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Abstract. The 2-blowup of a graph is obtained by replacing each vertex with
two non-adjacent copies; a graph is biplanar if it is the union of two planar graphs.
We disprove a conjecture of Gethner that 2-blowups of planar graphs are biplanar:
iterated Kleetopes are counterexamples. Additionally, we construct biplanar drawings
of 2-blowups of planar graphs whose duals have two-path induced path partitions, and
drawings with split thickness two of 2-blowups of 3-chromatic planar graphs, and of
graphs that can be decomposed into a Hamiltonian path and a dual Hamiltonian path.

1 Introduction

In a 2018 survey on the Earth–Moon problem, Ellen Gethner conjectured that 2-blowups of planar
graphs are always biplanar [14]. In this paper we refute this conjecture by showing that 2-blowups
of iterated Kleetopes are non-biplanar, and more strongly do not have split thickness two.

1.1 Definitions and preliminaries

Before detailing our results, let us unpack this terminology: what are Kleetopes, biplanarity and
split thickness, and blowups?

� Polyhedral graphs are the graphs of convex polyhedra. By Steinitz’s theorem, these are exactly
the 3-vertex-connected planar graphs [27]. Polyhedral graphs have planar embeddings that
are unique up to the choice of outer face [23]. The faces of these embeddings are exactly the
peripheral cycles, cycles such that every two edges not in the cycle are part of a path with
interior vertices disjoint from the cycle [29]. Every maximal planar graph with ≥ 4 vertices,
one to which no edges can be added while preserving planarity, is 3-vertex-connected [17],
and therefore polyhedral, with triangular faces.
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The Kleetope of a polyhedral graph (named by Branko Grünbaum for Victor Klee [16]) is a
maximal planar graph obtained by adding a new vertex within every face, adjacent to all the
vertices of the face. Geometrically, it can be formed by attaching a pyramid to every face,
simultaneously. An iterated Kleetope is the result of repeatedly applying this operation a
given number of times. In previous work, we used iterated Kleetopes to construct polyhedral
graphs that cannot be realized geometrically with isosceles triangle faces [11]. Following the
notation from that work, let KG denote the Kleetope of a graph G and KiG denote the
result of applying the Kleetope operation i times to G.

� Thickness is the minimum number of planar subgraphs needed to cover all edges of a given
graph. Equivalently, it is the minimum number of edge colors needed to draw the graph in the
plane with colored edges so each crossing has edges of two different colors. A graph is biplanar
if its thickness is at most two. Thus, a biplanar drawing of a graph can be interpreted as a
pair of planar drawings of two subgraphs of the given graph that, together, include all of the
graph edges. Repeated edges are never necessary and for technical reasons we forbid them.

Little was known about general methods for showing that graphs are not biplanar, or for
finding natural classes of graphs that are sparse enough to be biplanar but are not biplanar.
One such class was provided by Sýkora et al., who observed that 5-regular graphs of girth
at least 10 are too dense for their girth to be biplanar [28]. An NP-completeness reduction
for biplanarity by Mansfield [24] can also be used to construct infinitely many non-biplanar
graphs for which simple tests such as checking the sparsity of the graphs fails to determine
that they are non-biplanar. All graphs of maximum degree four are biplanar [8,18]; this limits
the use of counting arguments to construct biplanar graphs, because (in contrast to planar
graphs) the number of non-isomorphic degree-four graphs is not singly exponential in the
number of vertices.

� Split thickness is a generalization of thickness in which we form a single planar drawing with
multiple copies of each vertex, which are not required to be near each other in the drawing.
Each edge of the graph appears once, connecting an arbitrary pair of copies of its endpoints.
A drawing has split thickness k if each vertex has at most k copies, and the split thickness of
a graph G is the minimum number k such that G has a drawing with split thickness k [12].
Split thickness is less than or equal to thickness, but they can diverge, even for complete
graphs: K12 has split thickness two [19] but K9 already has thickness three [2, 30]. Thickness
has its origin in the Earth–Moon problem, posed by Gerhard Ringel in 1959 [26], which in
graph-theoretic terms asks for the maximum chromatic number of biplanar graphs. In the
same way, split thickness corresponds to the older m-pire coloring problem [13].

� Blowups of graphs are formed by duplicating their vertices a given number of times. More
specifically, the (open) k-blowup of a graph G, which we denote as kG,1 is obtained by making
k copies of each vertex of G, and by connecting two vertices in kG whenever they are copies
of adjacent vertices in G. Two copies of the same vertex are not adjacent. In a closed blowup,
the copies are adjacent.

Albertson, Boutin, and Gethner [1] proved that the closed 2-blowup of any tree or forest is
planar and therefore that the closed 2-blowup of any graph of arboricity a has thickness at
most a. Here, arboricity is the minimum number of forests that cover all edges of a graph.

1Blowups are a standard concept but their notation varies significantly. Other choices from the literature include
G(k), G[k], Gk, and G(k).
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Figure 1: Decomposition of a seven-vertex wheel graph into two trees (left) and the corresponding
biplanar drawing of its 2-blowup (right)

Adding a leaf to a forest corresponds, in the closed 2-blowup, to gluing a K4 subgraph onto
an edge, which preserves planarity, and the a forests that cover a graph of arboricity a can be
blown up by induction in this way, separately from each other (Fig. 1).

Planar graphs have arboricity at most three [25], and this is tight for planar graphs with more
than 2n−2 edges, including most maximal planar graphs. Therefore, their 2-blowups have thickness
at most three. Gethner’s conjecture asks whether smaller thickness, two, can always be achieved.
We prove that it cannot: there exist planar graphs for which the thickness-three drawing of the
2-blowup, obtained using arboricity as above, is optimal.

1.2 New results

Our main result is that for all sufficiently large maximal planar graphs G, 2K3G does not have
thickness two and does not have split thickness two. This gives a proof of non-biplanarity for a
natural and sparse class of graphs that (unlike previous methods for proving non-biplanarity) allows
short cycles.

To complement this result, we provide biplanar or split thickness two drawings for the blowups
of three natural classes of planar graphs:

� We construct a biplanar drawing of the 2-blowup of any planar graph whose faces can be
decomposed into two outerpaths, strips of polygons connected edge-to-edge with the topology
of a path (see Section 3). Equivalently, this structure is a partition of the dual graph into two
induced paths.

� When G can be decomposed into two outerpaths, we construct a split thickness two drawing
of its Kleetope KG. In the special case of the tetrahedral graph K4, this construction can be
used for the iterated Kleetope K2K4.

� When G and its dual have disjoint Hamiltonian paths, we construct a split thickness two
drawing of the 2-blowup of G.

� We construct a split thickness two drawing of the 2-blowup of any 3-chromatic planar graph,
and more generally a drawing with split thickness k of the k-blowup of these graphs.
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These drawing algorithms motivate our use of iterated Kleetopes in constructing non-biplanar
blowups of planar graphs, because Kleetopes are far from having the properties needed to make
these algorithms work. Kleetopes of maximal planar graphs are far from 3-chromatic: each added
vertex forms a K4 subgraph, an obstacle to 3-coloring. And iterated Kleetopes are far from being
decomposable into outerpaths, as their dual graphs have no long induced paths. The underlying
planar graphs for each of our drawing algorithms include infinitely many maximal planar graphs,
showing that it is not merely the large size and maximality of iterated Kleetopes that prevents
their blowups from having drawings. Additionally, because triangle-free planar graphs are 3-
chromatic [15], these constructions suggest that the connection of Sýkora et al. between girth and
non-biplanarity is unlikely to help construct planar graphs with non-biplanar blowups.

In a final section of this paper we briefly address computational complexity issues involving
testing the biplanarity of blowups.

2 Iterated Kleetopes

In this section we show that some 2-blowups of iterated Kleetopes are not biplanar and do not
have split thickness two or less. As in our previous work on the geometric realization of iterated
Kleetopes [11], our approach uses the observation that any realization or drawing of an iterated
Kleetope must be based on a realization or drawing of a graph with one fewer iteration. This
simpler drawing can be recovered from the final drawing by removing the vertices added in the
Kleetope process. Using this observation, we build up a sequence of stronger properties for the
biplanar and split thickness two embeddings of these graphs, as the number of Kleetope iterations
increases. Eventually, these properties will become so strong that they lead to an impossibility.

Definition 1 For a vertex v of graph G, it is convenient to denote the two copies of v in 2G by v0
and v1. We distinguish these from the two images of v0 and the two images of v1 in a biplanar or
split thickness two drawing of 2G. In such a drawing, v itself has four images, two from v0 and two
from v1.

We need the following additional definitions in the proof of our first lemma.

Definition 2 Define the excess of a face in a planar, biplanar, or split thickness two drawing of a
graph to be the number of edges in the face, minus three, so triangles have excess zero and all other
faces have positive excess. Define the total excess of the drawing to be the sum of all face excesses.

The total excess of a drawing equals the amount by which the number of edges in the graph falls
short of the maximum possible number of edges in a drawing of its type, and so can be calculated
only from a graph and the type of its drawing, independent of how it is drawn:

� A planar drawing of an n-vertex graph can have at most 3n− 6 edges. If there are m edges
then the total excess is (3n− 6)−m.

� A biplanar drawing of an n-vertex graph can have at most 6n − 12 edges (3n − 6 in each
planar subgraph). If there are m edges then the total excess is (6n− 12)−m.

� A split thickness two drawing of an n-vertex graph can have at most 6n−6 edges (obtained by
combining the 3n− 6 bound on planar graphs with the 2n copies of vertices in the drawing).
If there are m edges then the total excess is (6n− 6)−m.
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Figure 2: Left: Illustration for Section 2: If v in G has triangulated neighborhoods, and w is any
neighbor of v added in KG, then the images of w must lie in two triangles incident to images of v,
connected to all six triangle vertices. In this example, the four images of w are neighbors of only
two images of v, but they may instead be neighbors of three or four images of v.

Lemma 1 Let G be a maximal planar graph with n vertices. If n ≥ 49, then in any biplanar
drawing D of 2G some vertex v of G has images that are only incident to triangles. If n ≥ 73,
then for any split thickness two drawing some vertex v has the same property. We say that v has
triangulated neighborhoods.

Proof: A face with positive excess x has x+3 faces. Therefore, for a given total excess, the number
of vertices that belong to non-triangular faces is maximized by distributing one unit of excess
per face, to maximize the number of +3 counts coming from faces with positive excess. That is,
regardless of the type of drawing (planar, biplanar, or split thickness two), the number of vertices
that belong to non-triangular faces for a given excess x is maximized when there are x quadrilateral
faces in the drawing, all having disjoint sets of vertices. In this case, the number of such vertices is
4x. Any other distribution of the total excess, or non-disjointness among the non-triangular faces,
produces fewer such vertices.

Because G is maximal planar, it has excess zero and 3n− 6 edges. Its blowup 2G has 2n vertices
and 12n − 24 edges, four copies of each edge in G. Therefore, any biplanar drawing of 2G has
excess 12, and any split thickness two drawing of G has excess 18. The number of vertices that
can belong to a non-triangular face in these drawings is, respectively, 48 and 72. For values of n
that are larger than this bound, some vertex v does not belong to any non-triangular face of the
drawing. This vertex v necessarily has triangulated neighborhoods. □

Lemma 2 Let G be a maximal planar graph, and consider any biplanar drawing or split thickness
two drawing D of 2KG, and the restriction of the same drawing to G. If some vertex v of G has
triangulated neighborhoods in the restriction to G, then any neighbor w of v in KG \ G has its
four images each drawn surrounded by exactly three triangular faces. We say that w has triangular
neighborhoods. If G has n vertices with n ≥ 49, then in any biplanar drawing D of 2KG some
vertex w of KG has triangular neighborhoods. If n ≥ 73, then for any split thickness two drawing
of 2KG some vertex w has triangular neighborhoods.

Proof: As an added vertex in KG, w has degree three, so its copy w0 in 2KG has degree six.
To be adjacent to both v0 and v1, the two images of w0 must lie in two triangular faces of the
restricted drawing containing v0 and v1, as shown in Fig. 2. (No face contains both v0 and v1,
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Figure 3: Left: Illustration for Section 2: partition of 2∆ into four triangles, for a triangle ∆ = uvw.
Right: Illustration for Section 2: For the restriction of a given drawing to 2KG, and for w in KG,
images w0 and w1 have triangular neighborhoods sharing edge v0z0 (red). The third vertices of
these triangular neighborhoods, u0 and u1, are distinct images of a neighbor u of w. For vertex x
in K2G adjacent to w and to u, two images have triangular neighborhoods without shared edges.

because they have triangular neighborhoods and are not adjacent.) This placement limits w0 to
having as neighbors only the six vertices of these two triangles, matching its degree, so it must be
connected to all six of these vertices. The same argument applies to w1.

The existence of w in biplanar or split thickness drawings of 2KG for graphs with many vertices
follows by applying this argument to the vertex v with triangulated neighborhoods given by Section 2.

□

In Section 2, the two triangular neighborhoods of w0 must be disjoint, so they cover all six
distinct neighbors of w0 in 2KG. Similarly, the two neighborhoods of w1 must be disjoint. However,
a neighborhood of w0 may share a vertex or an edge with a neighborhood of w1. (It cannot share
edges with two neighborhoods because then those two neighborhoods would not be disjoint.) In
fact, some sharing is necessary:

Lemma 3 Let t be a vertex of a planar graph H having three neighbors, all adjacent. Suppose
that t has triangular neighborhoods in a biplanar or split thickness two drawing of 2H. Then it is
impossible for all four images of t to have edge-disjoint neighborhoods in this drawing.

Proof: Let ∆ be the triangle of neighbors of t in H. 2∆ is isomorphic to K2,2,2, the graph of a
regular octahedron. We are assuming our drawings have no repeated edges, so two images of t
with edge-disjoint neighborhoods in the drawing must come from edge-disjoint triangles of 2∆.
Thus, if the four images of t could be drawn with edge-disjoint triangular neighborhoods, these
neighborhoods would form four edge-disjoint triangles of 2∆. But in any subdivision of 2∆ into
four edge-disjoint triangles (Fig. 3, left), each two triangles share a vertex, and together cover
only five vertices of 2∆. If the four images of t were placed in images of these four triangles, the
two triangular neighborhoods of t0 would miss one of the six neighbors of t0 in 2H, as would
the triangular neighborhoods of t1, preventing the drawing from being valid. Therefore, no such
drawing is possible. □

Theorem 1 Let G be a maximal planar graph with n vertices. If n ≥ 49, then 2K3G has no
biplanar drawing, and if n ≥ 73, then 2K3G has no split thickness two drawing.
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Proof: Suppose for a contradiction that such a drawing existed, and consider the drawings within
it of 2K2G and of 2KG. We will find a vertex with triangular neighborhoods in each of these
drawings so that the four neighborhoods of the four images of the chosen vertex are nearly disjoint:
these neighborhoods can share at most two edges total in 2KG, at most one edge in 2K2G, and no
edges in 2K3G. The existence of a vertex in K3G whose triangular neighborhoods share no edges
will contradict Section 2, showing that no such drawing can exist. To do this, we consider each
level of iteration successively, as follows:

� In the drawing of 2KG, Section 2 gives us a vertex w of KG with triangular neighborhoods.
The neighborhood of each image of w shares at most one edge with other neighborhoods
of images of w. For biplanar drawings this is immediate (only one other image is in the
same planar subgraph and can share an edge with it). For split thickness two drawings, a
neighborhood of an image of w0 that shares edges with the neighborhoods of both images
of w1 is impossible, because then the two images of w1 would share a vertex, preventing them
from covering all six neighbors of w1. Therefore, among the neighborhoods of all four images
of w, there are at most two shared edges.

� To find a vertex x in K2G with triangular neighborhoods in the drawing of 2K2G, with at
most one edge shared among the neighborhoods of its four images, consider the vertex w
found above in KG. If the neighborhoods of w have at most one shared edge in the drawing
of 2KG, let x be any neighbor of w added in forming K2G from KG. Then x must again
have triangular neighborhoods by Section 2. Because these triangular neighborhoods must be
interior to the triangular neighborhoods of w, they can have at most one shared edge (the
same edge as the one shared by the neighborhoods of w).

Suppose, on the other hand, that the triangular neighborhoods of w share exactly two edges.
Let ∆0, ∆

′
0, ∆1, and ∆′

1 be the four triangles in 2KG neighboring the two images of w0

and w1, respectively, with an edge shared by ∆0 and ∆1 and another edge shared by ∆′
0

and ∆′
1. Because these triangles can only share one edge, and each image of w must be

adjacent to images of all three neighbors of w, the vertices of ∆0 and ∆1 that are not on the
shared edge must be distinct images of the same vertex u. Choose a vertex x of K2G \KG,
adjacent to w and to u.

Because w has triangular neighborhoods in KG, its four images in the drawing of 2KG are
each surrounded by three triangles, formed by images of w and two of its neighbors. For each
image, only one of these triangles consists of the three neighbors of x. Thus, the four images
of x must be placed in these four triangles. Two of these four triangles are subdivisions of ∆0

and ∆1, containing the non-shared images of u, and therefore do not share any edge with
each other. The only possible shared edge among the triangular neighborhoods of x is the
edge shared by ∆′

0, and ∆′
1, within which lie the other two images of x. Thus, by choosing x

in K2G we have eliminated one shared edge between triangular neighborhoods. See Fig. 3,
right.

� If the four triangular neighborhoods of x in the drawing of 2K2G are edge-disjoint, we already
have a contradiction with Section 2. Otherwise, we must find a vertex t in K3G whose
triangular neighborhoods are edge-disjoint, giving us the desired contradiction. To do so,
consider the four triangular neighborhoods of x in the drawing of 2K2G, only two of which
share one edge. For the two triangles that share an edge, the two non-shared vertices of
these triangles must be distinct images of the same vertex y in K2G. Choose a vertex t of
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Figure 4: Decomposition of an icosahedron into two outerpaths.

K3G \K2G, adjacent to x and to y. Then the four triangles in which t must be placed lie
within the four triangular neighborhoods of x, away from the shared edge of these triangular
neighborhoods, so they cannot share any edges with each other. By Section 2, this is an
impossibility.

□

When G is not maximal planar or is too small for the theorem to apply directly, more iterations
of the Kleetope operation can be used before applying the same argument. Thus, there exists an i
such that for every plane graph G, 2KiG is not biplanar and has no split thickness two drawing.

3 Drawings from Triangle Strips

Definition 3 An outerpath is an outerplanar graph whose weak dual (the adjacency graph of its
bounded faces) is a path.

Suppose that the dual vertices of a planar graph G can be partitioned into two subsets that each
induce a path in the dual graph. Then the dual cut edges between these two subsets correspond,
in G itself, to a Hamiltonian cycle that partitions G into two outerpaths. Fig. 4 depicts an example
of this sort of two-outerpath decomposition for the graph of the regular icosahedron.

Theorem 2 If a planar graph G has a two-outerpath decomposition, then 2G has a biplanar
drawing.

Proof: We may assume without loss of generality, by triangulating each outerplanar graph if
necessary, that both outerpaths are maximal outerplanar: each of their faces is a triangle. If this
triangulation step adds two copies of the same edge to the graph, it is not a problem, because the
edges added in this triangulation step will be removed from the final drawing.

In each outerpath, the triangular faces form a linear sequence, separated by the internal edges
of the outerpath, which are also linearly ordered. In the blowup 2G, number the two copies of each
vertex v as v0 and v1. If uv is any edge of G, then 2uv is a four-vertex cycle u0v0u1v1.



JGAA, 28(2) 83–99 (2024) 91

We will construct a biplanar drawing of 2G with each plane containing all copies of interior
edges of one of the two outerpaths, and two out of the four copies of each boundary edge. We draw
copies of the interior edges as nested quadrilaterals, one for each diagonal of its outerpath, in the
same order that these diagonals appear within the outerpath. If we draw these quadrilaterals one
at a time, from the innermost to the outermost, then each two consecutive quadrilaterals share two
opposite vertices, corresponding to the single shared endpoint of the two diagonals.

In each pair of consecutive quadrilaterals, the outer quadrilateral has two potential orientations
with respect to the inner one: if the two consecutive diagonals are uv and vw, with quadrilateral
u0v0u1v1 drawn inside quadrilateral v0w0v1w1, then these quadrilaterals may be drawn so that
pairs u0w0 and u1w1 are adjacent, or so that pairs u0w1 and u1w0 are adjacent. In one plane we
always choose the orientation with u0w0 and u1w1 adjacent, and we connect these pairs of vertices
by an edge. In the other plane, we always choose the orientation with u0w1 and u1w0 adjacent, and
we connect these pairs of vertices by an edge. In this way, we draw all four copies of each boundary
edge, except the edges incident to the two ears (triangles with two boundary edges).

It remains to draw the ears. Each has two boundary edges sharing a vertex, which we call the
ear vertex. These two boundary edges have not yet been drawn in the plane of their outerpath. The
third edge of the ear is a diagonal whose images form the innermost or outermost quadrilateral in
its plane. We place both copies of the ear vertex inside or outside this quadrilateral (respectively as
it is innermost or outermost), connected to its two neighbors in the ear with the same numbering
convention: in the plane where the quadrilaterals are oriented with u0w0 and u1w1 adjacent, we
connect each ear vertex to neighbors with the same subscript, and in the other plane we connect
each ear vertex to neighbors with the opposite subscript.

Thus, all copies of the diagonals of one strip and all copies of boundary edges that connect
copies having the same index are drawn in one plane. All copies of the diagonals of the other strip
and all copies of boundary edges that connect copies having different indices are drawn in the other
plane. The result is a biplanar drawing of the entire blowup 2G. □

Fig. 5 depicts the drawing obtained by applying Section 3 to the outerpath decomposition of the
icosahedron depicted in Fig. 4. The following extension of this result is noteworthy in connection
with our iterated Kleetope counterexample:

Theorem 3 If a maximal planar graph G has a decomposition into two outerplanar graphs, coming
from an induced path partition of its dual graph into two paths, then 2KG has a drawing with split
thickness two.

Proof: We construct the drawing of Section 3 for 2G, place the two planes of this biplanar drawing
side-by-side in a single plane (as depicted in Fig. 5), and augment the resulting split drawing to
include the additional vertices of 2KG. For each triangular face ∆ of G, one added vertex v∆ of
KG is adjacent to the vertices of ∆. In 2KG, there are two copies of v∆, each of which should be
drawn (in two images) adjacent to all six copies of vertices of ∆.

If ∆ is not an endpoint of the dual path to which it belongs, the drawing of 2G will include
four images of ∆, in two disjoint pairs. For instance, in Fig. 5, the four images of triangle blk
can be seen near the outer boundary of the left part of the drawing. For each copy of v∆, its two
images can be placed into two disjoint images of ∆, which together include images of all six copies
of vertices of ∆.

If ∆ is an endpoint of the dual path to which it belongs, the drawing of 2G will include two
disjoint triangular faces and one hexagonal face formed from the vertices of ∆. For instance, in
Fig. 5, the images of the vertices in triangle abc form the outer hexagonal face and two triangular
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Figure 5: Biplanar drawing of the 2-blowup of an icosahedron corresponding to the outerpath
decomposition of Fig. 4.

faces of the right part of the drawing. The triangles are each adjacent to the hexagon but not to
each other. In this case, one copy of v∆ may be drawn with two images in the two triangles, while
the other copy may be drawn with a single image in the hexagon. □

For instance, the triakis icosahedron, the Kleetope of the icosahedron, is a maximal planar
graph whose edges all have total degree ≥ 13. (This is the maximum possible for the minimum
total degree of an edge, by Kotzig’s theorem [21].) Because the icosahedron has a two-outerpath
decomposition (Fig. 4), we can apply Section 3 to its Kleetope, producing a drawing with split
thickness two of the 2-blowup of the triakis icosahedron.

In general, we cannot extend this construction to higher-order Kleetopes. When a graph G has a
two-outerpath decomposition, the drawings of 2KG produced from G by Section 3 again have four
images of each triangular face of KG, but some of these quadruples of images cannot be grouped
into disjoint pairs. However, in the method of Section 3 each added vertex of K2G corresponds to
two vertices in 2K2G, and the two images of each of these two vertices must be placed in disjoint
triangles, in order to provide all six of its adjacencies. Therefore, this method does not provide
drawings of 2K2G. However, in one special case, for G = K4 (the graph of a tetrahedron), a
different method works. In this case, the Kleetope KK4 has an outerpath decomposition, shown in
Fig. 6. Therefore, applying Section 3 we can obtain a split thickness two drawing of 2K2K4.

A very similar drawing algorithm to the one in Section 3 can be used for graphs with a different
form of decomposition into triangle strips.

Definition 4 Let G be a planar graph having both a Hamiltonian path P and a dual Hamiltonian
path P ∗, with no edge and its dual edge belonging to both paths. Then we call (P, P ∗) a path–copath
decomposition. It is a special case of the tree–cotree decomposition formed from any spanning
tree of a planar graph and the dual spanning tree formed by the duals of the complementary set of
edges [9].
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Figure 6: Outerpath decomposition of KK4.

Theorem 4 Let planar graph G have a path–copath decomposition. Then 2G has a drawing with
split thickness two.

Proof: We may triangulate the faces of G, if necessary, preserving the existence of a path–copath
decomposition by choosing added diagonals that split each face into an outerpath. As a result, the
dual path P ∗ of the path–copath decomposition (P, P ∗) becomes a triangulated outerpath. The
outerpath can be formed from a plane drawing of G by cutting the plane along each edge of P ,
causing each edge of P to appear exactly twice on the boundary of the outerpath. Each vertex
of G may appear multiple times on the boundary of this outerpath, with multiplicity equal to its
degree in P (at most two, because P is a path).

We apply the method of Section 3 to this single outerpath, producing a drawing in which each
appearance of a vertex v of G on the boundary of the outerpath produces images of both copies of v.
If v appears once on the boundary of the outerpath, its two copies each appear once. If v appears
twice, its two copies appear twice, giving this drawing split thickness two. This drawing style
automatically produces all four images of each edge interior to the outerpath. For an edge uv of
path P , appearing twice on the boundary of the outerpath, we choose arbitrarily which appearance
of uv on the boundary of the outerpath is used to draw edges u0v0 and u1v1, and which is used to
draw edges u0v1 and u1v0. In this way, all four images of uv are drawn correctly. □

Fig. 7 depicts an example.

4 Drawings from Colorings

We show in this section that the blowup 2G of a 3-colored planar graph G has split thickness
at most two. We do not know whether all such blowups are biplanar; our construction does not
produce a biplanar drawing. More generally, we show that kG has split thickness at most k; the
result for 2G is a special case.

Theorem 5 Let G be planar and 3-chromatic; then kG has a drawing with split thickness k.

Proof: Color the vertices of G red, blue, and yellow, and number the copies of each vertex in kG
from 0 to k − 1. Draw kG as k2 disjoint copies of G, where for (i, j) with 0 ≤ i, j < k we draw a
copy of G consisting of the copies of red vertices numbered i, the copies of blue vertices numbered j,
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Figure 7: Path–copath decomposition of the octahedral graph K2,2,2 (left), the outerpath obtained
by cutting the path (center), and the split thickness 2 drawing of 2K2,2,2 = K4,4,4 obtained from
Section 3 (right).

and the copies of yellow vertices numbered −(i + j) mod k. As the disjoint union of k2 planar
drawings, the result is planar. Each edge of kG appears in one copy of G, and each vertex in kG
has images in k copies of G. As a planar drawing with k images of each vertex, it is a drawing with
split thickness k. □

Fig. 8 shows a drawing of K6,6,6 with split thickness three, obtained by applying this construction
to the triple blowup of the graph of the octahedron. When applied to planar bipartite graphs, the
same construction yields a thickness k drawing of the k-blowup. In this case, we may consider
the two colors of a given planar bipartite graph to be red and blue, with no yellow vertices. The
drawing of Section 4 produces k2 copies of G. Number k planes from 0 to k − 1, and place k
copies of G onto each of these planes, where a copy with red vertices numbered i and blue vertices
numbered j is placed onto plane −(i+ j) mod k. That is, each copy is placed onto a plane that
has the same index as the yellow vertices in the copy would have, if there were any yellow vertices.
With this numbering and placement, each copy of each vertex appears once in each plane. In the
case k = 2, it is also possible to find biplanar drawings of the 2-blowups of planar bipartite graphs
in a different way, using the fact that planar bipartite graphs have arboricity at most two.

5 Computational complexity

This work naturally raises several questions in computational complexity, concerning the time
needed for testing biplanarity of blowups (of planar graphs or more generally), for testing the split
thickness of blowups, and for testing the existence of finding two-outerpath decomposition and
of path–copath decompositions. Biplanarity is NP-complete in general [24], but the proof does
not apply to the special case of blowups. Similarly, although partition into two induced paths is
NP-complete for general graphs [22], and its planar case is closely related to Hamiltonicity of the
dual graph, we are unaware of complexity results for this case.

We provide the following partial results:

Theorem 6 Testing whether the blowup kG of a given graph G has thickness or split thickness t is
fixed-parameter tractable in the combination of two parameters: k and w, where w is the treewidth
of G.
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Figure 8: Section 4 applied to the graph 3K2,2,2 = K6,6,6. Each vertex is labeled with a letter (its
position in K2,2,2), a number (its index as a copy in the blowup), and a color in the coloring of
K2,2,2. Each letter-number combination has three images, so this is a drawing with split thickness
three. K6,6,6 has 108 edges, but drawings of 18-vertex graphs with split thickness two can have at
most 102 edges, so this drawing is optimal.

Proof: If G has treewidth w, its blowup kG has treewidth at most k(w + 1)− 1, obtained from
a tree decomposition of G by replacing each bag of the decomposition (a set of ≤ w + 1 vertices
of G) with the set of copies of these vertices. The result follows from the known fixed-parameter
tractability of thickness and split thickness in the treewidth [12], obtained by applying Courcelle’s
theorem on fixed-parameter tractability of properties described in second-order logic. Planarity can
be formulated logically in terms of the non-existence of the forbidden minors K5 and K3,3, and the
planarity of each of t subgraphs of a given graph or of a graph obtained by subdividing the vertices
of a given graph into t copies can be formulated logically from the given graph itself using standard
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methods for expanding a logical formula to apply to graphs derived from a given graph.
The resulting logical formula has size proportional to t, and its satisfiability can be tested

on graphs of width k(w + 1) − 1 in time that is fixed-parameter tractable in k, w, and t. The
dependence of this time bound on t can be eliminated by observing that all graphs have thickness
and split thickness at most equal to their treewidth. □

Theorem 7 Testing whether a plane graph G has a two-outerpath decomposition or a path–copath
decomposition is fixed-parameter tractable in the treewidth of G.

Proof: Again, we apply Courcelle’s theorem, using a logical characterization of these decompositions.
For a two-outerpath decomposition, it is simplest to apply the theorem to the dual graph of G,
using the known result that dualization can increase the treewidth by at most one [3]. In the dual,
a two-outerpath decomposition becomes a partition of the dual vertices into two induced paths.
This may be described logically by the existence of a set of vertices (the vertices in one of the paths)
such that for both this set and its complement, all vertices have one or two neighbors, exactly two
vertices have only one neighbor, and such that no partition of the set into two proper subsets has
no edges spanning the partition.

For a path–copath decomposition, we replace G by its barycentric subdivision, a maximal planar
graph that has a vertex for each vertex, edge, or face of G, and a triangle for each incident triple
of a vertex, edge, and face, with each vertex of the barycentric subdivision labeled by the type
of object in G that it comes from. Passing to the barycentric subdivision increases the treewidth
to a function of its previous value; therefore, for graphs of bounded treewidth, the barycentric
subdivision has bounded treewidth [4]. A path–copath decomposition then consists of two disjoint
induced paths, described logically as sets of vertices as above, such that one path alternates between
vertices and edges of G, the other path alternates between faces and edges of G, and both paths
together span all the edges of G. □

Whether these problems are polynomial without parameterization, or whether they are NP-
complete, remains open. The use of treewidth as a parameter is nontrivial for these problems,
though. On the one hand, our proof of the existence of graphs whose blowup is not biplanar
and does not have split thickness two can be restricted to planar 3-trees, the graphs obtained by
gluing together tetrahedra face-to-face in the pattern of a tree. Indeed, the iterated Kleetope of a
tetrahedron is a special case of a planar 3-tree. On the other hand, there exist maximal planar
graphs with two-outerpath decompositions (and hence biplanar blowups) that contain arbitrarily
large regular triangular grids and hence have arbitrarily high treewidth. The construction involves
placing vertices at equal spacing along two helices on the same cylindrical surface, offset by half
a phase from each other, triangulating the strip between the two helices (Fig. 9), and capping
off the ends of the resulting cylindrical surface to make a maximal planar graph. The resulting
triangulated surface has a two-outerpath decomposition by construction, and it contains triangular
grids whose dimensions are the number of points per winding of the helices and the number of
windings of the helices.

6 Conclusions

We have shown that 2-blowups of iterated Kleetopes are not biplanar, but that 2-blowups of planar
graphs with outerpath decompositions are biplanar. Additionally, we have shown that 2-blowups of
graphs with path–copath decompositions have split thickness at most 2, and k-blowups of planar
graphs with chromatic number at most three have split thickness at most k.
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Figure 9: Part of a construction for a maximal planar graph with a two-outerpath decomposition
(blue and pink) containing an arbitrarily large regular triangular grid.

Several natural questions remain open for future research:

� Is it ever possible for the 2-blowup of a 3-chromatic planar graph to be non-biplanar? Is it
ever possible for the 2-blowup of a 4-vertex-connected planar graph to be non-biplanar?

� Do apex-outerplanar graphs [6] have biplanar blowups?

� Can Section 3, on drawing 2-blowups of graphs with a two-outerpath decomposition, be
extended from thickness to geometric thickness? Geometric thickness (also called real
linear thickness) is similar to thickness, but requires vertices to have the same geometric
placement in each planar subgraph and requires edges to be drawn as non-crossing line
segments [5, 7, 8, 10,20].
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