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Abstract.
Finding vertex-to-vertex correspondences in real-world graphs is a challenging task
with applications in various domains. Building upon classical iterative methods, we
present the Graph Attributes and Structure Matching (GASM) algorithm, which pro-
vides high-quality solutions by integrating in a unified framework the information from
graph connectivity and from all attributes of vertices and edges, and by using a minute
noise to lift the degeneracies due to local symmetries. Contrarily to graph neural
network methods, this approach allows to dynamically adjust the number of message
passing iterations to each data sample. In addition, we introduce parameters quantify-
ing the uncertainty of the attributes to tune how much the solutions should rely on the
structure or on the attributes. We further show that even without attributes GASM
consistently finds as-good-as or better solutions than state-of-the-art algorithms, with
similar processing times.

1 Introduction

The importance of graph matching comes from the fact that a considerable amount of phenomena
with very diverse nature can be represented with the same concept of graph (or networks), and
the ability to find correspondences between their atomic elements – vertices and edges – has
concrete application in several domains including computational biology [22, 13, 10], neuroscience
[35, 33, 36], chemoinformatics [37, 49, 28], medical imaging [26], computer vision [5, 19, 43], machine
learning [27, 50] and linguistics [31].

Simple local optimizers, like 2opt which swaps pairs of edges recursively [8], have been used for
a long time to solve many graph-related problems including matching graph structures. As this
problem is NP-complete [3], there is no known algorithm to obtain the optimal solution in less than
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exponential time and space and an abundant literature now aims at finding in a reasonable time
either isomorphic relations for exact graph matching or approximated solutions for matching graphs
in an error-tolerant way (see [3, 6, 14] for reviews). Actually, the graph matching problem can
be recast as a special case of quadratic assignment problem (QAP) [45], like the famous traveling
salesman problem and many other problems in combinatorial optimization and distributed resource
allocation. Many approaches try to reduce the problem down to a linear assignment problem (LAP)
[2, 52, 34], for instance by defining explicitly a score matrix representing the similarity between
graph elements and applying a LAP solver like the popular Jonker-Volgenant algorithm [21], which
operates in polynomial time [9]. Vogelstein et al. [48] have proposed a very efficient algorithm
for approximated solutions, Fast Approximate QAP (FAQ), that first solves a relaxed, linearized
version of the QAP and subsequently projects the solution back onto the permutation space. FAQ
has then been implemented in Scipy and it is still considered today as a standard.

In addition, most real-world graphs have attributes attached to their edges or vertices, account-
ing for virtually any property with values that can be numerical or not [14]. For instance, in the
context of protein-protein interaction networks the vertices are characterized by a unique protein
identifier while the edges may bear multiple association weights for different quantification of the
interactions [44]. Matching the graph structure (i.e. just the connection backbone) can be done
independently of the attributes, but the information bore in attributes can significantly improve
both the solutions and the searching time; for instance Dickinson et al. [11] proved that for graphs
possessing unique vertex labels the computational complexity is only quadratic in the number of
nodes.

Many recent methods have been able to exploit the rich information inherent to graphs’ struc-
ture and attributes, including graph kernels techniques [25] adapted to the graph matching prob-
lem [17, 42]. Even more recently, deep learning methods specialized in graph data called graph
neural networks (GNN) have emerged and been successfully applied to many problems across all
areas of science (see [7, 23] for reviews). Both approaches rely on an iterative message-passing core,
where each vertex collects messages in the form of vector representations from its neighboring ver-
tices, aggregates them into a single vector, and uses this vector to update its representation. Upon
iteration, message-passing enables each vertex to build representations capturing larger patterns
from their surrounding graph.

Here, we propose a new algorithm termed Graph Attributes and Structure Matching (GASM)
that is not based on graph kernels or GNN but uses very similar concepts in a lightweight frame-
work. GASM has been largely inspired by iterative methods and especially a series of three articles:
Kleinberg’s HITS algorithm [24] that projects any graph on the so-called “hubs and authorities”
graph, the generalization by Blondel et al. [2] that adapts the same idea to calculate iteratively
vertex similarity scores and match any pair of graphs, and finally the work of Zager and Verghese
[52] who elegantly introduced an edge score matrix to fix convergence issues and the dependency
on initial conditions. Interestingly, this latter approach is similar to the representation update of
both vertices and edges used in directional message passing for GNN [51]. Zager and Verghese
also tried to incorporate the handling of a categorical vertex attribute, but the resulting algorithm
is not robust. The main contribution of GASM with respect to this trilogy is that constraints
related to attributes are introduced a priori, which creates a coupling between the attributes and
the structure during iterations and provides highly accurate matchings. An infinitesimal noise is
also introduced to lift the degeneracies due to local symmetries and further improve the general
quality of the solutions, a strategy that has also been employed for GNN [1, 39].

There are several benefits from using non-GNN methods for graph matching. There is no
training set and no bias associated with training, a better interpretability of the process, and one



JGAA, 29(1) 289–320 (2025) 291

avoids poor performances in the low data regime which is particularly relevant in domains where
datasets are scarce and where large GNNs can overfit easily. In this matter, pretraining graph-
structured data has not been successful [29], likely due to limited transposability between graphs of
different nature. Another limitation of GNN is oversmoothing: individual vertex features become
nearly identical as the number of message-passing layers increases because each layer behaves as
a graph-smoothing operator [38]. This phenomenon hinders the processing of very deep networks,
and GNNs typically struggle to model large graph patterns, despite these being crucial in several
applications [12]. The “message-passing” algorithm of iterative methods (Blondel-Zager) is not
subject to oversmoothing as scores span over several orders of magnitude to account for all sizes
of structural patterns. More generally, there is a profound methodological discrepancy in GNN
models as the number of message-passing layers/iterations is fixed a priori while the relevant
message-passing distance is the graph diameter, which is different for each graph. We therefore
employ here a dynamical convergence criterion, intending to compute just the necessary amount
of message-passing steps. Finally, it is particularly challenging to incorporate uncertainty in the
GNN models and to understand how it propagates through layers and passed messages, despite
some efforts have been made in this direction [41, 20]. Our algorithm exploits the knowledge of
uncertainties for each attribute to directly tune how much the solutions should rely on the structure
or on the attributes, and ultimately improve the matching result.

This paper is organized as follows. In Section 2 some general ideas, definitions, and notations are
introduced, while Section 3 presents the Zager-Verghese (ZV) and GASM algorithms. Results are
presented in Section 4, with a comparison with ZV (4.1) and benchmarks on isomorphic matching
(4.2), QAPLIB (4.3), graph alteration (4.4) and speed (4.5). The paper finishes in Section 5 with
a conclusion.

2 Preamble: Definitions, Notations and Matching Ranking

Let us consider the comparison of two graphs GA and GB , which may be both directed or both
undirected, but that are not multigraphs. We index variables and matrices of the corresponding
graphs with A and B, and with ∗ as a replacement symbol for quantities that are defined similarly
in both graphs; for instance the number of vertices is n∗, meaning that it is nA for GA and nB

for GB . Let us also note the number of edges m∗, among which there are µ∗ self-loops, and the
adjacency matrix Λ∗. Variables are also used without index when they are equal for both graphs:
for instance, we may refer to the number of vertices n when n = nA = nB .

2.1 Attributes

The graphs considered here can have any number of vertex or edge attributes. Let us separate the
measurable attributes from the non-measurable, or categorical ones. There are many cases where
this distinction is obvious: in the case of neural networks for instance [32], the activation functions
belong to a set of functions of different families and can thus be considered as a categorical attribute
of vertices, which means it can only be compared for exact correspondence or not. In contrast,
the edge weights and vertex biases have values in R and a distance can be defined, so they are
measurable attributes; indeed, a weight of 0.1 is strictly different from 0 and 1, but in a matching
context it is natural to consider that it is better matched with the former.

However, an attribute with numerical values does not automatically belong to the measurable
class, since it can represent indexes or numeric identifiers. The measurability of any attribute is
specific to the graphs of interest and has to be determined accordingly by the end user.
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2.2 Accuracy

As one usually wants to associate the vertices, if nA ≥ nB there are nA!
(nA−nB)! possible association

sets, a potentially prodigious amount among which a few may be meaningful matchings while the
vast majority is composed of non-sensical matchups. A key factor for finding good matchings and
benchmarking algorithms is the ability to compare candidate solutions.

A standard measure is the accuracy of a matching M, defined as the proportion of vertices
pairs corresponding to the ground truth and noted γ(M). Throughout the rest of this article we
will only use the mean accuracy, i.e. the value averaged over several matchings where the indices
of at least one of the graphs are randomly shuffled, and refer to it as the accuracy γ.

Notably, the accuracy can go up to 1 for some pairs of isomorphic graphs, but not always,
and when the graphs are non-isomorphic this is generally not true. In some cases, the maximum
possible accuracy – i.e. the maximum average accuracy computed over the set of all possible
matching algorithms – can be computed independently of the algorithm (see Section 4.2), and
for graphs with many local symmetries it can be arbitrarily low. So this is a delicate quantity
to manipulate as in the general case the maximum possible average value is unknown, and the
values have no absolute meaning; one can only compare different accuracies relative to each other,
without knowing up to what point these solutions can be further improved. There are also very
counterintuitive cases, like pairs of graphs for which any matching algorithm returns solutions with
the same average accuracy – see for instance the case of circular ladders in Section 4.2.

2.3 Matching quality

But probably the most obvious limitation of accuracy is that it necessitates to have the ground
truth, which is by definition unknown in all real-world applications. Still, comparing the local
properties of all the matched pairs to compute global quantities can always be done, and we shall
refer to these global quantities as the matching qualities. Several definitions of qualities can be
derived, depending on the assessed local property.

Let us define the structural quality qS as a measure of the local structural similarity between
pairs of vertices. For a given matchingM, let M be the binary matrix of size nA × nB such that:

[M ]ij =

{
1, if node i in GA is matched with node j in GB

0, otherwise
(1)

Let us define:

Z = ΛAM −MΛB (2)

The structural quality qS of the matching then reads:

qS =



0 if mA = mB = 0, otherwise:

1− tr(Z⊤Z)
mA+mB

for directed graphs

1− tr(Z⊤Z)
2(mA+mB)−µA−µB

for undirected graphs

(3)

The idea behind this definition is to count all the edge mismatches, defined as edges whose
terminating vertices have matchups that are not themselves connected with an edge in the other
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graph. The intermediary matrix Z has elements zij set to 0 when the pair of vertices (i, j),
respectively from GA and GB , both have or both don’t have a neighbor associated with the other
vertex, and ±1 otherwise. The trace of the product Z⊤Z is a way to compute the grandsum of the
squares of each element of Z, which is the number of discrepancies contained in Z. qS is then a
scalar bounded in [0, 1], a higher value indicating a better overall matching of the local structure.

Of course, it would be impractical to compute all the possible matchings and sort them by
their structural quality qS , so this cannot constitute the core of a brute force matching algorithm.
Yet, it is a useful quantity as it allows the raising of certain types of degeneracy introduced by
score matrices, which is a pivotal element for any LAP-based approach. A very simple illustration
is given in Figure 1, where a simple linear graph is matched with itself (GA = GB); let us call
the vertices 1 and 4 of this example the side vertices while vertices 2 and 3 are the inner ones.
Any algorithm exploiting the graph structure would give a score matrix with the form displayed
in Figure 1-b: as the side vertices are indistinguishable and the inner vertices as well, there can
be only 3 different values in the score matrix: a standing for the side-side scores, b for side-inner
scores and c for inner-inner scores. In addition, a + c should be greater than 2b if the local
structural similarity is favored in the score determination. The point is that the score matrix
cannot handle 4-point interactions and in this example there are 4 solutions with equal maximal
scores s = 2(a + c) (Figure 1-c), among which only 2 have a perfect structural quality qS . So,
without further processing, the user has a 1/2 probability of ending up with a structurally unsound
solution, because of the limitations of the score matrix and more generally that graph matching
is treated as an LAP and not a QAP. We will see later in Section 4.1 how GASM can circumvent
this limitation of LAP-based approaches.

a)

4321

4321

a b b a
b c c b
b c c b
a b b a

b) c) d)
1

1/3

1

1/3with

Figure 1: Example of matching degeneracy introduced by the score matrix. a) The graphs to
match. b) Form of the score matrix returned by any algorithm exploiting the graph structure.
The best matching solutions are composed of the grayed cells exclusively. c) The 4 matchings with
a maximum total score of 2(a+c), along with their structural quality qS . d) The only 2 matchings
respecting structural correspondence (qS = 1).

Similarly, it is possible to define a matching quality for any attribute, but we will not use it
here so let us jump directly to the description of the GASM algorithm.

3 Algorithm

3.1 Zager and Verghese’s algorithm (ZV)

GASM has been greatly inspired by the work of Zager and Verghese [52], so let us remind here
briefly their matching algorithm for directed graph: pairs of vertices and edges from GA and GB
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have scores that are iteratively updated, and converged score matrices are processed by a LAP
solver.

At iteration k, let xuv(k) denote the vertex similarity score between vertex u in GA and vertex
v in GB , and yij(k) the edge similarity score between edge i in GA and edge j in GB . Initially, all
the scores xuv(1) and yij(1) are set to 1. Zager and Verghese have shown that both simultaneous
and sequential updates are possible; in the case of sequential updates, the update equations are,
for k > 1:

yij(k) =
ŷij∑

k,l

ŷ2kl
with ŷij = xs(i)s(j)(k − 1) + xt(i)t(j)(k − 1) (4)

xuv(k) =
x̂uv∑

p,q
x̂2
pq

with x̂uv =
∑

s(i)=u
s(j)=v

yij(k) +
∑

t(i)=u
t(j)=v

yij(k) (5)

where, for any edge i, s(i) and t(i) are its source and target vertices, respectively.
The idea behind these equations is to set the score of a pair of edges as the sum of the scores of

their pairs of vertices, and vice-versa. It follows that highly connected vertices have higher scores
than poorly connected ones, and the maximal scores are bound to the pairs of major hubs. The
normalization resets the values back to a reasonable range at each iteration, while keeping the
contrast between high and low scores. At each iteration, the scores integrate information from
one vertex further in the graph and spread over several orders of magnitude to account for all
the details of the surrounding structure. This ranking simplifies the work of the subsequent LAP
solver, which can essentially make pairs by recursively taking the highest score.

Zager and Verghese have further shown that these equations can be rewritten in a compact
matrix form, as we will see in the sequel, and that convergence is ensured with arbitrary initial
conditions. They also tried to address the case of “nodes with type labels” (termed here vertex
categorical attributes) by modifying the converged vertex score matrix before using the LAP solver.
Unfortunately, one can easily find cases where this approach fails – see Section 4.1.3 for instance.

Though the ZV algorithm provides very decent matchings out of the box, it has some flaws
and can be optimized in a number of ways to provide better matchings. While the details of our
implementation are presented in the next paragraphs, our main improvements can be summarized
as follows:

� adding minute noise to lift the degeneracies caused by local symmetries

� defining a convergence criterion, to make a minimal amount of iterations while ensuring
convergence

� properly incorporating the information of all graph attributes, along with parameters tuning
each attribute’s reliability.

We then analyze in a few case studies how the modifications in GASM improve over some of ZV
limitations in Section 4.1, and include ZV in the subsequent benchmarks to provide a quantified
comparison.

3.2 Attribute matrices

Let us start by covering how GASM properly handles graph attributes. We consider the general
case where vertices and edges of GA and GB can have several attributes, some being measurable
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and some categorical. However, if one vertex (resp. edge) has a value for a given attribute all the
other vertices (resp. edges) of both graphs should also have a value for this attribute.

Let us consider an attribute A : θ 7→ a(θ) where θ can be a vertex or an edge without loss of
generality. If A is categorical, the comparison of two elements θ in GA and θ′ in GB can only
have a binary outcome (similar or dissimilar) and is naturally represented by a boolean attribute
similarity matrix A of size nA × nB (vertex attribute) or mA ×mB (edge attribute) defined by:

[A]θθ′ = δa(θ)a(θ′) =

{
1, if a(θ) = a(θ′)

0, otherwise
(6)

where δij is the Kronecker symbol.
However, in real-world applications, there may be measurement uncertainties on some attribute

values. For each attribute A let us introduce a positive scalar ρ estimating the uncertainty over
its values, a parameter that should be defined by the end user. If there is no stochasticity or other
source of uncertainty in the process providing a(θ) and a(θ′), i.e. in the limit where ρ→ 0, A can
be directly computed with eq.(6). In the limit where ρ → ∞, there is no way to decipher which
attribute values are correct and all the values in A should be equal and non-zero. So, in the general
case let us consider the following definition:

[A]θθ′ =

{
1, if a(θ) = a(θ′)

e
− 1

2ρ2 , otherwise
(7)

where the uncertainty parameter ρ tunes the contrast in A.
Now, if the attribute A is measurable the comparison between a(θ) and a(θ′) can be a real

scalar. To combine several distance matrices altogether it is preferable to keep them bound in
[0, 1], with 0 indicating dissemblance and 1 indicating similarity. Let us define the corresponding
attribute distance matrix by:

[A]θθ′ = e
− [a(θ)−a(θ′)]2

2ρ2 (8)

In the limit where ρ→ 0, A become similar to a categorical attribute with as many categories
as values and A can be computed using (6) as well. Otherwise, it is important to keep ρ as close
as possible to the real uncertainty to ensure the accuracy of the final solutions does not drop
artificially. In case ρ cannot be estimated, a safe replacement is the standard deviation σa of the
distances a(θ) − a(θ′) for measurable attributes and of δa(θ)a(θ′) for categorical ones, computed
over all possible pairs (θ, θ′). σa is indeed a higher bound for the estimation of uncertainty.

Equation (8), and by extension eq.(7), assumes that the uncertainty is akin to adding a Gaussian
noise with standard deviation ρ. This may not be true in the general case, and other decreasing
forms are possible depending on the details of each application.

Then, if there are ζ vertex attributes with associated distance matrices (A1,A2, ...,Aζ) and ξ
edge attributes with distance matrices (Ā1, Ā2, ..., Āξ), the global vertex distance matrix V and
edge distance matrix E are defined as:

V = [νuv] = Jn ⊙A1 ⊙A2 ⊙ ...⊙Aζ (9)

E = [ϵij ] = Jm ⊙ Ā1 ⊙ Ā2 ⊙ ...⊙ Āξ (10)
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where Jn and Jm are unit matrices of respective sizes nA × nB and mA ×mB , ⊙ stands for the
Hadamard product and (u, v) and (i, j) are pairs of vertices and edges from GA and GB . As all
elements of all distance matrices stand in the interval [0, 1], all the νuv and ϵij are also bounded
in [0, 1].

3.3 Scores

The matrices V and E are akin to score matrices that can readily be used to match either the
vertices or the edges, without taking into account any structural information on the graphs. For
instance, if at least one of the graphs has no edge, a matching based on vertices attributes can be
obtained by simply feeding V in a LAP solver and searching for a maximum score matching.

However, it is generally desirable to account for the similarities in both the structure and the
attributes. Several algorithms have been designed to output a score matrix based on structural
similarities, again to be supplied to an LAP solver. GASM integrates both information by using
the vertex and edge distance matrices as initial conditions for an iterative procedure inspired by
ZV [52].

In the sequel, we separate the cases of undirected and directed graphs. Since undirected graphs
can easily be converted to directed graphs without loss of information it may seem sufficient to
cover only the directed case. However, directed versions of undirected graphs are a peculiar subset
of directed graphs for which a slightly different formalism can be applied and that has specific
properties. We will see in Section 4 that there are significant differences in matching accuracy
and structural qualities, at least for all the algorithms considered here. In addition, for several
algorithms including GASM, using directed versions of undirected graphs requires twice the number
of operations without any gain in return, so there is also a performance boost in separating the
cases.

3.4 Iterative procedure for undirected graphs

Let us first cover the case where both GA and GB are undirected graphs. For any vertex v, let
C∗(v) be the set of edges that are connected to v, and for any edge i let D∗(i) be the set of vertices
it connects. D∗(i) contains at most 2 vertex indices and only one if i is a self-loop.

As an initial step, the vertex scores are defined as:

xuv(1) = (νuv + huv)
∑

i∈CA(u)
j∈CB(v)

ϵij (11)

where huv are random values drawn from the continuous uniform distribution between 0 and a
parameter η ≪ 1. The role of this minute positive “noise” term is to help lift degeneracies due to
local symmetries and is discussed in detail with the examples in Section 4.1.1. In short, the noise
initially favors at random some pairs of vertices, which translates during the iteration procedure
in slightly favoring some structurally symmetric sub-patterns, thus lifting the degeneracy.

Then, for each iteration step k > 1 the update equations are:
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yij(k) =
1

fy

∑
u∈DA(i)
v∈DB(j)

xuv(k − 1) (12)

xuv(k) =
1

fx

∑
i∈CA(u)
j∈CB(v)

yij(k) (13)

where fx and fy are normalization coefficients. These coefficients can be set to any positive finite
value at any iteration without altering the outcome of the whole algorithm since only the relative
values of the scores are important for the LAP. To simplify the formulas we set fx = fy = 1 in the
sequel; however, it is worth noting that during numerical computation some normalization may be
used to avoid floating point overflow. This is discussed in more detail in Section S1.2, where an
approximated normalization factor is introduced for this practical purpose.

Let us now express these equations in a concise form using only elementwise matrix operations
and matrix multiplication. Let the unoriented incidence matrix R∗ be:

[R∗]ui =

{
1, if i ∈ C∗(u)

0, otherwise
(14)

Each column of R∗ stands for an edge and has exactly two non-zero elements, except for self-
loops which have a unique non-zero element. The initialization and update equations can then be
written as:

X1 = (V +H)⊙ (RAER⊤
B) (15)

Yk = R⊤
AXk−1RB (16)

Xk = RAYkR
⊤
B (17)

where H is the matrix composed of the noise terms huv.
To reduce computation time, two orthogonal strategies can be employed: parallelization on

GPU and using graph complements. Both a CPU version based on eq.(15-17) and a GPU ver-
sion using eq.(11-13) have been implemented, and GPU provides in general the best speed (see
Section 4.5).

To limit the number of operations with highly connected graphs, one can also exploit the fact
that in modern linear algebra libraries like Numpy the matrix multiplication is faster as matrices
are sparser. When the graphs are dense enough it is thus interesting to use their complements,
and we define the complement incidence matrix R̄∗ as the unoriented incidence matrix of the
complement graph Ḡ∗. However, the complements cannot be used for one graph and not the
other, so the switching criterion has to be globally defined based on the densities of both graphs.
Let the incidence matrix R̃∗ be:

R̃∗ =

{
R∗, if 4(mA +mB) ≤ nA(nA + 1) + nB(nB + 1)

R̄∗, otherwise
(18)

The update equations can then be rewritten:

Yk = R̃⊤
AXk−1R̃B (19)

Xk = R̃AYkR̃
⊤
B (20)
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Note that edge attributes cannot be preserved with graph complements, which might look like
a severe incompatibility with the present algorithm as it is precisely designed to account for all
graph attributes. However, only the initialization equation (15) uses the edge distance matrix E,
which contains all the information about the similarities of edge attributes. Interestingly, as long as
this information is injected during the initialization step it propagates as well in the complements.

3.5 Iterative procedure for directed graphs

Let us now cover the case where both GA and GB are directed. Consistently with eq.(4-5), for any
edge i, let s(i) and t(i) be its source and target vertices, respectively. As previously, at iteration
k the vertex similarity score is xuv(k) and the edge similarity score is yij(k). For the initial step,
the vertex scores are defined as:

xuv(1) = (νuv + huv)

 ∑
s(i)=u
s(j)=v

ϵij +
∑

t(i)=u
t(j)=v

ϵij

 (21)

And the update equations are, for k > 1:

yij(k) =
1

fy

(
xs(i)s(j)(k − 1) + xt(i)t(j)(k − 1)

)
(22)

xuv(k) =
1

fx

 ∑
s(i)=u
s(j)=v

yij(k) +
∑

t(i)=u
t(j)=v

yij(k)

 (23)

where fx and fy are the normalization coefficients, set at 1 for further equations as previously. Note
that in eq.(23) there is a difference as compared to the directed case and eq.(13) in the handling of
self-loops: they are counted twice – once as a source and once as a target – while they are counted
only once in the undirected case.

As introduced in [52], it is convenient to represent the adjacency structure of the graphs by
pairs of matrices termed the source-edge matrix S∗ and terminus-edge matrix T∗, which are akin
to the incidence matrix R∗ in the undirected case and defined as follows:

[S∗]ui =

{
1, if s(i) = u

0, otherwise
(24)

[T∗]ui =

{
1, if t(i) = u

0, otherwise
(25)

The adjacency matrix can then be recovered with Λ∗ = S∗T
⊤
∗ , and the incidence matrix of

the corresponding undirected graph is simply R∗ = S∗ ∨ T∗. As for undirected graphs, the graph
complements may be used for the update equations, and we define:

(S̃∗, T̃∗) =

{
(S∗, T∗), if 2(mA +mB) ≤ n2

A + n2
B

(S̄∗, T̄∗), otherwise
(26)
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The scores initialization and update equations are then:

X1 = (V +H)⊙ (SAES⊤
B + TAET⊤

B ) (27)

Yk = S̃⊤
AXk−1S̃B + T̃⊤

A Xk−1T̃B (28)

Xk = S̃AYkS̃
⊤
B + T̃AYkT̃

⊤
B (29)

3.6 Convergence criterion

Convergence has been extensively discussed in Blondel et al. [2] and Zager and Verghese [52],
and the demonstration of convergence for GASM is the same as for ZV. However, an important
aspect that has not been investigated so far is the number of iterations before convergence. Since
in general the iteration time strongly depends on the number of edges in the graphs, avoiding
unnecessary iterations is critical for large and dense graphs.

Let us propose an estimated convergence criterion based on ad hoc properties of the graphs.
Considering that each iteration propagates the structural and attributes information one vertex
further, the minimal number of iterations before every pair of vertices receives some information
from all the other pairs of vertices is:

k̃ = min(∆A,∆B) (30)

where ∆∗ is the diameter of G∗, i.e. the maximum eccentricity among all vertices. For directed
graphs, a safer definition is to use the diameter of the undirected versions of the graphs, but it
seems that this is not necessary in practice, so this is not what is used here.

Interestingly, as the graph diameter decreases when the density of edges increases (e.g. Supp.
Fig. S2), the dense graphs – which have a higher iteration time – benefit from a faster convergence
and a reduced number of iterations. Convergence is achieved in just a few iterations with small-
world graphs: the isomorphic matching of an Erdös-Rényi (ER) Gnp graph with 100 vertices and

no attributes requires less than k̃ = 4 iterations, and it is reduced down to k̃ = 2 when the average
degree is above 3 (Supp. Fig. S3).

3.7 Matching

The final step of score determination is to handle isolated vertices, i.e. vertices disconnected from
the rest of the graph. These vertices may have attributes to be matched on, but their scores in Xk

are all set to zeros at each iteration. So, in order to take them into account in the matching, we
restore their scores to their initial values in V divided by the appropriate normalization factor:

∀u, v : xu,v(k̃)← νu,v/f
k̃−1
x if u is isolated or v is isolated (31)

Finally, the matching is performed on the vertex scores matrix Xk̃ with a standard LAP algo-
rithm searching for a maximum global score. It can also be performed on the edge score matrix
Yk̃, in case it is more relevant.
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4 Results

4.1 Comparison with ZV

ZV computes very decent matchings in general, but there are still several situations where it
allows too many matching solutions, some of them being of poor quality. In the next paragraphs,
we focus on three typical cases where ZV generates too many solutions (local symmetries, non-
propagating attribute information and attribute incoherence) and explain how GASM’s algorithmic
improvements are able to optimize the three cases.

4.1.1 Local symmetries

Many graphs have local symmetries, i.e. similar subgraphs attached to the rest of the graph with the
same anchoring points. Local symmetries can take the form of branches, cycles, or more complex
patterns. Unfortunately, these symmetries create intrinsic matching indetermination as vertices
at the same relative position in the symmetric sub-patterns have the same exact surrounding
structure, so with a structure-based scoring like ZV their pairs have the same scores and the
LAP solver has no way to determine which vertex belongs to which sub-pattern. This situation is
reminiscent of the score matrix limitation discussed in Section 2.3 and exemplified in Figure 1.

One way to circumvent the problem could be to compute all the possible solutions of the LAP
and rank them by structural quality for instance. Finding all the solutions of a LAP is P-complete
[47] and some algorithms are available for this task [18, 46], but they represent a consequent
computational overhead and would make the matching of large (n∗ > 100) graphs intractable in
practice.

We have thus chosen a different approach, explained here with an example for the sake of
clarity. Figure 2-a depicts a basic graph with two symmetric branches and for which self-matching
with ZV produces several pairs of vertices with similar scores (Figure 2-b), leading to 4 possible
solutions, 2 being structurally unsound.

Interestingly, the addition of a minute random noise to the initial scores – lying in the huv term
in equations (11) and (21) – allows filtering out the solutions with low structural quality (Figure 2-
d,e). It may seem counterintuitive that adding some noise to the inputs can actually improve the
outcome of a deterministic algorithm, so let us clarify how this works: first, the noise used in
practice is so small (η = 10−10) that it does not mess up with the general score determination
and, for graphs without attribute, the integer part of the GASM score matrices is similar to the
one obtained with ZV. This is also the case in Figure 2-b,d even though the noise is much larger
to ease visualization. Second, the noise cannot improve the matching accuracy: in the example
of Figure 2, the average accuracy of the solutions is γ = 0.6 for both algorithms. However, it
allows filtering out the solutions with low structural quality wherever there is a local symmetry.
The mechanism at play is the following: initially the noise favors at random some pairs of vertices
among the pool that would be otherwise degenerated. After some iterations corresponding to the
symmetric sub-pattern size, the initial conditions have propagated, and it is now pairs of whole
sub-patterns that are slightly favored. After convergence, all the degeneracies have been raised and
there is only one solution given by the score matrix. However, different solutions can still emerge
from run to run, depending on the initial noise.
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Figure 2: Managing symmetry with a minute noise. a) Self-matching (GA = GB) of a simple
directed graph with a symmetry. b) Score matrix Xk̃=2 given by ZV [52], without normalization.
The matching solutions comprise only the grayed cells. c) The 4 corresponding matchings with the
best score (48), along with their accuracy γ and structural quality qS . d) Example of score matrix
Xk̃=2 produced by the GASM algorithm, without normalization and with a relatively large noise
η = 10−2 to ease visualization. Here the best matching solution lies in the green cells, but other
initial random numbers could favor the orange cells. e) The 2 corresponding matching solutions.

4.1.2 Propagating attribute information

Attributes provide some information that is interesting to exploit. For categorical attributes, Zager
and Verghese proposed to multiply term-wised the converged, purely structural vertex score matrix
with a distance matrix made of -1 and +1 to adjust the score matrix, as shown in the example
of Figure 3-b. Though this indeed raises the degeneracy for the concerned vertices, this approach
suffers from the fact that neighboring vertices do not benefit from this information and can still
be mismatched, as exemplified by the second solution in Figure 3-c.

GASM introduces the attribute information in the initial score matrix X1 via the V and E
matrices in eq.(15) and (27), so before the iterative procedure. This creates a coupling between the
structure and the attributes during iterations which lets the scores be determined not only by the
similarity of the local structure and the vertices/edges proper attributes but also by the similarity
of the attributes of neighboring vertices and edges. In the example of Figure 3, the solution where
vertices 4 and 5 are mixed up is filtered out by GASM, which increases both the average accuracy
and structural quality of the matching. Actually, the mechanism of information propagation is
similar to what has been described with noise in Section 4.1.1, except that the initial differences
are based on the attributes and thus do not change from run to run.

4.1.3 Attribute incoherence

Finally, outside the case of isomorphic matching, there is by definition some incoherence between
the graphs to compare. Though different structures are well-managed by both ZV and GASM,
incoherent attributes can make ZV go really wrong, as exemplified in Figure 4: the vertices labelled
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Figure 3: Propagation of attribute information through branches. a) Self-matching (GA = GB) of
a simple directed branched graph with a categorical attribute on vertices. One vertex has a different
value than the others, symbolized by a red square. b) Score matrix Xk̃=2 given by ZV, without
normalization. The matching solutions comprise only the grayed cells. c) The 2 corresponding
matchings solutions with the best score (48), along with their accuracy γ and structural quality qS .
d) Integer part of the score matrixXk̃=2 produced by the GASM algorithm, without normalization.
The decimal part, due to the artificial noise, is neglectable for the matching and is skipped to ease
visualization. e) The corresponding matching solution.

2 have different categories in GA and GB and the (3→ 5) branch of GB could be equally matched
with the (2→ 4) and (3→ 5) branches of GA. In this example, ZV leads to a large set of equally
scored solutions (Figure 4-c) which all seem unacceptable: vertex 2 of GB is always matched with
either vertex 4 or vertex 5 in GA, which goes against the structural similarity of the graphs.

As shown in Figure 4-d,e, GASM finds all and only the structurally sound solutions. Attribute
incoherence modify the initial score matrix X1 by lowering the scores of the corresponding pairs in
a symmetric way that does not affect the building up of scores based on the structural information.
Such inconsistencies leave a trace in the final score matrix – see for instance the differences in the
integer parts of the scores in Figure 2-d and Figure 4-d – but it does not affect the emergence of
the solutions based on structural cues. The noise plays the same determinant role as previously to
filter out the matchings with low structural quality.

4.2 Isomorphic matching

Let us now delve deeper into the comparison of GASM with other algorithms and the quantification
of performance. For this, we benchmarked 2opt, FAQ, ZV, and GASM on both the average accuracy
and structural quality over the same sets of graphs. Let us start with isomorphic matching, i.e. the
matching of two isomorphic graphs; in practice, ΛB is a shuffled version of ΛA. The results for 4
types of undirected graphs are compiled in Figure 5.

Balanced binary trees (Figure 5-a) are a good example of graphs having multiple local symme-
tries and for which the maximum possible average accuracy γBT can be determined analytically.
Indeed, if there are r vertices on a row they all have a 1/r probability to be correctly assigned, so
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Figure 4: Managing intrinsic attribute incoherence. a) The two graphs share the same structure
but one vertex categorical attribute differs, symbolized by a red square. b) Score matrix Xk̃=2

given by ZV, without normalization. The matching solutions comprise only the grayed cells. c)
The 8 corresponding matchings solutions with the best score (36), along with their accuracy γ
and structural quality qS . d) Example of score matrix Xk̃=2 produced by the GASM algorithm,
without normalization and with a relatively large noise η = 10−2 to ease visualization. Here the
best matching solution lies in the orange cells, but other initial random numbers could favor the
green cells. e) The 2 corresponding matching solutions.

there is on average one vertex correctly assigned per row, and if h is the depth of the binary tree
there are on average h + 1 vertices correctly matched in total. As the total number of vertices is
2h+1 − 1, the maximum possible average accuracy reads:

γBT =
h+ 1

2h+1 − 1
(32)

While 2opt and FAQ have poor accuracy on such graphs (Figure 5-a middle), ZV and GASM
stick to the theoretical maximum curve. To compare their solutions, one has to look at the
structural quality qS (Figure 5-a bottom), for which GASM has consistently higher values.

Star-branched graphs (Figure 5-b) also have a structure that allows us to determine easily the
maximum possible accuracy γSB . Similarly, there is on average one vertex correctly assigned per
row, and if β is the branch depth there are on average β + 1 vertices correctly matched. If there
are k branches, the total number of vertices is kβ + 1 and the maximum average accuracy reads:
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Figure 5: Isomorphic matching of different types of graphs: a) balanced binary trees with depth
h, b) star-branched with k = 3 branches of length β, c) circular ladder with 2c vertices, and
d) random Erdös-Rényi (ER) Gnp graphs with nA = 20 vertices and edge probability p. Top:
Examples of each graph type. Middle: average accuracy γ as a function of the graph parameters.
Bottom: average structural quality qs computed over the same graphs. Colors are consistent in
all panels. Each data point is averaged over 104 samples, except for the balanced binary tree where
it is variable with h to keep a reasonable computation time; the data points for the 2opt algorithm
are missing when h > 8 due to a prohibitive computation time.

γSB =
β + 1

kβ + 1
(33)

Again, the accuracy of 2opt and FAQ drop as branches grow, while ZV and GASM always sit
on the theoretical maximum. We verified that this is true for virtually any values of k, and not
just for k = 3 as displayed in Figure 5-b. The tie on accuracy is broken by looking at the structural
quality, which GASM dominates in all the tested range of parameters.

Third, circular ladders (Figure 5-c) are a very special family of graphs in the context of graph
matching. First, the maximum possible average accuracy γCL can also be determined analytically:
since all vertices have the same surrounding structure any vertex can be matched with any vertex,
and the best possible average accuracy simply reads:

γCL =
1

2c
(34)
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Figure 6: Benchmark on the QAPLIB database: empirical cumulative distributions over the
QAPLIB instances of the score ratios ϕ, obtained for different algorithms.

where c is the number of vertices in a ring. Then, the minimal accuracy – corresponding to random
pairings – is also equal to 1/2c. It is thus expected that any algorithm would give solutions with
the same accuracy, and indeed all four algorithms gave accuracies lying on the 1/2c curve. Again,
the structural quality is useful in ranking them: 2opt is better, followed by GASM, FAQ, and
finally ZV. When c is large (c ≥ 22) GASM becomes as good as 2opt.

All these graphs have many symmetries by construction, which may explain why GASM is
particularly efficient on these datasets. Let’s now turn to the isomorphic matching of random
Erdös-Rényi Gnp graphs, which have much fewer symmetries. For such graph the maximum
possible accuracy is difficult to derive analytically, but the general idea is that when p is close to
0 or 1 there are a lot of indeterminacies, i.e. many vertices have the same surrounding structure
and can be mismatched, while for intermediate values of p there are much fewer indeterminacies
and the maximum accuracy is close to 1. Computation reveals that the average accuracy of 2opt
is very low and that FAQ is dominated by ZV, which is in turn below GASM. Apparently, ZV
is working better on graphs with low p, and the better accuracy of GASM at high p is due to
the complementing procedure described in Section 3.4, which is typically activated when p ≳ 0.5.
Again, the structural quality of the solutions is mostly dominated by GASM.

Overall, for these 4 types of graphs, GASM features an excellent performance by consistently
providing the best accuracy and displaying the best structural quality for all types but circular
ladders, where it is second. In addition, when attributes are present and lift degeneracies GASM can
exploit this information and break the theoretical limitations due to the structural local symmetries;
in this case, provided there is a sufficient amount of attributes and/or uncertainties are low enough,
there is no upper bound and perfect accuracy can, in principle, be achieved for any graph structure.

4.3 QAPLIB benchmark

Verifying the accuracy and structural quality for isomorphic matching is a good sanity check, but
matching non-isomorphic graphs is a more realistic task. Let us simplify the problem by running
benchmarks in two different contexts: the QAPLIB database, presented here, and graph alteration,
which will be presented in the next section.
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QAPLIB is a quadratic assignment problem library that has been widely used for benchmarking
QAP algorithms [40, 53]. It features 128 problem instances ranging in size from 10 to 256 vertices
along with the best known solutions [4]. Each problem comprises two matrices A and B (akin to
ΛA and ΛB for graphs) and for each permutation P a score can be computed as tr(APB⊤P⊤).
The QAP here is thus formulated to search for the minimal score, while in the rest of this paper,
the similarity scores in X and Y were maximized. We computed the score ratios ϕ as the scores
obtained for an algorithm divided by the score of the best-known solution. One exception is the
esc16f instance, whose best-known solution has a zero score. Since all algorithms found the
minimal solution for this instance, the score ratios have been set to 1 for consistency.

The empirical cumulative distributions of ϕ for the 4 algorithms are shown in Figure 6-a. In
this representation, the most leftwise curves have better solutions, and it is clear that ZV and
GASM consistently found better solutions than 2opt and FAQ. As for the accuracy of isomorphic
matching, the ZV and GASM algorithms provide very close scores. However, here the solutions
cannot be ranked in terms of structural quality due to the nature of the dataset: many of the
instances correspond to fully connected or other peculiar graphs, and the capacity of GASM to
resolve local symmetries is largely irrelevant with QAPLIB.

4.4 Graph alteration

Let us now turn to an alteration benchmark, i.e. a matching task where one graph is an altered
version of the other. There are many ways to alter a graph: vertex swapping, edge swapping or
flipping, adding noise to the attributes, etc. but we just cover here two major cases where i)
edges are removed or ii) vertices are removed along with the corresponding edges, the latter task
being also known as subgraph matching. This covers a larger panel of alterations since edge (resp.
vertex) removal is equivalent to edge (vertex) addition, by switching GA and GB . In this section
we assume without loss of generality that GB is an altered version of GA, with nA ≥ nB and
mA ≥ mB . The indices of the vertices of GB have also been systematically shuffled to avoid any
accuracy bias. Note that the way elements are chosen for alteration is also determinant: it can be
at random or in a given graph region, meaning that other regions are preserved. Here we will stick
to the random case.

4.4.1 Edge removal

Let us start with random edge removal, a task controlled by the alteration parameter δe defined
as the number of removed edges divided by the initial number of edges: δe = 1−mB/mA.

A comparison of the average accuracy of FAQ and GASM for the edge removal of Gnp graphs is
displayed in Figure 7, both for directed and undirected graphs. Without attribute, both algorithms
see their accuracy drop steeply with δe for undirected graphs, while for directed graphs GASM
has an exponential decay and FAQ features a very good tolerance to small alterations with an
accuracy close to perfection up to δe = 0.2, though a rapid subsequent drop in accuracy places it
below GASM for severe alterations (δe > 0.5).

The might of GASM becomes apparent when attributes can be exploited to improve the so-
lutions. FAQ can also manage one measurable edge attribute but does not take into account the
uncertainty over this attribute. The middle panels of Figure 7 compare FAQ and GASM accuracies
in this situation (ξ = 1), and the result highly depends on the uncertainty ρ over the attribute: high
uncertainties make GASM score poorly while low uncertainty turns it into an extremely alteration-
tolerant algorithm. For instance, the average accuracy for directed graphs with ρ = 0 is still at
γ = 0.9997 when δe = 0.5, to be compared to γ = 0.1121 for FAQ. This is not surprising since in
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Figure 7: Edge alteration benchmark. Average accuracy γ of FAQ and GASM plotted as a function
of the edge alteration ratio δe for various conditions. Averaging is performed over 1, 000 ER Gnp

graphs with n = 200 vertices and pA = log(n)/n ≃ 0.01. The top plots are for undirected
graphs while the bottom plots are for directed graphs. Left: graphs have no attribute. Middle:
graphs have one measurable edge attribute (ξ = 1) drawn from the standard normal distribution
N (0, 1). Right: graphs have one measurable vertex attribute (ζ = 1) drawn from the standard
normal distribution. In this case, the FAQ curves correspond to no attribute and are displayed for
reference. When an attribute is defined (middle, right), the default GASM attribute uncertainty
(solid black) is the standard deviation of the difference of all attribute pairs, ρ = σa and colored
curves correspond to manually defined attribute uncertainty ρ.

that case, GASM bases the matching primarily on the attribute information and the structure is
almost ignored.

A similar tendency is obtained when there is one measurable vertex attribute (ζ = 1), as shown
in the right panels of Figure 7. As FAQ cannot manage such an attribute, it is ignored and the
average accuracy is the same as if there was no attribute.

4.4.2 Subgraph matching

Let us now turn to vertex removal or subgraph matching. In this task, the graph GB is composed
of a random subset of vertices of GA, and only the edges of GA whose both vertices are in GB

are kept. The subgraph task is thus parametrized by the properties of the initial graph GA and
the alteration ratio δv defined as the number of vertices removed divided by the initial number of
vertices, which can be expressed as δv = 1 − nB/nA. The solution accuracy γ is defined as the
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Figure 8: Accuracy peaks for directed ER graphs. a) Accuracy γ as a function of the initial
probability of edge pA, for different vertex alteration ratios δv and nA = 20. All data points are
averaged over 104 realizations. Note that the curves with δv ∈ [0.1, 0.8] all have a peak at the
same value p̂ (dashed line). A similar peak occurs at 1− p̂ because of the complement procedure
described in Section 3.4 – without it, the accuracy would monotonously decrease for pA > p̂. b)
Scaling of p̂ as a function of the initial number of vertices nA (black), fitted by p̂ = 2/nA (red).
c) Accuracy γ as a function of the alteration ratio δv for different initial network sizes nA with
pA = p̂(nA) (dots). Dotted curves correspond to fits given by eq.(36).

ratio of correctly matched vertices divided by the total number of vertices in the subgraph nB .
For ER graphs, the initial graph GA is parametrized by the number of vertices nA and the

edge ratio pA. To reduce the number of parameters for the benchmark, we first tried to find the
value of pA for which the accuracy maximum. Indeed, Zager and Verghese [52] observed that, for
a few values of pA, the accuracy decayed when pA increased. However, at both limits pA = 0 (fully
disconnected) and pA = 1 (fully connected) no structural information can be inferred, and the
accuracy has to drop to the minimal value of random matchings. So there has to be a maximum
accuracy for some value of pA in ]0, 1[.

Figure 8-a shows the accuracy of GASM as a function of pA for different alteration ratios, and
it appears that the peak location is essentially independent of δv. Of course, when δv = 0 the
subgraph GB is isomorphic to GA and the maximum possible accuracy is equal to one, except
close to the extreme values of pA where the informational cut-off occurs. We then define p̂ as the
location of the accuracy peak in the range δv ∈ [0.1, 0.8], and computed it for different sizes of the
initial graph nA (Figure 8-b). The data points are nicely well-fitted by an inverse law, such that
one can assess the empirical relationship:

p̂ =
2

nA
(35)

Since pA = dA/nA, with dA = mA/nA being the average degree of GA, this equation has a
simple interpretation: the informational cut-off appears when dA ≤ 2, which corresponds to the
threshold below which a graph is necessarily fragmented. Then, it is noticeable that the accuracy
of GASM is well described by fits of the following form as a function of the alteration ratio δv:

γ(δv) =
1

nA
+

(
1− 1

nA

)
e−δv/α (36)

where α is a fit parameter (Figure 5-c).
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A comparison of the average accuracy of FAQ and GASM for the vertex alteration of ER
Gnp graphs is displayed in Figure 9, both for directed and undirected graphs. Without attribute,
the general trend is very similar to what is observed for edge alteration in Figure 7-left, except
for directed graphs where FAQ is less robust to small alterations and here the curves for both
algorithms are much more similar.

Again, the ability of GASM to exploit attributes makes it more accurate than FAQ when
the uncertainty is low enough, for both an edge attribute (ξ = 1, Figure 9-middle) and a vertex
attribute (ζ = 1, Figure 9-right). The dominance of GASM is particularly striking with one vertex
attribute, since for all the tested uncertainties the resulting accuracy is always at least one order
of magnitude above FAQ.
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Figure 9: Vertex alteration benchmark. Average accuracy γ of FAQ and GASM plotted as a
function of the vertex alteration ratio δv for various conditions. Averaging is performed over 103

ER Gnp graphs with nA = 200 vertices and pA = p̂(nA) = 0.005. The top plots are for undirected
graphs while the bottom plots are for directed graphs. Left: graphs have no attribute. Middle:
graphs have one measurable edge attribute (ξ = 1) drawn from the standard normal distribution
N (0, 1). Right: graphs have one measurable vertex attribute (ζ = 1) drawn from the standard
normal distribution. In this case, the FAQ curves correspond to no attribute and are displayed
for reference. When an attribute is defined (middle, right), the default GASM uncertainty (solid
black) is the standard deviation of the difference of all attribute pairs, ρ = σa and colored curves
correspond to manually defined uncertainties ρ.
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4.5 Speed

As for many resource-demanding problems, the search for approximate matching solutions faces
a trade-off between accuracy and efficiency, the latter referring to computation time and memory
resources. As observed in [48], slow algorithms could probably achieve better accuracy given more
time, and at the extreme, an exhaustive search could reach optimal solutions at the cost of utmost
time and memory budget. Put differently, accuracy and efficiency define a space where the best
algorithms sit on a Pareto front and proper benchmarks should take both aspects into account.

However, computation speeds are difficult to compare for several reasons. Implementations
and hardware constantly improve, and there has been a speedup of 2 orders of magnitude from
the first Matlab implementation of FAQ in 2015 [48] to our tests 10 years later with the current
Scipy implementation running on a more recent computer. Even when one takes care to run a
timing benchmark with algorithms written in the same language on the same computer, the high
level of optimization of older algorithms makes the comparison with the first implementation of
an emerging algorithm rather unfair. Finally, some algorithms are suitable for implementations
on a GPU while others are not, and it is delicate to compare the timings when the hardware and
technology are different.

With these limitations in mind, we conducted a timing benchmark for the isomorphic matching
of ER Gnp graphs whose results are summarized in Figure 10. Hardware specifics are detailed in
Supplementary Section S1.1. Importantly, GASM is well-suited to GPU parallelization and, as
explained in Section 3.4, we implemented both a CPU version and a CUDA version. As with all
GPU algorithms, the data transfer between the host and the device has a cost, and for GASM it
dominates the global running time for small graphs (typically below 102 vertices). This is probably
not an issue for many applications since for such small graphs the total running time remains below
10ms.

The stakes are higher for larger graphs (n > 102). In this range, the benchmark shows that: i)
2opt is always slower by orders of magnitude, ii) the CPU version of GASM is as fast as ZV in all
cases, and iii) slightly faster than FAQ for undirected graphs, but approximately 10 times slower

undirected

n

directed

n

FAQ

2opt

ZV

GASM (CPU)

GASM (GPU)

Figure 10: Timing benchmark on the isomorphic matching of ER Gnp graphs with n vertices and
p = log(n)/n. The benchmark has been performed on undirected (left) and directed (right) graphs,
for 4 algorithms running on CPU and the implementation of GASM on GPU. All computing times
are averaged over 10 realizations.
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for directed graphs. However, the GPU version of GASM is faster than FAQ for undirected graphs
– though the difference tends to vanish for large graphs – and as fast as FAQ for directed graphs.

The previous Sections indicated that GASM provides better solutions (in terms of accuracy,
QAP scores and structural quality) than the other algorithms in most situations. The timing
benchmark indicates that it is possible to have GASM running as fast or faster than the other
algorithms, including FAQ, so altogether it seems to point out that GASM is more Pareto-optimal
than all the other algorithms tested here.

5 Conclusion

This work presents the Graph Attributes and Structure Matching (GASM) algorithm, which takes
root in the iterative methods for graph matching. Notably, it improves ZV in a number of ways:

� it uses a minute noise to lift the degeneracies due to local symmetries,

� it implements a complement procedure, to take advantage of the fact that solutions are more
accurate when the graphs are sparse,

� it handles properly isolated vertices,

� an ad hoc convergence criterion is proposed,

� a GPU implementation has been implemented, which is particularly well-suited for this family
of algorithms,

� the integration of the attributes is done before the iterative procedure, which improves the
quality of solutions and makes the algorithm more robust to discrepancies in the attributes,

� the ability to handle any number and types of attributes makes it well-suited to tackle real-
world problems.

Importantly, GASM also introduces the notion of uncertainty over the attributes, which tunes
in fine how much the algorithm relies on the structure or the attributes: if the attribute values are
highly discriminant then GASM exploits principally this information, while attributes estimated
with a large uncertainty only influence the solution search marginally.

Beyond the GASM algorithm, this study also formalizes the difference between categorical and
measurable attributes and proposes a common framework to incorporate all this information. It
also sheds light on the importance of systematically benchmarking the undirected and directed
cases separately, as we saw differences in all the measurements of our benchmarks, for all the
tested algorithms. Moreover, we emphasize the importance of taking into account not only the
accuracy /performance score of the solutions but also other measurements that are relevant in the
context of graph matching, like the structural quality for instance.

For future work, several leads can be explored. First, sometimes a partial matching of the
vertices is known a priori, and seeded graph matching has gained a lot of attention in recent years
[30]. GASM can certainly be modified to leverage this information as well.

Then, there is room for further speed improvements. On the algorithmic side, a better con-
vergence criterion could considerably speed up the process by avoiding unnecessary iterations. It
is clear from Supp. Fig. S3 that there is still a lot of room for improvements on this matter; in
addition, taking into account the attributes for the convergence criterion should be also beneficial.
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Next, a fully on-GPU version is yet to be implemented, by porting on the device the computation
of the initial score matrices and the LAP solver itself, as well as further optimization with libraries
dedicated to sparse matrices. On the hardware side, the future use of PCIe 5.0 should in theory
double the transfer rates and yet improve further the speed of GPU implementations.

Finally and most excitingly, the next scientific challenge is to apply GASM to real datasets,
like for instance the comparison of protein-protein interaction networks, connectomes and artificial
neural networks.
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Supplementary Materials

S1 Computational details

S1.1 Hardware and software

All the code used for this article has been written in Python and is available in the following
repository:

https://github.com/CandelierLab/GraphMatching.git

Scipy’s optimized routines have been used as much as possible, notably the LAP solver in
scipy.optimize.linear_sum_assignment(), which implements the algorithm in [9], and the
QAP solver scipy.optimize.quadratic_assignment() which implements both the FAQ [48]
and 2opt [16] algorithms. ZV and GASM (CPU version) have been written to rely extensively
on Numpy’s optimization. The GPU version of GASM uses Numba to define the CUDA ker-
nels. The timing benchmark was realized with the perf_counter_ns() function of Python’s time
module.

The timing benchmark has been performed on a single machine with the following specifications:
Motherboard Asus ROG Maximus Z790 Formula, Intel Core i9-13900KS processor (24 cores, 32
threads) with 192Go of DDR5 RAM (5200 MHz, CL38), and a PNY Nvidia RTX A4500 graphics
card (7,168 cores).

S1.2 Approximate normalization factor.

Equations (12-13) and (22-23) define the normalization coefficients fx and fy. From a formal point
of view, these coefficients can be set to any strictly positive value at each step without altering the
outcome of the algorithm, so they are removed in the subsequent equations for readability.

However, in practice, it can be dangerous to set fx = fy = 1 because the values of the score
matrices increase exponentially with the iterations and may cause either a floating point overflow or
precision issues related to the unit of least precision. For instance, when two graphs with an average
degree of 500 are matched, the scores increase by a factor of the order of 106 at each iteration.
To reduce transfer and computation times the GPU version of GASM uses single-precision floats,
which overflow at approximately 2128 ≃ 3.1038, so the overflow would occur in just 7 iterations.
Also, the first integer that is not exactly representable is 224 + 1 ≃ 1.7 × 107, so precision issues
may start within the first iterations.

One way to avoid these issues is to normalize the score matrices by their mean value (or any
other norm) at each iteration as in [52], but determining the mean scores is a computational
overhead that can be avoided. First, only one normalization per iteration is enough, and we can
safely ignore the normalization of the edge scores Yk, set fy = 1, and normalize only the scores
in Xk. Then, only a rough estimate of the normalization coefficient is necessary for keeping the
scores in a reasonable range, and an ad hoc estimation based on the graphs’ average degree can be
formulated as follows, both for directed and undirected graphs:

fx = max(4dAdB , 1) (S1)

where d∗ is the average degree of graph G∗ (outdegree for directed graphs). It can then be slightly
improved into the following form:

https://github.com/CandelierLab/GraphMatching.git
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Figure S1: Estimated and approximated normalization coefficients fx for ER graphs with n∗ = 100
vertices in the isomorphic matching task, as a function of the average degree of the graphs d∗ with
linear (left) and logarithmic (right) scales. The estimation of fx (dots) is defined as the ratio be-
tween the mean values of the vertex score matrix X during the last 2 iterations before convergence,
i.e.

〈
Xk̃

〉
/
〈
Xk̃−1

〉
, averaged over 100 independent runs for directed (blue) and undirected graphs

(orange). Shaded areas represent standard deviations. The dashed curve is the approximated
normalization coefficient proposed in eq.(S2). The graph is symmetric due to the complement
procedure described in Section 3.4.

fx = 4dAdB + 1 (S2)

A comparison with estimated coefficients for ER Gnp graphs is provided in Supp. Fig. S1,
showing that the error remains below a factor 10. All the results presented in this article have
been computed with the normalization coefficient provided by eq.(S2).

S2 Graphs

S2.1 Random graphs

The random graphs used in the paper are Erdös-Rényi-Gilbert Gnp graphs, which are constructed
by defining a set of n vertices and including every possible edge with probability p, independently
of every other edge [15].

S2.2 QAPLIB

The instances and solutions of the QAPLIB library have been downloaded from https://coral.ise.lehigh.edu.

https://coral.ise.lehigh.edu
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Figure S2: Average diameter ∆ of directed and undirected Erdös-Rényi Gnp graphs as a function
of p, for different values of n. Each point is averaged over 1,000 graphs.
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Figure S3: Convergence of GASM. Accuracy γ during isomorphic matching of ER graphs with
n∗ = 100 vertices and no attribute, for different average degrees. Accuracies are averaged over
100 runs, and the standard deviations are represented by the shaded areas. Iteration 0 represents
uniform scores (random matching), and iteration k ⩾ 1 relies on the score matrix Xk. The dashed
black curve indicates the average k̃ for the different degrees.
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