combinatorial embeddings of G that are one the
reflection of the other. Otherwise, we set the virtual edge corresponding to µ2 at the rightmost
virtual edge in the embedding of sk(µ1).

Suppose that µ1 is an R-node. Two cases are possible: Either µ1 is the unique node of the spine
of T ∗ or not. In the former case, G is the subdivision of a triconnected planar graph. Hence, it
has a unique combinatorial embedding E , up to a reflection. Since in any unit-length rectangular
drawing of G, the outer face must be bounded by a face of E of maximum size and since no internal
face may have the same size of the outer face, we can determine in O(n) time whether E does not
support a rectangular drawing or whether a candidate outer face of E exists. This determines a
unique candidate planar embedding of G, up to a reflection. In the latter case, consider the virtual
edge e2 corresponding to µ2 in sk(µ1). Recall that, since µ1 is a R-node, sk(µ1) admits a unique (up
to a reflection) combinatorial embedding. In such an embedding, we remove the edge e1 = (u1, v1),
and let sk−(µ1) be the resulting embedded graph. Note that, by Condition (i) of Section 5, each
virtual edge of sk−(µ1) corresponds to a simple path in G. Let G− be the embedded subgraph of
G obtained by replacing each virtual edge of sk−(µ1) with the associated path. Let P and P1 be
the two paths of G− between u1 and v1 that share the same face of G− (note that, they stem from
the face of sk−(µ1) that used to host the edge e1). Since Γ is unit-length and rectangular, one of
P and P1, say P1, is shorter than the other. We select the embedding of sk(µ1) so that the path
of sk(µ1) that corresponds to P1 is incident to the right outer face of the embedding of sk(µ1).

Consider now a node µi, with 1 < i < k. Let ei−1 and let ei be the virtual edges of sk(µi)
corresponding to µi−1 and µi+1. If µi is an S-node, then there is no embedding choice to perform.
Otherwise, we exploit the following observation. Since a rectangular drawing of G is convex, the
separation pairs corresponding to the poles of P - and R-nodes must be incident to the outer face
of any rectangular drawing of G [24, 41]. Therefore, the embedding choices for µi are described
below.

Suppose that µi is a P -node. Let ν be the neighbor of µi different from µi−1 and µi+1. By
Section 5, we have that either (i) ν is a Q-node, or (ii) ν is an S-node corresponding to a simple
path in G. In both cases, the virtual edge of sk(µi) corresponding to ν lies in between ei−1 and



430 Alegŕıa et al. Unit-length Rectangular Drawings of Graphs

ei. Also, we let ei−1 and ei be the leftmost and the rightmost virtual edges in the embedding of
sk(µi), respectively.

Suppose that µi is an R-node. Recall that, since µi is an R-node, sk(µi) admits a unique (up
to a reflection) combinatorial embedding. We select the embedding of sk(µi) so that ei−1 and ei
are incident to the left outer face and to the right outer face of such an embedding, respectively.

Finally, consider now the node µk. The embedding of sk(µk) can be selected, based on its type,
as described for µ1.

Now, we prove the second part of the statement. Recall that the separation pairs corresponding
to the poles of P - and R-nodes must be incident to the outer face of any rectangular drawing of
G. Therefore, the embedding choices for the P - and R-nodes µi, with 1 < i < k, in an embedding
that supports a rectangular drawing are obliged and correspond to the ones described above. Also,
for the S-nodes there are no embedding choices. Therefore, the only remaining embedding choices
occur on µ1 and µk.

If k = 1, then the spine of T ∗ contains a single node. If µ1 = µk is an R-node, then G is pure
and it is the subdivision of a triconnected planar graph and there is nothing to prove. Otherwise,
µ1 = µk is a P -node, and G consists of three paths sharing their end-vertices. Therefore, it admits
three planar embeddings, up to a reflection.

If k > 1, consider node µ1. If µ1 is an R-node, then consider the subgraphG0 ofG corresponding
to it. Namely, let eµ1,µ2 the virtual edge of sk(µ2) corresponding to µ1, then G0 = exp(eµ1,µ2).
As shown above, G0 is the subdivision of a triconnected planar graph. Since it admits a unique
combinatorial embedding (up to a reflection), since there exists a unique face of such an embedding
that contains the poles of µ1, and since these vertices must be incident to the outer face of a planar
embedding of G that supports a rectangular drawing of G, we have that G0 admits only two
candidate planar embeddings. If µ1 is a P -node, then let ν1, ν2, and ν3 be its three neighbors (see
Section 5) and let ν3 be its neighbor in the spine of T ∗. By Section 5, ν1 and ν2 are S-nodes whose
corresponding subgraph of G is a simple path, whereas the subgraph of G corresponding to ν3 is
not a simple path. Note that, because any rectangular drawing is also convex, the embedding E1
of sk(µ1) induced by any embedding of G that supports a rectangular drawing is such that the
virtual edge corresponding to ν3 is incident to the outer face of E1. It follows that the only two
possible choices to determine a candidate embedding of sk(µ1) depend on the fact that the virtual
edge corresponding to ν1 is before or after the virtual edge corresponding to ν2. The degrees of
freedom of the embeddings of sk(µk) are analogous. Hence, if k ̸= 1, we have four possible planar
embeddings of G, up to a reflection. □

The next theorem shows that the UR problem is polynomial-time solvable. Surprisingly, the
problem seems to be harder for pure graphs.

Theorem 6 The Unit-length Rectangular Drawing Recognition problem is cubic-time
solvable. Also, if the input planar graph is composite, then the Unit-length Rectangular
Drawing Recognition problem is linear-time solvable.

Proof: First, we test whether G satisfies the conditions of Section 5, which can clearly be done in
O(n) time, where n is the number of vertices of G, by computing and visiting T ∗. We reject the
instance if this test fails.

If G is pure, then the spine of T ∗ consists of a single R-node, by definition, hence G is the
subdivision of a triconnected planar graph and it admits a unique combinatorial embedding, up to
reflection. Hence, we can test whether G admits a unit-length rectangular drawing in O(n3) time
by means of Section 5.
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If G is composite, then, by means of Section 5, we compute in O(n) time the unique candidate
planar embedding E of G that may support a unit-length rectangular drawing of G, if any. Let
fo be the outer face of E . We show that there exists a unique candidate drawing Γo of fo, that
is, in any unit-length rectangular drawing of G the outer face is delimited by the same rectangle
Γo, up to a reflection and and a rotation. Provided this statement, we can use Section 4.1 to test
in O(n) time for the existence of a unit-length rectangular drawing of G that respects the planar
embedding E and such that fo is drawn as Γo.

We now show that there exists a unique candidate drawing Γo of fo. We distinguish two cases,
depending on whether the spine of T ∗ contains a P -node (Case 1) or not (Case 2). In Case 1,
let µ be a P -node of the spine of T ∗, and let u and v be the poles of µ. By Section 5, these vertices
lie on opposite sides of the rectangle Γo bounding the outer face of any rectangular drawing Γ of
G and there exists exactly one component of G with respect to {u, v} that is a simple path P
whose vertices are drawn on a straight line in Γ. In Case 2, let µ be an R-node of the spine of T ∗,
and let u and v be the poles of µ. Since the spine of T ∗ does not contain any P -node and since
it is not a single R-node, there exists a neighbor ν of µ in the spine of T ∗ that is an S-node. By
Section 5, vertices u and v lie on opposite sides of the rectangle Γo bounding the outer face of any
rectangular drawing Γ and there exists a path P between u and v that belongs to the component
of G with respect to {u, v} corresponding to µ; also, the path P is incident to an internal face of
Γ and its vertices are drawn on a straight line. Both in Case 1 and in Case 2, let |P | and |fo|
denote the length of P and fo, respectively. By Section 5, up to a 90◦ rotation of Γ, the value |P |
must correspond to the height of Γ, whereas (|fo| − 2|P |)/2 must correspond to the width of Γ.
Note that, if the latter value is less than or equal to zero, then G does not admit any unit-length
rectangular drawing, in which case we reject the instance. Let r (resp. ℓ) be the number of edges
traversed when walking in clockwise (resp. counter-clockwise) direction from u and v along the
cycle Co bounding fo. By the above discussion, the four vertices ur, vr, vℓ, and uℓ that lie at
the corners of the rectangle Γo bounding the outer face of any rectangular drawing Γ of G are the
vertices at distance (r−|P |)/2, (r+ |P |)/2, r+(ℓ−|P |)/2 and r+(ℓ+ |P |)/2 in clockwise direction
from u along Co. It follows that Γo is uniquely defined, which proves the statement and hence the
theorem. □

The techniques we developed for unit-length drawings allow us to prove the following.

Theorem 7 The problem of testing for the existence of a rectangular drawing of an n-vertex
planar graph G is solvable in O(n2 log3 n) time. Also, if G is composite, the problem is solvable in
O(n log3 n) time.

Proof: First, we test whether G satisfies the conditions of Section 5, which can clearly be done in
O(n) time by computing and visiting T ∗, and reject the instance if this test fails.

We start by considering the case in which G is composite. Due to Section 5, only up to four
planar embeddings of G are candidates for a rectangular drawing of G that respects them. Also,
such embeddings can be computed in O(n) time. For each of them, we test for the existence of a
rectangular drawing respecting it by solving a max-flow problem on a linear-size planar network
with multiple sources and sinks in O(n log3 n) time [14]. Such a network can be defined following
Tamassia’s [20] classic approach to test for the existence of rectilinear drawings of plane graphs.
In such a network N , we have that:

� each node of N corresponding to a vertex of G is a source producing 4 units of flow, each
corresponding to a 90◦ angle;
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� each node of N corresponding to a face f of G is a sink consuming 2|f | − 4 (resp. 2|f |+ 4)
units of flow if f is an internal face (resp. the outer face) of G, where |f | is the length of f ;

� each node of N corresponding to a vertex of G has an outgoing arc directed toward the nodes
corresponding to its incident faces; and

� each arc of N has a lower bound of 1 unit of flow.

The existence of a flow in N from the sources to the sinks with value 4n corresponds to the
existence of a rectilinear drawing of G that respects its planar embedding. It is easy to modify N
so that the existence of a flow with value 4n corresponds to the existence of a rectangular drawing
of G. Namely, it suffices to equip each arc of N with an upper bound of 2 (resp. 3) if the node
of N the arc is incident to corresponds to an internal face (resp. the outer face) of G, and with a
lower bound of 1 (resp. 2) if the node of N the arc is incident to corresponds to an internal face
(resp. the outer face) of G. The existence of a flow of value 4n in N can be tested by using the
max-flow algorithm of Borradaile et al. [14].

If G is pure, then G is the subdivision of a triconnected planar graph. Let E be the unique
combinatorial embedding of G. For each possible selection of a face of E as the outer face, we
consider the resulting planar embedding of G and use the same strategy as above to test for the
existence of a rectilinear drawing of G that respects such a planar embedding. Since there are
O(n) possible choices of the outer face, this results in an O(n2 log3 n)-time algorithm. □

6 Conclusions and Open Problems

We studied the recognition of graphs admitting the beautiful drawings that require rectilinear
edges of unit length, planarity, and convexity of the faces. We showed that, if the outer face is
required to be drawn as a rectangle, the problem is polynomial-time solvable, while it is NP-hard
if the outer face is an arbitrary polygon, even if the input is biconnected, unless such a polygon is
specified in advance. These results hold both in the fixed-embedding and in the variable-embedding
settings. A byproduct of our results is a polynomial-time algorithm to recognize graphs admitting
a rectangular (non-necessarily unit-length) drawing.

It is worth remarking that if the input is a subdivision of a triconnected planar graph, then
our algorithms pay an extra time to handle the outer face. Specifically, for unit-length rectangular
drawings, an extra quadratic time is used to guess a rectangular drawing of the unique candidate
outer face, while, for general rectangular drawings, an extra linear time is used to determine the
actual candidate outer face. Hence, it is appealing to study efficient algorithms for this specific case.
Observe that the NP-hardness results on trees in [12, 33] heavily rely on the variable embedding
setting.
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