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Abstract. Hive plots are a graph visualization style placing vertices on a set of
radial axes emanating from a common center and drawing edges as smooth curves
connecting their respective endpoints. In previous work on hive plots, assignment to
an axis and vertex positions on each axis were determined based on selected vertex
attributes and the order of axes was prespecified. Here, we present a new framework
focusing on combinatorial aspects of these drawings to extend the original hive plot idea
and optimize visual properties such as the total edge length and the number of edge
crossings in the resulting hive plots. Our framework comprises three steps: (1) partition
the vertices into multiple groups, each corresponding to an axis of the hive plot; (2)
optimize the cyclic axis order to bring more strongly connected groups near each other;
(3) optimize the vertex ordering on each axis to minimize edge crossings. Each of
the three steps is related to a well-studied, but NP-complete computational problem.
We combine and adapt suitable exact and heuristic algorithmic approaches, implement
them as an instantiation of our framework, and show in a case study how it can be
applied in a practical setting. Furthermore, we conduct computational experiments to
gain further insights regarding the algorithmic choices of our framework. The code of
the implementation and a prototype web application can be found on OSF1.

1 Introduction

Hive plots [16] is a visualization style for network data, where vertices of a graph are mapped
to positions on a predefined number of radial axes emanating from a common center, like spokes
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Figure 1: (a) A small social network (see Section 5) visualized with jhive [16]. Vertices are mapped
to axes according to their degree. The position on each axis is determined by a rank order over
vertex degrees. (b) A hive plot created by our framework shows the same graph, where vertices are
assigned to k = 3 axes by modularity maximization. Additionally, crossings of inter- and intra-axis
edges are minimized.

of a wheel. Mapping and positioning are usually done based on vertex attributes and not to op-
timize layout aesthetics. Due to this strict, rule-based definition, hive plots are a deterministic
network visualization style; see Fig. 1a for an example. Similarly to parallel coordinate plots [28],
the original idea behind hive plots is to create a unique fingerprint-like visualization for quantita-
tively understanding and comparing network structures. This task can quickly get very difficult
with force-based layouts due to the ’hairball’ effect for large and dense graphs and their often
unpredictable behavior when optimizing for conflicting aesthetic criteria.

Usually, edges are drawn as Bézier curves connecting their respective endpoints while being
restricted to three axes to avoid the problem of routing longer edges around axes; this is considered
beneficial for visual clarity. In the case of edges between vertices on the same axis, the axis, and
its associated vertices are cloned and positioned closely to each other such that edges are either
drawn twice (symmetrically) or once (asymmetrically). The latter case reduces visual complexity
but increases ambiguity as an edge is only explicitly connected to one copy of each vertex; see
Fig. 2 for a sketch of the different concepts.

Multiple hive plots can also be arranged in a matrix, called a hive panel [16], where columns
and rows represent different axis mapping functions. Differential hive plots visualize networks
changing over time [17]. Since their inception a decade ago, hive plots have been utilized in various
applications and use-cases, e.g., cyber security [13], machine learning of visual patterns [24], life
sciences [23], biological data [32], or sports data [22]. Although various use cases exist, hive plots
have not yet been investigated from a formal graph drawing perspective, which systematically
defines degrees of freedom and layout optimization criteria.

This is a rather unexpected observation, especially as hive plots have some inherent properties
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that make them an interesting layout style. For example, by placing vertices on axes, the layout
is predictable and usually has a good aspect ratio. Similarly, edges can be routed strictly between
or around an axis. Thus, edges overlapping with unrelated vertices is not an issue in hive plot
layouts and increases the overall faithfulness of the drawing. Furthermore, it is also relatively
straightforward to position labels and label-vertex overlaps. Lastly, edges between vertices on
the same axis can be hidden or shown on demand, thus, reducing unnecessary information and
decreasing the cognitive load.

Contributions and Related Work: In this paper, we present the first formal model of hive
plots and identify their associated computational optimization problems from a combinatorial point
of view. Based on this model, we investigate several degrees of freedom that can be utilized for
optimizing hive plot layouts on typical graph drawing quality metrics for arbitrary undirected
graphs.

First, in our investigation, we expand on an idea that was already mentioned in the original hive
plot publication [16]. We partition the graph into some number k of densely connected clusters,
where each cluster is assigned to exactly one axis. In terms of visual design, this allows us to show
or hide intra-cluster edges on demand and focus on representing the sparse connectivity between
clusters. We find such clusters by applying techniques from the area of community detection in
networks [10]. Even though a similar assignment strategy is presented in the original hive plot
publication [16], the focus here is on visually clustering vertices according to their community
membership and assigning vertex clusters to segments on a subdivided axis. Vertex assignment to
k layers has also been investigated in the context of cyclic level drawings of directed graphs [2].
The main difference to our model is that cyclic level drawings consider edges between vertices on
the same layer to wrap around the cycle, thus, having a length of k. It has been shown to be NP-
hard [2] to minimize the total edge length by assigning vertices to k given layers. However, several
heuristics have been proposed and computationally evaluated [2] for this problem. In contrast, we
assign vertices to axes before we optimize the total edge length by reordering axes.

Second, we are free to assign any cyclic order over the k different axes. Here we minimize the
total length of inter-axis edges by placing pairs of axes with many edges between them close to
each other. This is essentially equivalent to the circular arrangement problem, in which vertices are
positioned evenly spaced on a circle such that the total weighted length of edges is minimized. Find-
ing the minimum circular arrangement of undirected and directed graphs is NP-complete [11, 18].
However, a polynomial-time O(log n)-approximation for undirected graphs exists [18]. Similarly,
the problem of minimizing the crossings in a circular arrangement of a graph is NP-complete [19].
The concept of circular arrangements has been applied to circular drawings [12] where a subset of
edges is drawn outside of the circle to reduce edge crossings. Here, we present an exact approach
based on integer quadratic programming (IQP) as well as a heuristic approach based on simulated
annealing to compute an axis order.

Lastly, once the order of axes is fixed, we want to minimize the number of inter- and intra-axis
edge crossings. Here, the problem is similar to multi-layer crossing minimization (CRM), which
has been studied in the context of the Sugiyama framework [26] for hierarchical level drawings of
directed graphs. In this type of drawing, vertices are assigned to horizontal layers with edges either
drawn in an upward or downward direction. In the case of cycles in the graph, some edges need
to be reversed in the drawing. Cyclic level drawings have already been mentioned by Sugiyama et
al. as an alternative to reversing edges, and they have been thoroughly investigated in more recent
years [1, 2, 3, 12]. Algorithms for crossing minimization in cyclic level drawings generalize to our
hive plot model.
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Figure 2: In (a), a schematized hive plot with three axes shows different concepts. Axis a1 is
collapsed. Axis a0 and a2 are expanded with edges in a0 being drawn symmetrically. A long edge
between v1 and v6 is bypassing a1. In (b), the concept of gaps and how long edges are routed is
shown. Here, axis a0 has no gaps, axis a1 has one gap, a2 has two gaps, and a3 has three gaps.
The gaps are indicated with red dotted lines.

Crossing minimization in cyclic level drawings and layered drawings commonly performs re-
peated 2-layer crossing minimization steps. The 2-layer crossing minimization problem is already
NP-hard [8], even if one layer is fixed. As 2-layer CRM is a prominent problem, several exact
approaches have been proposed over the years. The most prominent is the linear and quadratic
integer programming formulation of Jünger and Mutzel [14, 15]. We adapt their formulation to
our problem and show that we can compute exact solutions for small instances.

Additionally, we present several variants based on heuristic algorithms, such as the barycenter
algorithm [26] or the sifting algorithm [20]. The sifting algorithm has been specifically investigated
in the context of cyclic level drawings before [1]. Our IP and heuristic CRM variants require
additional constraints such that long edges are routed through gaps (see Section 2). Adding
constraints to 2-layer crossing minimization heuristics has been applied previously, e.g., for fixing
the relative positions of a subset of vertex pairs [9].

Based on our framework, in Section 3, we present a 3-step pipeline that computes a Hive plot
layout. For each step, we introduce several integer programming (IP) and heuristic variants to
compute an exact or heuristic solution for the associated problem statement. In Section 4, we
show how we visually encode the computed Hive plot layouts and present some simple interaction
techniques. We conduct a small case study and explain in Section 5 how hive plots generated
by our framework can be applied in a practical context of co-authorship networks. Finally, in
Section 6, we investigate the computational boundaries of the different pipeline variants in an
extensive computational experiment based on synthetic graphs.

2 Formal Model

A hive plot layout H(G) = (A,α, ϕ,Π) of an undirected graph G = (V,E) is a tuple consisting
of a set A = {a0, . . . , ak−1} of k axes, a surjective function α : V → A mapping vertices to
axes, a bijective function ϕ : A → {0, ..., |A| − 1} representing a cyclic ordering of axes and a set
Π = {π0, . . . , π|A|−1} of orderings over the vertices assigned to each axis. As each vertex is assigned
to one axis ai ∈ A this imposes a disjoint grouping Vi := α−1(ai) of V such that Vi ∩ Vj = ∅ for
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each i ̸= j with i, j ∈ {0, . . . , |A− 1|}. Each πi is a bijective function πi : Vi → {0, . . . , |Vi| − 1}.
We use the shorthand notation ϕ(u) = ϕ(α(u)) whenever we refer to the order of the axis

α(u) to which a vertex u is mapped. The span of two axes ai, aj or two vertices u, v is defined as
span(ai, aj) = min{ϕ(ai)−ϕ(aj) (mod k), ϕ(aj)−ϕ(ai) (mod k)} or span(u, v) = span(α(u), α(v)).
Based on the span, we can classify edges into three different categories. An edge e = (u, v) is called
proper if span(u, v) = 1. Otherwise, an edge is considered long if span(u, v) > 1 or intra-axis if
span(u, v) = 0. Inter-axis edges are all edges that are either proper or long. A long edge (u, v)
can be subdivided and replaced by span(u, v)− 1 virtual vertices assigned to the appropriate axes
between α(u) and α(v). A long edge in a hive plot layout needs to bypass axes to connect source
and target vertices without creating axis-edge overlaps. We assume that edges are routed along
the shorter distance according to their span. In the case of an even number of axes, we assume
that all edges connecting two vertices on opposite axes are routed clockwise. Combinatorially this
can be realized by enforcing virtual vertices to appear at certain positions in each axis order. In
our model, a hive plot layout can have up to g gaps per axis; see Fig. 2b where the concept is
shown. If g = 1, then all virtual vertices have to be at the end of each order. If g = 2, then virtual
vertices have to be at either the beginning or end of each order. In cases where g > 2 all virtual
vertices form a partition into up to g groups, where they must appear consecutively within each
group.

To consider intra-axis edges during optimization an adaption is necessary. Basically, all axes
and their associated vertices are duplicated such that for each axis ai, there are two copies a+i
and a−i , respectively, and vertex sets V +

i and V −
i ; see Fig. 2. The vertex order on duplicate axes

remains the same, i.e., π+
i = π−

i = πi.

We consider two proper edges (u, v) and (x, y) to be crossing if u, x ∈ Vi and v, y ∈ Vj such
that πi(u) < πi(x) and πj(y) < πj(v). Similarly, if the end points of two long edges (u, v) and
(x, y) are on four different axes such that, w.l.o.g, ϕ(u) < ϕ(x) < ϕ(v) < ϕ(y) (mod k) or on three
different axes such that, w.l.o.g., ϕ(u) = ϕ(x) = i, πi(x) < πi(u), and ϕ(x) < ϕ(v) < ϕ(y)
(mod k) a crossing is unavoidable if g = 1. We note that our assumption of routing edges
along the shorter cyclic distance prevents avoiding such a crossing by routing one of the in-
volved edges along the longer cyclic distance. The proper neighborhood of a vertex u is defined as
N(u) = {v | (u, v) ∈ E, span(u, v) = 1}.

3 Framework for Computing Hive Plots

Next, we present our framework for creating a hive plot layoutH(G) = (A,α, ϕ,Π) of an undirected
simple graph G = (V,E). The framework itself, as seen in Fig. 3, is modeled as a pipeline consisting
of three stages where each stage has multiple variants. In stage (1), we partition the vertices into
multiple groups, each corresponding to an axis of the hive plot. Next, in stage (2), we optimize
the cyclic axis in order to bring strongly connected groups near each other. Finally, in stage (3),
we optimize the vertex ordering on each axis to minimize edge crossings. Furthermore, stage (3) is
a two-step process where first inter-axis edge crossings are optimized (3a), then the relative order
of vertices with inter-axis connections are fixed, and intra-axis edge crossings are optimized (3b).
Moreover, edge crossing minimization is performed under the constraint that long edges need to
be routed through gaps in the axes that they pass.
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Stage (1) Stage (2) Stage (3a) Stage (3b)

Figure 3: Conceptual overview of our Hive plot framework. In stage (1), we partition the graph.
Then, in stage (2), we optimize the axis order before inter-axis edge crossings are minimized in
stage (3a). Lastly, in stage (3b), we fix the partial order of vertices with inter-axis connections and
minimize the intra-axis edge crossings. It is also feasible to perform (3a) and (3b) at once.

3.1 Vertex Partitioning (1)

In the first stage, we partition the vertex set V into k subsets {V0, . . . , Vk−1} such that each subset
maps to exactly one axis ai in the hive plot. The core idea is that the subsets of the partition
represent dense induced subgraphs. In our implementation, we provide three different strategies to
compute a partition, depending on the properties of the input. First, if we consider the parameter
k as an additional input we use the Clauset-Newman-Moore greedy modularity maximization [5]
to compute a partition of size k. Second, if k is not specified, we apply the Louvain [4] community
detection algorithm instead. Here, the size of the partition is determined by how many communities
are detected. Lastly, this step of the framework is not necessary if a partition is already given in
the input, e.g., via the home institutions of authors in a co-authorship network. We note that any
other algorithm to partition the graph into meaningful groups can be used.

3.2 Axis Ordering (2)

The second stage orders the axes such that the total span of edges is minimized. Our approach
assumes that edges are always drawn along the shortest path around the circle between endpoints,
either clockwise or counterclockwise. Basically, we want to maximize the number of proper edges
while minimizing the number and total length of long edges. We do not consider the individual
position of vertices on their respective axes but rather look at the aggregated edges incident to the
subsets of the axis partition.

Let wi,j be the number of edges between Vi and Vj for i < j. Recall that the definition of span
covers edges spanning over the last axis. The cost function of an axis order ϕ is defined as follows:
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cost(ϕ) =

k−1∑
i=0

k−1∑
j=i+1

wij span(ai, aj). (1)

Integer Quadratic Programming Model: We can model the problem as a simple integer
quadratic program

minimize

k−1∑
i=0

k−1∑
j=0

k−1∑
l=0

k−1∑
h=0

xi,lxj,h span(al, ah)wi,j (2)

s.t.

k−1∑
j=0

xi,j = 1 ∀i ∈ {0, . . . , k − 1} (3)

k−1∑
i=0

xi,j = 1 ∀j ∈ {0, . . . , k − 1} (4)

xi,j ∈ {0, 1} ∀i, j ∈ {0, . . . , k − 1}. (5)

Each xi,j represents the assignment of vertex partition Vi to axis aj . Naturally, each vertex
partition can only be assigned to one axis (Eq. (3)), and each axis can only be assigned one vertex
partition (Eq. (4)). As the weight of two vertex partitions and the span between two axes is known
in advance, we model the objective function in Eq. (2) such that each quadratic term is only active
if both vertex sets Vi and Vj are assigned to the respective axes al and ah.

Simulated Annealing Heuristic: As an alternative to the exact computation above, we de-
scribe an approach based on simulated annealing [25] to optimize the axis order. Conceptually,
simulated annealing is a probabilistic optimization technique that tries to compute the global op-
timum by transitioning through a sequence of states into the optimal state. To overcome local
optima simulated annealing allows transitions into worse states if the remaining energy is sufficient.
At the start, an initial amount of energy is assumed and gradually decreased until no more state
transitions can occur and the procedure terminates. In the case of our approach, this means that
we consider an ordering of axes as a state, switching two axes in the order as the transition between
two states, and cost(ϕ) is used to determine the current energy.

We initialize the approach with a random order of axes and iteratively transition into new
states. Let ϕt be the state representing the current order of axes at step t. We transition into
a neighboring state ϕt+1 by exchanging two random axes in the order. Equation (1) is used to
compute the cost of a state and let cost∆(ϕt, ϕt+1) = cost(ϕt+1) − cost(ϕt) be the absolute cost
of a transition. If cost∆(ϕt, ϕt+1) < 0 we immediately accept the new order as the current state.
Otherwise, we draw p from a random uniform distribution with range [0, 1] and use the following
inequality to decide if the new order should become the current state even though it doesn’t improve
the global cost.

p < e
−cost∆(ϕt, ϕt+1)

τt

Here, τ describes the remaining energy of the system. In practice, the initial energy should be
chosen, such that 80% of all transitions are accepted. As the cost of transitions can initially only be
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estimated, we initialize the energy of the system to be τ0 =
∑k−1

i=0

∑k−1
j=i+1 wi,j . Our experiments

have shown that this is a sufficient assumption. In each iteration, we decrease the remaining energy
in the system with τt+1 = ατt with 0 < α < 1 being the parameter controlling the cooling schedule.
Lastly, we stop the approach if τt < 0.01 and accept the order with the least cost as our solution.

As simulated annealing is sensitive to the initial energy, which is initialized by a rough estimate
as stated above, we restart our simulated annealing approach with slightly different parameters
and perform dual-phase simulated annealing [27]. In the second run, we initialize the remaining
energy as the mean of all cost-positive state transitions and start with the best order from the first
run as the initial order.

3.3 Crossing Minimization (3)

In the third stage of our framework, we are concerned with minimizing edge crossings under
the assumption that the assignment to axes and the cyclic axis order is already fixed. We present
multiple variants that can roughly be categorized as either using exact integer programming models
or building on other well-known heuristics from the domain of layered crossing minimization.

All variants except one are envisioned as a two-step approach, where we first optimize inter-
axis crossings (3a) before intra-axis crossings are minimized (3b). This results in solutions with
the primary goal of minimizing the number of inter-axis edge crossings, while minimizing intra-
axis crossings, which only become visible upon explicit axis expansion, is a secondary goal. In
the first step, isolated vertices which are not an endpoint of at least one inter-axis edge can be
ignored during edge crossing minimization and such vertices are removed and re-inserted after the
optimization. For brevity we assume that Vi only contains non-isolated vertices in this section,
otherwise, we will indicate it in the text. In the second step, intra-axis edge crossings are optimized
under the constraint that the partial order of vertices computed in step one must be adhered to.

A commonality for all variants is that we subdivide all long edges to turn them into sequences
of proper edges. Each edge e = (u, v) with span(u, v) > 1 is subdivided by inserting span(u, v)− 1
virtual vertices assigned to the appropriate axes between α(u) and α(v). Whenever we differentiate
between the two types of vertices, let V r

i be the set of real vertices and let V v
i be the set of virtual

vertices with Vi = V r
i ∪ V v

i . Additionally, we assume that a global parameter g ≥ 1, which
represents the maximal number of gaps per axis, is specified. If g = 1 we assume that all long
edges are routed on the outside. In the case of g = 2, we assume that gaps are on the outside and
inside of each axis. If g > 2, we evenly distribute the gaps along each axis; see Fig. 2b.

3.3.1 Integer Programming Models

We first describe several variants that use integer programming (IP) models. All models are based
on the formulation by Jünger and Mutzel [14, 15], which we will briefly describe below. Here,
we state the quadratic formulation while details on implementation, efficiency, and linearization
of the model can be found in [31]. Let πi and πi+1 be the vertex orders of two consecutive axes
ai and ai+1 with vertex partition Vi and Vi+1. Let δiu,v ∈ {0, 1} be a binary variable describing

the pair-wise order of vertices u, v ∈ Vi in πi, where δiu,v = 1 iff πi(u) < πi(v) and 0 otherwise.

Therefore, the vector δi ∈ {0, 1}(|Vi|
2 ) fully describes the total order of vertices in πi.

With the above, we can define the induced crossings of two neighboring axes:

C(πi, πi+1) = C(δi, δi+1) =
∑

(u,v)∈(Vi
2 )

∑
s∈Ni+1(u)

∑
t∈Ni+1(v)

(δiu,vδ
i+1
t,s + δiv,uδ

i+1
s,t ) (6)
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Here, N i+1(u) describes the neighbors of u in Vi+1. Whenever u is before v in order πi and t
before s in order πi+1 a crossing is induced.

For the model to work correctly, the following transitivity constraints are necessary. For all
triples (u, v, w) ∈ Vi we have to add the following constraints:

0 ≤ δiu,v + δiv,w − δiu,w ≤ 1 ∀(u, v, w) ∈
(
Vi

3

)
(7)

This constraint implies that whenever πi(u) < πi(v) and πi(v) < πi(w) we also require πi(u) <
πi(w). Thus, preventing the contradiction that u is before v, v is before w and w is before u.

Gaps: To model gaps, we have to add additional constraints for g > 1. We explain the differences
for g = 1 at the end of this paragraph. For each virtual vertex u ∈ Vi we introduce variables
βκ
u ∈ {0, 1} with κ ∈ {1, . . . , g} and the following constraints:

κ
|Vi|
g − 1

≤
∑
j∈V r

i

δij,u +M1(1− βκ
u) ∀u ∈ V v

i (8)

κ
|Vi|
g − 1

≥
∑
j∈V r

i

δij,u −M1(1− βκ
u) ∀u ∈ V v

i (9)

g∑
κ=1

βκ
u = 1 ∀u ∈ V v

i (10)

As stated earlier, we want an equal amount of vertices between potential gaps. Equations (8)
and (9) model that a virtual vertex should be after a κ

g−1 fraction of the vertices in V r
i . Thus, each

virtual vertex is constrained to a position in a gap by requiring a predefined amount of vertices
before it in the respective order. M1 is a constant that must be initialized larger than the maximum
number of vertices per axis. Now, if βκ

u = 1 then Eqs. (8) and (9) express a tight bound. Otherwise,
if βκ

u = 0, then both inequalities are trivially fulfilled. Equation (10) states that only one βκ
u can

be 1. Thus, in combination Eqs. (8) to (10) state that a vertex must be in a gap position in the
order πi in exactly one gap. Now, for g = 1 we can drop βκ

u and Eqs. (9) and (10), then, we adapt
Eq. (8) such that each virtual vertex must be after |V r

i | vertices.

One-layer Two-sided Crossing Minimization ILP (1L2S ILP): In the first variant, we
iterate a fixed number of times in clockwise or counter-clockwise order over all axes, minimizing
inter-axis edge crossings. At each iteration step, we assume that the vertex order πi of axis ai is
variable while the order πi+1 of the next axis ai+1 and the order πi−1 of the previous axis ai−1 are
fixed. Now, at each iteration, we optimize the following objective function:

minimize C(πi−1, πi) + C(πi, πi+1) (11)

As πi−1 and πi+1 are considered as an additional input here, the quadratic terms in Eq. (6)
simplify to linear terms in Eq. (11). The previously mentioned constraints of Eqs. (7) to (10) only
have to be added for vertices in Vi.
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Two-layer Two-sided Crossing Minimization IQP (2L2S IQP): In the second variant,
we apply a similar iterative approach as for the one-layer two-sided variant. At each iteration, we
optimize the order of two consecutive axes ai and ai+1 and assume that πi and πi+1 are variable.
The order of vertices πi+2 and πi−1 are considered fixed. Now, at each iteration, we optimize the
following objective function:

minimize C(πi−1, πi) + C(πi, πi+1) + C(πi+1, πi+2) (12)

The part C(πi, πi+1) includes quadratic terms in the objective function, while the other two
terms remain linear. Thus, it is an integer quadratic program. Lastly, constraints of Eqs. (7)
to (10) have to be added for vertices in Vi and Vi+1.

Full Crossing Minimization IQP (Full IQP): In this variant we optimize all inter-axis edge
crossings at once instead of iteratively applying a crossing minimization model to individual axes.
Thus, the objective function is as follows:

minimize

k−1∑
i=1

C(πi−1, πi) + C(πk−1, π0) (13)

Here, each term in the objective function is a quadratic term. Each δi is considered variable
and we have to add the constraints of Eqs. (7) to (10) for all Vi.

Intra-axis Edge Crossing Minimization: All above models have in common that they only
optimize inter-axis edge crossings of the proper edges (after subdividing the long edges). Moreover,
they specifically address the intent of stage (3a) of the pipeline. Now, as the second stage (3b)
of the crossing minimization step we will minimize intra-axis edge crossings using the base IP
model described above while adding additional constraints to disallow changing the previously
computed order. Here, vertex partition Vi represents all vertices instead of the subset with inter-
axis connections. We can re-introduce the previously removed vertices and then apply the one-
or two-sided IP model to individual axes. The gap constraints of Eqs. (8) to (10) are still used
but require virtual vertices to be placed in the appropriate gaps dependent on the full vertex
sets. Remember, intra-axis crossings are induced by the duplicated vertices; however, the order of
vertices is identical, i.e., π+

i = π−
i = πi. Thus, the induced crossings are C(π−

i , π
+
i ) = C(πi, πi) =

C(δi, δi) and our objective function is as follows:

minimize C(πi, πi) (14)

Naturally, we have to add the constraints of Eqs. (7) to (10). However, we have to introduce
additional constraints that fix δiu,v to the previously computed value iff u and v have been optimized
in stage (3a).

Lastly, this model can be run as either a two-sided crossing minimization IQP or as a one-
sided crossing minimization ILP. In the case of the two-sided IQP, we initialize all constraints and
consider π+

i = π−
i = πi; thus, the terms in Eq. (14) imply a quadratic program. In the case of

the one-sided ILP, we iteratively improve the order by considering π−
i to be fixed by the previous

iteration while π+
i is variable. After each iteration, we set π+

i = π−
i .
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Full-weighted Integer Quadratic Programm (Full-weighted IQP): The last variant we
want to describe optimizes both inter- and intra-axis crossings at the same time, therefore com-
bining stage (3a) and (3b), with the following objective function:

minimize

k−1∑
i=1

C(πi−1, πi) + C(πk−1, π0) + ω

k−1∑
i=0

C(πi, πi) (15)

The model uses the same building blocks as previously seen. The main difference is that we
weigh the terms in the objective function Eq. (15). The weight factor ω can be used to balance
between inter- and intra-axis crossings. As we prefer to optimize inter-axis crossings, we set it
to ω = 1

|E|2 , thus using an upper bound on the number of crossings. Still, we have to add the

constraints of Eqs. (7) to (10) for each vertex set Vi, and the objective function remains a quadratic
function. Informally, this means that we always find a solution with the least number of inter-axis
edge crossings, but, if there exist multiple such solutions, we prefer the one with the least intra-axis
edge crossings.

3.3.2 Heuristics

In this section, we describe several heuristic algorithms that are based on the sifting [20] and
barycenter heuristic [26]. Again, we subdivide all long edges to turn them into sequences of proper
edges and remove isolated vertices. While the variants differ drastically in how the orders are
computed, they share the commonality of how gaps are handled during the respective procedures.

Therefore, we will first describe a greedy procedure to handle gaps. We assume that for each
vertex, a position in the order πi has already been computed, but virtual vertices can still be in
non-gap positions in the order. If g = 1 we simply want virtual vertices on the outside to route
the long edges around axes. Here, we sort vertices by their computed position but constrain the
sorting algorithm to put all non-virtual vertices before all virtual vertices in the respective orders.
Afterward, we assign the index of a vertex as the new position. For g > 1 we perform the following
procedure. We split the order πi of axis ai into g − 1 suborders such that the number of real
vertices V r is approximately equal in each. This places the gaps equidistantly between the real
vertices. Now, we iterate over all virtual vertices in each split order and compute the induced
crossings if we move the vertex to either the beginning or the end of the split order. Then, we
greedily pick the choice that induces fewer crossings. Note, that we do not change the relative order
of virtual vertices to not introduce crossings between them. Figure 4 illustrates how the greedy
gap assignment works. Once we completed the above procedure and processed all split orders, we
merged the split orders again. We assign the index of a vertex in this order to its new position.

Barycenter Heuristic: As the first variant we adapt the barycenter heuristic [26] for crossing
minimization. Our approach works by iterating several times in clockwise or counter-clockwise
order over all axes while performing a layer-by-layer crossing minimization sweep. At each iteration,
we process all vertices Vi of an axis by computing a new barycenter position as follows:

pos(u) =
1

|N(u)|
∑

v∈N(u)

πα(v)(v)

|πα(v)|
.

As it is necessary to avoid cases where axes are imbalanced, we normalize both axes and consider
the neighborhood N(u) of vertex u in the next and previous axes ai+1 and ai−1. The reason for



112 M. Nöllenburg and M. Wallinger Computing Hive Plots: A Combinatorial Framework

Figure 4: An axis with g = 3 gaps. Gaps are indicated by dashed lines, while axis segments are
solid lines. Vertices colored red are virtual vertices. After computing new positions we move virtual
vertices into either a gap to the left or right. The side is determined by counting the crossings
and greedily picking the better option. The order of virtual vertices remains unchanged after the
procedure.

considering both axes simultaneously is that otherwise, when only considering the previous axis,
crossings might be introduced that are overall worse for the next axis.

Once barycenter positions are calculated, we sort all vertices v ∈ Vi of axis ai by their positions
pos(v) and apply the gap handling procedure. After each iteration, we batch update the vertex
positions with their respective new positions. We terminate the overall process after either no
change is detected for one cycle or an iteration threshold is reached.

Layer-by-layer Sifting: The next variant we want to describe is built on the sifting heuristic.
See [20] for a more detailed overview of the general sifting algorithm. Similar to the barycenter
heuristic, we process axes by iterating several times in clockwise or counter-clockwise order over
all axes while performing a layer-by-layer crossing minimization sweep. Each sweep starts with
computing the number of crossings that are induced with the current order of an axis. Then we
process all vertices in order of their previously assigned position. For each vertex, we perform
the following: we iteratively move the vertex from its current position to the first position in the
order while computing the number of induced crossings for each intermediate position. The same
procedure is repeated but the vertex is moved to the last position in the order. Then, we move
the vertex to the position where we encountered the least number of overall crossings. We repeat
this process for the remaining vertices on the updated order. Once all vertices are processed, we
perform the gap handling procedure and assign the position in the order as the new vertex position.

Note, that [20] investigated several variants of orders in which the vertices are processed but
didn’t find a statistically significant difference in the resulting number of crossings.

Global Sifting: The last variant we want to describe is based on global sifting [20]. Here,
instead of iteratively processing the vertices layer-by-layer we sort all vertices in all layers by the
respective degree. Similarly to layer-by-layer sifting, we iteratively process each vertex by moving
it to the optimal position in the order of its axis. Once all vertices are processed, we perform the
gap handling procedure and assign the position in the order as the new vertex position.

Heuristics for Intra-Crossing Minimization: In the second phase of the crossing minimiza-
tion we aim to further reduce intra-axis crossings by applying the barycenter or sifting heuristic.
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As the focus of the hive plot layout is on proper and long edges, we introduce the additional
constraint that the relative order of vertices incident to inter-axis edges are not allowed to change
in this phase anymore. Basically, this is again a classic 2-layer crossing minimization for a ver-
tex subset, however both layers have the same order. Moreover, we apply the same procedure as
described above to constrain virtual vertices to gap positions. We process each axis individually
and terminate the processing of an axis once no change is detected, or the iteration threshold is
reached.

4 Implementation and Hive Plot Rendering

In this section, we will briefly explain the design decisions regarding the visualization; see Fig. 5
or Fig. 14 for examples. The implementation code and a prototype web application can be found
on OSF. Axes are drawn as straight lines emanating from a common center with equal angular
distribution. Axes can be expanded or collapsed on demand.

When an axis is expanded, the background is colored in a light grey color with low opacity.
When expanded, the available space is distributed 40 : 60 between intra-axis and inter-axis edges.
Vertices are drawn as small circles, and their positions on their respective axis ai are computed
based on their positions in πi. Labels are placed in a clockwise direction next to an axis horizontally.
If a vertex’ assigned axis differs by less than ± 25◦ to the horizontal reference direction, the label
is rotated by 45◦. The color of vertices is computed by mapping the angle of the assigned axis to
a radial color map [6]. For edges, we assign the color of the first endpoint in the counter-clockwise
direction. The ideas behind coloring edges are that it becomes easier to follow individual edges
and that it is, for half of the vertices, immediately clear to which axis the edge connects.

Edge Routing: Edges between neighboring axes are drawn as cubic Bézier curves with one addi-
tional control point for each endpoint. Those two extra control points are positioned perpendicular
0.15 of the straight-line distance between the associated endpoint and a mirrored copy on the other
axis. For long edges which are routed through gaps we use B-splines. Here, the control points
are computed by chaining the control points of proper edges with only one control point for each
virtual vertex.

Interactivity: Figure 5d shows an example of how interactivity was realized in our visualization.
First, when hovering a vertex, the vertex itself, all neighbors, and incident edges are highlighted
by a color contrasting the color scheme. Initially, each axis in the visualization is collapsed. By
clicking on a single axis it is expanded to show more details on demand. Furthermore, it is also
possible to expand all axes with a button click. Naturally, it is also possible to contract individual
pairs of expanded axes. Similarly, by clicking a button in the interface, vertices can be scaled to
represent their respective degree; see Fig. 5b. Lastly, labeling can be toggled on or off.

5 Case Study

We evaluate our framework by a case study using the citation dataset [7] from the creative contest
at the 2017 Graph Drawing conference. This dataset contains all papers published at GD from
1994 to 2015. We created co-authorship graphs for different years by extracting researchers from
papers and connecting them with edges whenever they co-authored a paper. Full-sized images of
the case study can be found on OSF.

https://osf.io/6zqx9/
https://osf.io/6zqx9/


114 M. Nöllenburg and M. Wallinger Computing Hive Plots: A Combinatorial Framework

In Fig. 5, we show a hive plot of the co-author network of 2015 and three alternative renderings
computed with our framework in less than 10ms. We used the rendering style described in Section 4.
We did not specify the number of axes k in the input and computed a clustering with the Louvain
method, which yielded seven clusters. We specified the number of gaps as g = 1, i.e., all long edges
are routed around the axes. The network has a total of 75 vertices and 190 edges, which are split
into 172 intra-axis edges, 15 proper edges, and 6 long edges.

Authors mapped to individual axes seem to represent mainly clusters of geographic proximity
of researchers’ institutions or established close collaborations. Inter-axis edges are emphasized in
our hive plots and indicate collaborations between clusters in the form of researchers bridging
institutions and forming new connections, e.g., via papers originating from research visits or recent
changes in affiliation. Another possible interpretation can be seen when vertices are scaled by
degree. Researchers with connections to other axes are often also highly connected inside their
own cluster. This could mean that they are well-connected and prolific and use existing connections
to start new collaborations.

In contrast to a force-based layout, see Fig. 6a, several observations can be made. While cliques
are very prominent in the force-based layout, the macrostructure of the graph is less clear. The hive
plot layout, on the other hand, focuses more on the macro structure of the graph, with the intra-
axis structure only shown on demand. However, with two copies per vertex, cliques are harder to
identify. Still, the hive plot layout requires no additional cue, such as color, in this case, to highlight
the community structure. Furthermore, in the hive plot layout, individual vertices are easier to
identify, labels are more uniform, and edges are routed in a predictable manner, which is similar to
schematic diagrams. Due to the possibility of expanding axes on demand in the hive plot layout,
individual communities can be easily explored without being overwhelming. While it is possible
to represent communities in the force-based layout by meta vertices, it is not straightforward to
encode the relationship of each single vertex to the rest of the network. Both layouts show some
label-edge overlap. Finally, the hive plot layout has a more balanced space utilization.

Furthermore, we also compared against a hierarchical layout; see Fig. 6b. Due to the absence
of edge directions in the underlying data, we derived edge directions from the hive plot layout by
directing all edges clockwise. Naturally, the hierarchical layout emphasizes the imposed hierarchy
while the communities are dispersed over the layout. The communities are visible, although this
requires the use of vertex coloring. This layout gives the layer assignment a quite different meaning
compared to the axis assignment in our approach. The orthogonal layout of edges initially simplifies
the process of following an edge, but it becomes progressively more challenging with an increase
in bends and crossings. In the hive plot layout this is less of an issue, especially for edges between
communities. Lastly, the label placement in the hierarchical layout is optimized and avoids label-
edge and label-vertex overlaps. However, this optimization comes at the cost of requiring more
space. In contrast, the hive plot layout has a few label-edge overlaps but utilizes space more
efficiently.

Summary: Hive plots are an interesting alternative for investigating social networks. Especially,
as the complexity of dense clusters can be hidden and shown on demand. Furthermore, a Hive
plot layout gives prominence to edges connecting different clusters. However, investigating the
intra-axis edges of a Hive plot layout can be overwhelming. This is mainly caused by many edges
in a small visual area. Similarly, the visual scalability of a Hive plot layout is probably worse
than other approaches. Perceiving edges in Hive plots with more than 8-12 axes is already hard.
Moreover, too many long edges cause a Hive plot layout to become quickly unreadable and the
constraint that edges are routed through gaps can cause unnecessary crossings.
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(a)

(b) (c) (d)

Figure 5: Variations of the co-author graph of GD 2015. In (a), some axes of interest are expanded,
while (c) shows all axes expanded. In (b) vertices are scaled by degree and all axes are collapsed. In
(d) interactive highlighting is obtained by hovering the vertex “Nöllenburg” marked with a yellow
disk.
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(a) force-based

(b) hierarchical

Figure 6: Force-based layout (a) of the co-authorship graph of Section 5 created with yEd [30].
The “smart organic layout” functionality was used. The preferred edge length was set to 100, while
the minimal vertex distance was set to 20. The option of avoiding vertex/edge overlaps was active
with a value of 0.8. Also, the labeling was optimized, and the graph was colored according to the
partitions from the case study. (b) shows a hierarchical layout created with yEd. Similar layout
optimization steps were applied.
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6 Computational Experiments

We conducted computational experiments to test different combinations of the pipeline. First, we
conducted a set of experiments to tune the parameter settings of the simulated annealing heuristic
and the iterative crossing minimization heuristics and integer programs. Second, we compared
different combinations of the pipeline in regards to the optimization criteria, number of crossings,
and number of long edges, as well as in regards to the runtime. The datasets, the evaluation code,
and additional plots can again be found in the supplemental material on OSF.

6.1 Dataset and Setup

All graphs used in the experiment were generated with the following approach where we state the
parameters first and then the intention of each parameter: k, n, σn, δintra and δinter.

To circumnavigate the problem of having an uncontrolled distribution of long edges we already
assume that the order of axes is known. For each of the k axes, we generate a vertex set of mean
size n and standard deviation of σn. Sampling the number of vertices from a normal distribution
with a given mean and standard deviation gives us control over the approximate number of vertices
while the size of the graph remains to some degree random. Afterwards, we have k vertex partitions
Vi where Vi is on axis ai next to Vi+1 on ai+1.

Then, to add edges, we fix the average degree of vertices. For intra-axis edges, we fix the
average degree δintra and perform a random experiment between all vertex pairs u, v ∈ Vi. We
draw a random value p from a uniform distribution with range [0, 1] and check if p < δintra

|Vi| .

Whenever the inequality holds we add an edge between u, v.
For inter-axis edges, we assume that the average degree is δinter but use a slightly more complex

procedure than for the intra-axis edges. To avoid having a very uniform distribution of inter-axis
edges, we prefer having more proper edges than long edges, which models the intended use-case of
hive plots better, as too many long edges decrease the readability. Now, for each pair of vertices
u ∈ Vi and v ∈ V \Vi We draw a random value p from a uniform distribution with range [0, 1] and
check the following inequality:

p < pinterp
span(u,v)−1
long

The span of two vertices is known as we fixed the axis each vertex set is assigned to. The input
parameter plong = 0.2 is fixed and models that the further two vertices are apart, regarding their
assigned axes, the less likely it is that an edge exists between them. Moreover, if two vertices are
on neighboring axes (span = 1), the term becomes inconsequential. pinter =

δinter
|V Vi| is derived from

the input parameter of δinter. If the sampled p satisfies the inequality, we add the edge (u, v) to
the graph.

Lastly, to have a less uniform distribution of edges on each axis, we create hub vertices. For
each axis, we select 1 to σn vertices uniformly at random. For each edge that has an endpoint
in the remaining vertices of the axis, we perform a random experiment. With probability 0.1, we
disconnect the edge from its endpoint on the axis and connect it uniformly at random to one of
the selected hub vertices instead.

We varied the number of axes k from 3 to 14 and the vertex number per axis via the parameters
(n, σn) from the set {(10, 2), (20, 4), (30, 6), (40, 8), (50, 10)}. We introduced three densities: low
(deginter = 0.5, degintra = 4.0), medium (deginter = 1.0, degintra = 5.0) and high (deginter = 1.5,
degintra = 6.0). We generated five graphs for each density and each combination of k and n. In
total, our experimental synthetic dataset consists of 5×3×12×5 = 900 instances. In summary, we

https://osf.io/6zqx9/
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Figure 7: Distribution of number of inter- and intra-axis edges in our experimental dataset by
number of vertices in a generated instance. Our density parameter mostly affects inter-axis edges.

generated instances that represent graphs that exhibit dense community structure of k communities
with a mean of n vertices. Furthermore, communities are connected to each other with decreasing
likelihood correlating with how distant two communities are assumed during the generation process.
The distribution of the numbers of inter- and intra-axis edges can be seen in Fig. 7. As expected,
the density of intra-axis edges is much higher than the density of inter-axis edges. We chose this
approach over existing community graph generators, for example, LFR [29] or random partition
graphs [10], as we have better control over the number of axes, the number of vertices per axis
and the distribution of proper and long edges, especially, as we want more proper edges than long
edges. Furthermore, we tried to cover the parameter space of where we think a hive plot layout is
sensible, while also testing the computational boundaries when scaling to large instances.

We implemented all algorithms in Python 3.11 and used Gurobi 10.0.3 to optimize our IP
models. We ran the experiments on a compute cluster using Ubuntu 22.10 with an Intel Xeon
E5-2640 2.40GHz. However, we restricted Gurobi to only use one core and restricted the memory
to 32 GB. We used the Gurobi model tuning tool to find appropriate solver parameters for our
models, which resulted in a speed-up of up to one order of magnitude compared to Gurobi’s default
settings. Also, we tried to linearize the IQP models but observed degraded performance compared
to Gurobi’s automatic linearization.

6.2 Tuning the Pipeline

In the first set of experiments, we investigated tuning the simulated annealing heuristic and the
iterative crossing minimization variants of our pipeline. First, we looked at simulated annealing for
the circular arrangement problem of computing an optimal axis order. Here, we used the medium
density instances with n = 50 and additionally added instances with up to k = 26 axes. We
compared linear (τt+1 = τt−α) and geometric (τt+1 = ατt) cooling strategies with different values
of α. Additionally, we tested each cooling strategy with and without dual-phase annealing. For
each instance we computed the wall-clock runtime of the algorithm and recorded the total number
of iterations. As simulated annealing is sensitive to random effects, we performed five runs for each
cooling strategy and averaged the results. Lastly, we also recorded the time and optimal cost of
the IQP model of each instance.
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Figure 8: Plots of exact-to-heuristic ratio (a) and runtime (b) of the best performing cooling
strategies when the number of axes is increased. Note that (b) has a logarithmically scaled y-axis.
Each tuple represents the cooling schedule, the value of α, and if we used dual-phase annealing.

Figure 8a shows the best-performing cooling strategies compared to the optimal solution. All
linear cooling strategies performed considerably worse than the geometric cooling strategies. With
the geometric cooling strategy and α = 0.999 we were able to compute the optimal solution in
all instances up to k = 16. The double start improved the overall result in most cases while not
drastically increasing the runtime.

When looking at the runtimes in Fig. 8b, we can see that the exact IQP model is able to solve all
instances to optimality, but, only small instances with k < 10 can be solved in less than a second.
The geometric cooling strategy with α = 0.999 terminates in less than 10 seconds for all k while
the geometric strategy with α = 0.99 terminates in less than one second for all k. Considering that
hive plot layouts become increasingly difficult to read when k increases beyond 10 (see Fig. 14),
it is reasonable to assume that a geometric cooling strategy with α = 0.99 and double start is
sufficient and will find an optimal or near-optimal solution with high probability quickly.

Lastly, we looked at tuning the maximum number of iterations for the iterative heuristics and IP
model. We randomly sampled one of the five instances per parameter setting of the medium-density
dataset. Then, we computed the optimal axis order for each instance and performed inter- and
intra-axis crossing minimization. For each iterative variant, we doubled the maximum number of
iterations and recorded the number of crossings. Then, we computed the iteration number where
no change in crossings occurred for each variant. The plots can be found in the supplemental
material. For the barycenter, global sifting, and layer-by-layer sifting heuristics, we could not
detect a change in the number of crossings after 16 iterations for most instances. For the 1L2S
ILP, we could not detect a change after 8 iterations, while the 2L2S IQP converged already after
four iterations.

6.3 Evaluation of the Pipeline

To compare the different proposed variants of our pipeline, we evaluated all instances of our dataset
with several pipeline configurations. See Table 1 for an overview of the eight different combinations.
Generally, we can distinguish between combinations that use an IP model and combinations that
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axis ordering inter-axis CRM intra-axis CRM

H
eu
. simulated annealing barycenter barycenter

simulated annealing layer-by-layer sifting sifting
simulated annealing global sifting sifting

IP
IQP 1L2S IQP one-sided ILP
IQP 2L2S IQP two-sided IQP
IQP full-model IQP one-sided ILP
IQP full-model IQP two-sided IQP
IQP full-weighted IQP

Table 1: Variants of the pipeline used in the experiment.

don’t use an IP model. In the case of variants that used an IP model, we set a timeout of 120
seconds for iterative per-axis models and 1800 seconds for full models. We measured the wall-clock
time for each pipeline step. We also measured the number of inter- and intra-axis edge crossings.
Lastly, we measured the total edge length but as explained in Section 6.2 we could only observe
minimal differences between the solutions of the optimal IQP and simulated annealing of stage (2).
Thus, we will not investigate it further in this section.

Figure 9 shows the percentage of instances our IP models were able to solve to optimality
before a timeout occurred. We aggregated data for the number of gaps g = {1, 2, 3}; the individual
plots can be found in the supplemental material on OSF. There is a slight indication that with
three gaps and a small number k of axes, timeouts occurred. Unsurprisingly, the full-weighted
IQP model is only able to solve rather small instances before running into timeouts, while the
1L2S and one-sided model for inter- and intra-axis CRM can compute a solution for almost all
instances. The full model IQP variant is still able to find an exact solution even if the number
of vertices increases. However, it starts to struggle with an increasing number of axes and edges.
Interestingly, when combined with the two-sided IQP model for intra-axis CRM, it seems that
timeouts are mostly caused by the two-sided IQP.

Next, Fig. 10 shows the log2(
cralg
cropt

) optimality ratio of inter-axis edge crossings of different

pipeline combinations against the runtime each pipeline combination required to perform inter-
axis CRM. This plot only shows those instances, regardless of the number of gaps or density, that
were solved optimally with the full IQP model, i.e., for which we can compute the actual optimality
ratios. Regarding the runtime, the heuristic pipeline with the barycenter heuristic can compute a
solution in less than 100ms while sifting and global-sifting can take up to 10s. The variants based
on IP models take considerably longer to compute a solution and only a fraction of the instances
can be solved in less than 10s. Interestingly, if it is possible to compute a solution with the full
IQP model, then the runtime behavior is similar to the iterative IP models (see the rug plot at the
bottom of the figure).

Regarding solution quality, all three iterative heuristics perform equally well, while the 1L2S
ILP model is slightly better. On average, the three heuristics achieve 2.88 (barycenter), 2.77 (layer-
by-layer sifting), and 2.82 (global sifting) optimality ratio. However, in some instances a ratio of up
to 128 is observed. The 1L2S ILP model achieves a 2.11 ratio. The 2L2S IQP performs best of all
iterative models with 1.28 ratio and can even find optimal solutions for many instances. However,
of all approaches besides the full-weighted model, the most timeouts occurred.

If we look at the instances in Figure 11, where we were not able to compute an optimal
solution before a timeout occurred, the distribution of runtimes of the iterative algorithms is

https://osf.io/6zqx9/
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Figure 9: Percentage of instances an IP-based pipeline combination was able to solve before a
timeout occurred. Each bar represents a combination of variants for a given number of n. The
color gradient indicates an increasing number of axes, with light green representing k = 3 and dark
blue k = 14.

similar. However, the iterative 1L2S IQP model outperforms other variants regarding the number
of crossings. If we compare the performance of the best variant for an instance with all other
variants, then the performance ratio is at most 8. As the worst ratio for the 1L2S IQP model is
already 40 for instances where we were able to compute the optimal solution, we can assume that
the overall ratio further deteriorated.

Lastly, we also compared solution quality to a number of inter-axis edges of an instance. Here,
we can report that with an increasing number of edges, the variance of solution quality becomes
smaller for all variants. A plot can be found in the supplemental material.

Effect of Gaps: Now, if we consider the influence of the number of gaps on the behavior of
the inter-axis crossing minimization in Fig. 12, two general trends are noticeable. Here, we only
show the exact full IQP model and the fast barycenter heuristic. The behavior for other variants
is similar and can be found in the supplemental material.

First, in Fig. 12a, adding gaps increases the runtime as we add more variables in the IP models.
Similarly, the runtime for the barycenter heuristic increases. However, the driving factor here is
the gap-handling procedure as the procedure does not increase in complexity with the number of
gaps. The runtime remains similar for g = 2 and g = 3. When looking at the distribution of points
in the scatterplot, it can be observed that fewer instances are solved optimally when the number
of gaps increases.

Second, in Fig. 12b, the number of crossings drastically decreases in the full model when gaps
are introduced, which can be expected in an optimal model when introducing an additional degree
of freedom and enlarging the solution space. Interestingly, though, in the barycenter variant, the
number of crossings generally decreases from g = 1 to g = 2 but increases again from g = 2 to
g = 3. To further investigate we calculated the number of gaps associated with the best solutions
observed for each pipeline variant in each instance. The table of the absolute and relative values
can be found in the supplemental material. All three iterative heuristics had the best solution with
two gaps in 75% and 83% of all instances. The iterative 1L2S and 2L2S IP models mostly found
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Figure 10: log2 optimality ratio of inter-axis crossings in regards to the runtime of five different
heuristics. Only instances are shown where the full IQP model computed an optimal solution
within the time limit. The runtime distribution of the full IQP model is shown as a rug plot on
the bottom. A density plot of the log2 optimality ratio is shown on the right.

the best solution with three gaps, however, in less than 10% of all instances the best solution was
found with one or two gaps. One explanation for this could be that gap handling, in combination
with iterative approaches, restricts the solution space and leaves the optimization stuck in a local
minimum.

Intra-axis Edge Crossings: Figure 13 shows the number of intra-axis crossings and runtime of
the different pipeline variants. In this plot, we compared against the optimal solution found with
the full-weighted IQP model. The behavior of each approach is similar to what can be observed
for inter-axis CRM regarding the runtime. Again, the barycenter heuristic is much faster than all
other approaches. However, the solution quality drastically differs. For both pipeline combinations
using the two-sided IQP fewer crossings can be observed. Here, the ratio is on average 1.24 of the
optimal solution. Surprisingly, barycenter performs better (1.53) than the remaining combinations.
The other combinations perform equally (∼ 2.0). The plot for all instances that could not be solved
optimally with the full-weighted IQP can be found in the supplemental material. However, the
general patterns remain the same.

Lastly, the overall performance regarding the total number of crossings and runtime does not
deviate from what can be observed from the individual pipeline steps.

Recommendations: To summarize, while the one-sided and two-sided iterative IP models per-
form generally better than the heuristic models in terms of crossing minimization, it is questionable
if the increase in runtime is justifiable in many use cases. Furthermore, the iterative IP models
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Figure 11: log2 performance ratio of inter-axis crossings in regards to the runtime of five different
heuristics. Only instances are shown where the full IQP model ran into a timeout before an
optimal solution was found. The ratio considers the number of crossings of a variant divided by
the crossings in the best solution found for each instance. A density plot of the log2 ratio is shown
on the right.

performed worse than the full models regarding the number of crossings, but, the overall runtime of
computing a smaller model for each axis several times quickly adds up and is similar to computing
the full model with its provably optimal solutions. However, one redeeming quality of the iterative
IP models is that they use less memory. Several of the largest instances ran out of memory on our
system for the full-weighted IQP model.

Moreover, a similar pattern can be observed for using an IP model to optimize the circular
arrangement problem for finding an optimal axis order. The simulated annealing heuristic is
highly likely to find an optimal or nearly optimal solution. However, under our current use case
assumptions it is unlikely to actually use a hive plot layout with more than 14 axes, thus, computing
an optimal solution can still be done in a sensible time frame.

To conclude, if optimality is not required, the heuristic variants provide a good alternative to
computing an optimal solution. As the performance regarding crossings was similar for all three
heuristics, but the barycenter heuristic computed a solution fastest, we recommend the barycenter
heuristic as a good trade-off between speed and quality. However, if optimality is required or longer
computation times can be tolerated, then the full or full-weighted IQP should be preferred. The
full-weighted model can reliably solve instances up to 100 vertices, but if intra-axis edge crossings
are less of a concern, the full model is able to solve instances with up to 500 vertices and 400 edges.

7 Discussion and Conclusion

We have introduced a combinatorial framework for optimizing and drawing hive plots. Our frame-
work introduces a pipeline that can compute fast heuristic solutions and exact solutions for each
stage. Our edge routing guarantees that vertices are never occluded by edges, which is generally not
the case in frequently used algorithms such as force-based layouts. The focus of our approach lies
on showing inter-axis connections, i.e., proper and long edges, which reduces the visual complex-
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Figure 12: Runtime (a) and number of inter-axis crossings (b) of two pipeline variants for g =
{1, 2, 3} gaps. Additionally, we show a first-order regression model for each combination.

ity, but at the same time emphasizes the between-cluster connectivity in networks. Nonetheless,
interactivity can be used to show intra-axis edges on demand and thus give a more detailed view
on the dense parts of the network. Since the aspect ratio of hive plots is fixed, the layout can easily
be integrated into a multi-view visual analytics system.

Obviously, there are also some limitations to our approach. The original hive plots [16] are de-
terministic renderings of networks based on vertex attributes, whereas the current implementation
of our approach partially uses non-deterministic algorithms, e.g., for the clustering step, which
may lead to different hive plots for the same data or data with small changes. In the clustering
step, other approaches that were not considered in our prototype implementation could potentially
improve the layout. Even for an optimal axis order the presence of many long edges decreases the
readability quickly. The angular resolution for more than 8-12 axes becomes too small to precisely
show connectivity details, especially for vertices closer to the origin. See Fig. 14 for an illustration
of the limitations. Therefore, our framework has limited visual scalability and is recommended
mostly for small to medium graphs with less than 500 vertices and no more than 8–12 clusters. It
is possible to hide some visual complexity by collapsing individual axes. However, cloning axes to
show intra-cluster connectivity requires understanding two sets of edges that belong to the same
vertex, which may decrease the overall readability of our hive plot framework. Lastly, our experi-
mental dataset focused on instances of graphs that exhibit a relatively clear community structure.
Hence, we did not investigate how well our insights generalize to other types of graphs. More-
over, we did not investigate how specific graph characteristics beyond the number of edges impact
solution quality or runtime behavior and leave this as an open question.

Future Work: In terms of future work, several follow-up questions arise. We considered routing
edges according to the shortest cyclic distance between two axes. Potentially, some edge crossings
can be resolved by also considering routing edges along the longer distance. We adapted several
heuristics and IP models to fit into our framework. For both, heuristics and IP models, questions
remain regarding solution quality and computational performance. Furthermore, the gap handling
procedure seems to degrade the performance of the iterative heuristic with an increasing number
of gaps. Our conjecture is that the overall procedure is stuck in a local minimum, and it could
be of interest to thoroughly investigate this behavior. Similarly, we only looked at aggregates of
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Figure 13: log2 optimality ratio of intra-axis crossings in regards to the runtime. Only instances
are shown where the full-weighted IQP model computed an optimal solution before a timeout
occurred. Thus, the best solution of a variant is compared against the optimal solution for each
instance. The runtime distribution of the full-weighted IQP model is shown as a rug plot on the
bottom. A density plot of the log2 optimality ratio is shown on the right.

axes and the cyclic length when optimizing order, which does not consider the actual Euclidean
length of edges. Potentially, we can improve scalability in the number of axes if we arrange them
on an ellipse to increase space between axes. From a human-computer interaction perspective, it
would be interesting to see how our hive plot framework compares to other layouts for visualizing
small to medium-sized graphs in a formal human-subject study. Similarly, at the moment it is
unclear how well users perform typical network visualization tasks on our combinatorial hive plot
layouts. Hence, a user study could provide interesting insights. Furthermore, it is also unclear
which specific optimization targets benefit users the most and a user study exploring the full
design space of hive plots in this regard would be an important investigation. Finally, adding
more interactivity and integrating our framework as an alternative view for data exploration into
a visual analytics platform could provide additional insights.
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