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Abstract. A face in a curve arrangement is called popular if it is bounded by the
same curve multiple times. Motivated by the automatic generation of curved nonogram
puzzles, we investigate possibilities to eliminate the popular faces in an arrangement by
inserting a single additional curve. This turns out to be NP-hard; however, it becomes
tractable when the number of popular faces is small: We present a randomized FPT-
time algorithm where the parameter is the number of popular faces.

1 Introduction

Let A be a set of curves which lie inside the region bounded by a simple, closed curve, called the
frame. All curves in A are either closed, or open with endpoints on the frame. We refer to A as a
curve arrangement, see Figure 1a. We consider only simple arrangements, where no three curves
meet in a point and there are only finitely many intersections in total, all of which are crossings
(no tangencies).

Special issue on Selected papers from the Thirty-first International Symposium on Graph Drawing and Network
Visualization, GD 2023

This work was initiated at the 16th European Research Week on Geometric Graphs in Strobl in 2019. A.W. has
been supported by the Austrian Science Fund (FWF): W1230. S.T. has been funded by the Vienna Science and
Technology Fund (WWTF) [10.47379/ICT19035] and by the NWO Gravitation project NETWORKS under grant
no. 024.002.003. Part of the work was done while A.W. was emplyed at Graz University of Technology. Preliminary
versions of this work have been presented at the 38th European Workshop on Computational Geometry (EuroCG
2022) in Perugia [10] and at the 31st International Symposium on Graph Drawing and Network Visualization (GD
2023) in Isola delle Femmine [11].

E-mail addresses: s.d.terziadis@tue.nl (Soeren Terziadis) alexandra.weinberger@fernuni-hagen.de (Alexandra
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(a) (b) (c) (d)

Figure 1: (a) A curve arrangement in a rectangular frame. (b) The top right face is incident to
two disjoint edges of the red curve, making it popular. (c) All popular faces are highlighted. (d)
After inserting an additional curve, the new arrangement does not contain any popular faces.

The arrangement A together with the frame can be seen as an embedded multigraph whose
vertices are crossings of curves as well as the endpoints on the frame and whose edges are curve
segments between these vertices. The arrangement A partitions the region bounded by the frame
into faces (which are the faces of the embedded multigraph). A face is popular when it is incident
to multiple edges belonging to the same curve in A (see Figures 1b–c). We study the following
problem: can one additional simple curve ℓ be inserted into A such that no faces of A ∪ {ℓ} are
popular (see Figure 1d)? We refer to this problem as Nonogram 1-Resolution (N1R) based on
its motivation, which is explained in the next section.

In our arguments, we will often use the dual graph A∗ of a curve arrangement A, where every
face of A is represented by a vertex and edge uv represents a shared curve segment between faces
represented by u and v (not just a common crossing point). For ease of notation for a face f of A
we label its corresponding vertex in A∗ also with f . Note that A∗ is an undirected multigraph
without loops. A curve ℓ traversing A and crossing a sequence of faces F1, . . . , Fk in that order
can be expressed as a path P = (F1, . . . , Fk) in A∗. We will therefore also say that ℓ contains a
vertex v or a path v1, . . . , vk in A∗, implicitly using the expression of ℓ as a path in A∗.

1.1 Nonograms

Our question is motivated by the problem of generating curved nonograms. Nonograms, also known
as Japanese puzzles, paint-by-numbers, or griddlers, are a popular puzzle type where one is given
an empty grid and a set of clues on which grid cells need to be colored. A clue consists of a
sequence of numbers specifying the numbers of consecutive filled cells in a row or a column. A
solved nonogram typically results in a picture (see Figure 2a). There is quite some work in the
literature on the difficulty of solving nonograms [2, 4, 8].

Van de Kerkhof et al. [22] introduced curved nonograms, in which the puzzle is no longer played
on a grid but on an arrangement of curves (see Figure 2b). In curved nonograms, clues specify
numbers of filled faces of the arrangement in the sequence of faces incident to a common curve
on one side. Van de Kerkhof et al. focus on heuristics to automatically generate such puzzles
from a desired solution picture by extending curved segments on its boundary to form a curve
arrangement.
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Figure 2: Two nonogram puzzles in solved state. (a) A classic nonogram. (b) A curved nonogram.

1.2 Nonogram complexity

Van de Kerkhof et al. observed that curved nonograms come in different levels of complexity —
not in terms of how hard it is to solve a puzzle, but how hard it is to understand the rules (see
Figure 4). They state that it would be of interest to generate puzzles of a specific complexity level;
their generators can currently do this only by trial and error.

� Basic nonograms are puzzles in which each clue corresponds to a sequence of distinct faces.
The analogy with clues in classic nonograms is straightforward.

� Advanced nonograms may have clues that correspond to a sequence of faces in which some
faces may appear multiple times because the face is incident to the same curve (on the same
side) multiple times. When such a face is filled, it is also counted multiple times; in particular,
it is no longer true that the sum of the numbers in a clue is equal to the total number of
filled faces incident to the curve. This makes the rules harder to understand.

� Expert nonograms may have clues in which a single face is incident to the same curve on both
sides. They are even more confusing than advanced nonograms. Expert nonograms are only
suitable for experienced puzzle freaks [21].

Observation 1 Arrangements with self-intersecting curves correspond exactly to expert puzzles.

Proof: Every crossing point in a simple arrangement is incident to four faces (which are not
necessarily distinct), see Figure 3. For each involved curve, let us arbitrarily label one of its two
sides as the left side and the other one as the right side. Then, among the four incident faces,
there will always be two faces for which the two incident sides carry the same label (left/left
and right/right). The two other faces have mixed labels (left/right and right/left). In case of a
self-intersection, the two mixed faces demonstrate that we have an expert puzzle.
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Figure 3: A crossing point in an arrangement with the four incident faces
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Figure 4: Three types of curved nonograms of increasing complexity [22], shown with solutions.
(a) Basic puzzles have no popular faces. (b) Advanced puzzles may have popular faces, but no
self-intersecting curves. (c) Expert puzzles have self-intersecting curves. We can see closed curves
(without clues) in (a) and (c). All puzzles are part of the supplementary material of van de Kerkhof
et al [22].

Conversely, a curve that does not cross itself cuts the frame into two parts, one on each side.
This holds both for closed curves and for curves starting and ending on the frame. Hence, no face
of the arrangement can be incident to both sides of such a curve. □

The difference between basic and advanced puzzles is more subtle; it is exactly the presence of
popular faces in the arrangement.

One possibility to generate nonograms of a specific complexity would be to take an existing
generator and modify the output. Recently, Brunck et al. [6] have investigated how popular faces
in a nonogram might be removed by reconfiguring and/or reconnecting parts of curves at small
neighborhoods, which they call switches (e.g. around curve crossings), and they have proved that it
is NP-hard to decide if the curves can be rerouted and reconnected inside these local neighborhoods,
such that the resulting arrangement has no popular faces. As an alternative, one may try to get
rid of a popular face by adding extra curves that cut it into smaller pieces. If the resulting faces
are not popular, we say that the popular face is resolved . Similarly we call the process of adding
curves to a curve arrangement A until the resulting arrangement does not contain any popular
faces as resolving A.

Given Observation 1, it is obvious that an expert nonogram cannot be turned into an ad-
vanced or basic nonogram by adding additional curves: A self-intersection does not go away when
additional curves are added. Therefore we focus on changing advanced puzzles into basic puzzles.

In this paper, we explore what we can do by inserting a single new curve into the arrangement.
Specifically we focus on the following problem.
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Figure 5: Puzzles (without clues) with all popular faces highlighted. The left image is taken from
the supplementary material of van de Kerkhof et al [22]. The curve which appears twice on the
boundary of a popular face is highlighted in blue in the left image.

Problem 1 (N1R) Given a curve arrangement A with one or more popular faces in which all
curves are not self-intersecting and start and end at a containing frame, decide if there exists a
curve ℓ such that the curve arrangement A ∪ {ℓ} does not contain any popular faces.

If not specified otherwise, we assume that ℓ also starts and ends at the frame.

1.3 Results

In Section 2, we discuss how the additional curve ℓ must pass through a particular popular face F
in order to resolve it, in the sense that none of the faces into which F is subdivided by ℓ is
popular. We show in Section 3 that deciding whether we can resolve all popular faces in a given
curve arrangement by inserting a single curve – and therefore the N1R problem – is NP-complete.
However, often the number of popular faces is small, see Figure 5. Hence, we are also interested
in the problem parameterized by the number of popular faces k. We show in Section 4 that
the problem can be solved (with a one-sided error) by a randomized algorithm in O

(
2kpoly(n)

)
expected time. This algorithm involves calculations within a field of characteristic 2. The setup of
a representation of this field involves a random element. Section 5 lays out how this can be done
in a deterministic and more efficient manner. Our algorithm uses a modified dual graph, which
represents popular faces as edge sets of size O(n2). Section 4.8 shows how this can be reduced to
O(n). Finally, we conclude with some open questions in Section 6.

2 Resolving a popular face by adding a single curve

As a preparation, we analyze how a single popular face F of an arrangement A can be resolved
by adding a single new curve ℓ. If ℓ enters F and exits it again, we say that ℓ visits or crosses F .
First, if ℓ visits F twice, this creates necessarily a popular face in A ∪ {ℓ}. Therefore ℓ visits F
only once and thus F is partitioned into two new faces in A∪{ℓ}. Hence, if F contains more than
two edges that belong to the same original curve, A ∪ {ℓ} necessarily contains a popular face (at
least one of the new faces if ℓ visits F and F itself if not). Next assume F is popular because it has
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Figure 6: Resolving a popular face F . (a) Curtains model popular edges and two curves crossing
F without resolving it properly. (b) All possible ways how ℓ can pass through F . (c) A more
compact representation

two edges e, e′ belonging to the same curve a. We call such edges popular edges. If ℓ crosses one
of these edges, say e (like the blue curve in Figure 6a), then this partitions F into two faces, both
of which contain an edge belonging to a (the edge that was part of e) and at least one of the faces
contains another edge belonging to a (the edge that is e′ or parts of it). Therefore A∪{ℓ} contains
a popular face. And finally, since any curve of A can appear as an edge on the boundary of F at
most twice, we can add a visual aid to F to indicate which edges are responsible for making F
popular. Let e, e′ be defined as above. We add a curve, which is entirely contained in F , starts at a
point in the interior of e and ends at a point in the interior of e′. This curve is called a curtain. If ℓ
crosses a curtain an even number of times or not at all (consider for an example the green curve in
Figure 6a), then, since ℓ cannot enter and exit through neither e nor e′, the start and the endpoint
of the curtain are contained in the same new face created by the partition of F . Therefore A∪{ℓ}
contains a popular face. Based on these observations we state the following lemma.

Lemma 1 To ensure that a popular face F is resolved after the insertion of a single curve ℓ into
the arrangement, it is necessary and sufficient that the curve ℓ has the following properties.

a) It visits the face F exactly once.

b) It does not enter or exit through a popular edge.

c) It separates each pair of popular edges, i. e., it crosses every curtain an odd number of times.

In particular, suppose that e1, e2, . . . , ek are consecutive edges of F , and e1 and ek belong to the
same curve. Then a necessary condition for ℓ to resolve F is that

d) ℓ crosses exactly one of the edges e2, . . . , ek−1. □

The ways how ℓ can traverse a popular face F can be modeled as a graph: We place a vertex
on every edge of F except the popular edges. We then connect two such vertices u, v with an edge
e = uv if for every curtain c, the endpoints of c alternate with the vertices u and v around F , as
shown in Figure 6b. This representation can be condensed as shown in Figure 6c and explained in
Section 4.8.
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Figure 7: The vertices of the graph G (a) are replaced by cycles (b). A non-intersecting tour
drawn on the modified graph visiting all original edges (c).

Observation 2 Given a curve arrangement A in which all curves start and end at a containing
frame, an additional curve ℓ that also starts and ends at the frame can be represented as a path
in the dual graph A∗ of A. Conversely, all curves represented by a path in A∗ traverse the same
faces of A in the same order, even though their exact geometry can differ.

3 N1R is NP-complete

In order to prove NP-hardness, we reduce from Planar Non-Intersecting Euler Tour. This reduction
assumes ℓ to be a closed loop, but it can easily be adapted to work for an open curve ℓ′ starting
and ending at the frame.

3.1 Non-Intersecting Euler tours

An Euler tour in a graph is a closed walk that contains every edge exactly once.1 An Euler tour in
a graph embedded in the plane (a plane graph) is non-intersecting if every pair of consecutive edges
(a, b), (b, c) is adjacent in the radial order around b. Intuitively, an Euler tour is non-intersecting
if it can be drawn without repeated vertices after replacing each vertex by a small cycle linking
the incident edges in circular order (see Figures 7a and 7b). The Euler tour has to visit all of the
original edges, but it does not have to cover the small vertex cycles (see Figure 7c).

The following problem was proved to be NP-complete by Bent and Manber [3, Theorem 1] by
a reduction from Planar Satisfiability.

Problem 2 (Planar Non-Intersecting Euler Tour PNET) Given a planar graph G embedded
in the plane, decide whether G contains a non-intersecting Euler tour.

A different NP-hardness reduction from the Hamiltonian cycle problem for planar 3-connected
cubic graphs has been given by Fleischner [12, Section VI.3.3, pp. VI.156–9], see also [1, Theorem 2].
(In these references, non-intersecting Euler tours are studied extensively, referring to them by the
term A-trails [12, Definition III.42a and Section VI.3].)

We alert the reader that there is a related notion, which is weaker: A non-crossing Euler tour
is a tour that avoids crossings: A crossing at a vertex u is formed by two pairs of consecutive

1Alternative terms for Euler tours are Euler (or Eulerian) cycles or circuits or trails or lines.
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(a) (b) (c)

Figure 8: Preprocessing steps for the reduction. (a) The original input graph G of a PNET
instance, which can be a multigraph with self-loops. Vertices of degree larger than 2 are highlighted
in green. (b) All vertices of degree two are contracted. (c) All edges are subdivided once.

edges (a, u), (u, b) and (c, u), (u, d) in the tour such that their radial order around u is a, c, b, d
or a, d, b, c. The distinction appears only for vertices of degree six or larger. Consider a vertex
with six incident edges e1, . . . , e6 in cyclic order. An Euler tour visiting these edges in the order
e1, e4, . . . , e3, e2, . . . e5, e6, . . . does not have a crossing at u, but it is not non-intersecting.

It is an easy exercise to show that, in contrast to non-intersecting Euler tours, non-crossing
Euler tours always exist, see [20]. A linear-time algorithm for constructing such an Euler tour has
been recently described in [7, Lemma 4.2 of the full version], in the more general setting of graphs
on arbitrary surfaces.

3.2 NP-completeness reduction

We will present a polynomial-time reduction from PNET to N1R, i. e., we will create a curve
arrangement A containing popular faces based on a planar input graph G of PNET, such that
there exists a curve ℓ for which A ∪ {ℓ} contains no popular faces if and only if G contains a
non-intersecting Euler tour. We will refer to the curve ℓ as a resolving curve. We assume that G is
connected and all vertices have even degree, because otherwise, G clearly cannot contain an Euler
tour. We exclude the case that G is just a single cycle, because then PNET has a trivial solution.
To make the arguments in the reduction easier, we modify G without affecting the existence of a
planar non-intersecting Euler tour, see Figure 8. The modification is done in two steps. First, we
replace every vertex of degree two with an edge connecting its neighbors, until no vertex of degree
two is left; we then replace every edge with a path of length two. Every edge of G now connects
a degree-2 vertex with a vertex of higher degree, and in particular, there are no self-loops. The
drawing of G in the plane, which defines the order of the edges around each vertex, is inherited
from the drawing of the original graph.

We place a rectangular frame around the drawing of G. We define the outer face as the
intersection of the outer face of the drawing of G with the frame rectangle (which is now a bounded
region). We represent every vertex v ∈ V with a vertex gadget and every edge e = uv ∈ E with
an edge gadget.

3.2.1 Vertex gadgets

The vertex gadgets consist of curves in one of four basic types of shapes, shown in Figure 9a, which
we call beakers of Type I, Type II, Type III and Type IV, respectively. The exact geometric shape
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Figure 9: Construction of smaller vertex gadgets. The curtains in popular faces are shown as
red dashed curves. (a) Basic beaker curve shapes. (b) Degree-two gadget (2 Type-I beakers)
and (c) its dual graph. (d) Degree four gadget (4 Type-I beakers). (e) Dual graph of the degree
4 gadget. (f) A possible curve ℓ in light blue; some alternative routings, which connect the same
endpoints, in dashed light blue. Faces highlighted in green are private to the gadget; the other
faces are shared with other gadgets.

of these curves is not important, but having beakers of different shapes makes it easier to refer to
them and their parts in our discussion. The important property is the combinatorial structure of
the curve arrangements we create, as characterized by the dual graph.

We place the vertex gadget for a vertex v inside a circle around v, such that no two such circles
intersect. We place one beaker to represent each incident edge e of v, at the position of v. The
beakers are rotated such that their bases (the lower ends in Figure 9a) overlap in a specific pattern.
The opening of each beaker (the upper ends in Figure 9a) points outwards, and it ends on the
surrounding circle, to be continued outside into edge gadgets.

We use three variants of the vertex gadget, depending on the degree δ. In all cases, the
endpoints of the δ beakers on the surrounding circle follow a regular pattern: The endpoints of a
beaker are always adjacent in the circular order, see Figures 9b, 9d, and 10a below. Accordingly,
as we go around the circle we have δ faces a1, . . . , aδ that lie inside the beakers, separated by δ
faces o1, . . . , oδ between the beakers, see Figures 9c, 9e, and 10b. These 2δ faces are shared with
other gadgets and with the free area outside the gadgets. All other faces are private faces of the
gadget; they belong to no other gadget. We call the vertices ai beaker vertices.

According to Observation 2, we will usually regard a resolving curve as a path in the dual
graph.
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Degree-two gadget. The vertex gadget for a degree-two vertex is simply made up of two overlap-
ping Type-I beakers (see Figure 9b). The dual graph H2 (shown in Figure 9c) of this construction
is the complete bipartite graph K2,3 with two beaker vertices a1 and a2, a private vertex b in the
intersection of the beakers and two vertices o1 and o2 outside the beakers

Lemma 2 Let A be a curve arrangement that contains a vertex gadget for a degree-two vertex and
let ℓ be a resolving curve for A. Then ℓ has to contain the path (a1, b, a2).

Proof: By Lemma 1d, applied to the popular face a1, ℓ has to contain the edge a1b. A similar
argument holds for the edge ba2, and the statement follows. □

Degree-four gadget. The vertex gadget for a degree-four vertex v consists of four Type-I
beakers, one per incident edge of v, which form the intersection pattern of Figure 9d.

It induces the following dual graph H4, see Figure 9e. The center of the graph H4 is a grid
(three vertices by three vertices), labeled as follows. The center of this grid is labeled d, the vertices
connected to the center are labeled in clockwise fashion ci, i ∈ {1, 2, 3, 4}. The corners are labeled
in a similar clockwise fashion as bi, i ∈ {1, 2, 3, 4}. Consecutive corners of the grid bi and bi+1 are
connected to an additional vertex ai, which is one of the beaker vertices. Finally the vertices ai−1

and ai are connected to a vertex oi. In this construction the beakers vertices are the four vertices
a1, a2, a3 and a4.

Lemma 3 Let A be a curve arrangement that contains a degree-four vertex gadget, and let ℓ be a
resolving curve for A. Then for every i ∈ {1, 2, 3, 4}, ℓ has to contain exactly one of the edges aibi
or aibi+1. In particular, when it visits ai, it must enter or exit the gadget.

Proof: The first statement follows directly from Lemma 1d, applied to each popular face ai. The
second statement follows because ℓ cannot go from ai to any of the other neighbors oi and oi+1,
by Lemma 1b. □

The next lemma shows that the path of any possible resolving curve ℓ in the dual of the
gadget contains two vertex-disjoint paths. The possible paths correspond to the ways how a non-
intersecting Euler tour can connect edges incident to v in the original graph G.

Lemma 4 Let A be a curve arrangement that contains a degree-four vertex gadget, and let ℓ be a
resolving curve for A. Then ℓ intersects H4 in two vertex-disjoint paths P1 and P2 of the form

a) P1 = (a1, . . . , a2) and P2 = (a3, . . . , a4) or

b) P1 = (a1, . . . , a4) and P2 = (a2, . . . , a3)

Proof: By Lemma 3, the visit of ℓ to ai must be an entry or exit to the gadget, and it must be
paired with another exit or entry, which can only go through another beaker vertex aj . If a1 is
paired with a3, the remaining beaker vertices a2 and a4 must also be paired to each other, and
this is impossible with two vertex-disjoint paths, by planarity. Only the two other matchings, as
stated in the claim, remain. □

Lemma 4 states that a resolving curve has to contain two paths within H4 connecting vertices
in neighboring beakers. The actual path and sequence of faces crossed by the resolving curve is
not (and is not required to be) unique. Different possibilities are shown in Figure 9f.



JGAA, 28(2) 47–82 (2024) 57

c3

c7

c2

c1

c4

c5

c6

c8

(a)

a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3

a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2

a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1

a7-aδ−1a7-aδ−1a7-aδ−1a7-aδ−1a7-aδ−1a7-aδ−1a7-aδ−1a7-aδ−1a7-aδ−1a7-aδ−1a7-aδ−1a7-aδ−1a7-aδ−1a7-aδ−1a7-aδ−1a7-aδ−1a7-aδ−1

a8a8a8a8a8a8a8a8a8a8a8a8a8a8a8a8a8

a6a6a6a6a6a6a6a6a6a6a6a6a6a6a6a6a6

a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5

a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4

ddddddddddddddddd
K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1K1

K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2

K3K3K3K3K3K3K3K3K3K3K3K3K3K3K3K3K3K4K4K4K4K4K4K4K4K4K4K4K4K4K4K4K4K4

K6K6K6K6K6K6K6K6K6K6K6K6K6K6K6K6K6

K5K5K5K5K5K5K5K5K5K5K5K5K5K5K5K5K5

ccccccccccccccccc
b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1

b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2

b3b3b3b3b3b3b3b3b3b3b3b3b3b3b3b3b3b4b4b4b4b4b4b4b4b4b4b4b4b4b4b4b4b4

b5b5b5b5b5b5b5b5b5b5b5b5b5b5b5b5b5

b6b6b6b6b6b6b6b6b6b6b6b6b6b6b6b6b6

o1o1o1o1o1o1o1o1o1o1o1o1o1o1o1o1o1

o2o2o2o2o2o2o2o2o2o2o2o2o2o2o2o2o2

o3o3o3o3o3o3o3o3o3o3o3o3o3o3o3o3o3o5o5o5o5o5o5o5o5o5o5o5o5o5o5o5o5o5

o6o6o6o6o6o6o6o6o6o6o6o6o6o6o6o6o6

o7o7o7o7o7o7o7o7o7o7o7o7o7o7o7o7o7

o4o4o4o4o4o4o4o4o4o4o4o4o4o4o4o4o4 o8o8o8o8o8o8o8o8o8o8o8o8o8o8o8o8o8

(b)

Figure 10: (a) Vertex gadget for a degree-8 vertex v with red dashed lines indicating the curtains of
popular faces, and the surrounding circle. As before, the green faces are private to the gadget, and
the other faces are shared. (b) Its dual graph. Dark blue dashed lines indicate further connections
made by the edge gadget.

Degree-δ gadget. The vertex gadget for a vertex v of degree δ ≥ 6 is more complex and we
first describe it informally, referring to Figure 10a. We place δ − 1 Type-II beakers c1, . . . , cδ−1

symmetrically around the location of v. Each beaker intersects four adjacent beakers (two on each
side), with the exception that the beakers cδ/2−1 and cδ/2+1 (dark orange curves in Figure 10a) do
not intersect, which is indicated in Figure 10a with a small black two-headed arrow. Geometrically,
we realize this by cutting a little piece from each of the beakers cδ/2−1 and cδ/2+1, turning them
into Type-IV beakers.

We place an additional Type-III beaker cδ (the light orange curve in Figure 10a) that surrounds
all bases of the Type-II beakers and protrudes between cδ/2−1 and cδ/2, such that the intersection
pattern of Figure 10a arises. More specifically, cδ surrounds all intersection points between the
other beakers except the outermost layer of intersection points of consecutive beakers ci and ci+1

as well as between cδ−1 and c1, but it does enclose both intersection points of cδ/2−1 and cδ/2.

We now define the gadget formally, by verbally describing the dual graph Hδ (see Figure 10b,
and Figure 11a for an enlarged view of the central part). There is a central vertex d of degree
δ−1. Around this central vertex there are δ−2 subgraphs isomorphic to K2,3, which we call Ki for
i = 1, . . . , δ − 2. They are embedded such that the vertices of the part of size 3 lie on a radial line
through d. The two vertices of the other part are called pli and pri and lie to the left and right side
of the radial line, respectively (when looking from d outwards). The innermost of the three vertices
on the radial line is called qdi (because it is joined to d), the middle one qci (for central), and the
outer one qai (because it is joined to some vertices aj). For i ∈ {1, . . . , δ−3} the graph Ki is joined
to Ki+1 by identifying pri and pli+1, forming a chain of multiple K2,3’s. The cycle is closed by an
additional vertex c, which is connected to pl1 and prδ−2. Additionally, c and the innermost vertex

qdi of each part of size 3 of each Ki is connected to d. The vertices pl1, . . . , p
l
δ/2−1 are connected to

a vertex b1, . . . , bδ/2−1, respectively. Similarly prδ/2, . . . , p
r
δ−2 are connected to bδ/2, . . . , bδ−2. All

these δ − 2 vertices bi lie outside the cycle of Ki. The beaker vertices are a1, . . . , aδ (contained in
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the opening of the beaker). The vertices o1, . . . , oδ represent the space between beakers outside the
gadget. The following additional edges appear in the gadget (and are also shown in Figures 10b
and 11a).

� aibi for i ∈ {1, . . . , δ − 2}

� ai−1bi for i ∈ {2, . . . , δ/2− 1}

� ai+1bi for i ∈ {δ/2, . . . , δ − 2}

� aδ−1b1

� aioi for i ∈ {i, . . . , δ}

� ai−1oi for i ∈ {2, . . . , δ − 1} \ {δ/2}

� aδoδ/2 and aδ/2−1oδ

� For i ∈ {1, . . . , δ − 2}, ai is connected to the outermost vertex qai of the part of size three
of Ki.

� aδp
a
δ−1 and aδp

a
δ

We now identify a set of edges that necessarily have to be contained in any resolving curve
for a degree-δ vertex gadget. The goal of Lemmas 5–9 is to show that any resolving curve for an
arrangement containing a degree-δ gadget has to traverse the gadget in one of two ways, which
correspond to the two possibilities how a non-intersecting Euler Tour can connect the vertices
incident to a degree-δ vertex.

Recall that pli−1 = pri and that all graphs Ki are made up of five vertices, i. e., pli, p
r
i and a part

of three vertices, one of which (qdi ) is connected to d and one of which (qai ) is connected to one or
multiple vertices aj . The remaining vertex, qci , is connected only to pli and pri .

Lemma 5 Let A be a curve arrangement that contains a vertex gadget for a degree-δ vertex and
let ℓ be a resolving curve for A. Then ℓ has to contain the path (pl1, q

c
1, p

l
2, q

c
2, . . . , p

l
δ−2, q

c
δ−2, p

r
δ−2).

Proof: Let f be the face represented by pli. The edges pliq
a
i and pliq

d
i (highlighted orange in

Figure 11a) cross the boundary f across segments belonging to the same curve, making f popular.
By Lemma 1d, ℓ has to leave f between these two segments, and the only option to do so is by
the edge pliq

c
i . The same argument forces the inclusion of the edge pri q

c
i . This holds for every Ki,

resulting in the desired path (highlighted green in Figure 11a). □

For ease of reference, we refer to the endpoints of the path by q = pl1 and q′ = prδ−2.
We will use the above lemma and Lemma 1 to reduce the edges in Hδ that can be traversed

by ℓ. First, since by Lemma 1a, ℓ cannot enter a face twice, it can therefore also not use any
vertex or edge in the dual twice. We can simplify Hδ by deleting the edges incident to any of the
vertices qc1, p

l
2, q

c
2, . . . , p

l
δ−2, q

c
δ−2, i. e., vertices that are already incident to two edges in ℓ due to

Lemma 5. Second, we can remove vertices of degree one in the remaining graph. And third, we
can remove any edge corresponding to a resolving curve crossing a popular edge from the dual,
since by Lemma 1b, a resolving curve cannot cross a popular edge. This include the edges aioj for
any i and j in Hδ, as well as the edges cd, dqd1 , q

d
1p

l
1, dq

d
δ−2 and qdδ−2p

r
δ−2. Applying these three

rules exhaustively yields the reduced dual graph H ′
δ shown in Figure 11b.

The next lemma identifies sets of edges, of which exactly one needs to be contained in a resolving
curve ℓ. It follows from a straightforward application of Lemma 1d to each of the faces ai.
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Figure 11: Detail of the center of the degree-δ vertex gadget. (a) Dual edges highlighted in orange
cross boundary segments of faces that belong to curves that appear twice on the boundary of
those faces. These edges cannot be used by a resolving curve. Green edges are forced by Lemma 5.
(b) The reduced dual graph H ′

8 with the forced part of ℓ due to Lemma 5 and one of the two options
according to Lemma 7 shown in dark blue. Dark blue dashed lines indicate further connections
made by the edge gadget.

Lemma 6 Let A be a curve arrangement that contains a vertex gadget for a degree-δ vertex and
let ℓ be a resolving curve for A. Then ℓ has to contain exactly one edge of each of the following
sets of edges:

� a1b1, a1q
a
1 , or a1b2

� aibi or aibi+1 for i ∈ {2, . . . , δ/2− 2}

� aδ/2−1bδ/2−1 or aδ/2−1q
a
δ/2−1

� aδq
a
δ/2−1 or aδq

a
δ/2

� aδ/2bδ/2 or aδ/2q
a
δ/2

� aibi−1 or aibi for i ∈ {δ/2 + 1, . . . , δ − 3}

� aδ−2bδ−2, aδ−2q
a
δ−2, or aδ−2bδ−3

� aδ−1b1, aδ−1c, or aδ−1bδ−2

Moreover, each visit of ℓ to one of the faces ai is connected with an entry or exit from the gadget.
□

To strengthen the previous lemma, we observe that the choices of these edges are not inde-
pendent. In particular, we can notice the clockwise path (b2, a2, b3, . . . , aδ−2, bδ−2) (with some
irregularity of notation in the middle), every odd member of which has degree 2.

Lemma 7 Let A be a curve arrangement that contains a vertex gadget for a degree-δ vertex and
let ℓ be a resolving curve for A. Then ℓ has to contain exactly one the following two sets of paths.
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Figure 12: (a) One set of subpaths of ℓ forced by Lemma 7.1. (b) The subgraph of the dual of
the vertex gadget that remains after removing unusable edges due to already forced subpaths of ℓ.
(c) A resolving curve in the gadget. The dashed blue line indicates one alternative possibility for
the sequence of traversed faces.

a) (ai, bi+1, ai+1) for even i ∈ {2, . . . , δ/2− 2}, (aδ/2, qaδ/2, aδ) and (ai, bi, ai+1) for odd i ∈ {δ/2 +
1, . . . , δ − 3}.

b) (ai, bi+1, ai+1) for odd i ∈ {1, . . . , δ/2 − 3}, (aδ/2−1, q
a
δ/2−1, aδ) and (ai, bi, ai+1) for even i ∈

{δ/2, . . . , δ − 4}.

Proof: Observe that the vertices bi for all i ∈ {1, . . . , δ − 2} as well as qaδ/2−1 and qaδ/2 have
degree 2. Therefore if ℓ contains one edge incident to one of these vertices it has to contain the
second edge too, since, as stated above, no edge of A∗ can be used twice. Since Lemma 6 forces
either aδq

a
δ/2−1 or aδq

a
δ/2 to be included in ℓ, assume first that aδq

a
δ/2−1 ∈ ℓ. As a direct consequence

qaδ/2−1aδ/2−1 ∈ ℓ. Then neither aδ/2−1bδ−1 nor bδ−1aδ/2−2 can be included in ℓ. This propagates

and forces all (ai, bi+1, ai+1) to be included in ℓ for odd i ∈ {1, . . . , δ/2 − 3}. The inclusion of
aδq

a
δ/2−1 also makes the inclusion of qaδ/2aδ and therefore aδ/2q

a
δ/2−1 impossible. This propagates

and forces all (ai, bi, ai+1) to be included in ℓ for even i ∈ {δ/2, . . . , δ − 4}. With this all edges of
the first case are included in ℓ. Assuming instead the inclusion of aδq

a
δ/2 in ℓ symmetrically proves

the second case. □

After considering the edges forced to be included in ℓ by Lemma 7, we are left with two
symmetric possible states, one of which is shown in Figures 12a. The remaining part of the
reduced dual graph is shown in Figure 12b. We know that ℓ must make an entry/exit through
aδ−1 and another entry/exit through a1, and since all other beaker vertices are taken, ℓ must
connect aδ−1 to a1 within the gadget. The other situation is symmetric, and we are therefore led
to the following statement:

Lemma 8 Let A be a curve arrangement that contains a vertex gadget for a degree-δ vertex and
let ℓ be a resolving curve for A.
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Then ℓ contains either the subpaths forced by Lemma 7.1 together with a path of the form
(a1, . . . , aδ−1), or it contains the subpaths forced by Lemma 7.2 together with a path of the form
(aδ−2, . . . , aδ−1).

In both cases, there is such a system of paths such that all private faces are resolved.

Proof: In the first case, it is easy to route a path from a1 to aδ−1, incorporating the subpath P
between pl1 and prδ−2 that is forced by Lemma 5. One possibility for such a path is, e.g., concate-

nating either (a1, b1, p
l
1) or (a1, q

a
1 , p

l
1) with P and then either (prδ−2, c, aδ−1) or (p

r
δ−2, bδ−2, aδ−1).

Such a path eliminates all popular faces inside the gadget. The second case is symmetric. □

In fact, by looking at the subgraph from which the edges that are not yet fixed can be chosen (see
Figure 12b), which has the vertices pl1, p

r
δ−2, a1 and aδ−1 on its outer face, one sees that the path

must be of the form (a1, . . . , p
l
1, . . . , p

r
δ−2, . . . , aδ−1) or (aδ−2, . . . , p

r
δ−2, . . . , p

l
1, . . . , aδ−1). There are

four possible paths for either case.
We can now state the essential lemma for the variable gadgets. We say that ℓ connects two

beakers of a gadget if there is a subpath of ℓ which is entirely contained within the dual of the
gadget and does not contain any vertex representing another beaker. We also say that two beakers
B1 and B2 are neighbors if, when traversing the boundary of the outer face in the dual of the
gadget, the vertices representing B1 and B2 appear consecutively. The concept of neighboring
beakers is also intuitively clear in the pictures of the gadgets in Figures 9b, 9d and 10a.

Lemma 9 Let A be a curve arrangement that contains vertex gadgets and let ℓ be a resolving
curve for A. Then in any vertex gadget, ℓ connects vertices of neighboring beakers and there are
exactly two such possibilities in every gadget.

Proof: For the degree-two and the degree-four gadgets, this immediately follows from Lemma 2
and Lemma 4. For the gadget of vertices with degree six or larger note that all vertices representing
beakers are covered by the paths forced by Lemma 7 and Lemma 8 and all forced paths connect
neighboring beakers. □

Since there is one beaker placed in the gadget per edge incident to a vertex and the neighborhood
relation between beakers mirrors the neighborhood relation of the edges, the two options of how
subpaths of ℓ can traverse the dual of a vertex gadget directly correspond to the two options a
planar non-intersecting Euler tour can traverse the original vertex. A possible resolving curve ℓ
realizing one case of the forced traversal of the vertex gadget is shown in Figure 12c. Similarly to
the degree-4 gadget, the exact set of faces traversed can slightly differ (indicated by the dashed
line).

Recall that we have assumed at the start of this section that all vertex gadgets are contained in
small circles – all of which are pairwise non-intersecting – around their respective vertex. We now
remove these circles and are left with vertex gadgets whose curves all have two endpoints close to
each other in the plane. In the following section we describe how we elongate these curves and,
with the placement of some additional curves, form the edge gadgets.

3.2.2 Edge gadgets

Let e = uv ∈ E be an edge in G and let Bu and Bv be the two beakers representing e in the vertex
gadgets of u and v, respectively.

We now describe the construction of the edge gadget for the edge e. We will assume without
loss of generality that e is drawn as a horizontal line. Similar to confining the vertex gadgets within
a small disk around the vertex, we will construct the edge gadget within a horizontal strip.
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Figure 13: (a) Edge gadget for an edge e = uv. Open ends of all curves are collected into two
bundles of parallel curves that lead into the incident faces beyond the brown line segments. Red
dashed curtains indicate the popular face. (b) The dual graph of the gadget. The central vertex of
the dual of the edge gadget is identified with one vertex from each vertex gadget. Edges connecting
the central vertex to neighbors in the variable gadget are indicated as dashed light blue lines. An
example of a subpath of ℓ is shown in dark blue.

The edge gadget consists of six curves, shown in Figure 13a; two each for the vertices u and v,
which we call Bu

1 , B
u
2 , B

v
1 and Bv

2 , and two additional curves, which are called Ct and Cb. Bu
1 and

Bu
2 (and similarly, Bv

1 and Bv
2 ) are connected to the endpoints of the beakers representing e in the

vertex gadgets of u and v, respectively, and belong therefore to the same curve. The curves Bu
1

and Bv
1 (Bu

2 and Bv
2 ) are pairwise non-intersecting, start at a beaker and end on a horizontal line

segment above (below) the gadget. The additional curve Ct starts on the horizontal line above
the gadget left of the endpoint Bu

1 and ends on the same line right of the endpoint of Bv
1 . It

intersects these two curves exactly once. As a result, the top boundary of the rectangle contains
the endpoints of the following curves in order: Ct, Bu

1 , B
v
1 and the other endpoint of Ct. The

second new curve Cb is placed symmetrically on the bottom. We call the collection of these curves
a bundle. At this point of the construction, all used curves are either beakers in vertex gadgets or
additional curves in an edge gadget. Therefore every open endpoint of every single curve is part
of exactly one bundle.

The dual graph of this construction is shown in Figure 13b. It consists of two paths of length
five and an additional central vertex, which is connected to the first, third and fifth vertex of either
path. The only popular face in the edge gadget is the one represented by the central vertex. The
central vertex is the same as the vertex au in the beaker representing e in the vertex gadget of u
and the vertex av in the beaker representing e in the vertex gadget of v. These vertices represent
a single face.

Lemma 10 Let A be a curve arrangement that contains an edge gadget for an edge e = uv and
let ℓ be a resolving curve for A. Then ℓ contains two edges connected to the central vertex of the
edge gadget, whose other endpoint lies inside the vertex gadget of u and v, respectively.
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Figure 14: (a) A bundle (four orange vertical lines) originating at another edge gadget crosses
the curves Bu

1 and Bu
2 as well as the popular face inside the edge gadget of an edge e. The face is

partitioned into five new popular faces. (b) As a result, the dual graph contains a path between
the beaker vertex of the beaker representing e in the vertex gadget and the central vertex of the
edge gadget, and this path must traversed by a resolving curve.

Proof: The statement follows immediately from the fact that in either of the two possibilities
forced by Lemma 9 of how ℓ can traverse a vertex gadget, every beaker vertex a of a beaker
representing an edge is an endpoint of exactly one subpath in ℓ. In particular this means that the
central vertex of the edge gadget, which was unified with one such vertex of either vertex gadget
is now incident to two edges. Since ℓ can visit the face represented by the central vertex at most
once, no additional edge incident to the central vertex can be part of ℓ. □

Recall that so far we have placed a vertex gadget at the location of every vertex of G and an
edge gadget along every edge of G and that every bundle starts in the middle of an edge gadget.
Therefore the starting point of a bundle is in a face of the embedded graph G. It remains to
connect the bundles (and therefore all open endpoints of all involved curves) to the frame.

3.2.3 Routing the bundles

The high-level idea is to route a bundle from face to face across other edge gadgets until it reaches
the outer face, where all curves of the bundle are connected to the frame. First it is useful to
observe that no curve appears twice on the outside of a bundle.

Observation 3 The left- and right-most curve of every bundle is unique to that bundle, i. e., this
curve does not appear in any other bundle.
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u vx
e′e

face f ′

face f

(a)

∗

(b)

Figure 15: (a) In the graph G, two vertices u and v of high degree are connected via a path
of length two containing two edges and the vertex x. (b) The curve arrangement contains two
edge gadgets for the two edges e and e′. The bundles originating in the lower face f (shown in
dark blue and dark green) can cross into f ′ without crossing their own edge gadget or each other.
Other bundles (shown in red) can cross either edge gadget to get from f to f ′. Vertex gadgets
are highlighted in orange, edge gadgets in purple and the face marked with a star is the only face
bounded by only three curves. The routing of the bundles is consistent with the directed edge ff ′

being contained in the shortest-path tree.

By contrast, a curve forming a beaker is part of exactly two bundles, both originating at the
same edge gadget and leaving it in opposite directions. While it will not form a popular face inside
the bundle, it would create a popular face if the two sides of the edge belong to the same face.
The next observation show that this is impossible.

Observation 4 Consider an edge e of G and the corresponding edge gadget. Then the two sides
of the gadget belong to different faces of G.

Proof: This follows from the fact that G, being an Eulerian graph, does not contain any vertices
of odd degree. Therefore there is no edge that is incident to the same face on both sides. □

We will show below (Lemma 11) that a bundle can cross any edge gadget once without creating
popular faces, except that a bundle cannot cross the edge gadget from which it originated.

We will now describe the sequence of faces through the bundles are led to the frame. We
construct a shortest-path tree of the dual graph of G, rooted at the outer face. (Any other
spanning tree will also do the job.)

For each bundle originating in a face f1, the spanning tree contains a unique sequence F =
f1, . . . , fm of distinct faces, such that fi and fi+1 share an edge and fm is the outer face. We route
the bundle through this sequence of faces. Since the outer face is incident to the frame, we can
then simply connect the endpoints of the bundle to the frame.

Two bundles from different starting faces may meet in some face. Since the path in the tree
continues in the same way for the two bundles, we can route them side by side in parallel, without
having to cross them.

We still have to think of the exception stated above, i.e., that a bundle cannot cross the edge
gadget of the edge where it originated. Here it is useful that all edges come in pairs e, e′ connected
by a degree-2 vertex. Suppose that a bundle originating in the gadget of e wants to cross this gadget
from one incident face f to the other incident face f ′, because the shortest-path tree contains the
edge ff ′. (This can only happen immediately after starting the bundle.) In this case we can let
the bundle cross from f to f ′ over the other edge gadget e′, instead of e, as shown in Figure 15b.
There will be another bundle that wants to cross from f to f ′, starting from e′, and we route this
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bundle over e. In this way, none of the bundles needs to cross its own edge gadget or the other
bundle.

As the final missing step, we establish a way for a bundle to cross an edge gadget without
creating any popular faces.

Lemma 11 Let B be a bundle originating at an edge e. Then B can cross the edge gadget of an
edge e′, e′ ̸= e once without creating any popular faces outside of the edge gadget.

Proof: Since B does not originate at the edge gadget of e′, no curve of B is part of the edge gadget
of e′. Therefore all edges of B can be drawn orthogonally across the two curves Bu

1 and Bu
2 as

shown in Figure 14a (the case for Bv
1 and Bv

2 is symmetric). In doing so they cross the popular face
represented by the central vertex of the edge gadget. The resulting dual graph, which accounts for
one such bundle crossing, is shown in Figure 14b. Let a be the vertex in the dual of the vertex
gadget that represents the beaker and c be the central vertex of the edge gadget. Instead of c and
a being identified, a and c are connected with a path consisting of four edges and three degree
four vertices. In general this path has four times as many edges as the number of bundles crossing
the edge gadget next to each other, all internal vertices of these paths are of degree four and two
of the four outgoing edges are popular. Since all of these vertices represent popular faces and in
particular two of the outgoing edges of every internal vertex are popular, by Lemma 2 the entire
path between a and c has to be contained in ℓ. Therefore a is still necessarily connected to the
vertex a′ representing the beaker on the opposite site of the edge gadget and the relevant property
of the edge gadget is preserved. Further this path resolves all popular faces and no additional
popular faces are created. □

This concludes the construction of our curve arrangement. We now observe the final necessary
property of this arrangement stated in the following lemma.

Lemma 12 All popular faces in A are contained in vertex gadgets and edge gadgets.

Proof: All faces outside of these gadgets are either contained in a bundle, which by construction
does not contain any popular faces or they are a part of a face of the drawing of G, which is
partitioned by the bundles crossings this face. As a result, these faces are bounded by curves
belonging to an edge gadget or the outside curves of bundles. Since by Observation 3, the outside
curves of bundles are unique to the bundle, by Observation 4 the two sides of a bundle are incident
to different faces and by construction two bundles do not cross. A bundle crossing an edge gadget
twice is also impossible by construction.

The only edge case which needs to be considered is the single face which borders on the edge
gadgets of degree two (marked in Figure 15b with a star), which is bounded by two beakers and a
single bundle and therefore is also not popular. Therefore no popular faces are present outside of
any gadget. □

3.2.4 NP-completeness.

We are now prepared to prove the main statement of this reduction, in particular, a polynomial-
time reduction from PNET to N1R, which creates a curve arrangement A containing popular faces
based on a planar input graph G of PNET, such that there exists a curve ℓ for which A ∪ {ℓ}
contains no popular faces if and only if G contains a non-intersecting Euler tour.
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Frame

ℓ

Figure 16: Schematic representation of three vertex gadgets and edge gadgets between them. The
edges are subdivided by degree-2 vertices (not shown). The bundles are routed through beakers
of other edges ending at the frame (partially shown at the bottom of the figure). Two additional
bundles (shown in orange) are shown crossing over these edges. The red bundles to the upper right
are routed on a different path through the construction. A possible routing of ℓ is shown as a black
curve.

Theorem 1 The variation of N1R where the goal is to find a resolving curve ℓ that is closed, i. e.,
it does not start and end at the frame, is NP-complete.

Proof: Assume we are given a planar non-intersecting Euler tour E(G) of G as a cyclic permutation
of the edges. We now show how to construct the curve ℓ. For every edge gadget follow a path
according to Lemma 10. As a result ℓ consists at this point of a collection of paths, which resolve the
popular faces in the edge gadgets and whose endpoints are beaker vertices in the vertex gadgets.
Specifically every beaker vertex is an endpoint of such a subpath. Since E(G) connects only
neighboring vertices in G, we connect the beaker vertices in the vertex gadgets in one of the two
admissible patterns allowed by Lemma 9. Since every edge appears once in E(G) this results in one
closed curve ℓ, which resolves all popular faces in the edge and vertex gadgets and by Lemma 12
no other popular faces are contained within the constructed arrangement.

Now assume we are given a resolving curve ℓ. By Lemma 10, ℓ has to traverse all edge gadgets.
Additionally, to resolve all popular faces in the vertex gadgets, ℓ has to follow one of the two
possible configurations of Lemma 9, which enforces that all consecutive edge gadgets traversed
by ℓ correspond to neighboring edges of G. The order in which ℓ traverses all edge gadgets gives a
permutation of all edges, which forms a planar non-intersecting Euler tour. We have shown that
there exists a resolving curve ℓ if and only if G contains a non-intersecting Euler tour, and therefore
N1R is NP-hard.
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It is easy to see that N1R is in NP. The input arrangement can be represented as a plane
graph in which the edges are marked as belonging to the different curves or to the frame boundary.
The certificate is an extension of this arrangement by a resolving curve ℓ. Since ℓ cannot visit a
face more than once, the certificate is of polynomial size. It can be easily verified in polynomial
time whether the resolving curve ℓ is valid, in particular, whether the arrangement together with
ℓ contains no popular faces. □

3.3 Adaptation to open curves

The reduction assumes that ℓ is a closed loop. It can be adapted to work for an open curve, i. e.,
we can create the arrangement A, for which there exists a resolving curve ℓ′ starting and ending
at the frame if and only if G contains a planar non-intersecting Euler tour E(G).

Frame

ℓ

u v

B B′

Figure 17: By routing both ends of an open beaker B (or B′) in parallel to the frame instead of
connecting them by an edge gadget to the extra vertex x, we force ℓ to reach the frame between
the two connection points of the beaker.

Theorem 2 N1R is NP-complete.

Proof: The modified construction is illustrated in Figure 17. We select a path (u, x, v) between
two high-degree vertices that is incident to the outer face. Instead of creating two edge gadgets
for e = ux and e′ = vx, we eliminate the vertex x. The beaker B representing e in the vertex
gadget of u and the the beaker B′ representing e′ in the vertex gadget of v are routed to the frame
boundary.

Bundles that would otherwise have crossed the edge gadgets of e or e′ to reach the frame can
now connect directly to the frame between the two curves.
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This does not create any additional faces (and in particular, no popular faces) except for the
face in the opening of B and the face in the opening of B′. The boundary of the face in B
contains three consecutive edges that are formed by B, the frame, and B again. Therefore, by
Lemma 1d, ℓ must start on the frame between the two connection points of B, and similarly, it
must end between the two connection points of B′. All other properties of the arrangement remain
unchanged. □

4 Randomized FPT-algorithm for N1R

In this section, we show that N1R with k popular faces can be solved by a randomized algorithm
in O

(
2kpoly(n)

)
expected time, placing N1R in the class randomized FPT when parameterized by

the number k of popular faces. We model N1R as a problem of finding a simple cycle (i. e., a cycle
without repeated vertices) in a modified dual graph G, subject to a constraint that certain edges
must be visited.

Problem 3 (Simple Cycle with Edge Set Constraints SCESC) Given an undirected graph
G = (V,E) and k subsets S1, S2, . . . , Sk ⊆ E of edges, find a simple cycle, if it exists, that contains
exactly one edge from each set Si, for i = 1, ..., k. (The sets Si do not have to be disjoint.)

We mention that the SCESC instances that are used to solve the N1R problem will have disjoint
sets Si. In Problem 3 we do not exclude overlapping sets, as their treatment incurs hardly any
overhead.

4.1 Correspondence between N1R and SCESC

We first show how an algorithm for Problem 3 with k edge sets may be used to solve N1R with
k popular faces. We will use a modified dual graph of the curve arrangement as the input graph
for SCESC.

To obtain the modified dual graph, we start with the dual graph of the given curve arrangement
A. Next we replace the vertex corresponding to the i-th popular face f with a set Si of edges
modeling the ways how an additional curve can cut all curtains of f , as described in Section 2 and
shown in Figure 6b. To be specific, we place a terminal vertex on each edge s bounding f and
connect it to the vertex of the face f ′ that is adjacent to f across s. (If f ′ is also popular, the
vertex on e serves as a terminal vertex both in f and f ′.) We connect two terminal vertices if a
curve entering f through one edge and exiting through the other would cut all curtains of f . The
latter connecting edges, which run through f , form the set Si.

If we aim to obtain a closed resolving curve (analogous to Theorem 1), these adaptions are
sufficient. To obtain a resolving curve, which necessarily starts and ends at the frame (analogous
to Theorem 2), we add two additional vertices vo1 and vo2 in the interior of the outer face of the
modified dual graph, and an edge eo that connects vo1 to vo2. Then we define the set Sk+1 = {eo},
i.e., we require that any resolving curve contains this edge. Finally we connect both vertices vo1
and vo2 to every vertex of a face f incident to the frame if f was not popular, or to the appropriate
terminal vertex, which was placed on the frame edge if f was popular. This forces any closed
resolving curve to cross the frame exactly twice. The single connected component of the resolving
curve between these two crossing points with the frame is an open resolving curve starting and
ending at the frame.
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Lemma 13 There is a correspondence between the simple cycles in the modified dual graph con-
taining exactly one edge of every set Si and the resolving curves for A.

Proof: As stated in Observation 2, a resolving curve corresponds to a simple cycle in the ordinary
dual graph (before the introduction of the special edges Si), because a resolving curve must pass
from face to face without visiting a face more than once. A resolving curve necessarily visits each
popular face in order to resolve that face, by Lemma 1. The possible ways how the curve can enter
and exit the face in order to resolve it, according to Lemma 1, are encoded in the set Si. Thus,
if the cycle uses an edge of Si, the corresponding popular face is resolved. The special Edge Set
Constraints ensure that only one of the edges of Si is used, i. e., the curve visits the popular face
only once. □

We mention that the correspondence in Lemma 13 is even a one-to-one correspondence, apart
from the fact that the geometric shape of the resolving curve can vary quite freely.

Based on Lemma 13, we can find a resolving curve by solving Problem 3. To this end, we will
describe a randomized algorithm for this problem, extending an algorithm of Björklund, Husfeld,
and Taslaman [5].

4.2 Solving SCESC

Theorem 3 a) The SCESC problem on a graph with n vertices and m ≥ n edges can be solved
in O

(
2kmn2 log 2m

n ·mini |V (Si)| ·W
)
expected time and Θ(2kn+m) space with a randomized

Monte-Carlo algorithm, with probability at least 1 − 1/nW , for any choice of the parameter
W ≥ 1. Here, mini |V (Si)| is the smallest size of the set of vertices used by any of the sets
S1, . . . , Sk. The model of computation is the Word-RAM with words of size Θ(k + log n).

b) There is an alternative algorithm (Section 4.7) needing only polynomial space, namely Θ(kn+
m), at the expense of an additional factor k in the runtime. It uses words of size Θ(log n).

Both algorithms find the cycle with the fewest edges if it exists (with high probability).

If A has n faces, the modified dual graph G has O(n) vertices and m = O(n2) edges. The
quadratic blow-up of m results from the construction as shown in Figure 6b. The number k of
popular faces is the same as the number k of edge sets Si.

With the alternative algorithm with polynomial space, since k ≤ n, we get:

Corollary 1 The N1R problem with k popular faces in a curve arrangement with n faces can be
solved in expected time O(2kpoly(n)) and O(kn) space. □

The number of edges can even be reduced to O(n). The details of this reduction process are
discussed in Section 4.8 in more detail.

We first give a high-level overview of the algorithm. We start by assigning random weights to
the edges from a sufficiently large finite field Fq of characteristic 2. Such a field exists for every
size q that is a power of 2. In a field of characteristic 2, the law x + x = 0 holds, and therefore
terms cancel when they occur an even number of times in a summation. The weight of a walk
(with vertex and edge repetitions allowed) is the product of the edge weights of all visited edges.
Our goal is now to compute the sum of weights of all closed walks, of given length, that satisfy
the edge set constraints. The characteristic-2 property will ensure that the unwanted walks, those
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which are not simple, cancel, while a simple closed walk makes a nonzero contribution and leads
to a nonzero sum with high property. The crucial idea is that, while these sets of closed walks can
be very complicated, we can compute the aggregated sum of their weights in polynomial time. We
have to anchor these walks at some starting vertex b, and we choose b to be one of the vertices
incident to an edge of S1.

More precisely, for each such vertex b, and for increasing lengths l = 1, 2, . . . , n, the algorithm
computes the quantity T̂b(l), which is the sum of the weights of all closed walks that

� start and end at b,

� have their first edge in S1,

� use exactly one edge from each set Si (and use it only once),

� and consist of l edges.

For the purpose of the following lemma, we consider the edge weights as variables and regard
T̂b(l) as a function of these variables. The result is a polynomial where each term is a product
of l variables (possibly with repetition), and hence the polynomial has degree l, unless all terms
cancel and it is the zero polynomial. We apply the following lemma, which is a straightforward
adaptation of a lemma of Björklund et al. [5].

Lemma 14 a) Suppose there exists a simple cycle of length l that satisfies the edge set constraints
and that goes through an edge of S1 incident to b. Then the polynomial T̂b(l) is homogeneous
of degree l and is not identically zero.

b) If there is no such cycle of length ≤ l, the polynomial T̂b(l) is identically zero.

Proof: a) By assumption, there is a simple cycle among the walks whose weights are collected in
T̂b(l), and we easily see that the monomial corresponding to such a walk occurs with coefficient 1.
Hence, T̂b(l) is not identically zero. By definition, T̂b(l) is a sum of weights of walks of length l,
and hence it is clear that it is homogeneous of degree l.

b) For the second statement of the lemma, we have to show that T̂b(l) is zero if there is no simple
walk of length l or shorter. Since the field has characteristic 2, it suffices to establish a matching
among those closed walks that satisfy the edge set constraints but do not represent simple cycles.
Let W be such a walk. We will map W to another walk ϕ(W ) that uses the same multiset of edges,
by reversing (flipping) the order of the edges of a subpath between two visits to the same vertex v.
Our procedure closely follows Björklund et al. [5], but we correct an error in their description. An
example of the procedure, where the start vertex is b = 1, is shown in Equation System 1.

W = W0 = 123415651432345461786571 = 1[23415651432]345461786571

W ′
0 = W1 = 12345461786571 = 123[454]61786571

W ′
1 = W2 = 123461786571 = 1234[61786]571

W = 1234156514323454[61786]571

ϕ(W ) = 1234156514323454[68716]571

(1)

We look for the first vertex v that occurs several times on the walk. (During this whole
procedure, the occurrence of b at the start of the walk is never considered.) We look at the piece
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[v . . . v] between the first and last occurrence of v and flip it. If the sequence of vertices in this
piece is not a palindrome, we are done. Otherwise, we cut out this piece from the walk and replace
it with [v]. The resulting walk will still visit an edge from each Si because such an edge cannot be
part of a palindrome, since it is visited only once. Since the resulting walk W ′ is shorter than l,
by assumption, it cannot be a simple cycle, and it must contain repeated vertices.

We proceed with W ′ instead of W . Eventually we must find a piece [v . . . v] that is not a
palindrome. We flip it in the original walk W , and the result is the walk ϕ(W ) to which W
is matched. (The flipped piece [v . . . v] does not necessarily start at the first occurrence of v in
the original sequence W , because such an occurrence might have been eliminated as part of a
palindrome.2)

It is important to note that after cutting out a palindrome [v . . . v], all repeated vertices must
come after the vertex v. Hence, when the procedure is applied to ϕ(W ), it will perform exactly
the same sequence of operations until the last step, where it will flip ϕ(W ) back to W .

Since the first edge of the walk is unchanged, the condition that this edge must belong to S1 is
left intact. This concludes the proof of Lemma 14. □

In case a) of Lemma 14, it follows from the Schwartz-Zippel Lemma [18, Corollary 1] (see also
[17, Corollary Q1]) that, for uniformly random weights in Fq, T̂b(l) is nonzero with probability at
least 1− degree/|Fq| = 1− l/q ≥ 1− n/q. We record this statement for later reference:

Proposition 15 If the algorithm uses uniform random edge weights from the field Fq, the failure
probability is bounded by n/q. □

Thus, if we choose q > n2, we have a success probability of at least 1 − 1/n for finding the
shortest cycle when we evaluate the quantities T̂b(l) for increasing l until they become nonzero.
The success probability can be boosted by repeating the experiment with new random weights.

In the unlikely case of a failure, the algorithm may err by not finding a solution although a
solution exists, or by finding a solution that is not shortest. The last possibility is not an issue for
our original problem, where we just ask about the existence of a cycle, of arbitrary length.

In the following, we will discuss how we can compute the quantities T̂b(l), and the runtime and
space requirement for this calculation. We describe the method for actually recovering the cycle
after we have found a nonzero value in Section 4.6.

4.3 Computing sums of path weights by dynamic programming

We cannot compute the desired sums T̂b(l) directly in an efficient manner, but have to do this
incrementally via a larger variety of quantities Tb(R, l, v) that are defined as follows:

For R ⊆ {1, 2, . . . , k} with 1 ∈ R, v ∈ V , and l ≥ 1, we define Tb(R, l, v) as the sum of the
weights of all walks that

� start at b,
� have their first edge in S1,
� end at v,
� consist of l edges,
� use exactly one edge from each set Si with i ∈ R (and use it only once),
� contain no edge from the sets Si with i /∈ R.

2Here our procedure differs from the method described in [5], where the flipped subsequence extends between
the first and last occurrence of v in W . In this form, the mapping ϕ is not an involution. The proof in [5], however,
applies to the method as described here. This inconsistency was confirmed by the authors (Nina Taslaman, private
communication, February 2021).
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The walks that we consider here differ from the walks in T̂b(l) in two respects: They end at
a specified vertex v, and the set R keeps track of the sets Si that were already visited. The
quantities T̂b(l) that we are interested in arise as a special case when we have visited the full range
R = {1, . . . , k} of sets Si and arrive at v = b:

T̂b(l) = Tb({1, . . . , k}, l, b).

We compute the values Tb(R, l, v) for increasing values l = 1, . . . , n. The starting values for
l = 1 are straightforward from the definition.

To compute Tb(R, l, v) for l ≥ 2, we collect all stored values of the form Tb(R
′, l − 1, u) where

(u, v) is an edge of G and R′ is derived from R by taking into account the sets Si to which (u, v)
belongs. We multiply these values with the edge weight wuv and sum them up. If (u, v) is in some
Si but i /∈ R, we do not use this edge. Formally, let I(u, v) := { i | (u, v) ∈ Si } be the index set of
the sets Si to which (u, v) belongs. Then

Tb(R, l, v) =
∑

(u,v)∈E
I(u,v)⊆R

wuv · Tb(R \ I(u, v), l − 1, u) (2)

4.4 Finite field calculations

Each evaluation of the recursion (2) involves additions and multiplications in the finite field Fq,
where q = 2s > n is a power of 2.

We will argue that it is justified to regard the time for these arithmetic operations as constant,
both in theory and in practice. The error probability can be controlled by choosing the finite field
sufficiently large, or by repeating the algorithm with new random weights.

For implementing the algorithm in practice, arithmetic in F2s is supported by a variety of
powerful libraries, see for example [16]. The size that these libraries conveniently offer (e.g., q = 232)
will be mostly sufficient such that the success probability 1− n/q guaranteed by Proposition 15 is
satisfactory.

For the theoretical analysis, we propose to choose a finite field of size q ≥ n2, leading to a failure
property less than 1/n, and to achieve further reductions of the failure property by repeating the
algorithm sufficiently often.

The following proposition describes some elementary approach for setting up the finite field Fq

of size q ≥ n2, considering that we can tolerate a runtime and space requirement that is linear or
a small polynomial in n. Various methods for arithmetic in finite fields F2s are surveyed in Luo,
Bowers, Oprea, and Xu [14] or Plank, Greenan, and Miller [15]. The natural way to represent
elements of F2s is as a polynomial modulo some fixed irreducible polynomial p(x) of degree s over
F2. The coefficients of the polynomial form a bit string of s bits. Addition is simply an XOR of
these bit strings.

Proposition 16 Given a positive integer n, one can set up data for a representation of a finite
field Fq of characteristic 2 with q > n2 elements in randomized O(n log2 n) time and O(n) space.

With this representation, an element of Fq can be represented in O(1) words, and two elements
can be added or multiplied in O(1) time.

These bounds hold for the Word-RAM model with words of size Θ(log n), where arithmetic, logic,
and addressing operations on words with Θ(log n) bits are considered as constant-time operations.
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(a) (b) (c) (d)

Figure 18: Input (a,c) and resulting output (b,d) generated by the implementation; the green curve
resolves the popular faces with the smallest number of crossings.

Proof: We use the split table method, which is simple and implements multiplication by a few
look-ups in small precomputed tables, see [14, Section 3.3.1] or [15, Section 6.5].

Let C = ⌈(log2 n)/2⌉, and let q = 24C . Thus, q ≥ n2, as required.
According to [19, Theorem 20.2], an irreducible polynomial p(x) of degree d = 4C over F2

can be found in O(d4) = O(log4 n) expected time, by testing random polynomials of degree d for
irreducibility. (Shoup [19] points out that this bound is not tight; there are also faster methods.)

Multiplication of two polynomials modulo p(x) can be carried out in the straightforward “high-
school” way in O(d2) = O(log2 n) steps: We form the product term by term and reduce the result
by successive elimination of terms of degree larger than d.

We now consider the bitstring of length d as composed of r = 4 chunks of size C. In other
words, we write the polynomial q(x) as

q(x) = q3(x)x
3C + q2(x)x

2C + q1(x)x
C + q0(x),

where q3, q2, q1, q0 are polynomials of degree less than C. Addition takes O(r) time, assuming
an XOR on words of length C = O(log n) can be carried out in constant time. Multiplication is
carried out chunk-wise, using 2r−1 = 7 multiplication tables. The j-th table contains the products
r(x)r′(x)xjC , for all pairs r(x), r′(x) of polynomials of degree less than C, for j = 0, 1, . . . , 2r − 2.
Multiplication in the straightforward way takes then O(r3) time. Each multiplication table has
2C × 2C = O(n) entries of r = 4 words, and it can be precomputed in O(nd2) = O(n log2 n) time
by multiplying in the straightforward way. □

The initial overhead of O(n log2 n) is negligible in the context of our overall algorithm. We
mention that, with another representation, the initial setup can even be made deterministic, and
its time reduced to O(n) (keeping the O(n) space bound), see Section 5.

4.5 Runtime and space

The finite field additions and multiplications in (2) take constant time, as discussed in the previous
section. Similarly, the set operation R \ I(u, v) on subsets of {1, . . . , k} and the test I(u, v) ⊆ R
can be carried out in constant time, using bit vectors. Thus, for a fixed starting vertex b ∈ V (S1)
and fixed R, going from l − 1 to l by the recursion (2) takes O(m) time in total, because each
edge (u, v) appears in at most one of the sums on the right-hand side. The overall runtime is
O(|V (S1)|2kmn).

As mentioned after Proposition 15, the probability that the algorithm misses the shortest simple
path is at most 1/n. To amplify the probability of correctness, we repeat the computation t times,
reducing the failure probability to 1/nt.
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We consider each starting vertex b separately, and do not need to store entries for lengths l− 1
or shorter when proceeding from l to l + 1; thus the space requirement is O(2kn). For recovering
the solution, the runtime must be multiplied by O(n log 2m

n ), see Section 4.6. Figure 18 shows
initial results of an implementation of our algorithm on two small test instances; see also [9].

4.6 Recovering the solution

The algorithm, as described so far, works as an oracle that only gives a yes-no answer (and a
length l), but it does not produce the solution. To recover a solution, we will call the oracle
repeatedly with different inputs.

Suppose the algorithm was successful in the sense that some number T̂b(l) turned out to be
nonzero, after finding only zero values for all smaller values of l. By Lemma 14, we conclude
that there exists a simple cycle through b satisfying the edge set constraints, possibly (with small
probability) shorter than l.

We will find a cycle by selectively deleting parts of the edges and recomputing T̂b(1), T̂b(2), . . . ,
T̂b(l) for the reduced graph to see whether this graph still contains a solution. In this way, we will
determine the successive edges of the cycle, and, as we shall see, we will know the cycle after at
most 4n log2

4m
n iterations.

The first edge out of b is an edge of S1, and thus we start by looking for the first edge among
these edges. (The other edge incident to b, by which we eventually return to b, is not in S1,
and thus there is no confusion between the two edges incident to b.) In the general step, we have
determined an initial part of the cycle up to some vertex u, and we locate the outgoing edge among
the edges (u, v) incident to u, excluding the edge leading to u that we have already used.

In general, for a vertex u of degree du, we have a set of du − 1 potential edges. We locate a
correct edge by binary search: We split the potential edges into two equal parts, and query whether
a cycle still exists when one or the other part is removed. It may turn out (with small probability)
that none of the two subproblems yields a positive answer. In this case, we repeat the oracle with
new random weights. Since the success probability is greater than 1/2, we are guaranteed to have
a positive answer after at most two trials, in expectation. (We mention that such repeated trials
may be necessary only when the length l for which we are looking is not the shortest length of a
feasible cycle. Otherwise one can show, using arguments from the proof of Lemma 14, that the
polynomial for the original problem is the sum of the polynomials for the two subproblems. Thus,
at least one of the two subproblems must give a positive answer.) After at most 2⌈log2(du − 1)⌉
successful queries, we have narrowed down the search to a single outgoing edge uv, and we continue
at the next vertex v.

For a walk W of length l, we use, in expectation, less than Q :=
∑

u∈W 4(1 + log2 du) queries,
where

∑
u∈W du ≤ 2m. By Jensens inequality, Q can be bounded by

Q ≤ 4l
(
1 + log2

2m
l

)
≤ 4n

(
1 + log2

2m
n

)
= 4n log2

4m
n ,

as claimed.
During this procedure, it may also turn out that a solution with fewer than l edges exists. In

this case, we know that we must have been in the unlikely case that the original algorithm failed
to produce a nonzero value for the shortest solution l. We simply adjust l to the smaller value and
continue.

Note that this procedure is guaranteed to produce a simple cycle, although not necessarily the
shortest one. The algorithm selects a branch only when the corresponding polynomial is nonzero,
which implies that a simple cycle exists in that branch.
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Some simplifications are possible. For edges that are known to belong to every solution (for
example if some set Si contains only one edge), we can assign unit weight, thus saving random
bits, reducing the degree of the polynomial, and increasing the success probability. Edges that
would close a loop can be discarded. When the graph is sparse and m = O(n), we can simply
try the du − 1 edges one at a time instead of performing binary search, at no cost in terms of the
asymptotic runtime.

4.7 Reduction to polynomial space

As described, the algorithm has an exponential factor 2k in the space requirement. This exponential
space requirement can be eliminated at the expense of a moderate increase in the runtime, by using
an inclusion-exclusion trick that was first used by Karp [13] for the Traveling Salesman Problem.
The possibility of applying this trick in the context of our problem was already mentioned in
Björklund et al. [5].

For a “forbidden set” F ⊆ {2, 3, . . . , k}, v ∈ V , 1 ≤ l ≤ n, and 1 ≤ j ≤ k let Ub(F, l, j, v) be
the sum of the weights of all walks that

� start at b,
� have their first edge in S1,
� end at v,
� consist of l edges,
� contain no edge from the sets Si with i ∈ F ,
� use in total j edges from the sets Si, counted with multiplicity: If an edge belonging to p
different sets Si is traversed r times, it contributes pr towards the count j.

The clue is that we can compute these quantities for each F separately in polynomial time and
space, by simply removing the edges of Si for all i ∈ F from the graph. The dynamic-programming
recursion is straightforward. In contrast to (2), we have to keep track of the number j of edges
from S1 ∪ · · · ∪ Sk.

We regard each index i ∈ {2, . . . , k} as a “feature” that a walk might have (or an “event”),
namely that it avoids the edges of Si. By the inclusion-exclusion formula, we can compute the sum
of weights of paths that have none of the features, i. e., that visit all sets Si. In this way, we get
the following formula:

Lemma 17
T̂b(l) =

∑
F⊆{2,3,...,k}

(−1)|F |Ub(F, l, k, b) (3)

Proof: The parameters l and b match on both sides. By the inclusion-exclusion theorem, the
right-hand side is the sum of all walks in which every set Si is visited at least once. Since the
parameter j is equal to k, we know that there were only k visits to sets Si. where membership of
an edge in several sets Si has been duly taken into account. Thus, every set Si is visited exactly
once. □

The sign (−1)|F | is of course irrelevant over a field of characteristic 2.
To reduce the space requirement as much as possible, we organize the computation as follows.

First, each starting point b is considered separately. We initialize n variables for accumulating the
contributions to the quantities T̂b(l) according to (3). Then, for each forbidden set F separately,
we compute the quantities Ub(F, l, j, v) for all j and v, incrementally increasing l = 1, 2, . . . , n.
Since we need to remember only the entries for two consecutive values l at a time, this requires
only O(nk) space. Along the way, we add the contributions Ub(F, l, k, b) to (3).
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Figure 19: A more compact representation that avoids the quadratic blow-up. (a) The represen-
tation using central edges (repeated from Figure 6c). (b) A set Si and its connecting edges

In summary, we can calculate T̂b(1), T̂b(2), . . . in space O(nk). Compared to the exponential-
space algorithm, we need an additional factor k in the runtime, for the k choices of the parameter j.

4.8 Adapting the Edge Set Constraints

In Section 2, we have mentioned a modified construction of the graph G on which a nonintersecting
Euler tour is sought, which avoids the quadratic blow-up of the number of edges.

Here we give more details of this construction, see the example in Figure 19a. After removing
the popular edges on the boundary of the face, the boundary edges are partitioned into runs of
consecutive edges, like the run R = (f, g, h, i) in the example. The original construction places a
terminal node on every non-popular edge; the quadratic blow-up results from connecting all edges
from one run with all edges from another run. We avoid this by choosing a representative node vR
for each run to replace the nodes on the individual boundary edges. (Runs of length one can stay
as they are.) Geometrically, we can imagine inserting a chord in the face (shown as a dotted curve),
overarching the edges of the run, on which the new terminal node vR is placed.

The edges between all nodes of two runs of the original construction are replaced by a single
edge between the respective representative nodes of the runs. We call these edges central edges.
For each non-popular boundary edge, the graph has an edge that crosses it, connecting some
representative node with the rest of the graph. We call these edges the peripheral edges. The size
of this construction is clearly linear in the size of the face.

One has to take care that the cycle that is found does not use two peripheral edges in succession,
like the edges crossing f and h, because such a cycle would not correspond to a valid curve.
This constraint must be added to the problem definition, and the recursion (2) must be modified
accordingly.

The sets Si have a special structure. Each set Si consists of the vertex-disjoint central edges
of a popular face (the thick edges in Figure 19b). The peripheral edges, which connect the central
edges to the remainder of the graph, do not belong to Si. We do not want to consider cycles that
use two peripheral edges (incident to the same Si) in succession, without going through the central
edge. We impose this as an extra condition on the walks whose weights we accumulate.

It is easy to incorporate this condition in the recursion of Section 4.3: Instead of the quantities
Tb(R, l, v), we work with quantities T̃b(R, l, v, p) that depend on an additional parameter p. This
is a binary variable that tells whether the last edge of the walk has traversed a peripheral edge in
the direction towards the central edge. If this is the case, we force the walk to use the central edge
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in the next step.
In this way, the additional condition incurs a blow-up of at most a factor 2 in the size of the

dynamic programming tables and in the runtime.
We now argue that Lemma 14 still holds for these modified quantities. The proof of Lemma 14

goes through for the following reason. The conditions on allowed walks ensure that an endpoint s
of a central edge (s, t) (see Figure 19b for an example) is always part of a subpath consisting of
the central edge surrounded by two peripheral edges, (like (r, s, t, u) or (u, t, s, r) in Figure 19b).
Such a subpath cannot be part of a palindrome, since (s, t) belongs to a special set Si, and for
the same reason, s can never be a repeated vertex of a walk. If the bijection constructed in the
proof reverses a subpath that goes through the vertex s, this is not a problem because the reversed
traversal does not violate the extra condition.

5 Variation: Deterministic setup of finite field computa-
tions in characteristic 2

In Section 4.4, we have described how to obtain a field of characteristic 2, how to represent it
and how to perform calculations with this representation. While this is good enough for our
application, it is not optimal when the task is viewed in isolation. In this section, we present an
alternative procedure which is better on two accounts: (i) While the procedure of Section 4.4 is
randomized, because it involves testing of random polynomials for irreducibility, the alternative
method is deterministic. (ii) The entire setup requires an initial time investment of O(n log2 n).
We show that this can be reduced to O(n), while keeping the space requirement of the auxiliary
tables and data structures down to O(n). While this result is beside the main point of our paper,
we include it for reference, because it might be useful in other contexts.

Theorem 4 Given a positive integer n, one can set up data for a representation of a finite field Fq

of characteristic 2 with q > n2 in deterministic O(n) time and space in the Word-RAM with words
of size Θ(log n). With this representation, an element of Fq can be represented in O(1) words, and
two elements can be added or multiplied in O(1) time.

The remainder of this section is a detailed explanation of the construction necessary to prove
Theorem 4. The construction proceeds in several stages, which are described in the following
sections.

5.1 Step 1: Getting a primitive polynomial in quadratic time

There is a completely naive algorithm for constructing Fq in O(q2) time and O(q) space, for q = 2s,
assuming q fits in a word (s bits). Simply try out all polynomials p(x) over F2 of degree s. There
are 2s = q possibilities.

For each p(x), try to construct the logarithm table (“index table”) in O(q) steps by trying
whether the polynomial x generates the nonzero elements of F2[x]: Start with the string 00 . . . 01
representing the polynomial 1, and multiply by x by shifting to the left, and adding p(x) (XOR
with the corresponding bit string) to clear the highest bit if necessary. Repeat q − 2 times and
check whether 00 . . . 01 reappears. If not, then we are done.

This will be successful if and only if p(x) is a primitive polynomial modulo 2. Since primitive
polynomials exist, we are guaranteed to find an index table in O(q2) time. With the help of
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the index table and its inverse (the antilogarithm table), multiplication in Fq \ {0} is reduced to
addition modulo q − 1 with the help of three table look-ups.

Actually, for testing whether p(x) is irreducible, it is sufficient to check the powers xk of x
where k is a maximal proper divisor of q − 1. The primes dividing q − 1 can be trivially found in
O(

√
q) time, and there are less than log q of them. Computing xk takes O(s2 log q) = O(log3 q)

time if the O(s2) time schoolbook method of multiplication modulo p(x) is applied, together with
repeated squaring to get the k-th power. Thus, we need O(q log3 q) time instead of O(q2). This
is probably still a gross overestimate because primitive polynomials modulo 2 are frequent: There
are at least q/(2s) of them [19, Theorem 19.11].

5.2 Step 2: From Fq to Fq2 in O(q) deterministic time and space

Assuming that we can do arithmetic in the field Fq, we show how to do arithmetic in Fq2 . This
is achieved by a degree-2 field extension. We look for an irreducible polynomial of the form
p(x) = x2 + x+ p0 over Fq. If this polynomial were reducible, we could write

p(x) = (x+ a)(x+ b) = x2 + (a+ b)x+ ab.

Due to restriction of p(x) to a special form, it follows that a+ b = 1, and hence b = 1 + a, and

p(x) = (x+ a)(x+ (a+ 1)) = x2 + x+ a(a+ 1).

The expression a(a + 1) can take at most q/2 different values, because a = c and a = c + 1 lead
to the same product, since (c + 1) + 1 = c. Thus, we can group the q potential values a into q/2
pairs with the same product, and at least q/2 product values must be unused. We can find the
range of a(a+ 1) by marking its values in an array of size q. Any unmarked value can be used as
the constant term p0. This takes O(q) time and space.

Multiplication of two polynomials a1x+ a0 and b1x+ b0 gives the following product.

c1x+ c0 = (a1x+ a0)(b1x+ b0)

= a1b1x
2 + (a1b0 + a0b1)x+ a0b0

= a1b1x
2 + (a1b0 + a0b1)x+ a0b0 − a1b1(x

2 + x+ p0)

= (a1b0 + a0b1 + a1b1)x+ (a0b0 + a1b1p0)

Multiplication can therefore be carried out as follows:

c1 = a1b0 + a0b1 + a1b1

= (a1 + a0)(b1 + b0)− a0b0

c0 = a0b0 + a1b1p0

with four multiplications in Fq (and four additions), using the common term a0b0 for both coeffi-
cients.3

3This is the same trick as for multiplying two complex numbers with three multiplications instead of four. By
contrast, [15, Section 6.8] propose irreducible polynomials of the form x2 + p1x+ 1, leading to five multiplications,
one more than our method. However, one must be careful in this comparison: In cases where multiplications are
done by index tables, the mere number of multiplication operations does not determine the runtime alone; a common
factor that appears in several multiplications saves lookup time in the logarithm tables.
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5.3 Step 3: Setup of a finite field Fq with q > n2 in deterministic O(n)
time and space

Let C = ⌈(log2 n)/2⌉. First we construct Fq for q = 2C = O(
√
n) in O(q2) = O(n) time, as

described in Section 5.1. To carry out multiplications in Fq in constant time, we can store a
logarithm and antilogarithm table, in O(q) space, or we can even compute a complete multiplication
table, in O(q2) = O(n) time and space.

Then, by the method of Section 5.2, we go from q = 2C to q = 22C , and finally from q = 22C

to q = 24C , in O(22C) = O(n) time and space. Then addition and multiplication in F24C can
be carried out in constant time. Multiplication goes down two recursive levels, from q = 24C via
q = 22C to q = 2C , before the 16 resulting multiplications are resolved by table look-up. This
proves Theorem 4.

In order to speed up the process, we can eliminate the lower level of recursion by building
a log/antilog table for q = 22C = O(n) of size O(n), to do the multiplication by table look-
up already at this level. To prepare the tables, we need a generating element of F22C . Such a
generating element can be constructed in O(22C) = O(n) time, as shown in the next section 5.4.

5.4 Constructing an index table without knowing a generator

We assume that multiplication in Fq takes constant time, but no generating element for the multi-
plicative group of Fq is given. Our goal is to construct logarithm and antilogarithm tables (index
tables), of size q−1, in time O(q). In order to generate these tables, we need a generating element.

Essentially, we have to find a generator of a cyclic group, which is given by a multiplication
oracle and the list of its elements.

We start with an arbitrary element a1 ̸= 0 and try to construct the index table by running
through the powers of a1. We mark the elements that we find. If the process returns to 1 before
marking all nonzero elements, we pick an unmarked element a2 and run the same process with a2.

If a1 has order o1 in the multiplicative group (which is cyclic of order q−1), and a2 has order o2,
we show how to construct an element a of order o = lcm(o1, o2), which generates the subgroup
⟨a1, a2⟩, as follows:

First we ensure that o1 and o2 are relatively prime, without changing lcm(o1, o2). For each
common prime divisor p of o1 and o2, we determine the largest power of p dividing o1 and o2,

respectively: pf1 |o1 and pf2 |o2. If f1 ≤ f2 we replace a1 by (a1)
pf1

, dividing the order o1 of a1 by
pf1 ; otherwise we proceed analogously with a2.

After this preparation, o = lcm(o1, o2) = o1o2. Let g be a generator of the group ⟨a1, a2⟩ =
{1, g, g2, . . . , go−1}. Then ⟨a1⟩ is generated by go/o1 = go2 , and we know that a1 = gj1o2 for some
j1. Similarly, ⟨a2⟩ is generated by go/o2 = go1 , and a2 = gj2o1 for some j2.

By the extended Euclidean algorithm for calculating the greatest common divisor of o1 and o2,
we find u1, u2 such that

o1u1 + o2u2 = 1.

The Euclidean algorithm can be carried out in O(log(o1+o2)) iterations. We claim that a := au2
1 au1

2

generates ⟨a1, a2⟩. To see this, we show that a1 and a2 are powers of a, in particular, ao2 = a1 and
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ao1 = a2:

ao2 = (au2
1 au1

2 )o2 = g(j1o2u2+j2o1u1)o2

= g(j1(1−o1u1)+j2o1u2)o2

= gj1o2−j1o1u1o2+j2o1u2o2

= gj1o2(go1o2)−j1u1+j2u2 = a1 · 1−j1u1+j2u2 = a1

The proof of the equation ao1 = a2 is analogous.
In summary, the above procedure shows how we get from an element a1 generating a subgroup

⟨a1⟩ of order o1 and an element a2 that is not in that subgroup to an element a generating a strictly
larger subgroup ⟨a⟩ = ⟨a1, a2⟩, whose order o is a multiple of o1. The procedure can be carried
out in O(o) time, assuming an array of size q − 1 (corresponding to the whole group) is available.
We repeat this procedure until we have found a generating element for the whole group. Since the
size o is at least doubled in each step, the procedure can be carried out in O(q) time and space in
total.

6 Conclusion

In light of our NP-hardness and randomized FPT-algorithm, a natural next step is a deterministic
parameterized algorithm. There are O(n) local possibilities of resolving a single popular face,
however, this does not immediately lead to an O(nk) time algorithm (which would place N1R
in XP), since we might need to branch additionally over all possible connections between these
solutions through the dual of A, which can have an unbounded size.
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