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Abstract. In a right-angle crossing (RAC) drawing of a graph, each edge is
represented as a polyline and edge crossings must occur at an angle of exactly 90◦,
where the number of bends on such polylines is typically restricted in some way. While
structural and topological properties of RAC drawings have been the focus of extensive
research and particular attention has been paid to RAC drawings with at most 0,
1, 2 and 3 bends per edge, little was known about the boundaries of tractability for
computing such drawings. In this paper, we initiate the study of bend-restricted RAC
drawings from the viewpoint of parameterized complexity. In particular, we establish
that computing a RAC drawing of an input graph G with at most b bends where each
edge e has a prescribed upper-bound 0 ≤ β(e) ≤ 3 on the number of bends it can
support (or determining that none exists) is:

� fixed-parameter tractable parameterized by the feedback edge number of G, and

� fixed-parameter tractable parameterized by b plus the vertex cover number of G.

1 Introduction

Today we have access to a wealth of approaches and tools that can be used to draw planar graphs,
including, e.g., Fáry’s Theorem [29] which guarantees the existence of a planar straight-line drawing
for every planar graph and the classical algorithm of de Fraysseix, Pach and Pollack [16] that
allows us to obtain straight-line planar drawings on an integer grid of quadratic size. However,
much less is known about the kinds of drawings that can be achieved for non-planar graphs. The
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tian.roeder@student.tuwien.ac.at (Sebastian Röder) florian.schager@tuwien.ac.at (Florian Schager)

This work is licensed under the terms of the CC-BY license.

http://dx.doi.org/10.7155/jgaa.v28i2.2995
mailto:cbrand@ac.tuwien.ac.at
mailto:rganian@gmail.com
mailto:sebastian.roeder@student.tuwien.ac.at
mailto:sebastian.roeder@student.tuwien.ac.at
mailto:florian.schager@tuwien.ac.at
https://creativecommons.org/licenses/by/4.0/


132 Brand et al. Fixed-Parameter Algorithms for Bend-Restricted RAC Drawings

(a) RAC drawing of K5 (b) RAC drawing of K3,4

Figure 1: Examples of RAC drawings.

study of combinatorial and algorithmic aspects of such drawings lies at the heart of a research
direction informally referred to as “beyond planarity” (see, e.g., the relevant survey and book
chapter [22, 19]).

An obvious goal when attempting to visualize non-planar graphs would be to obtain a drawing
which minimizes the total number of crossings. This question is widely studied within the context
of the crossing number of graphs, and while obtaining such a drawing is NP-hard [33] it is known to
be fixed-parameter tractable when parameterized by the total number of crossings required thanks
to a seminal result of Grohe [34]. However, research over the past twenty years has shown that
drawings which minimize the total number of crossings are not necessarily optimal in terms of
human readability. Indeed, the topological and geometric properties of such drawings may have a
significantly larger impact than the total number of crossings, as was observed, e.g., by the initial
informal experiment of Mutzel [41] and the pioneering set of user experiments carried out by the
graph drawing research lab at the University of Sydney [36, 38, 37]. The latter works demonstrated
that “large-angle drawings” (where edge crossings have larger angles) are significantly easier to
read than drawings where crossings occur at acute angles.

Motivated by these findings, in 2011 Didimo, Eades, and Liotta investigated graph drawings
where edge crossings are only permitted at 90◦ angles [21] (see Figure 1 for an illustration).
Today, these right-angle crossing (or RAC ) drawings are among the best known and most widely
studied beyond-planar drawing styles [22, 19], with the bulk of the research to date focusing on
understanding necessary and sufficient conditions for the existence of such drawings as well as the
space they require [3, 4, 17, 18, 8, 1, 2, 28]. A prominent theme in the context of RAC drawings
concerns the number of times edges are allowed to be bent: it has been shown that every graph
admits a RAC drawing if each edge can be bent 3 times [21], and past works have considered
straight-line RAC drawings as well as RAC drawings where the number of bends per edge is limited
to 1 or 2.

And yet, in spite of the considerable body of work concentrating on combinatorial and topological
properties of such drawings, so far almost nothing is known about the complexity of computing a
RAC drawing of a given graph. Indeed, while the problem of determining whether a graph admits
a straight-line RAC drawing is NP-hard [4] and was recently shown to be ∃R-complete [44], there
is a surprising lack of known algorithms that can compute such drawings for special classes of
graphs or, more generally, parameterized algorithms that exploit quantifiable properties of the
input graph to guarantee the tractability of computing RAC drawings (either without or with
limited bends). This gap in our understanding starkly contrasts the situation for so-called 1-planar
drawings—another prominent beyond-planar drawing style for which a number of fixed-parameter
algorithms are known [6, 26, 25]—as well as recent advances mapping the boundaries of tractability
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for other graph drawing problems [35, 9, 10].

Contribution. We initiate an investigation of the parameterized complexity of determining
whether a graph G admits a “bend-restricted” RAC drawing. In particular, we consider the case
where G comes equipped with an edge-labeling β : E(G) → {0, 1, 2, 3} that prescribes an upper
bound on the number of times each edge may be bent as well as a total bound b on the number of
bends we may use. We remark that for specific settings of β and b, asking for the existence of such
a bend-restricted RAC drawing captures, e.g., the previously considered problem of determining
whether G admits an, e.g., straight-line RAC drawing or a RAC drawing with at most one bend
per edge (see also the extended discussion and formalization in Section 2).

Given the well-motivated focus of previous works on limiting the total amount of bends in RAC
drawings, an obvious first choice for a parameterization would be to consider an upper bound b on
the total number of bends permitted in the drawing. However, on its own such a parameter cannot
suffice to achieve fixed-parameter tractability in view of the NP-hardness of the problem for b = 0,
i.e., for straight-line RAC drawings.

Hence, we turn towards identifying structural parameters of G that guarantee fixed-parameter
RAC drawing algorithms in the considered bend-restricted setting. While established decom-
positional parameters such as treewidth [43] and clique-width [14] represent natural choices of
parameterizations for purely combinatorial problems, the applicability of these parameters in
solving graph drawing problems is complicated by the inherent difficulty of performing dynamic
programming when the task is to obtain a drawing of the graph. This is why the parameters often
used in this setting are non-decompositional, with the most notable examples being the vertex cover
number vcn (i.e., the size of a minimum vertex cover) and the feedback edge number fen (i.e., the
edge deletion distance to acyclicity); further details are available in the overview of related work
below. As our main contributions, we provide two novel parameterized algorithms:

1. a fixed-parameter algorithm for determining whether G admits a bend-restricted RAC drawing
with at most b bends when parameterized by fen(G);

2. a fixed-parameter algorithm for determining whether G admits a bend-restricted RAC drawing
with at most b bends when parameterized by vcn(G) + b;

Both of the presented algorithms are constructive, meaning that they can also output a RAC
drawing of the graph if one exists. The core underlying technique used in both proofs is that of
kernelization, which relies on defining reduction rules that can provably reduce the size of the
instance until it is upper-bounded by a function of the parameter alone. While kernelization is a
well-established and generic technique, its use here requires non-trivial insights into the structural
properties of optimal solutions in order to carefully identify parts of the graph which can be
simplified without impacting the final outcome. Moreover, we show that the latter algorithm can
be lifted to establish fixed-parameter tractability when parameterized by b plus the neighborhood
diversity (i.e., the number of maximal modules) of G [40, 30, 39]. In the concluding remarks, we
also discuss possible extensions towards more general parameterizations and apparent obstacles on
the way to such results.

Related Work. Didimo, Eades and Liotta initiated the study of RAC drawings by analyzing the
interplay between the number of bends per edge and the total number of edges [21]. Follow-up works
also considered extensions and variants of the initial concept, such as upward RAC drawings [3],
2-layer RAC drawings [17, 18] and 1-planar RAC drawings [8]. More recent works investigated the
existence of RAC drawings for bounded-degree graphs [2], and RAC drawings with at most one
bend per edge [1]. It is known that every graph admits a RAC drawing with at most three bends
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per edge [21], and that determining whether a graph admits a RAC drawing with zero bends per
edge is NP-hard [4].

The vertex cover number has been used as a structural graph parameter to tackle a range of
difficult problems in graph drawing as well as other areas. Fixed-parameter algorithms for drawing
problems based on the vertex cover number are known for, e.g., computing the obstacle number of a
graph [5], computing the stack and queue numbers of graphs [9, 10], computing the crossing number
of a graph [35] and 1-planarity testing [6]. Similarly, the feedback edge number (sometimes called
the cyclomatic number) has been used to tackle problems which are not known to be tractable
w.r.t. treewidth, including 1-planarity testing [6] and the Edge Disjoint Paths problem [32] (see
also Table 1 in [31]).

These two parameterizations are incomparable: there are problems which remain NP-hard on
graphs of constant vertex cover number while being FPT when parameterized by the feedback edge
number (such as Edge Disjoint Paths [27, 32]), and vice-versa. That being said, the existence
of a fixed-parameter algorithm parameterized by the feedback edge number is open for a number
of graph drawing problems that are known to be FPT w.r.t. the vertex cover number; examples
include computing the aforementioned stack, queue and obstacle numbers.

2 Preliminaries

We assume familiarity with standard concepts in graph theory [23]. All graphs considered in this
manuscript are assumed to be simple and undirected.

RAC Drawings. Given a graph G = (V,E) on n vertices with m edges, a drawing of G is
a mapping δ that takes vertices V to points in the Euclidean plane R2, and assigns to every
edge e = uv ∈ E the image of a simple plane curve [0, 1] → R2 connecting the points δ(u), δ(v)
corresponding to u and v. We require that δ is injective on V , and furthermore that for all vertices
v and edges e not incident to v, the point δ(v) is not contained in int(δ(e)), where int(δ(e)) is the
image of (0, 1) under δ.

A polyline drawing of G is a drawing such that for each edge e ∈ E, δ(e) can be written as a
union δ(e) = λe

1 ∪ · · · ∪ λe
t of closed straight-line segments λe

1, . . . , λ
e
t such that:

� for each 1 ≤ i ≤ t − 1, the segments λe
i and λe

i+1 intersect in precisely one of their shared
end-points and moreover close an angle different than 180◦, and

� every other pair of segments is disjoint.

The shared intersection points between consecutive segments are called the bends of e in the drawing
δ.

For two edges e and f , their set of crossings in the drawing δ is the set int(δ(e)) ∩ int(δ(f)).
We will assume without loss of generality that any drawing δ of G has a finite number of crossings.

The central type of drawing studied in this paper are those that allow only right-angle crossings
between edge drawings (so-called RAC drawings): We say that the edges e, f ∈ E have a right-angle
crossing in a polyline drawing δ of G if the crossing lies in the relative interiors of the respective
line segments defining δ(e) and δ(f), and most crucially, the intersecting line segments of δ(e) and
δ(f) are orthogonal to each other (i.e., they meet at a right angle). Let δ be a polyline-drawing of
a graph, β : E 7→ {0, 1, 2, 3} a mapping, and b ∈ N a number. If every crossing of δ is a right-angle
crossing, the number of bends counted over all edges is at most b, and every edge itself has at most
β(e) bends, δ is called a b-bend β-restricted RAC drawing of G. We note that

� 0-bend RAC drawings are straight-line RAC drawings (for any choice of β),
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� m and 2m-bend drawings with β(e) = 1 or β(e) = 2 for each edge e gives the usual notion of
1-bend and 2-bend RAC drawings, respectively, and

� similarly, 3m-bend drawings with β(e) = 3 for each edge e gives rise to the notion of 3-bend
RAC drawings, which exist for every graph [21].

Based on the above, we can now formally define our problem of interest:

Bend-Restricted RAC Drawing (BRAC)
Input: A graph G, an integer b ≥ 0, and an edge-labelling β : E 7→ {0, 1, 2, 3}.
Question: Does G admit a b-bend β-restricted RAC drawing?

It has been shown that b-bend β-restricted RAC Drawing is ∃R-complete [44, 11] even
when restricted to the case where b = 0. Without loss of generality, we will assume that the
input graph G is connected. We remark that while BRAC is defined as a decision problem, every
algorithm provided in this paper is constructive and can output a drawing as a witness for a
yes-instance.

Parameterized Algorithms. We will not need a lot of the machinery of parameterized algorithms
to state our results. However, as it will turn out, our tractability results all come under the guise of
so-called kernelization, which requires some context.

A parameterized problem is an ordinary decision problem, where each instance I is additionally
endowed with a parameter k. Given such a parameterized problem Π, we then say that a problem
is fixed-parameter tractable (FPT) if there is an algorithm that, upon the input of an instance
(I, k) of Π, decides whether or not (I, k) is a yes-instance in time f(k) · nO(1), where f is any
computable function, and n = |I| is the encoding length |I| of the (parameter-free) instance I. This
should be contrasted with parameterized problems that require time, say, nk to solve, which are
not fixed-parameter tractable.

For instance, we may ask if a graph has a vertex-cover of size at most k, and declare k the
parameter of the instance. In this case, the problem is solvable in time 2k ·nO(1), and hence FPT; in
contrast, asking for a dominating set of size k (under some complexity assumptions) requires time
nk for every k. Closer to the problems treated in this paper are structural parameterizations in the
following sense: Suppose we are given a graph G and a number k such that G has a vertex-cover of
size at most k. Can we leverage this information to solve some (other) graph problem at hand? In
this case, we say that we parameterize the problem by the vertex cover number.

When using such parameterizations in our results, we will crucially rely on the following notion:
A kernelization (or kernel, for short) of Π is a polynomial-time algorithm (in n, and we may assume
k ≤ n holds) that takes an instance (I, k) as input, and produces as output another instance (I ′, k′)
with the following properties: there is some computable function g such that both k′ and |I ′| are
bounded from above by g(k), and (I, k) is a yes-instance of Π if and only if (I ′, k′) is.

That is, a kernelization algorithms preprocesses instances of arbitrary size into instances that
are “parameter-sized,” and in particular (assuming Π was decidable), this implies an algorithm
running in time nO(1) + h(g(k)) for some function h (where h(g(k)) is the running time of any
algorithm solving instances of Π of size g(k)). This means in particular that Π is fixed-parameter
tractable (and, as a standard result in parameterized algorithms, the converse of this claim holds
as well). We refer to the standard textbooks [24, 15] for a general treatment of parameterized
algorithms.

The feedback edge number of a graph G, denoted fen(G), is the size of a minimum edge set F such
that G−F is acyclic. It is well-known that such a set F (and hence also the feedback edge number)
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can be computed in linear time, since G− F is a spanning tree of F . The vertex cover number of
G, denoted vcn(G), is the size of a minimum vertex cover of G, i.e., of a minimum set X such that
G−X is edgeless. Such a minimum set X can be computed in time O(1.2738|X|+ |X| · |V (G)|) [13],
and a vertex cover of size at most 2|X| can be computed in linear time by a trivial approximation
algorithm. The third structural parameter considered here is the neighborhood diversity nd(G) of
G, which is the minimum size of a partition P of V (G) such that for each a, b in the same part
of P it holds that N(a) \ {b} = N(b) \ {a}. It is well known that each part in such a partition P
must be either a clique or an independent set, and such a minimum partition can be computed in
polynomial time [40].

3 An Explicit Algorithm for BRAC

As already pointed out above, our results for fixed-parameter tractability come as kernels. While
there is a generic formal equivalence between the existence of a kernel and a decidable problem
being fixed-parameter tractable, this doesn’t by itself yield explicit bounds on the running time of
the algorithm that results from this generic strategy. In order to derive concrete upper bounds
on the running time of our algorithms, we provide an algorithm that solves b-bend β-restricted
RAC drawing with a specific running time bound. We do so via a combination of branching and an
encoding in the existential theory of the reals.

Theorem 1. An instance (G, b, β) of BRAC can be solved in time mO(m2), where m is the number
of edges of G.

Proof. Observe that, without loss of generality, we may assume that b ≤ 3m. We begin by a
branching step in which we exhaustively consider all possible allocations of the bends to edges,
resulting in a total number of at most 4m branches (some of which will be discarded due to exceeding
the bound b or violating β). In each branch, we alter the graph G by subdividing each edge precisely
the number of times it is assumed to be bent in that branch. At this point, it remains to decide
whether this new graph G̃ admits a straight-line RAC drawing, where G̃ has O(m) edges and
vertices, and we denote these m′ and n′, respectively.

To do this, one can construct a sentence in the existential theory of the reals that is true if
and only if G̃ admits such a drawing. The variables of the sentence will consist of n′ variable
pairs (xv1 , yv1), . . . , (xvn′ , yvn′ ), encoding the coordinates of the drawing of the vertices in R2.
Furthermore, for every pair of edges with endpoints u, v and u′, v′, we can formulate a condition
σ(u, v, u′, v′)⇒ τ(u, v, u′, v′), where σ is a polynomial condition in xu, xv, xu′ , xv′ encoding whether
the straight-line segments corresponding to uv and u′v′ intersect, and τ is a polynomial condition in
xu, xv, xu′ , xv′ encoding whether these straight-line segments are perpendicular. Indeed, the former
requires an addition of another (m′)2 auxiliary variables in the worst case, but both conditions can
be expressed by polynomials of degree two. This encoding is described in full detail by Bieker [11].

To conclude the proof, we note that an existential sentence over the reals in N variables over M
polynomials of maximal degree D can be decided in time (M ·D)O(N) (see, e.g., [7, Theorem 13.13]).
Note that, within essentially the same running time bound, one can also construct a representation
of a solution for this system [7, Theorem 13.11].
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(a) Orange lines represent feedback edges, dashed
black lines represent long paths.

(b) We iteratively remove degree-one vertices from
2a to obtain a graph (V ′, E′ ∪ F ), where (V ′, E′) is
a tree. Special vertices are marked in turquoise.

Figure 2: Reduction rule one: Degree-one vertices can be pruned.

4 A Fixed-Parameter Algorithm via fen(G)

We begin our investigation by establishing a kernel for Bend-Restricted RAC Drawing when
parameterized by the feedback edge number. Our kernel is based on the exhaustive application of
two reduction rules.

Let us assume we are given an instance (G, b, β) of BRAC and that we have already computed
a minimum feedback edge set F of G in linear time. The first reduction rule is trivial: we simply
observe that vertices of degree one can always be safely removed since they never hinder the
existence of a RAC drawing.

Observation 2. Let v ∈ V (G) be a vertex with degree one. G− {v} admits a b-bend β-restricted
RAC drawing if and only if G does as well.

Proof. Clearly, if G admits a b-bend β-restricted RAC drawing, then G−{v} does as well (one may
simply remove v and its incident edge from the drawing). On the other hand, if G− {v} admits
a b-bend β-restricted RAC drawing then we can extend this drawing to one for G by placing v
sufficiently close to its only neighbor in a way which does not induce any additional crossings.

Iteratively applying the reduction rule provided by Observation 2 results in a graph of the form
G′ = (V ′, E′ ∪ F ), where T := (V ′, E′) is a tree with at most 2 · fen(G) leaves and where each leaf
of T is incident to at least one edge in F . We mark a vertex in T as special if it is an endpoint of
an edge in F or if it has degree at least 3 in T (see Figure 2 for an illustration). Note that the total
number of special vertices is upper-bounded by 4 · fen(G): the total number of endpoints of edges
in F is bounded by 2 · fen(G), and since this also upper-bounds the number of leaves this implies
that there can be at most 2 · fen(G) vertices of degree at least 3 in T .

In order to define the crucial second reduction rule, we will partition the edges of T into
edge-disjoint paths such that each special vertex can only appear as an endpoint in such paths.

Definition 3. We define the path partition of T in G′ as the unique partition P1 ∪̇ · · · ∪̇Pℓ = E′

such that all Pi are pairwise edge-disjoint paths in T whose endpoints are both special vertices, but
with no special vertices in their interior. We call ℓ the size of the path partition.
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Figure 3: Path partition of T with feedback edges in orange.

An illustration is provided in Figure 3. Given the established bound on the number of special
vertices, the size of the path partition is bounded by 4 · fen(G).

At this point, let us assume that we have a path partition P1 ∪̇P2 ∪̇ · · · ∪̇Pℓ of T in G′, where
we index the paths in increasing order of length. Our next task is to divide these paths into short
and long paths by identifying whether there exists a large gap in the lengths of these paths.

Definition 4. Define pi := |Pi| for i = 1, . . . , ℓ, and moreover define P0 := F and p0 := |F |. Let i0
be the minimal i = 1, . . . , ℓ such that pi > 12ℓ · pi−1, if one such i exists, otherwise we set i0 := ℓ.
We call all paths Pi with 1 ≤ i ≤ i0 short and all other paths long. Then we define the subgraph
Gshort as the edge-induced subgraph of

⋃i0
i=0 Pi of G

′ (i.e., Gshort arises by removing all long paths
from G′).

Our aim is now to argue that if δshort is a RAC drawing of Gshort, then we can always extend
δshort to a RAC drawing of G′. Without loss of generality we assume that all vertices in V (G′)
have already been drawn in δshort. First we create an intermediate drawing δ′ of G′, which will in
general not be a RAC drawing. We define δ′ as an extension of δshort, where each long path P with
endpoints s and t is represented as a simple straight-line segment from δshort(s) to δshort(t) with all
interior vertices distributed arbitrarily along that line segment. Doing this will in general violate
the RAC property of δ′, hence in the next step we need to alter this straight-line segment in order
to ensure that the drawing of P crosses only at right angles. For this we observe that any vertex
on P can be moved to effectively act as a bend in a polyline drawing of P . We show that these
“additional bends” can be used to turn all crossings into right-angle crossings.

Lemma 5. Let P be a long path with endpoints s and t and consider its straight-line representation
L in δ′. Assume L intersects k straight-line segments in δ′. Then, there exists a polyline segment
L⋆ from δ′(s) to δ′(t) with at most 3k bends that intersects precisely the line segments intersected
by L, where each such segment is crossed precisely once and at a right angle.

Proof. For the purposes of this proof, it will be useful to treat each bend as an auxiliary vertex in
δ′ and treat straight-line segments as edges. Let e ∈ E(Gshort) be an edge such that δ′(e) is crossed
by L at the point x. Further, int(δ(e)) is the image of (0, 1) under δ. We establish the existence of
L⋆ by following L and describing how to “locally alter” L at each intersection with the straight-line
segments in δ′.
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For the first and simplest Situation (1), assume that x ∈ int(δ′(e)) and no other edge crosses
through x. Let ε > 0 such that Bε(x) = {y ∈ R2 : |x− y| < ε} contains no vertices and intersects
no other edges outside of L apart from e. We convert the intersection at x to a right-angle crossing
by introducing three bends on the boundary ∂Bε(x) as illustrated in Figure 4: Put two vertices v1,
v3 on the intersection of L with ∂Bε(x) to maintain the position of L outside of Bε(x). Construct
the middle vertex v2 by taking the intersection of ∂Bε(x) with the normal line to e going through
v3. Therefore we obtain our new polyline L⋆ by joining the parts of L outside the ε-neighborhood
with the polyline connecting the three vertices on the boundary of the ε-neighborhood.

L

e

v1 v3

v2

ε

x

Figure 4: Dealing with a single crossing.

Since we chose ε such that there are no further intersections within this ε-neighborhood and the
polyline remains unchanged outside of this neighborhood, we are guaranteed to not introduce any
new crossings nor alter existing ones.

Next, assume that the intersection of L with δ′ is also contained in some other edge (Situation
(2)); more formally, assume that ∃ f ∈ E(Gshort) : f ̸= e ∧ x ∈ int(δ′(e)) ∩ int(δ′(f)). Let us denote
with C = {e1, . . . , et} the set of edges intersecting at x. Let ε > 0 such that Bε(x) contains no
vertices and intersects no other edges apart from the edges in C. Again, two entry and exit nodes
v1, vt+1 are added on the boundary of Bε(x) to preserve the original position of L outside of
Bε(x). Assume the edges in C are ordered clockwise with e1 being the closest edge to v1. Now we
iteratively construct the next vertex vi+1 by taking the intersection of the angular bisector between
ei and ei+1 with the normal line to ei going through vi. If this point happens to lie outside of
Bε(x) we take the intersection of the normal line with ∂Bε(x) instead. We refer to Figure 5a for an
illustration.

L

v1

vt+1

e1

e2

et

v2

v3

vt

vt−1

ε

x

(a) Crossing multiple edges at once.

L

v1 v4

ε

x

e

v2 v3

(b) Overlapping with an entire edge.

In total, the presented construction for this situation requires at most t+ 1 ≤ 3t vertices.
For the final Situation (3), assume that the intersection point also happens to be a vertex, i.e.,

∃ v ∈ V (Gshort) : x = δ′(v). If L ∩ δ′(e) = δ′(v), i.e., L does not run parallel to δ′(e), we can simply
take care of this equivalently as if L would cross δ′(e) in the interior.
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If otherwise L ∩ δ′(e) ⊋ δ′(v), we observe that L must necessarily contain both endpoints of
δ′(e), since the endpoints δ′(s) and δ′(t) of L cannot lie in the interior of δ′(e). At the first of these
endpoints encountered by L, say w, we again proceed analogously to in the second situation (i.e.,
as if w was a crossing point), however instead of exiting the circle surrounding w directly opposite
to the entry point we exit at a distance of ε′ from there (for a sufficiently small ε′) and from there
draw L in parallel to e; see Figure 5b.

Since these three cases are exhaustive, the lemma follows.

Lemma 6. Each long path intersects at most 4ℓ · pi0 straight-line edge segments in δ′.

Proof. Since each long path is represented as a straight-line segment in δ′, it can cross every other
long path at most once. Since every edge e ∈ E(Gshort) can be bent at most β(e) ≤ 3 times,
it consists of at most 4 straight-line edge segments. Let t be the number of long paths, then L
intersects no more than

t+ 4

i0∑
i=0

pi ≤ t+ 4(ℓ− t) · pi0 ≤ 4ℓ · pi0

straight-line edge segments.

Theorem 7. b-bend β-restricted RAC Drawing admits a kernel of size at most (48 ·
fen(G))4·fen(G). The kernel can be constructed in linear time.

Proof. Consider an input (G = (V,E), b, β) with feedback edge set F . In the first step according
to Observation 2 we iteratively prune all vertices of degree one and obtain the reduced graph
G′ = (V ′, E′ ∪ F ). Next, we construct a path partition P = (P1, . . . , Pℓ) of the tree T = (V ′, E′) of
size at most 4 · fen(G). Then we split the paths in P into short and long paths. We define the
subgraph Gshort as the graph obtained by removing all long paths from G′ and show that it is a
kernel.

(a) RAC drawing δshort of Gshort. (b) RAC drawing δ of G′

Figure 6: Extending the RAC drawing.

For that consider a RAC drawing δshort of Gshort. We show that we can construct a RAC drawing
δ of G′ that extends δshort (see Figure 6b). To achieve this, we first define the intermediate drawing
δ′, which extends δshort by simply drawing all long paths as straight-line segments. To obtain δ
from δ′ we now iteratively replace the straight-line representations by the polyline constructions
described in Lemma 5. Let Pi0+1 be the first long path with straight-line drawing Li0+1. According
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to Lemma 6 it is involved in at most 4ℓ · pi0 crossings in δ′. By the definition of long paths we have
|Pi0+1| > 12ℓ · pi0 and thus we have enough vertices per crossing to construct L∗

i0+1 via Lemma 5.
Define δi0+1 by replacing Li0+1 with L⋆

i0+1 in δ′. Since L⋆
i0+1 does not introduce any new crossings,

we can repeat this process for all further long paths until we obtain δ := δℓ as our final RAC
drawing of T . Thus, we obtain Gshort as a kernel of our original instance with b and β unchanged,
since we did not use any additional bends in the construction of δ.

Next, we show that Gshort can be constructed in linear time. We already observed that a
Feedback Edge Set can be constructed in linear time. Pruning vertices of degree one can be done
in linear time as well, while the task of finding a path partition of T can be achieved by depth-first
search in linear time as well. Finally, the size of Gshort can be bounded by

i0∑
i=0

pi ≤
ℓ∑

i=0

p0(12ℓ)
i

≤ 2 · fen(G)(12ℓ)ℓ

≤ (48 · fen(G))4·fen(G)+1.

Using Theorem 7, the runtime guarantee given by Theorem 1 and the fact that a feedback edge
set of size fen(G) can be computed in linear time, we obtain:

Corollary 8. b-bend β-restricted RAC Drawing is fixed-parameter tractable parameterized

by fen(G), and in particular can be solved in time 2fen(G)O(fen(G))

+O(|V (G)|).

Proof. After constructing the kernel in O(|V (G)|) time, we apply the generic branching algorithm
to the kernel with a runtime of

((48 · fen(G))4·fen(G))O((48·fen(G))8·fen(G)) = (48 · fen(G))O((48·fen(G))8·fen(G)+1)

≤ 2(log fen(G))·fen(G)O(fen(G))

= 2fen(G)O(fen(G))

,

which concludes the proof.

5 Fixed-Parameter Tractability via vcn(G)

As in Section 4, the core tool used to establish fixed-parameter tractability for this parameterization
is a kernelization procedure, although the ideas and reduction rules used here are very different.
Let us assume we are given an instance (G, b, β) of BRAC; as our first step, we compute a vertex
cover C of size k ≤ 2 · vcn(G) using the standard approximation algorithm.

We now partition the vertices of our instance G outside of the vertex cover C into types, as
follows. Two vertices in G \ C are of the same type if they have the same set of neighbors in
C; observe that the property of “being in the same type” is an equivalence relation, and when
convenient we also use the term type to refer to the equivalence classes of this relation. To avoid
any confusion, we explicitly remark that two vertices may have the same type even when their
incident edges are assigned different values by β. The number of types is upper-bounded by 2k.
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We distinguish types by the number of neighbors in C; an illustration is provided in Figure 7.
Let a member of a type T be defined as a vertex in T as well as its incident edges. By an exhaustive
application of the first reduction rule introduced in Section 4 (cf. Observation 2), we may assume
that there is no type with less than 2 neighbors in C.

C

T1 T2 T3 T4

Figure 7: A graph split into its vertex cover C (in turquoise) and its different types T1, . . . , T4 (in
orange).

Turning to types with at least 3 neighbors in C, we provide a bound on the size of each such
type in a yes-instance of BRAC.

Lemma 9. If (G, b, β) is a yes-instance of BRAC, then each type T with i ≥ 3 neighbors in C
has at most max(2, 7− i) + b members.

Proof. Didimo, Eades and Liotta showed that no complete bipartite graph Kc,d with c+ d > 7 and
min(c, d) > 2 admits a straight-line RAC drawing [20]. Hence, if vertices in T have 3 neighbors
in C then a b-bend β-restricted RAC drawing of G can contain at most 4 members of T without
bends; otherwise, the drawing of 5 members of T and their 3 neighbors in C would contradict the
first sentence. Similarly, if vertices in T have at least 5 neighbors in C then a b-bend β-restricted
RAC drawing of G cannot contain 3 members of T without bends.

Lemma 9 implies that we can immediately reject instances containing types with more than 3
neighbors whose cardinality is greater than 4 + b (or, for the purposes of kernelization, one may
replace these with trivial no-instances). Hence, it now remains to deal with types with precisely
two neighbors in C.

We say that two edges uv and uv′ form a fan anchored at u. It is easy to observe that if an
edge e crosses both uv and uv′ in a b-bend β-restricted RAC drawing, then at least one of these
three edges must have a bend [3].

Lemma 10. Consider a b-bend β-restricted RAC drawing δ of G, and let T be a type containing
vertices with precisely two neighbors in C. Let T ′ be the subset of T containing all members of T
which do not have bends in δ. Then T ′ contains at most four members involved in crossings with
other members of T ′ in δ.

Proof. Let u and v be the neighbors of T ′ in the vertex cover C. Let us consider the vertices lying

on one side of the half plane induced by the line
←−−−−→
δ(u)δ(v) going through u and v. According to

Thales’s theorem, every right-angle crossing formed by two edges originating in u and v respectively,
has to lie on the semicircle with diameter δ(u)δ(v). Suppose the edges (u, x) and (v, w) cross at a
right angle. Then there cannot be another edge incident to u which crosses the semicircle to the
right of the first crossing.

Indeed, if there was such an edge (u, y), then (v, w) would cross the fan formed by (u, x) and
(u, y) as shown in Figure 8. Analogously, there also cannot be an edge incident to v, which crosses
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u v

w x
y

Figure 8: Illustration for Lemma 10.

the semicircle left to the first crossing. Hence, there can be at most one right-angle crossing between

members of T ′ below and above
←−−−−→
δ(u)δ(v), respectively.

Next, we use the above statement to obtain a bound on the total number of crossings that such
a type T can be involved in. We do so by showing that the members of T which themselves do not
have bends are only involved in a bounded number of crossings.

Lemma 11. Consider a b-bend β-restricted RAC drawing δ of G, and let T be a type containing
vertices with precisely two neighbors in C. Then at most 3k + 6 + b members of T can be involved
in a crossing in δ.

Proof. Let T ′ be the subset of T containing all members of T which do not have bends in δ, and
let γ = |T | − |T ′|. Further, let T0 be the set of members of T ′ which are pairwise crossing free, but
which all cross at least some other edge in δ. T0 forms a layering structure in δ, as depicted in
Figure 9a. Moreover, if T0 contains two members that are incident to the same inner face ι in this
layering structure and whose edges are drawn in parallel in δ, we remove one of these members from
T0; observe that this may only reduce the size of T0 by one as this may only happen if ι contains
the straight-line segment connecting the two neighbors of T (see Figure 9b). Let α be the number
of members that remain in T0 at this point.

At this point, an edge e without any bends cannot cross more than one member of T0, as no two
edges on the same face in T0 are parallel by assumption. Observe that, in the hypothetical case
where none of the edges would have bends, this would imply that there must be at least one vertex
in every layer; moreover, since each vertex can only be adjacent to other vertices in the same or in
one of the two adjacent layers, the bound on the vertex cover number implies that there would be at
most 3k layers, implying that α would be upper-bounded by 3k + 1. Crucially, the same argument
can be lifted also to our case with b bends: an edge edge outside T ′ may cross one additional layer
per bend, and thus the total number of layers in the layering structure is upper-bounded by 3k
plus the number of bends used by edges outside of T . In particular, this implies that the number of
layers is at most 3k + 1 + b− γ and, crucially, α ≤ 3k + 1 + b− γ.

Moving our attention to T ′ ⊇ T0, the difference between the sizes of these two sets can be
caused (1) by up to 4 members that are involved in crossings with other members of T ′ following
Lemma 10 and (2) by one additional member for the single removed member with parallel edges
from T0, i.e. |T ′| ≤ α+ 5. Hence, at most α+ 5 + γ = 3k + 6 + b members of T can be involved in
crossings in δ.

In particular, Lemma 11 implies that in a b-bend β-restricted RAC drawing, every sufficiently
large type T with precisely 2 neighbors in C must contain a member that is not involved in any
crossings. The next lemma highlights why this is useful in the context of our kernelization.
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(a) A subset T0 of a type, which is pairwise crossing free, but each member contains at least one crossing in
the drawing δ.

(b) A subset T0 of a type with two neighbouring members sharing parallel edges, allowing for a single
bend-free edge to cross two members.

Figure 9: Illustration for the proof of Lemma 11 with vertices in the vertex cover marked in
turquoise.

Lemma 12. Let T be a type with two neighbors in C and assume that G admits a b-bend β-restricted
RAC drawing δ. If there is a member in T whose edges are drawn without crossings in δ, then the
graph obtained from G by adding a vertex w′ to T admits a b-bend β-restricted RAC drawing as
well.

Proof. Let u, v be the neighbors of T in the vertex cover and let w ∈ T be the member without
crossings. We can draw w′ infinitesimally close to w such that the emerging layering triangles are
drawn without crossings (see Figure 10).

At this point, we have all the ingredients for the main result of this section:

Theorem 13. b-bend β-restricted RAC Drawing admits a kernel of size O(b · 2k), where k
is the size of a provided vertex cover of the input graph.

Proof. Consider an input (G, b, β) and let C be the provided vertex cover of G. We apply the simple
reduction rule of deleting vertices of degree 1 from G, resulting in an instance where each type
has either 2 or at least 3 neighbors in C. For each type of the latter kind, we check if it contains
more members than max(3, 7− i) + b; if yes, we reject (or, equivalently, replace the instance with a
trivial constant-size no-instance), and this is correct by Lemma 9. Moreover, for each type T with
precisely 2 neighbors in C containing more than 3k + 6 + b+ 1 many members, we delete members
from T until its size is precisely 3k + 6 + b+ 1—the correctness of this step follows from Lemma 11
and 12.
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u

v

w w′w′

Figure 10: Illustration for the proof of Lemma 12.

In the resulting graph, each of the at most 2k many types with at least 3 neighbors in C has
size at most b+ 4, while each of the at most k2 types with precisely 2 neighbors has size at most
3k + 6 + b+ 1. The kernel bound follows.

From Theorem 13, the runtime bound given by Theorem 1 and the fact that a vertex cover of
size at most 2 · vcn(G) can be obtained in linear time, we obtain:

Corollary 14. b-bend β-restricted RAC Drawing is fixed-parameter tractable parameterized

by b+ vcn(G) , and in particular can be solved in time 22
O(vcn(G)+log b)

+O(|V (G)|).

Proof. Applying the runtime result of mO(m2) given in Theorem 1 to the given kernel yields a final
runtime of

O(b · 2vcn(G))O(b24vcn(G)) = 2(log b+vcn(G))·O(b24vcn(G))

≤ 2b
2 log b·2O(vcn(G))

= 22
(log log b)+2 log b·2O(vcn(G))

= 22
O(log b+vcn(G))

,

which concludes the proof.

6 An Extension to Neighborhood Diversity

We extend the approach used for the vertex cover number to establish fixed-parameter tractability
with respect to neighborhood diversity. Briefly recalling the definition of neighborhood diversity, let
two vertices v, v′ be of the same type if N(v)\{v′} = N(v′)\{v}.

Definition 15 ([40, 39]). The neighborhood diversity nd(G) of a graph G is the minimum number
k, such that there exists a partition into k sets, where all vertices in each set have the same type.

By the definition of neighborhood diversity, each set in the witnessing partition is either an
independent set or clique in G. Edges can occur either on all vertices between two sets or on none
(see Figure 11). In general, a graph G with neighborhood diversity nd(G) has a bounded vertex
cover number vcn(G). Thus, Theorem 13 would already imply tractability of b-bend RAC drawings
under a bounded neighborhood diversity. However, vcn(G) might be exponentially larger [40]. For
b-bend RAC drawable graphs, we can show a better, linear bound on vcn(G).
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Figure 11: Overview of a graph partitioned into its neighborhood diversity sets. Orange sets build
cliques, turquoise sets are independent sets in G. Each set may be connected to one ore more other
sets.

Lemma 16. Let G be a b-bend RAC drawable graph with a neighborhood diversity nd(G). Then
vcn(G) ≤ 5 · nd(G) + b.

Proof. We begin by showing a linear bound on vcn(G) for b = 0. Let S1, . . . , Snd(G) be a partition
witnessing the neighborhood diversity number nd(G). We build a vertex cover C as follows. The size
of each set Si forming a clique in G is bounded by 5, as a K6 is not straight-line RAC drawable [21].
Put all vertices of such an Si in C. Let Si, Sj be a pair of two sets, which are both forming an
independent set in G, and have edges between each other. If there is an edge between a vertex in
Si and a vertex in Sj , there is an edge between all vertices of Si and Sj . Let |Si| ≤ |Sj |. Recalling
that no complete bipartite graph Ka,b with a+ b > 7 and min(a, b) > 2 admits a straight-line RAC
drawing [20], Si ≤ 3. Put Si into C to cover both sets. In total, we put at most 5 · nd(G) vertices
into C.

For arbitrary number of bends b, the total number of vertices in clique sets might increase by
at most b without making G not b-bend RAC drawable. Similarly, the number of vertices in the
smaller set Si of a connected set pair Si, Sj , might increase by at most b over all such sets. So in
total, vcn(G) ≤ 5 · nd(G) + b.

From Theorem 13 and Lemma 16 the following theorem follows directly:

Theorem 17. b-bend β-restricted RAC Drawing admits a kernel of size O(b2 ·nd(G) ·2nd(G)).

Corollary 18. b-bend β-restricted RAC Drawing is fixed-parameter tractable parameterized

by nd(G) + b, and in particular can be solved in time 2b
O(nd(G))

+O(|V (G)|+ nd(G)).

7 Concluding Remarks

We have established the fixed-parameter tractability of b-bend β-restricted RAC Drawing
when parameterized by the feedback edge number fen(G), or by the vertex cover number vcn(G)
plus an upper bound b on the total number of bends. We have also shown that the latter result
implies the fixed-parameter tractability of the problem w.r.t. the neighborhood diversity nd(G)
plus b.
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A next step in the computational study of bend-restricted RAC Drawings would be to consider
whether the problem is fixed-parameter tractable w.r.t. vcn(G) alone. Interestingly, a reduction
rule for degree-2 vertices without a bound on b is the main obstacle towards obtaining such a
fixed-parameter algorithm, and dealing with this case seems to be required if one wishes to generalize
the result towards fixed-parameter tractability w.r.t. treedepth [42] plus b. A different question one
may ask is whether the fixed-parameter algorithm w.r.t. fen(G) can be generalized towards the
recently introduced parameter slim tree-cut width [31], which can be equivalently seen as a local
version of the feedback edge number [12]. A natural long-term goal within this research direction is
then to obtain an understanding of the complexity of BRAC w.r.t. treewidth [43].

Last but not least, we explicitly note that while a bend-restricted RAC drawing always exists
when β(e) = 3 for each edge e, such a drawing may not minimize the total number of bends: there
could potentially be RAC drawings with more bends per edge but less bends overall. We leave a
study of this tradeoff—as well as the question of whether our fixed-parameter tractability results
also hold if we allow β to be an arbitrary function—for future work.
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