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Abstract. A geophylogeny is a phylogenetic tree (or dendrogram) where each
leaf (e.g. biological taxon) has an associated geographic location (site). To clearly
visualize a geophylogeny, the tree is typically represented as a crossing-free drawing
next to a map. The correspondence between the taxa and the sites is either shown
with matching labels on the map (internal labeling) or with leaders that connect each
site to the corresponding leaf of the tree (external labeling). In both cases, a good
order of the leaves is paramount for understanding the association between sites and
taxa. We define several quality measures for internal labeling and give an efficient
algorithm for optimizing them. In contrast, minimizing the number of leader crossings
in an external labeling is NP-hard. On the positive side, we show that crossing-free
instances can be solved in polynomial time and give a fixed-parameter tractable (FPT)
algorithm. Furthermore, optimal solutions can be found in a matter of seconds on
realistic instances using integer linear programming. Finally, we provide several efficient
heuristic algorithms and experimentally show them to be near optimal on real-world
and synthetic instances.
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1 Introduction

A phylogeny describes the evolutionary history and relationships of a set of taxa such as species,
populations, or individual organisms [46]. It is one of the main tasks in phylogenetics to infer
a phylogeny for some given data and a particular model. Most often, a phylogeny is modeled
and visualized with a rooted binary phylogenetic tree T , that is, a rooted binary tree T where the
leaves are bijectively labeled with a set of n taxa. For example, the phylogenetic tree in Fig. 1a
shows the evolutionary species tree of the five present-day kiwi (Apteryx ) species. The term
dendrogram is used synonoumsly with phylogenetic tree, where the tree represents a hierarchical
clustering. These trees are conventionally drawn with all edges directed downwards to the leaves
and without crossings (downward planar). There exist several other models for phylogenies such
as the more general phylogenetic networks, which can additionally model reticulation events such
as horizontal gene transfer and hybridization [27], and unrooted phylogenetic trees, which only
model the relatedness of the taxa [46]. Here we only consider rooted binary phylogenetic trees and
refer to them simply as phylogenetic trees.

In the field of phylogeography, geographic data is used in addition to the genetic data to improve
the inference of the phylogeny. We may thus have spatial data associated with each taxon of a
phylogenetic tree such as the distribution range of each species or the sampling site of each voucher
specimen used in a phylogenetic analysis. For example, Fig. 1b shows the distributions of the kiwi
species from Fig. 1a. Similarly, dendrograms might arise from hierarchical clustering on locations,
e.g. cities [53] or regions [35]. We speak of a geophylogeny (or phylogeographic tree) if we have a
phylogenetic tree T , a map R, and a set P of features in R that contains one feature per taxon of
T ; see Fig. 1c for a geophylogeny of the kiwi species. In this paper, we focus on the case where
each element x of P is a point, called a site, in R, and only briefly discuss the cases where x is a
region, or a set of points or regions.

Visualizing Geophylogenies. When visualizing a geophylogeny, we may want to display its tree
and its map together in order to show the connections (or the non-connections) between the leaves
and the sites. For example, we may want to show that the taxa of a certain subtree are confined
to a particular region of the map or that they are widely scattered. In the literature, we mainly
find three types of drawings of geophylogenies that fall into two composition categories [24,29]. In
a side-by-side (juxtaposition) drawing, the tree is drawn planar directly next to the map. To show
the correspondences between the taxa and their sites, the sites on the maps are either labeled or
color coded (as in Fig. 2a and Fig. 1c, respectively), or the sites are connected with leaders to the
leaves of the tree (as in Fig. 2b). We call this internal labeling and external labeling, respectively.
There also exist overlay (superimposition) illustrations where the phylogenetic tree is drawn onto
the map in 2D or 3D with the leaves positioned at the sites [31, 45, 52]; see Fig. 3. While the
association between the leaves and the sites is obvious in overlay illustrations, Page [40] points out
that the tree and, in particular, the tree heights might be hard to interpret.

Drawing a geophylogeny involves various subtasks, such as choosing an orientation for the map,
a position for the tree, and the placement of the labels. Several existing tools support drawing
geophylogenies [15, 40, 42, 43, 45], but we suspect that in practice many drawings are made “by
hand”. The tools GenGIS by Parks et al. [42,43], a tool by Page [40], and the R-package phytools
by Revell [45] can generate side-by-side drawings with external labeling. The former two try to
minimize leader crossings by testing random leaf orders and by rotating the phylogenetic tree
around the map; Revell uses a greedy algorithm to minimize leader crossings. The R package
phylogeo by Charlop-Powers and Brady [15] uses internal labeling via colors. Unfortunately, none
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(a) Rooted binary
phylogenetic tree.

N

(b) Map with the distribution of
each species shown.

A. australis

A. rowi

A. mantelli

A. haastii

A. owenii

N

(c) Visualization of the geophylogeny with
internal labeling.

Figure 1: To visualize this geophylogeny of the five present-day kiwi species (Tokoeka/South Island
Brown Kiwi – Apteryx australis, Rowi/Okarito Brown Kiwi – A. rowi, North Island Brown Kiwi
– A. mantelli, Great Spotted Kiwi – A. haastii, Little Spotted Kiwi – A. owenii), we combine the
phylogenetic tree (a) together with the distribution map (b) into a single figure (c). To this end,
we may pick a rotation of the map and a placement of the tree as well as a leaf order that facilities
easy association based on the colors between the leaves and the features on the map. (Phylogeny
and map inspired by Weir et al. [50].)

of the articles describing these tools formally define a quality measure being optimized or study the
underlying combinatorial optimization problem from an algorithmic perspective. In this paper, we
introduce a simple combinatorial definition for side-by-side drawings of geophylogenies and propose
several quality measures (Section 2).

Labeling Geophylogenies. The problem of finding optimal drawings of geophylogenies can be
considered a special case of map labeling. In this area, the term labeling refers to the process of
annotating features such as points (sites), lines, or regions in maps, diagrams, and technical draw-
ings with labels [7]. This facilitates that users understand what they see. As with geophylogenies,
internal labeling places the labels inside or in the direct vicinity of a feature; external labeling
places the labels in the margin next to the map and a label is then connected to the corresponding
feature with a leader. An s-leader is drawn using a single (straight) line segment as in Figs. 2b
and 4b. Alternatively, a po-leader (for: parallel, orthogonal) consists of a horizontal segment at
the site and a vertical segment at the leaf, assuming the labels are above the drawing; see Fig. 4c.
In the literature, we have only encountered s-leaders in geophylogeny drawings, but argue below
that po-leaders should be considered as well. In a user study on external labeling, Barth, Gemsa,
Niedermann, and Nöllenburg [3] showed that users performed best for po-leaders and well for s-
leaders when asked to associate sites with their labels and vice versa; on the other hand, po-leaders
and “diagonal, orthogonal” do-leaders are the aesthetic preferences. We thus consider drawings of
geophylogenies that use external labeling with s- and po-leaders.

For internal labeling, a common optimization approach is to place the most labels possible such
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(a) Internal labeling with labels and colors [9]. (b) External labeling with s-leaders [28].

Figure 2: Side-by-side drawings of geophylogenies from the literature.

that none overlap; see Neyer [37] for a survey on this topic. Existing algorithms can be applied
to label the sites in a geophylogeny drawing and it is geometrically straight-forward to place the
labels for the leaves of T . However, a map reader must also be aided in associating the sites on
the map with the leaves at the border based on these labels (and potentially colors). Consider the
drawing in Fig. 1c, which uses color-based internal labeling: the three kiwi species A. australis,
A. rowi, and A. mantelli occur in this order from South to North. When using internal labeling,
we would thus prefer, if possible, to have the three species in this order in the tree as well – as
opposed to their order in Fig. 1a.

External labeling styles conventionally forbid crossings of leaders as such crossings could be
visually confusing (cf. Fig. 2b). Often the total length of leaders is minimized given this constraint.
See the book by Bekos, Niedermann, and Nöllenburg [7] on external labeling techniques. External
labeling for geophylogenies is closely related to many-to-one external labeling, where a label can
be connected to multiple features. In that case one typically seeks a placement that minimizes the
number of crossings between leaders, which is an NP-hard problem [36]. The problem remains NP-
hard even when leaders can share segments, so-called hyper-leaders [4]. Even though our drawings
of geophylogenies have only a one-to-one correspondence, the planarity constraint on the drawing
of the tree restricts which leaf orders are possible and it is not always possible to have crossing-free
leaders in a geophylogeny. In order to obtain a drawing with low visual complexity, our task is
thus to find a leaf order that minimizes the number of leader crossings.

Note that each vertex of a phylogenetic tree induces a group of labels (leaves) that need to ap-
pear consecutive along the boundary, resulting in non-trivial constraints on the order of the labels.
Niedermann, Nöllenburg, and Rutter [38] introduced grouping constraints as additional drawing
conventions for external labeling, though did not explore them in detail. Depian, Nöllenburg,
Terziadis, and Wallinger [17] studied grouping constraints, which may overlap, as well as ordering
constraints on labels positioned on one or two sides of the drawings for po-leaders. They focused on
labelings with no crossing leaders and showed that finding label positions is generally NP-hard, but
provided polynomial-time algorithms for practically relevant cases. On the other hand, Gedicke,
Arzoumanidis, and Haunert [47] incorporated disjoint groupings as optimization criteria to bound-
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(a) 2D overlay drawing of a geophylogeny by
Xia [52].

(b) 3D overlay drawing of a geophylogeny by Kidd
and Liu [31].

Figure 3: Overlay drawings of geophylogenies from the literature.

ary labeling on four sides with s-leaders. In our case, the phylogenetic tree introduces a set of
grouping constraints that can only nest but otherwise not overlap, placing our problem within the
recent focus on labeling under additional constraints.

Further Related Work. Since there exists a huge variety of different phylogenetic trees and
networks, it is no surprise that a panoply of software to draw phylogenies has been developed [1,
26, 44]. Here we want to mention DensiTree by Bouckaert [11]. It draws multiple phylogenetic
trees on top of each other for easy comparison in so-called cloudograms and, relevantly to us, has
a feature to extend its drawing with a map for geophylogenies. Furthermore, the theoretical study
of drawings of phylogenies is an active research area [2,10,13,18,19,25,32,34,49]. In many of these
graph drawing problems, the goal is to find a leaf order such that the drawing becomes optimal in a
certain sense. This is also the case for tanglegrams, where two phylogenetic trees (or dendrograms)
on the same taxa are drawn opposite each other (say, one upward and one downward planar).
Pairs of leaves with the same taxon are then connected with straight-line segments and the goal
is to minimize the number of crossings [12]. This problem is NP-hard if the leaf orders of both
trees are variable, but can be solved efficiently when one side is fixed [21]. The latter problem
is called the One-Sided Tanglegram problem and we make use of the efficient algorithm by
Fernau et al. [21] later on.

Results and Contribution. We formalize several graph visualization problems in the context
of drawing geophylogenies. We propose quality measures for drawings with internal labeling and
show that optimal solutions can be computed in quadratic time (Section 3). For external labeling
(Section 4), we prove that although crossing minimization of s- and po-leaders is NP-hard in
general, it is possible to check in polynomial time if a crossing-free drawing exists. Moreover, we
give a fixed-parameter tractable (FPT) algorithm, where the parameter captures the number of
pairs of sites in inconvenient positions, and show that there exist instances with practical relevance
that can be solved efficiently by the FPT algorithm. Furthermore, we introduce an integer linear
program (ILP) and several heuristics for crossing minimization. We evaluate these solutions on
synthetic and real-world examples, and find that the ILP can solve realistic instances optimally
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in a matter of seconds and that the heuristics, which run in a fraction of a second, are often
(near-)optimal as well (Section 5). We close the paper with a discussion and open problems.

2 Definitions and Notation

For a phylogenetic tree T , let V (T ) be its vertex set, E(T ) its edge set, L(T ) its leaves, and I(T )
its internal vertices. We let n denote the number of leaves of T , i.e., n = |L(T )|. For an internal
vertex v of T , let T (v) be the subtree rooted at v and n(v) = |L(T (v))|. The clade of v is L(T (V )),
i.e. the set of leaves in the subtree rooted at v. A cherry of T is a subtree of T on three vertices
such that exactly two are leaves of T and the third is their shared parent.

A map R is an axis-aligned rectangle and a site is a point on R. A geophylogeny G consists
of a phylogenetic tree T (G), a map R(G), a set of points P (G) in R(G) as well as a 1-to-1
mapping between L(T (G)) and P (G). Call the elements of L(T (G)) = {ℓ1, . . . , ℓn} and P (G) =
{p1, . . . , pn}, so that without loss of generality the mapping is given by the indices, that is, ℓi ↔ pi,
for i ∈ {1, . . . , n}. For further ease of notation, we only write T , R, and P instead of T (G), R(G),
and P (G), respectively, as G is clear from the context.

We define a drawing Γ of G as consisting of drawings of R with P and T in the plane with the
following properties; see Fig. 4. We assume that T is always drawn at a fixed position above R
such that the leaves of T lie at evenly spaced positions on the upper boundary of R; the position of
the leftmost and rightmost leaf may be fixed arbitrarily. Furthermore, we require that T is drawn
downward planar, that is, all edges of T point downwards from the root towards the leaves, and
no two edges of T cross. (In our examples we draw T as a “rectangular cladogram”, but the exact
drawing style is irrelevant given downward planarity.) The points of P are marked using crosses
in R and the drawing uses either internal labeling as in Fig. 4a or external labeling with s- or
po-leaders as in Figs. 4b and 4c. For drawings with external labeling, we let si denote the leader
that connects ℓi and pi. We consider pi part of si. Two leaders si and sj cross if their intersection
is non-empty, which can also be pi or pj . (We ignore the leaf labels as they do not effect the
combinatorics: they can simply be added in a post-processing step where T can be moved upwards
to create the necessary vertical space. In practice, we further have to pick appropriate sizes for R,
the spacing, and fonts such that labels do not overlap horizontally.)

Since the tree is drawn without crossings and the sites have fixed locations, the only combina-
torial freedom in the drawing Γ is the embedding of T , i.e. which child is to the left and which is to
the right. Furthermore, since we fixed the relative positions of the map and the leaves, note that
there is also no “non-combinatorial” freedom. Hence, an embedding of T corresponds one-to-one
with a left-to-right order of L(T ) and we call this the leaf order π of Γ. For example, if a leaf ℓi
is at position 4 in Γ, then π(ℓi) = 4. Further, let x(v) and y(v) denote the x- and y-coordinate,
respectively, of a site or leaf v of T in Γ. In a slight abuse of terminology, we also call it a drawing
of a geophylogeny even when the leaf order has not been fixed yet.

3 Geophylogenies with Internal Labeling

In this section, we consider drawings of geophylogenies with internal labeling. While these drawings
trivially have zero crossings – there are no leaders – a good order of the leaves is still crucial, since it
can help the reader associate between the leaves L(T ) and the sites P . It is in general not obvious
how to determine which leaf order is best for this purpose; we propose three quality measures
and a general class of measures that subsume them. Any measure in this class can be efficiently
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Figure 4: In a drawing of a geophylogeny G, we place T above R and use either internal or external
labeling to show the mapping between P and L(T ). Figures (b) and (c) minimize the number of
crossings for their leader type. Note the difference in embedding of T and that not all permutations
of leaves are possible.

optimized by the algorithm described below. In practice one can easily try several quality measures
and pick whichever suits the particular drawing; a user study of practical readability could also
be fruitful.

Quality Measures. When visually searching for the site pi corresponding to a leaf ℓi (or the
opposite direction), it seems beneficial if ℓi and pi are close together. Our first quality measure,
Distance, sums the Euclidean distances of all pairs (pi, ℓi); see Fig. 5a.

Since the tree organizes the leaves from left to right along the top of the map, and especially
if the distance of pairs ℓi and pi is dominated by the vertical distance as in Fig. 2b, it might be
better to consider only the horizontal distances, i.e.

∑n
i=1|x(pi)−x(ℓi)|, which we call XOffset ; see

Fig. 5b. Note that the vertical distance of each leader remains fixed for any leaf order. Therefore,
an optimal solution for XOffset is equivalent to using the sum of Manhattan distances of all pairs.

Finally, instead of the geometric offset, IndexOffset considers how much the leaf order permutes
the geographic left to right order of the sites. Assuming without loss of generality that the sites
are in general position and indexed from left to right, we sum how many places each leaf ℓi is away
from leaf position i, i.e.

∑n
i=1|π(ℓi)− i|; see Fig. 5c.

These measures have in common that they sum over some “quality” of the leaves, where the
quality of a leaf depends only on its own position and that of the sites (but not the other leaves).
Here we call such quality measures leaf additive; Benkert, Haverkort, Kroll, and Nöllenburg [8]
call them badness functions and suggest that a leaf additive quality measure could also take the
interference of leaders with the underlying map into account. Unfortunately not all sensible quality
measures are leaf additive (such as for example the number of inversions in π).

Algorithm for Leaf-Additive Quality Measures. Let f : L(T )×{1, . . . , n} → R be a quality
measure for placing one particular leaf at a particular position; the location of the sites is constant
for a given instance, so we do not consider it an argument of f . This uniquely defines a leaf additive
quality measure on drawings by summing over the leaves; assume without loss of generality that
we want to minimize this sum.

Now we naturally lift f to inner vertices of T by taking the sum over leaves in the subtree rooted
at that vertex – in the best embedding of that subtree. More concretely, note that any drawing
places the leaves of any subtree at consecutive positions and they take up a fixed width regardless
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Figure 5: Orange arrows indicate what the three quality measures for internal labeling consider.
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Figure 6: Computing IndexOffset for the subtree T (v) at positions 1 and 2.

of the embedding. For an inner vertex v, assume that the leftmost leaf of the subtree T (v) is placed
at position i. Note that because T (v) requires n(v) positions, we have that i ∈ {1, . . . , n−n(v)+1}.
Let F (v, i) be the minimum sum of the quality f of the leaves of T (v), taken over all embeddings
of T (v). For i > n− n(v) + 1, we set F (v, i) = ∞. Then, by definition, the optimal value for the
entire instance is F (ρ, 1), where ρ is the root of T .

Theorem 1. Let G be a geophylogeny with n taxa and let f be a leaf additive quality measure.
A drawing Γ with internal labeling of G that minimizes (or maximizes) f can be computed in
O(n2) time and O(n2) space.

Proof: For an inner vertex v with children x and y, we observe the following equality, since the
embedding has only two ways of ordering the children and those subtrees are then independent;
see also Fig. 6:

F (v, i) = min{ F (x, i) + F (y, i+ n(x)), F (y, i) + F (x, i+ n(y)) } (1)

Using dynamic programming on F , for example in postorder over T , allows us to calculate F (ρ, 1)
in O(n2) time and space, since there are 2n vertices, n possible leaf positions, and Eq. (1) can be
evaluated in constant time by precomputing all n(v). The space requirement is thus also in O(n2).
As it is typical, the optimal embedding of T can be traced back through the dynamic programming
table in the same running time. 2

Adaptability. Note that we can still define leaf additive quality measures when P contains
regions (rather than just points) as in Fig. 1. For example, instead of considering the distance
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between ℓi and pi, we could consider the smallest distance between ℓi and any point in the region pi.
Similarly, if each element of P is a set of sites, we could use the average or median distance to
the sites corresponding to ℓi. For such a leaf additive quality measure f , our algorithm finds an
optimal leaf order in O(n2x) time where x is a bound on the time needed to compute f(ℓi, j) over
all i, j ∈ {1, . . . , n}.

Interactivity. With the above algorithm, we can restrict leaves and subtrees to be in a certain
position or a range of positions, simply by marking all other positions as prohibitively expensive
in F ; the rotation of an inner vertex can also be fixed by considering only the corresponding term
of Eq. (1). This can be used if there is a conventional order for some taxa or to ensure that an
outgroup-taxon (i.e. taxon only included to root and calibrate the phylogenetic tree) is placed at
the leftmost or rightmost position. Furthermore, this enables an interactive editing experience
where a designer can inspect the initial optimized drawing and receive re-optimized versions based
on their feedback – for example “put the leaves for the sea lions only where there is water on the
edge of the map”. (This is leaf additive.)

4 Geophylogenies with External Labeling

In this section, we consider drawings of geophylogenies that use external labeling. Recall that for
a given geophylogeny G, we want to find a leaf order π such that the number of leader crossings
in a drawing Γ of G is minimized. We show the following.

1. The problem is NP-hard in general (Section 4.1).

2. A crossing-free solution can be found in polynomial time if it exists (Section 4.2).

3. Some instances have a geometric structure that allows us to compute optimal solutions in
polynomial time (Section 4.3).

4. The problem is fixed parameter tractable (FPT) in a parameter based on this structure
(Section 4.4).

5. We give an integer linear program (ILP) to solve the problem (Section 4.5).

6. We give several heuristic algorithms for the problem (Section 4.6).

All results hold analogously for s- and po-leaders; only the parameter value of the FPT algorithm
is different depending on the leader type.

4.1 NP-Hardness

In order to prove that the decision variant of our crossing minimization problem is NP-complete,
we use a reduction from the classic Max-Cut problem, which is known to be NP-complete [22].
In an instance of Max-Cut, we are given a graph H and a positive integer c, and have to decide
if there exists a bipartition (A,B) of V such that at least c edges have one endpoint in A and
one endpoint in B; see Fig. 7. The proof of the following theorem is inspired by the construction
Bekos et al. [4] use to show NP-completeness of crossing-minimal labeling with hyperleaders (with
a reduction from Fixed Linear Crossing Number).
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v1

v2

v3

Figure 7: The partition of the triangle v1v2v3 cuts the two edges {v1, v2}, {v2, v3}. We reduce the
corresponding Max-Cut instance to a geophylogeny drawing in Fig. 8.

Theorem 2. Let G be a geophylogeny and k a positive integer. For both s- and po-leaders, it
is NP-complete to decide whether a drawing Γ of G with external labeling and a leaf order π that
induces at most k leader crossings exists.

Proof: The problem is in NP since, given G, k, and π, we can check in polynomial time whether
this yields at most k crossings. To prove NP-hardness, we use a reduction from Max-Cut as
follows. The proof works the same for s- and po-leaders; we use po-leaders in the figures.

For an instance (H, c) of Max-Cut, we construct an instance of our leader crossing minimiza-
tion problem by devising a geophylogeny G with phylogenetic tree T , points P on a map R and
a constant k; see Fig. 8. Without loss of generality, we assume that each vertex in H has at least
degree 2. Let V (H) = {v1, . . . , vn} and m = |E(H)|. We consider each edge {vi, vj} with i < j
to be directed as vivj . Let E(H) be ordered e1, . . . , em lexicographically on the indices i and j.
Throughout the following, let (A,B) be some partition of V (H) and let R have height 4m+ 4+ d
where we set d appropriately below.

We first describe the broad structure of the reduction and then give details on the specific
gadgets. Each vertex is represented by a vertex gadget in T . For each edge vivj in E(H), there is
an edge gadget that connects sites on the map to the vertex gadgets with four leaders. Using fixing
gadgets to restrict the possible positions for vertex gadget’s leaves, we enforce that an edge gadget
induces 2 crossing if vi and vj are both in A or both in B; otherwise it will induce 1 crossing. The
number of crossings between leaders of different edge gadgets is in total some constant kfix. We
set k = kfix + 2m− c. Consequently, if G admits a drawing with at most k leader crossings, then
H admits a cut with at least c edges, and vice versa.

Vertex Gadgets. Each vertex vi ∈ V (H) is represented by two subtrees rooted at vertices i
and i′ in T such that from i going two edges up and one down we reach i′. In T (i) there is a leaf
labeled ij for each edge vivj or vjvi incident to vi in H. Furthermore, T (i) has a planar embedding
where the leaves can be in increasing (or decreasing) order based on the order of the corresponding
edges in E(H); see again Fig. 8. T (i′) is built analogously, though we label the leaves with ij′.
In T , the vertex gadgets and fixing gadgets alternate; more precisely, the subtree of a central fixing
gadget lies inside the subtree of the vertex gadget for v1, which in turn lies in the subtree of a fixing
gadget, and so on. The fixing gadgets ensure that either T (i) is in the left half of the drawing
and T (i′) in the right half, or vice versa (explained below). Furthermore, we interpret T (i) being
in the left (right) half as vi being in A (resp. B).

Edge Gadgets. For an edge eh = vivj ∈ E(H), we have four sites ij, ji, ij′, ji′ on the central
axis of the drawing, which correspond to the leaves in T (i), T (j), T (i′), T (j′) with the same label.
From bottom to top, we place the sites ij and ji at heights 2h− 1 and 2h, respectively; we place
the sites ij′ and ji′ at 4m − 2(h − 1) − 1 and 4m − 2(h − 1), respectively; see Fig. 9. Hence, in
the bottom half the sites are placed in the order of the edges, while in the top half they are (as
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Figure 8: Sketch of the reduction of the graph from Fig. 7 to a geophylogeny drawing with po-
leaders. We simplified vi to i; each edge gadget is drawn in the respective color; fixing gadgets are
represented by triangles in the tree and hatched rectangles on the map.

pairs) in reverse order. Note that while the order of the sites ij, ji, ij′, ji′ is fixed, the order of
the leaves ij, ji, ij′, ji′ is not. Yet there are only four possible orders corresponding to whether vi
and vj are in A or B. Further note that whether the leaders of the edge gadget cross is therefore
not based on the geometry or the type of the leaders but solely on the leaf order. In particular,
if vivj is cut by (A,B) (as in Fig. 9a), then we have the leaf order ji′, ij, ij′, ji with ji′ and ij left
of the center (up to reversal of the order). Therefore the leaders sij and sji′ cross while sij′ and sji
do not. Hence, there is exactly one crossing. On the other hand, if vivj is not cut by (A,B) (as in
Fig. 9b), then we have the leaf order ij, ji, ij′, ji′ with ij and ji left of the center (up to reversal
of the order). Hence we have two crossings as both sij and sji as well as sij′ and sji′ cross.
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(a) If v1v2 is in the cut, its edge gadget induces
exactly 1 crossing.
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(b) If v1v2 is not in the cut, its edge gadget induces
exactly 2 crossing.

Figure 9: The edge gadget for v1v2 connects the vertex gadgets for v1 and v2.

Edge Pairs. Let vivj , vkvl ∈ E(H). We assume an optimal leaf order in each vertex gadget.
Then careful examination of the overall possible leaf orders (and partitions) shows that the leaders
in the edge gadgets of vivj and vkvl induce exactly three crossings if vivj and vkvl share a vertex;
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see again Fig. 8. If the two edges are disjoint, then the leaders induce exactly four crossings; see
Fig. 10. Note that changing the partition or the order of vertices does not change the number of
crossings; it only changes which pairs among the eight leaders cross. We can thus set kfix as three
times the number of adjacent edge pairs plus four times the number of disjoint edge pairs.
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Figure 10: Leaders for two edge gadgets of disjoint edges induce four crossings.

Fixing Gadgets. To ensure that the two subtrees of each vertex gadget are distributed to the
left and to the right, we add a fixing gadget in the center and one after each position allocated to
a vertex gadget subtree. If both subtrees of a vertex gadget would be placed on the same side of a
fixing gadget, then the fixing gadget would have to be translated and induce too many crossings.
More precisely, each fixing gadget is composed of a series of fixing units. A fixing unit F consists
of a four-leaf tree with cherries {a, a′} and {b, b′}. Assuming F is to be centered at position x, we
place the sites for a and a′ (for b and b′) at x at height 4m + d + 1 and 4 (resp. plus 2 and 3),
respectively. Thus if F is centered at x, it can be drawn with 0 crossings; see Fig. 11a. However,
if F is translated by two or more then it induces 2 crossings; see Fig. 11b. Since each vertex of H
has at least degree two, the two trees T (i) and T (i′) of a vertex gadget have at least two leaves
each. Hence, F cannot be translated by just one position. By using m − c fixing units per fixing
gadget, it becomes too costly to move even one fixing gadget as the instance would immediately
have to many crossings.

Finally, we set d such that no leader of an edge gadget can cross a leader of a fixing gadget. In
particular, d = 4 is sufficient for po-leaders. Note that a ±45◦ slope for s-leaders suffices to avoid
crossing a fixing gadget. Between the leftmost (rightmost) vertex gadget leaf and the center are
at most n fixing gadgets, each with m− c fixing units of width 4, and m− 1 other vertex gadget
leaves. We can bound this from above with 4m2 and thus set d = 4m2 for s-leaders. 2

Note that the construction used in the proof of Theorem 2 does not rely on the sites of the edge
gadget or the fixing units being collinear. As long as the sites of the edge gadgets (a fixing unit)
lie “close enough” to the center (resp. the center of the fixing unit) and maintain their relative
vertical order, they can be in general position.
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...
i′i

(a) A fixing gadget at its designated place induces
zero crossings.

...
i i′

(b) A fixing gadget translated by at least two
induces 2 crossings per fixing unit.

Figure 11: A fixing gadget consists of a series of four-leaf fixing units and is always placed at its
designed place since it would otherwise cause too many crossings.

4.2 Crossing-Free Instances

We now show how to decide whether a geophylogeny admits a drawing without leader crossings in
polynomial time for both s- and po-leaders.

Proposition 3. Let G be a geophylogeny on n taxa. For both s- and po-leaders, we can decide if
a drawing Γ of G with external labeling and a leaf order π that induces zero leader crossings exists
in O(n6) time.

Proof: To find a leaf order π for a drawing Γ that induces zero leader crossings, if it exists, we use a
dynamic program similar to the one we used for internal labeling in Theorem 1. Let i ∈ {1, . . . , n}
and let v ∈ V (T ). Then we store in F (v, i) up to n(v) embeddings of T (v) for which T (v) can be
placed with its leftmost leaf at position i such that the leaders to T (v) are pairwise crossing free.
Note that F (v, i) always stores exactly one embedding when v is a leaf. For an inner vertex v with
children x and y, we combine pairs of stored embeddings of T (x) and T (y) and test whether they
result in a crossing free embedding of T (v). For ρ the root of T , we get a suitable leaf order for
each embedding stored in F (ρ, 1). However, since combining embeddings of T (x) and T (y) can
result in O(n(v)2) many embeddings of T (v), we have to be more selective. We now describe when
we have to keep multiple embeddings of T (v), how we select them, and show that at most n(v)
embeddings for T (v) at position i suffice. We describe the details first for s-leaders and then for
po-leaders.

s-Leaders. Suppose that we can combine an embedding of T (x) and an embedding of T (y)
where T (v) is placed with its leftmost leaf at position i such that the leaders of T (v) pairwise do
not cross. Consider the set P (v) of sites corresponding to L(T (v)). In particular, let pk have the
lowest y-coordinate among the sites in P (v). Let H(v, i) be the convex hull of the sites P (v) and
the leaf positions i and i+ n(v)− 1; see Fig. 12. We distinguish three cases:

Case 1 - there is no site of P \P (v) inside H(v, i): Then no leader of a site po ∈ P \P (v) has
to “leave” H(v, i). A leader that would need to intersect H(v, i) would cause a crossing
with a leader of T (v) for any embedding of T (v). Hence it suffices to store only this one
embedding of T (v) and not consider any further embeddings.

Case 2 - there is a site po ∈ P \ P (v) trapped in H(v, i): More precisely, let H(v, i, po)
be the convex hull of the positions i and i + n(v) − 1 and all sites of P (v) above po.
We consider po trapped if the leader of po cannot reach any position left of i or right



42 J. Klawitter et al. Visualizing Geophylogenies

of i+ n(v)− 1 without crossing H(v, i, po); see Fig. 12a. Hence we would definitely get a
crossing for this embedding of T (v) later on and thus reject it immediately.

Case 3 - there is a site po ∈ P \ P (v) but not trapped inside H(v, i): Suppose that the
leader so of po can reach positions j1, . . . , jko

without intersecting H(v, i, po). Consider
the leader sk of pk for the current embedding of T (v). Note that sk prevents so from
reaching either any position to the left of i or to the right of i+n(v)− 1; see Fig. 12b. If
this means that sk cannot reach any position, then we reject the embedding. Otherwise
we would want to store this embedding of T (v) and an embedding of T (v) where sk can
reach a position on the “other” side of po (if it exists). However, we have to consider all
other sites of P \ P (v) in H(v, i), which we do as follows.

pk

v

po
H(v, i)

i

H(v, i, po)

(a) The non-T (v) site po in-
side H(v, i) may connect only to
a position far to the right.

pk

v

po

H(v, i)

i

(b) The leader of the non-T (v)
site po inside H(v, i) cannot reach
positions to the left of position i.

pk

v

H(v, i)

i

(c) The leader of one non-T (v) site
can go the left, the two others can
go to the right.

Figure 12: Trying to find a leaf order that induces zero crossings of s-leaders, we store or reject
embeddings of T (v) based on non-T (v) sites (i.e. sites in P \ P (v)) in H(v, i).

There are at most n − n(v) others sites in H(v). If any of them is trapped, we reject the
embedding. Assume otherwise, namely that for the current embedding, all of them can reach a
position outside of T (v). The leader of pk then partitions these sites into those that can go out to
the left and those that can go out to the right. Hence, among all suitable embeddings of T (v) these
sites can be partitioned in at most n(v) different ways (since the leader of pk can go to only that
many positions); see Fig. 12c. Furthermore, since we have s-leaders, the choice of positions for
the other sites of T (v) only influence whether another site is trapped but not which positions their
leaders can reach. So for each such partition, we need to store only one embedding. Therefore,
before storing a suitable embedding of T (v), we first check whether we already store an embedding
where ℓk is at the same position.

We can handle each of the O(n(v)2) embeddings of T (v) in O(n2) time each. With n positions
and O(n) vertices, we get a running time in O(n6).

po-Leaders. As with s-leaders, we want to store at most O(n(v)) embeddings of T (v) for po-
leaders. Let H ′(v, i) be the rectangle that horizontally spans from positions i to i+ n(v)− 1 and
vertically from pk to the top of R. For the current embedding of T (v) and for any site po ∈ P \P (v)
that lies insides H ′(v, i), we check whether the horizontal segment of the leader so of po can
leave H ′(v, i) without intersecting a vertical segment of a leader of T (v). If this is not the case for
a leader, then we reject the embedding; see Fig. 13a. Otherwise, the leader sk of pk determines
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for each so whether it can leave H ′(v, i) on the left or on the right side. Therefore, sk partitions
the sites in P \P (v) that lie insides H ′(v, i) and we need to store only one suitable embedding for
each partition; see Fig. 13b. Note that the horizontal segments of the leader s of any site of P (v)
that lies outside of H ′(v, i) always spans to at least H ′(v, i). Therefore whether s intersects with
another leader later on outside of H ′(v, i) is independent of the embedding of T (v). The running
time for po-leaders is the same as for s-leaders and thus also in O(n6). 2

pk

v

po

H ′(v, i)

(a) The non-T (v) site po inside H ′(v, i) is
trapped by vertical segments of leaders of T (v).

pk

v

H ′(v, i)

(b) The leader of pk partitions the non-T (v)
sites inside H ′(v, i) into whether their leader
leaves H ′(v, i) to the left or the right.

Figure 13: Trying to find a leaf order that induces zero crossings of po-leaders, we store or reject
embeddings of T (v) based on other sites in H ′(v, i).

4.3 Efficiently Solvable Instances

We now make some observations about the structure of geophylogeny drawings. This leads to
an O(n log n)-time algorithm for crossing minimization on a particular class of “geometry-free”
instances, and forms the basis for our FPT algorithm and ILP.

Consider a drawing Γ of a geophylogeny G with s-leaders and leaf order π. Let B be the line
segment between leaf position 1 (left) and leaf position n (right); let the s-area of a site pi be the
triangle spanned by pi and B. Note that the leader si lies within this triangle in any drawing. Now
consider two sites pi and pj that lie outside each other’s s-area. Independently of the embedding
of the tree, si always passes pj on the same side: see Fig. 14 where, for example, s2 passes left
of p4 in any drawing. As a result, if pi lies left of pj , then si and sj cross if and only if the leaf ℓi
is positioned right of the leaf ℓj , i.e. π(ℓi) > π(ℓj). The case where pi is right of pj is flipped. We
call such a pair ⟨pi, pj⟩ geometry free since purely the order of the corresponding leaves suffices to
recognize if their leaders cross: the precise geometry of the leaf positions is irrelevant. Note that
symmetrically ⟨pj , pi⟩ is also geometry free.

Conversely, consider a site pk that lies inside the s-area of pi. Whether the leaders si and sk
cross depends on the placement of the leaves ℓi and ℓk in a more complicated way than just their
relative order: si might pass left or right of pk and it is therefore more complicated to determine
whether si and sk cross. In this case, we call the pair ⟨pi, pk⟩ undecided. See Fig. 15, where p1 is
undecided with respect to p2.

Analogously, for po-leaders, let the po-area of pi be the rectangle that spans horizontally from
position 1 to position n and vertically from pi to the top of R; see Fig. 14b. A pair ⟨pi, pj⟩ of
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(a) A geometry-free drawing for s-leaders: no
site lies inside the s-area of another site.
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(b) A geometry-free instance for po-leaders:
no site lies inside the po-area of another site.

Figure 14: In a geometry-free instance the leaf order π fully determines if any two leaders cross.
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Figure 15: Drawings of the same geophylogeny with four different leaf orders. Note that s1 and s3
cross if and only if ℓ3 is left of ℓ1. On the other hand, whether s1 and s2 cross or not depends
more specifically on the positions of ℓ1 and ℓ2.

sites is geometry free if pi does not lie in the po-area of pj or vice versa. A pair ⟨pi, pk⟩ of sites is
called undecided, if pk lies in the po-area of pi. Note that the pairs are ordered and that, for an
undecided pair ⟨pi, pk⟩, the pair ⟨pk, pi⟩ is not undecided for s-leaders but can be undecided for
po-leaders if y(pi) = y(pk).

We call a geophylogeny geometry free (for s- or po-leaders) if all pairs of sites are geometry free.
While it seems unlikely that a geophylogeny is geometry free for po-leaders in practice, it is not
entirely implausible for s-leaders: for example, researchers may take their samples along a coastline,
a river, or a valley, in which case the sites may lie relatively close to a line. Orienting the map such
that this line is horizontal might then result in a geometry-free instance. For example, Lazzari,
Becerro, Sanabria-Fernandez, and Mart́ın-López [35] considered coastal regions of Andalusia and
their geophylogenies (with dendrograms) could be made geometry-free by rotating the map slightly.
Furthermore, unless two sites share an x-coordinate, increasing the vertical distance between the
map and the tree eventually results in a geometry-free drawing for s-leaders; however, the required
distance might be impractically large.

Next we show that the number of leader crossings in a geometry-free drawing can be minimized
efficiently using Fernau et al.’s [21] algorithm for the One-Sided Tanglegram problem.
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Proposition 4. Given a geometry-free geophylogeny G on n taxa, a drawing Γ with the minimum
number of leader crossings can be found in O(n log n) time, for both s- and po-leaders.

Proof: To use Fernau et al.’s [21] algorithm, we transformG into a one-sided tanglegram (Tfix, Tvari)
that is equivalent in terms of crossing to Γ; see Fig. 16. We take the sites P as the leaves of the
tree Tfix with fixed embedding and embed it such that the points are ordered from left to right; the
topology of Tfix is arbitrary. As the tree Tvari with variable embedding, we take the phylogenetic
tree T .

If Γ uses s-leaders, then we assume that the sites of G are indexed from left to right. If Γ uses
po-leaders, we define an (index) order on P as follows. Let pi be a site and pj a site to the right
of it; consider the leader that connects pi to leaf position 1 and the leader that connects pj to leaf
position n. If these leaders cross we require that i is after j, otherwise it must be before j. Note
that this implies that pi and pj are either both left of position 1 or both right of position n. (It is
easily shown that this defines an order; see also Fig. 14b.)

Let π′ be a leaf order of Tvari. Further let s′i denote the connection of the leaf corresponding
to pi in Tfix and the leaf ℓi in Tvari. Note that two connections s′i and s′j with i < j cross in the
tanglegram if and only if π′(ℓi) > π′(ℓj).

1 2 3 4 5

Tfix

T = Tvari

Figure 16: A geometry-free geophylogeny and a one-sided tanglegram (Tfix, Tvari) that have the
same combinatorics (in terms of leader crossings) as the two geometry-free instances in Fig. 14.

Since G is geometry free, the crossings in the tanglegram correspond one-to-one with those
in the geophylogeny drawing with leaf order π′; see again Figs. 14 and 16. Hence, the number of
crossings of (Tfix, Tvari) can be minimized in O(n log n) time using an algorithm of Fernau et al. [21].
The resulting leaf order for Tvari then also minimizes the number of leader crossings in Γ. 2

4.4 FPT Algorithm

In practice, most geophylogenies are not geometry free, yet some drawings with s-leaders might
have only few sites inside the s-area of other sites. Capturing this with a parameter k, we can
develop an FPT algorithm, that is, an algorithm that runs in f(k)p(n) time where f is a computable
function that only depends on k and p is a polynomial function (see also Niedermeier [39]). The
idea is as follows. Suppose we use s-leaders and there is exactly one undecided pair ⟨pi, pj⟩, i.e. pj
lies inside the s-area of pi; see Fig. 17a. For a particular leaf order, we say the leader si lies left
(right) of pj if a horizontal ray that starts at pj and goes to the left (right) intersects si; conversely,
we say that pj lies right (left) of si.
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Suppose now that we restrict si to lie left of pj (as s2 lies left of p3 in Fig. 17b). This restricts
the possible positions for ℓi and effectively yields a restricted geometry-free geophylogeny. The idea
for our FPT algorithm is thus to use the algorithm from Proposition 4 on restricted geometry-free
instances obtained by assuming that si lies to the left or to the right of pj ; see again Fig. 17.
In particular, we extend Fernau et al.’s dynamic programming algorithm [21] to handle restricted
one-sided tanglegrams at a cost in runtime.
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(a) A non-geometry-free geo-
phylogeny since p3 lies in the s-
area of p2.
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3
4

�A2�A2

(b) Restricted geometry-free
geophylogeny where we require
that p3 lies right of s2. Thus ℓ2
cannot be at positions 3 or 4.
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2

3
4

�A2 �A2

(c) Restricted geometry-free
geophylogeny where we require
that p3 lies left of s2. Thus ℓ2
cannot be at positions 1 or 2.

Figure 17: We transform the non-geometry-free geophylogeny G into a restricted geometry-free
geophylogeny by deciding whether p3 lies left or right of s2.

Lemma 1. The number of connection crossings in a restricted one-sided tanglegram T on n leaves
can be minimized in O(n3) time.

Proof: Let T = (Tfix, Tvari); we write T for Tvari. Let x and y be the children of a vertex v of T .
Fernau et al.’s algorithm would compute the number of crossings cr(x, y) and cr(y, x) between
the connections of T (x) and the connections of T (y) for when x is the left or right child of v,
respectively, in O(n(x) + n(y)) time. For an unrestricted one-sided tanglegram, this can be done
independent of the positions of T (x) and T (y). For T however this would not take into account
the forbidden positions of leaves. Hence, as in our algorithm from Theorem 1, we add the position
of the leftmost leaf of T (v) as additional parameter in the recursion. This adds a factor of n to
the running time and thus, forgoing Fernau et al.’s data structures, results in a total running time
in O(n3). 2

Before describing an FPT algorithm based on restricted geometry-free geophylogenies, let us
consider the example from Fig. 15 again. There the drawing Γ has three sites p1, p2, p3 where p2
lies in the s-area of both p1 and p3. We can get four restricted geometry-free geophylogenies by
requesting that p2 lies to the left or to the right of s1 and of s3. Here one of the instances, G′,
stands out, namely where p2 lies to the left of s1 and to the right of s3; see Fig. 18a. In the
restricted one-sided tanglegram T ′ corresponding to G′, we would want p2 left of p1 and right
of p3. This stands in conflict with p1 being left of p3 based on their indices. We thus say p1, p2,
and p3 form a conflicting triple ⟨p1, p2, p3⟩, which we resolve as follows. Note that s1 and s3 cross
for any valid leaf order for G′. We thus use the order p3, p2, p1 for T ′ (see Fig. 18b) and, since T ′

does not contain the crossing of s′1 and s′3, we add one extra crossing to the computed solution. A
conflicting triple for drawings with po-leaders is defined analogously.
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1 3
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�A1 �A3 �A3

(a) Restricted geometry-free geophylogeny
with conflicting triple ⟨p1, p2, p3⟩. Note that
s1 and s3 cross for any valid leaf order.

�A1 �A3 �A3

123

Tfix

Tvari

(b) Restricted one-sided tanglegram T ′ with
order p3, p2, p1. Note that s′1 and s′3 do not
cross for any valid leaf order.

Figure 18: A conflicting triple in a restricted geometry-free instance requires a different order in
the corresponding restricted one-sided tanglegram and storing the “lost” crossing.

Theorem 5. Given a geophylogeny G on n taxa and with k undecided pairs of sites, a drawing Γ
of G with minimum number of crossings can be computed in O(2k · (k2+n3)) time, for both s- and
po-leaders.

Proof: Our FPT algorithm converts G into up to 2k restricted geometry-free instances, solves the
corresponding restricted one-sided tanglegrams with Lemma 1, and then picks the leaf order that
results in the least leader crossings for Γ. Therefore, for each undecided pair ⟨pi, pj⟩, the algorithm
tries routing si either to the left of or to the right of pj . Since there are k such pairs, there are 2k

different combinations. However, for some combinations a drawing might be over restricted and
no solution exists.

To go through all possible combinations, we branch for each of the k undecided pairs ⟨pi, pj⟩,
whether si is to the left or to the right of pj . Let ω encode one sequence of k such decisions.
Below we show how to construct the restricted geometry-free instances Gω and the corresponding
restricted one-sided tanglegram Tω in O(k2 + n2) time. Since the number of crossings in the
restricted geometry-free drawing can then be minimized in O(n3) time with Lemma 1, the claim
on the running time follows.

In order to construct Γω efficiently, we keep track of the positions where a leaf ℓi, for i ∈
{1, . . . , n}, can be placed with an interval [ai, bi]; at the start we have ai = 0 and bi = n. Suppose
that when going through the k pairs and for the current ω, we get that si becomes restricted by,
say, having to be left of a site pj . Then we compute the rightmost position where ℓi could be placed
and update bi accordingly. This can both be done in constant time. If at any moment ai > bi,
then the drawing for ω is over restricted and there is no viable leaf order. We then continue with
the next combination. Otherwise, after all k pairs, we have restricted G to Gω in O(k) time.

Next, we explain how to find an order of P for Tω that corresponds to Gω. In particular, we
have to show that resolving all conflicting triples as described above in fact yields an order of P .
To this end, let K be the complete graph with vertex set P . (We assume again the same order on
the sites as in Proposition 4.) For any two sites pi, pj ∈ P with i < j, we orient {pi, pj} as (pj , pi)
if ⟨pi, pj⟩ is an undecided pair and si is right of pj in Gω; otherwise we orient it as (pi, pj). We
then check whether any pair of undecided pairs forms a conflicting triple. For any conflicting
triple ⟨pi, pj , pl⟩ that we find, we reorient the edge between pi and pl to (pl, pi). We claim that K
is acyclic (and prove it below). Therefore we can use a topological order of K as order for Tω.
For i ∈ {1, . . . , n}, we set the dynamic programming values for leaf ℓi at all positions in Tω outside



48 J. Klawitter et al. Visualizing Geophylogenies

of [ai, bi] to infinity. We can find all conflicting triples in O(k2) time, construct and orient K
in O(n2) time, and initialize T in O(n2) time.

Lastly, we show that K is indeed acyclic after resolving all conflicting triples. Suppose to the
contrary that there is a directed cycle C ′ in K. Since the underlying graph of K is the complete
graph, there is then also a directed triangle C in K. To arrive at a contradiction, we show that C
cannot have 0, 1, 2, or 3 reoriented edges. Let C be on pi, pj , pl with edges (pi, pj), (pj , pl),
and (pl, pi).

C contains 0 reoriented edges: Since pi, pj , and pl do not form a conflicting triple, an easy
geometric case distinction shows that this is not geometrically realizable. For example, if, say, pi
is lower than pj and pj is lower than pl, then pj is right of si and pl is right of sj . However, then pl
cannot be left of si and pi cannot be right of sl; see Fig. 19a.

i

l

j

(a) If C contains no reoriented
edge and pi, pj , pl are not a con-
flicting triple, then there is no ge-
ometric realization respecting C;
here (pl, pi) is not realized.

j

il

m

j

il

m

(b) If C contains one reoriented
edge (pi, pj), there is no place-
ment of pl respecting C where pl
is not part of a conflicting triple
with pm and pi (as here) or pj .

j
i

l

(c) If C contains two reoriented
edges (pi, pj) and (pj , pl), we get
that pl must lie right of si.

Figure 19: Cases for the proof of Theorem 5 where the directed triangle C with
edges (pi, pj), (pj , pl), and (pl, pi) is supposed to contains no, one, or two reoriented edges. Colored
cones represent a hypothetical possible range for the leader of the corresponding site.

C contains 1 reoriented edge: Suppose that (pi, pj) has been reoriented as part of a con-
flicting triple with pm. We show that pm also lies in the s-area (po-area) of pl: If pi or pj lies
in the s-area (po-area) of pl, then so does pm by transitivity. Assuming otherwise, ⟨pl, pj⟩ and
⟨pl, pi⟩ cannot be undecided pairs. Therefore (pl, pi) implies that either ⟨pi, pl⟩ is an undecided
pair, meaning pl is left of si, or that l < i, meaning pl lies left of pi. Analogously, (pj , pl) implies
that pl lies right of sj or right of pj (or both). Taken together, pl lies “between” sj and si as well
as below the crossing of si and sj ; see Fig. 19b. On the other hand, pm lies lies “between” si and
sj as well as above the crossing. Therefore, pm lies in the s-area (po-area) of pl. However, then
based on the orientation of (pj , pl), and (pl, pi), we get that pl must form a conflict triple with pm
and either pi or pj . This stands in contradiction to C containing only one reoriented edge.

C contains 2 reoriented edges: Suppose that (pi, pj) and (pj , pl) have been reoriented. We
then know that si and sj as well as sj and sl definitely cross. Therefore, pi lies right of sj (or the
line through sj) and that pj lies left of si (or the line through si). Analogously, pj lies right of sj
(or the line through sl), and that pl lies left of sj (or the line through sj). Since (pl, pi) has not
been reoriented, we know that si and sl do not necessarily need to cross. For sl to cross sj but
not si, we get that pl can only lie right of si; see Fig. 19c. This stands in contradiction to the
orientation of (pl, pi).

C contains 3 reoriented edges: Since all three edges of C have been reoriented, this is
geometrically equivalent to the first case and thus not realizable.

This concludes the proof that there is no directed triangle in K and hence K is acyclic. Our
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FPT algorithm can thus process each of the 2k words in O(k2 + n2) time. 2

Note that a single site can lie in the s-area of every other site, for example, this is likely for a
site that lies very close to the top of the map. Furthermore, there can be O(n2) undecided pairs. In

these cases, the running time of the FPT algorithm becomes O(2nn2) or even O(2(n
2)n4). However,

a brute-force algorithm that tries all 2n−1 embeddings of T and computes for each the number of
leader crossings in O(n2) time, only has a running time in O(2nn2).

4.5 Integer Linear Programming

As we have seen above, the problem of minimizing the number of leader crossings in drawings
of geophylogenies is NP-hard and the preceding algorithms can be expected to be impractical on
realistic instances. We now provide a practical method to exactly solve instances of moderate size
using integer linear programming (ILP).

For the following ILP, we consider an arbitrary embedding of the tree as neutral and describe
all embeddings in terms of which internal vertices of T are rotated with respect to this neutral
embedding, i.e. for which internal vertices to swap the left-to-right order of their two children. For
two sites pi and pj , we use pi ≺ pj to denote that ℓi is left of ℓj in the neutral embedding. Let U be
the set of undecided pairs, that is, all ordered pairs (p, q) where q lies inside the s-area of p; note
that these are ordered pairs. We further assume that position i corresponds to the x-coordinates i.

Variables and Objective Function. The program has three groups of binary variables that
describe the embedding and crossings.

ρu ∈ {0, 1} ∀u ∈ I(T ). Rotate internal vertex u if ρu = 1 and keep its neutral embedding if ρu = 0.
Note that rotating the lowest common ancestor of leaves ℓi and ℓj is the only way to flip
their order, so for convenience we write ρij to mean ρlca(i,j). Note, however, that an internal
vertex can be the lowest common ancestor of multiple pairs of leaves.

dpq ∈ {0, 1} ∀(p, q) ∈ U . For each undecided pair (p, q): the leader for p should pass to the left
of the site q if dpq = 0 and to the right if dpq = 1. This is well-defined since the pair is
undecided.

χpq ∈ {0, 1} ∀p, q ∈ P, p < q. For each pair of distinct sites: the leaders of p and q are allowed to
cross if χpq = 1 and are not allowed to cross if χpq = 0.

There is no requirement that non-crossing pairs have χpq = 0, but that will be the case in an
optimal solution: to minimize the number of crossings, we minimize the sum over all χpq.

Constraints. We handle geometry-free pairs and undecided pairs separately.
Consider a geometry-free pair of sites: if the leaders cross in the neutral embedding, we must

either allow this, or rotate the lowest common ancestor. Conversely, if they do not cross neutrally,
yet we rotate the lowest common ancestor, then we must allow their leaders to cross. Call these
sets of pairs Frotate and Fkeep respectively, for how to prevent the crossing.

χij + ρij ≥ 1 ∀(i, j) ∈ Frotate (2)

χij − ρij ≥ 0 ∀(i, j) ∈ Fkeep (3)
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For undecided pairs (p, q), a three-way case distinction on [p ≺ q], ρpq, and dpq reveals the
following geometry:

� pairs with p ≺ q have crossing leaders if and only if ρpq + dpq = 1;

� pairs with p ≻ q have crossing leaders if and only if ρpq + dpq ̸= 1.

Recall that we do not force χ to be zero if there is no intersection, only that it is 1 if there is an
intersection. We implement these conditions in the ILP as follows. Let Uleft ⊆ U be the undecided
pairs with p ≺ q.

ρpq − dpq ≤ χpq ∀(p, q) ∈ Uleft (4)

dpq − ρpq ≤ χpq ∀(p, q) ∈ Uleft (5)

Conversely, let Uright ⊆ U be the undecided pairs with p ≻ q.

ρpq + dpq − 1 ≤ χpq ∀(p, q) ∈ Uright (6)

1− ρpq − dpq ≤ χpq ∀(p, q) ∈ Uright (7)

Finally, we must ensure that each leader si respects the d variables: the line segment from pi to ℓi
must pass by each other site in the s-area on the correct side. By their definition, this does not
affect geometry-free pairs, but it remains to constrain the leaf placement for undecided pairs.

Observe that the ρ variables together fix the leaf order, since they fix the embedding of T . Let
Li(ρ) be the function that gives the x-coordinate of ℓi given the ρ variables. Note that Li is linear
in each of the ρ variables: rotating an ancestor of ℓi shifts its location leaf by a particular constant,
and rotating a non-ancestor does not affect it.

pi

x∗(i, j)

pj

(a) s-leaders

pi

x∗(i, j)

pj

(b) po-leaders

Figure 20: Defining x∗(i, j) by extending a leader from si through sj This partitions the leaf
positions into those where the leader goes left of sj and those where it goes right.

For an undecided pair (pi, pj), consider a leader starting at pi and extending up through pj :
for s-leaders this is the ray from pi through pj , for po-leaders this is the vertical line through pj .
Let x∗(i, j) be the x-coordinate of where this extended leader intersects the top of the map and
note that this is a constant; see Fig. 20b. If dij = 0, then ℓi must be to the left of this intersection;
if dij = 1, it must be to the right. We model this in the ILP with two constraints and the big-M
method, where it suffices to set M = n.

Li(ρ)− dijM ≤ x∗(i, j) ∀(pi, pj) ∈ U (8)

Li(ρ) + (1− dij)M ≥ x∗(i, j) ∀(pi, pj) ∈ U (9)

This completes the ILP.
The number of variables and constraints are both quadratic in n. Just counting the χ variables

already gives this number, but we note that in particular the number of undecided pairs leads to
additional variables (and seemingly more complicated constraints).
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4.6 Heuristics

Since the ILP from the previous section can be slow in the worst case and requires advanced solver
software, we now suggest a number of heuristics.

Bottom-Up. First, we use a dynamic program similar to the one in Section 3 and commit to
an embedding for each subtree while going up the tree. At this point we note that counting the
number of crossings is not a leaf additive quality measure in the sense of Section 3. However,
Eq. (1) does enable us to introduce an additional cost based on where an entire subtree is placed
and where its sibling subtree is placed – just not minimized over the embedding of these subtrees.
More precisely, for an inner vertex v of T with children x and y, let C(x, y, i) be the number of
crossings between T (x) and T (y) when placed starting at position i and i+n(x) respectively; this
can be computed in O(n(v)2) time. Note that this ignores any crossings with leaders from other
parts of the tree. With base case H(ℓ, i) = 0 for every leaf ℓ, we use

H(v, i) = min{ H(x, i) +H(y, i+ n(x)) + C(x, y, i), H(y, i) +H(x, i+ n(y)) + C(y, x, i) }

to pick a rotation of T (v). Since H can be evaluated in O(n2) time, the heuristic runs in O(n4)
time total. The example in Fig. 21 demonstrates that this does not minimize the total number
of crossings.

yx
v

(a) When T (x) and T (y) each
have zero crossings, . . .

xy
v

(b) . . . then T (v) has two cross-
ings.

yx
v

(c) The optimal leaf order
for T (v) has one crossing
in T (x).

Figure 21: The bottom-up heuristic is not always optimal: combining the locally best leaf orders
for T (x) and T (y) might not result in the minimum number of leader crossings for T (v).

Top-Down. The second heuristic traverses T from top to bottom (i.e. in pre-order) and chooses
a rotation for each inner vertex v based on how many leaders would cross the vertical line between
the two subtrees of v; see Fig. 22. More precisely, suppose that T (v) has its leftmost leaf at
position i based on the rotations of the vertices above v. For x and y the children of v, consider
the rotation of v where T (x) is placed starting at position i and T (y) is placed starting at position
i + n(x). Let s be the x-coordinate in the middle between the last leaf of T (x) and the first leaf
of T (y). We compute the number of leaders of T (v) that cross the vertical line at s and for the
reserve rotation of v; the smaller result is chosen and the rotation fixed. This procedure considers
each site at most O(n) times and thus runs in O(n2) time.

Leaf-Additive Dynamic Programming. Thirdly, we could optimize any of the quality mea-
sures for interior labeling (Section 3). These measures produce generally sensible leaf orders in
quadratic time and we may expect the number of leader crossings to be low.
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y
x

v

s

(a) T (x) and T (y) have one site each on the
other side of the vertical line through s.

v

x
y

s

(b) T (x) has one and T (y) has two sites on the
other side of the vertical line through s.

Figure 22: The top-down heuristic tries both rotations of v and here would pick (a).

Greedy (Hill Climbing). Finally, we consider a hill climbing algorithm that, starting from
some leaf order, greedily performs rotations that improve the number of crossings. This could
start from a random leaf order, a hand-made one, or from any of the other heuristics. Evaluating
a rotation can be done in O(n2) time and thus one round through all vertices runs in O(n3) time.

5 Experimental Evaluation

In this section, we evaluate the practical performance of our proposed ILP formulation and heuris-
tics on both synthetic and real-world instances. The experiments aim to assess the solution quality,
relative performance, and computational efficiency of the methods. Both the code and test data
are available online1.

5.1 Test Data

We use three procedures to generate random instances. For each type and with 10 to 100 taxa
(in increments of 5), we generated 10 instances; we call these the synthetic instances. We stop at
100 since geophylogeny drawings with more taxa are rarely well readable. Example instances are
shown in Fig. 23.

Uniform Place n sites on the map uniformly at random. Generate the phylogenetic tree by
repeating the following merging procedure. Pick an unmerged site or a merged subtree
uniformly at random, then pick a second with probability distributed by inverse distance to
the first, and merge them; as reference point for the sites of a subtree, we take the median
coordinate on both axes.

Coastline Initially place all sites equidistantly on a horizontal line, then slightly perturb the x-
coordinates. Next, starting at the central site and going outwards in both directions, change
the y-coordinate of each site randomly (up to 1.5 times the horizontal distance) from the
y-coordinate of the previous site. Construct the tree as before.

Clustered These instances group multiple taxa into clusters. First a uniformly random number
of sites between three and ten is allocated for a cluster and its center is placed at a uniformly
random point on the map. Then for each cluster, we place sites randomly in a disk around

1GitHub geophylo repository github.com/joklawitter/geophylo

https://www.github.com/joklawitter/geophylo
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the center with size proportional to the cluster size. Construct T as before, but first for each
cluster separately and only then for the whole instance.

In addition, we consider three real world instances derived from published drawings. Fish is a
14-taxon geophylogeny by Williams and Johnson [51] with 24 undecided pairs (26% of possible
pairs), which could be reduced to 14 by rotating the map. Lizards is a 20-taxon geophylogeny by
Jauss et al. [28], where the sites are mostly horizontally dispersed, resulting in 38 undecided pairs
(20%, see Fig. 2b). Frogs is a 64-taxon geophylogeny by Ellepola et al. [20], where the sites are
rather chaotically dispersed on the map; the published drawing of Frogs uses s-leaders and has
over 680 crossings.
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Figure 23: Examples of generated instances with 20 taxa, here shown with s-leaders. The leaf
order was computed with the Greedy hill climber.

5.2 Experimental Results

We now describe the main findings from our computational experiments.

The ILP is fairly quick for s-leaders. Our implementation uses Python to generate the ILP
instance and Gurobi 10 to solve it; we ran the experiments on a 10-core Apple M1 Max processor.
The Python code takes negligible time; practically all time is spent in the ILP solver. As expected,
we observe that the running time is exponential in n, but only moderately so (Fig. 24). Instances
with up to about 50 taxa can usually be solved optimally within a second, but for Clustered and
Uniform instances the ILP starts to get slow at about 100 taxa. We note that geophylogenies
with over 100 taxa should probably not be drawn with external labeling: for example, the Frogs
instance can be drawn optimally by the ILP in about 0.5 s, but even though this improves the
number of crossings from the published 680 to the optimal 609, the drawing is so messy as to be
unreadable (Fig. 26b). We further observe that Coastline instances are solved trivially fast, since
with fewer undecided pairs the ILP is smaller and presumably easier to solve.
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Figure 24: Computing optimal s-leader drawings using the ILP.

The ILP is noticeably slower for po-leaders. Instances with up to 25 taxa are still drawn
comfortably within a second, but at 50 taxa the typical runtime is over a minute. We conjecture
this is due to the increased number of undecided pairs when working with po-leaders.

The synthetic instances have a superlinear number of crossings. The Clustered instances
can be drawn with significantly fewer crossings than Uniform: this matches our expectation, as by
construction there is more correlation between the phylogenetic tree and the geography of the sites.
More surprisingly we find that the Coastline instances require many crossings. We may have made
these geophylogenies too noisy, but this observation does warn of the generally quadratic growth in
the number of crossings, which makes external labeling unsuitable for large geophylogenies unless
the geographic correlation is exceptionally good.

The heuristics run instantly and Greedy is often optimal. The heuristics are implemented
in single-threaded Java code; we ran the experiments on an average 4-core laptop. Bottom-Up,
Top-Down and Leaf-Additive all run instantly. Even the Greedy hill climber finds a local optimum
in a fraction of a second, both when starting with a random leaf order or from any of the other
heuristics. Of the first three heuristics, Bottom-Up consistently achieves the best results for both s-
and po-leaders. Comparing the best solution by these heuristics with the optimal drawing (Fig. 25),
we observe that the number crossings in excess of the optimum increases with the number of taxa,
in particular for Uniform and Clustered instances; Coastline instances are always drawn close to
optimally by at least one heuristic. The Greedy hill climber almost always improves this to an
optimal solution.

For the number of crossings, po-leaders are promising. Our heuristics require on average
only about 73% as many crossings when using po-leaders compared to s-leaders (55% for Coastline
instances); the Lizard example in Fig. 2b requires 11 s-leader crossings but only 2 po-leader
crossings. We therefore propose that po-leaders deserve more attention from the phylogenetic
community.
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Figure 25: Average number of s-leader crossings made by the best heuristic minus the number of
s-leader crossings in the optimal drawing, averaged over 10 random instances per value of n.

Algorithmic recommendations. Our results show that the ILP is a good choice for geo-
phylogeny drawings with external labeling. If no solver software is at hand or it is technically
challenging to set up (for example when making an app that runs locally in a user’s web browser),
then the heuristics offer an effective and efficient alternative, especially Bottom-Up and Greedy.

For the Fish instance, for example, we found that the drawing with s-leaders and 17 crossings in
Fig. 26a is a good alternative to the internal labeling used in the published drawing [51]. However,
for instances without a clear structure or with many crossings, it might be better to use internal
labeling. Alternatively, the tree could be split like Tobler et al. [48], such that different subtrees
are each shown with the map in separate drawings.

6 Discussion and Open Problems

In this paper, we have shown that drawings of geophylogenies can be approached theoretically
and practically as a problem of algorithmic map labeling. We formally defined a drawing style
for geophylogenies that uses either internal labeling with text or colors, or that uses external
labeling with s/po-leaders. This allowed us to define optimization problems that can be tackled
algorithmically. For drawings with internal labeling, we introduced a class of quality measures that
can be optimized efficiently and even interactively provided with user hints. In practice, designers
can thus try different quality measures, pick their favorite, and make further adjustments easily
even for large instances. For external labeling, minimizing the number of leader crossings is NP-
hard in general. Crossing free-instances on the hand can be found in polynomial time, yet our
algorithm still runs only in O(n6) time. Furthermore, for drawings with s-leaders, we showed
that if the sites lie relatively close to a horizontal line then in the best scenario an O(n log n)-
time algorithm and otherwise an FPT algorithm can be used. While we found similar results
for drawings with po-leaders, it seems unlikely that geophylogenies arising in practice have the
required properties. Hence, we provide multiple algorithmic approaches to solve this problem and
demonstrated experimentally that they perform well in practice.
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(a) Drawing of Fish with 17 crossings. (b) Drawing of Frogs with 609 crossings.

Figure 26: Crossing-optimal drawings of Fish and Frogs with s-leaders.

Even though we have provided a solid base of results, we feel the algorithmic study of geophy-
logeny drawings holds further promise by varying, for example, the type of leader used, the quality
measure, the composition of the drawing, or the nature of the phylogeny and the map. Several of
these directions show parallels to the variations found in boundary labeling problems. We finish
this paper with several suggestions for future work.

One might consider do- and pd-leaders, which use a diagonal segment and can be aesthetically
pleasing; see Fig. 27. We expect that some of our results (such as the NP-hardness of crossing
minimization and the effectiveness of the heuristics) should hold for these leader types. The
boundary labeling literature [7] studies even further types, such as opo and Bézier, and these
might be more challenging to adapt.

Figure 27: Drawing of a geophylogeny with do- and pd-leaders.

For external labeling we have only considered the total number of crossings. If different colors
are used for the leaders of different clades or if the drawing can be explored with an interactive
tool, one might want to minimize the number of crossings within each clade (or a particular clade).
Furthermore, one might optimize crossing angles or insist on a minimum distance between leaders
and unrelated sites. While we provided heuristics to minimize leader crossings, the development
of approximation algorithms, which exist for other labeling problems [5, 36], could be of interest.

Our model of a geophylogeny drawing can be expanded as well. One might allow the orientation
of the map to be freely rotated, the extent of the map to be changed, or the leaves to be placed
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non-equidistantly. Optimizing over these additional freedoms poses new algorithmic challenges.
Straying further from our model, some drawings in the literature have a circular tree around the
map [30,41]; see Fig. 28. This is similar to contour labeling in the context of map labeling [38]. Also
recall that Fig. 1 has area features. Our quality measures for internal labeling are easily adapted to
handle this, but (as is the case with general boundary labeling [6]) area features provide additional
algorithmic challenges for external labeling. The literature contains many drawings where multiple
taxa correspond to the same feature on the map [14] (see also again Fig. 28) and where we might
want to look to many-to-one boundary labeling [4, 36]. Furthermore, one can consider non-binary
phylogenetic trees and phylogenetic networks.

Figure 28: A drawing of a geophylogeny by Pan et al. [41], where the tree is drawn circularly
around the map and instead of a site per taxa only regions for clades are given.

Lastly, we note that side-by-side drawings can also be used for a phylogenetic tree together with
a diagram other than a map: Chen et al. [16] combine it with a scatter plot; Gehring et al. [23]
even combine three items (phylogenetic tree, haplotype network, and map).
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[17] T. Depian, M. Nöllenburg, S. Terziadis, and M. Wallinger. Constrained boundary labeling. In
J. Mestre and A. Wirth, editors, International Symposium on Algorithms and Computation
(ISAAC), volume 322 of LIPIcs, pages 26:1–26:16. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2024. doi:10.4230/LIPIcs.ISAAC.2024.26.

[18] A. W. M. Dress and D. H. Huson. Constructing splits graphs. Transactions on Computational
Biology and Bioinformatics, 1(3):109–115, 2004. doi:10.1145/1041503.1041506.

[19] T. Dwyer and F. Schreiber. Optimal leaf ordering for two and a half dimensional phylogenetic
tree visualisation. In N. Churcher and C. Churcher, editors, Australasian Symposium on In-
formation Visualisation, volume 35 of CRPIT, pages 109––115. Australian Computer Society,
2004. doi:10.5555/1082101.1082114.

[20] G. Ellepola, J. Herath, K. Manamendra-Arachchi, N. Wijayathilaka, G. Senevirathne,
R. Pethiyagoda, and M. Meegaskumbura. Molecular species delimitation of shrub frogs
of the genus Pseudophilautus (Anura, Rhacophoridae). PLOS ONE, 16(10):1–17, 2021.
doi:10.1371/journal.pone.0258594.

[21] H. Fernau, M. Kaufmann, and M. Poths. Comparing trees via crossing minimization. Journal
of Computer and System Sciences, 76(7):593–608, 2010. doi:10.1016/j.jcss.2009.10.014.

[22] M. R. Garey and D. S. Johnson. Computers and intractability, volume 174. freeman San
Francisco, 1979.

[23] P.-S. Gehring, M. Pabijan, J. E. Randrianirina, F. Glaw, and M. Vences. The influence of
riverine barriers on phylogeographic patterns of malagasy reed frogs (Heterixalus). Molecular
Phylogenetics and Evolution, 64(3):618–632, 2012. doi:10.1016/j.ympev.2012.05.018.

[24] S. Hadlak, H. Schumann, and H. Schulz. A survey of multi-faceted graph visualization. In
R. Borgo, F. Ganovelli, and I. Viola, editors, Eurographics Conference on Visualization (Eu-
roVis), pages 1–20. Eurographics Association, 2015. doi:10.2312/eurovisstar.20151109.

[25] D. H. Huson. Drawing Rooted Phylogenetic Networks. IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics, 6(1):103–109, 2009. doi:10.1109/TCBB.2008.58.

[26] D. H. Huson and D. Bryant. Application of Phylogenetic Networks in Evolutionary Studies.
Molecular Biology and Evolution, 23(2):254–267, 2005. doi:10.1093/molbev/msj030.

[27] D. H. Huson, R. Rupp, and C. Scornavacca. Phylogenetic Networks: Concepts, Algorithms
and Applications. Cambridge University Press, 2010.

https://doi.org/10.21425/F5FBG49120
https://doi.org/10.1093/bioinformatics/btv269
https://doi.org/10.1093/bioinformatics/btv269
https://doi.org/10.1186/s12983-021-00387-z
https://doi.org/10.4230/LIPIcs.ISAAC.2024.26
https://doi.org/10.1145/1041503.1041506
https://doi.org/10.5555/1082101.1082114
https://doi.org/10.1371/journal.pone.0258594
https://doi.org/10.1016/j.jcss.2009.10.014
https://doi.org/10.1016/j.ympev.2012.05.018
https://doi.org/10.2312/eurovisstar.20151109
https://doi.org/10.1109/TCBB.2008.58
https://doi.org/10.1093/molbev/msj030


60 J. Klawitter et al. Visualizing Geophylogenies

[28] R.-T. Jauss, N. Solf, S. R. R. Kolora, S. Schaffer, R. Wolf, K. Henle, U. Fritz, and
M. Schlegel. Mitogenome evolution in the Lacerta viridis complex (Lacertidae, Squamata)
reveals phylogeny of diverging clades. Systematics and Biodiversity, 19(7):682–692, 2021.
doi:10.1080/14772000.2021.1912205.

[29] W. Javed and N. Elmqvist. Exploring the design space of composite visualization. In
H. Hauser, S. G. Kobourov, and H. Qu, editors, IEEE Pacific Visualization Symposium (Paci-
ficVis), pages 1–8, 2012. doi:10.1109/PacificVis.2012.6183556.

[30] M. Karmin, R. Flores, L. Saag, G. Hudjashov, N. Brucato, C. Crenna-Darusallam, M. Larena,
P. L. Endicott, M. Jakobsson, J. S. Lansing, H. Sudoyo, M. Leavesley, M. Metspalu, F.-
X. Ricaut, and M. P. Cox. Episodes of diversification and isolation in Island Southeast
Asian and Near Oceanian male lineages. Molecular Biology and Evolution, 39(3), 2022. doi:
10.1093/molbev/msac045.

[31] D. M. Kidd and X. Liu. geophylobuilder 1.0: an arcgis extension for creating ‘geophylogenies’.
Molecular Ecology Resources, 8(1):88–91, 2008. doi:10.1111/j.1471-8286.2007.01925.x.

[32] J. Klawitter, F. Klesen, M. Niederer, and A. Wolff. Visualizing multispecies coalescent trees:
Drawing gene trees inside species trees. In L. Gasieniec, editor, Current Trends in Theory and
Practice of Computer Science (SOFSEM), volume 13878 of LNCS, pages 96–110. Springer,
2023. doi:10.1007/978-3-031-23101-8_7.

[33] J. Klawitter, F. Klesen, J. Y. Scholl, T. C. van Dijk, and A. Zaft. Visualizing geophylogenies
– internal and external labeling with phylogenetic tree constraints. In R. Beecham, J. Long,
D. Smith, Q. Zhao, and S. Wise, editors, GIScience, volume 277 of LIPIcs, pages 5:1–5:6,
2023. doi:10.4230/LIPIcs.GIScience.2023.5.

[34] J. Klawitter and P. Stumpf. Drawing tree-based phylogenetic networks with minimum number
of crossings. In D. Auber and P. Valtr, editors, Graph Drawing and Network Visualization
(GD), volume 12590 of LNCS, pages 173–180, 2020. doi:10.1007/978-3-030-68766-3_14.

[35] N. Lazzari, M. A. Becerro, J. A. Sanabria-Fernandez, and B. Mart́ın-López. Spatial char-
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