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Abstract. We introduce and study reconfiguration problems for (internally) vertex-
disjoint shortest paths: Given two tuples of internally vertex-disjoint shortest paths
for fixed terminal pairs in an unweighted graph, we are asked to determine whether
one tuple can be transformed into the other by exchanging a single vertex of one
shortest path in the tuple at a time, so that all intermediate results remain tuples
of internally vertex-disjoint shortest paths. We also study the shortest variant of the
problem, that is, we wish to minimize the number of vertex-exchange steps required for
such a transformation, if exists. These problems generalize the well-studied Shortest
Path Reconfiguration problem. In this paper, we analyze the complexity of these
problems from the viewpoint of graph classes, and give some interesting contrast.

1 Introduction

Combinatorial reconfiguration [7] has been extensively studied in the field of theoretical computer
science. One of the most well-studied problems is the reachability variant : we are given two
feasible solutions of a combinatorial search problem, and are asked to determine whether we can
transform one into the other by repeatedly applying a prescribed reconfiguration step so that all
intermediate results are also feasible. This kind of problems has been studied intensively for several
combinatorial search problems. (See surveys [6, 9].)

For example, the Shortest Path Reconfiguration (SPR) problem is defined as follows [8]:
we are given two shortest paths between two specified vertices s and t (called terminals) in an
unweighted graph, and are asked to determine whether or not we can transform one into the
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Figure 1: A sequence of tuples of (internally) vertex-disjoint shortest paths, for terminal pairs
(s1, t1) and (s2, t2), between P = (P1, P2) and Q = (Q1, Q2).

other by exchanging a single vertex in a shortest path at a time, so that all intermediate results
remain shortest paths between s and t. Surprisingly, the problem is PSPACE-complete [2, 11], and
polynomial-time algorithms have been developed for restricted graph classes [1, 2, 3, 4]. (We will
explain these known results in Section 1.1 later.)

1.1 Our problems and related results

In this paper, as generalizations of the SPR problem, we introduce and study reconfiguration
problems for (internally) vertex-disjoint shortest paths in an unweighted graph G. For k terminal
pairs (si, ti), i ∈ {1, 2, . . . , k}, consider a tuple of k paths in G such that the i-th path in the
tuple joins si and ti. Then, the k paths in the tuple are said to be internally vertex-disjoint if the
internal vertices of k paths are all distinct and do not contain any terminal.

We now introduce two reconfiguration problems for vertex-disjoint shortest paths. Suppose
that we are given two tuples P = (P1, P2, . . . , Pk) and Q = (Q1, Q2, . . . , Qk) of internally vertex-
disjoint paths such that each of Pi and Qi is a shortest path in an unweighted graph G joining
two terminals si and ti for all i ∈ {1, 2, . . . , k}. Then, the Reachability of Vertex-Disjoint
Shortest Paths (RVDSP) problem asks to determine whether or not one can transform P into
Q by exchanging a single vertex of one shortest path in the tuple at a time, so that all intermediate
results remain tuples of internally vertex-disjoint shortest paths for k terminal pairs. (See Figure 1
as an example.) Thus, the RVDSP problem for k = 1 is equivalent to the SPR problem. In
addition, we also study the shortest variant of RVDSP, the Shortest Reconfiguration of
Vertex-Disjoint Shortest Paths (SRVDSP) problem which asks to determine whether or not
there is a transformation between P and Q by at most ℓ vertex-exchange steps, for a given integer
ℓ ≥ 0.

Kamiński et al. [8] introduced the SPR problem (i.e., the RVDSP problem for k = 1), and
posed an open question of the complexity of the SPR problem. Bonsma [2] answered by proving
that the SPR problem is PSPACE-complete for bipartite graphs. Since P ⊆ NP ⊆ PSPACE,
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Figure 2: Our results with respect to graph classes. Each arrow represents the inclusion relation-
ship between graph classes: A → B means that the graph class B is a proper subclass of the
graph class A. In addition, we prove that the RVDSP problem is PSPACE-complete for bipartite
graphs, and for bounded bandwidth graphs (Theorem 1), and the SRVDSP problem is solvable
in polynomial time for distance-hereditary graphs and for split graphs if all k terminal pairs are
the same (Theorem 3).

this means that the problem admits no polynomial-time algorithm under the assumption of P ̸=
PSPACE, and furthermore implies that there is a yes-instance that requires super-polynomial steps
for transforming one shortest path to the other under the assumption of NP ̸= PSPACE. These are
somewhat surprising because the problem of finding shortest paths (especially, in an unweighted
graph) is easy. Bonsma [2] posed another open question whether the SPR problem can be solved
in polynomial time for graphs with bounded treewidth. This question was answered negatively
by Wrochna [11]: the SPR problem remains PSPACE-complete even for graphs with bounded
bandwidth. Note that the bandwidth of a graph gives an upper bound on the pathwidth (and
hence the treewidth) of the graph; and hence the PSPACE-completeness holds also for graphs with
bounded treewidth.

On the positive side, the SPR problem has been shown to be solvable in polynomial time when
restricted to graph classes, such as chordal graphs and claw-free graphs [2]; planar graphs [3];
grid graphs [1]; circle graphs, permutation graphs, the Boolean hypercube, bridged graphs, and
circular-arc graphs [4]. Furthermore, the shortest variant of the SPR problem (i.e., the SRVDSP
problem for k = 1) is solvable in polynomial time for chordal graphs [2].

1.2 Our contribution

In this paper, we study the computational complexity of the RVDSP and SRVDSP problems
from the viewpoint of graph classes. Figure 2 summarizes our results. (Throughout the paper, k
denotes the number of terminal pairs.)

We first observe that the RVDSP problem for every fixed k ≥ 1 is PSPACE-complete for
bipartite graphs and bounded bandwidth graphs. On the positive side, we give a polynomial-
time algorithm to solve the RVDSP problem for distance-hereditary graphs and for split graphs.
Interestingly, our algorithm for these two graph classes can be obtained as a corollary of a single
theorem (Theorem 2) by introducing the concept of “st-completeness” of graphs for terminal pairs
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(s, t). Our algorithm is constructive and finds an actual transformation (if exists) that requires
polynomial number of vertex-exchange steps.

We then prove that the SRVDSP problem is NP-complete for split graphs. On the positive
side, we show that the problem is solvable in polynomial time for distance-hereditary graphs and
for split graphs if all k terminal pairs are the same, that is, (s1, t1) = (s2, t2) = · · · = (sk, tk).

Our results give the following interesting contrast:

1. the RVDSP problem is PSPACE-complete for bipartite graphs (Theorem 1), while it is solv-
able in polynomial time for complete bipartite graphs (Corollary 1);

2. for split graphs, the RVDSP problem is solvable in polynomial time (Corollary 1), whereas
the SRVDSP problem is NP-complete (Theorem 4); and

3. the SRVDSP problem for k = 1 is solvable in polynomial time for chordal graphs [2] (thus,
for split graphs), while the SRVDSP problem for general k is NP-complete for split graphs
(Theorem 4).

The rest of this paper is organized as follows. In Section 2, we provide some notation and
terminology used in this paper. In Section 3, we present a polynomial-time algorithm for distance-
hereditary graphs and for split graphs. In Section 4, we deal with the SRVDSP problem. Finally,
in Section 5, we conclude the paper with some open questions.

2 Preliminaries

In this paper, we assume that graphs are simple and unweighted. For a graph G, we denote by
V (G) and E(G) the vertex and edge sets of G, respectively. Let n = |V (G)| and m = |E(G)|
throughout the paper. For u, v ∈ V (G), a path in G joining u and v is called a uv-path. We denote
by dG(u, v) the minimum number of edges in any uv-path in G; we sometimes omit the subscript
G if it is clear from the context. The diameter of G is the maximum dG(u, v) among any two
vertices u, v in G. For two sets A and B, we denote by A△B the symmetric difference of A and
B, that is, (A \B) ∪ (B \A).

Let k be a positive integer, and let (si, ti) be a pair of vertices in G, called terminals, for
i ∈ {1, 2, . . . , k}. Then, k paths P1, P2, . . . , Pk in G are said to be internally vertex-disjoint if Pi
is an siti-path in G for each i ∈ {1, 2, . . . , k}, and the internal vertices of k paths are all distinct
and do not contain any terminal. Note that internally vertex-disjoint paths may share terminals.
In the following, we call internally vertex-disjoint paths simply vertex-disjoint paths. For a tuple
P = (P1, P2, . . . , Pk) of vertex-disjoint paths, let V (P) =

⋃k
i=1 V (Pi).

In this paper, we consider only shortest siti-paths in G, i ∈ {1, 2, . . . , k}. For two tuples
P = (P1, P2, . . . , Pk) and P ′ = (P ′

1, P
′
2, . . . , P

′
k) of vertex-disjoint shortest paths, we write P ↔

P ′ if
∑k
i=1|V (Pi) △ V (P ′

i )| = 2; in other words, P ′ can be obtained from P by exchanging a
single (internal) vertex in some shortest path Pi with a vertex that is not contained in V (P).
A sequence ⟨P0,P1, . . . ,Pℓ⟩ of tuples of vertex-disjoint shortest paths is called a reconfiguration
sequence between P0 and Pℓ if Pr−1 ↔ Pr for all r ∈ {1, 2, . . . , ℓ}. The length of a reconfiguration
sequence ⟨P0,P1, . . . ,Pℓ⟩ is defined to be ℓ. We now define two following problems.

Reachability of Vertex-Disjoint Shortest Paths (RVDSP)
Input: An unweighted graph G, and two tuples P and Q of vertex-disjoint shortest paths

for k terminal pairs (si, ti).
Task: Determine if there is a reconfiguration sequence between P and Q.
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Shortest Reconfiguration of Vertex-Disjoint Shortest Paths (SRVDSP)
Input: An unweighted graph G, two tuples P and Q of vertex-disjoint shortest paths for k

terminal pairs (si, ti), and an integer ℓ ≥ 0.
Task: Determine if there is a reconfiguration sequence between P and Q of length at most

ℓ.

Note that both RVDSP and SRVDSP problems are decision problems, and do not ask for
an actual reconfiguration sequence as an output. We sometimes denote simply by (G,P,Q) an
instance of the RVDSP problem, and by (G,P,Q, ℓ) an instance of the SRVDSP problem.

Definitions of layers and st-completeness

For two distinct vertices s, t ∈ V (G) and j ∈ {0, 1, . . . , d(s, t)}, we define

Lj = {v ∈ V (G) | d(s, v) = j, d(s, v) + d(v, t) = d(s, t)}. (1)

We call Lj the j-th st-layer, that is, Lj is the set of vertices v such that d(s, v) = j and v is
contained in some shortest st-path. Note that L0 = {s} and Ld(s,t) = {t}. We denote by Gst the

subgraph of G induced by all st-layers Lj , j ∈ {0, 1, . . . , d(s, t)}. Then, any shortest st-path in
G is contained in Gst. We say that G is st-complete if every vertex in Lj is adjacent in G to all
vertices in Lj+1 for all j ∈ {0, 1, . . . , d(s, t)− 1}. We have the following lemma.

Lemma 1 For two vertices s, t ∈ V (G), one can construct Gst and check whether G is st-complete
in O(m+ n) time.

Proof: We first show that Gst can be constructed in O(m + n) time. Since G is an unweighted
graph, Eq. (1) says that the vertices in the layers Lj , j ∈ {0, 1, . . . , d(s, t)}, can be determined by
computing d(s, v) and d(t, v) for every vertex v ∈ V (G). This can be done by the breadth-first
search starting from s and t, and hence we can construct Gst in O(m+ n) time.

We then present a linear-time algorithm to check if G is st-complete. When we construct the
graph Gst, we attach the label j to all vertices in Lj , j ∈ {0, 1, . . . , d(s, t)}. Then, by the breadth-
first search starting from s, we can count the number of edges joining the currently visiting vertex
u ∈ Lj and the vertices v ∈ Lj+1, j ∈ {1, 2, . . . , d(s, t) − 2}. If the number of such edges is equal
to |Lj+1| for every vertex u ∈ Lj , then G is st-complete; otherwise not. 2

The st-completeness of a graph G is a useful property, because we can forget the structure of G
in the following sense: if we choose exactly one vertex from each st-layer Lj , j ∈ {0, 1, . . . , d(s, t)},
the set of the chosen vertices always forms a shortest st-path in G.

3 Reachability variant

Recall that the RVDSP problem for k = 1 (i.e., the SPR problem) is PSPACE-complete for
bipartite graphs [2], and for graphs with bounded bandwidth [11]. By introducing dummy vertex-
disjoint shortest paths, one can observe the following hardness results.

Theorem 1 For every fixed k ≥ 1, the RVDSP problem is PSPACE-complete for bipartite graphs,
and for graphs of bounded bandwidth.

The main result of this section is the following theorem, whose proof will be given in Subsec-
tions 3.1 and 3.2.
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Figure 3: Illustration for the proof of Corollary 1 for distance-hereditary graphs.

Theorem 2 Let G be a graph of diameter d as an input of the RVDSP problem such that G is
st-complete for all k terminal pairs. Then, the RVDSP problem is solvable in O(mk+ndk2) time.
Furthermore, in the same running time, one can find a reconfiguration sequence of length O(d2k2)
if exists.

From Theorem 2, one can show that the RVDSP problem is solvable in polynomial time for
some graph classes, as in the following corollary. A graph G is split if V (G) can be partitioned
into a clique and an independent set. A graph G is distance hereditary if dG(u, v) = dG′(u, v) for
every connected induced subgraph G′ of G and all u, v ∈ V (G′).

Corollary 1 The RVDSP problem is solvable in polynomial time for split graphs, and for distance-
hereditary graphs.

Proof: We first prove the claim for split graphs. Consider a split graph G such that V (G) can
be partitioned into a clique C and an independent set I. Then, according to the placement of a
terminal pair (s, t), there are three cases to consider: s, t ∈ C; s, t ∈ I; and one is in C and the
other is in I. Then, one can observe that G is st-complete for all the three cases.

We then prove the claim for distance-hereditary graphs. Suppose for a contradiction that a
distance-hereditary graph G is not st-complete for some terminal pair (s, t). Then, there exist two
vertices u, v ∈ V (G) such that uv /∈ E(G), u ∈ Lj and v ∈ Lj+1 for some j ∈ {1, 2, . . . , dG(s, t)−2}
(see Figure 3). By the definition of layers, there exists a shortest st-path P passing through u,
and also exists a shortest st-path P ′ passing through v. Since uv /∈ E(G), we know that P ̸= P ′

although they may share vertices and edges. We consider the subgraph G′ induced by V (P ′) and
V (P ) ∩

(
L0 ∪ L1 ∪ · · · ∪ Lj

)
. (In Figure 3, G′ is indicated by thick lines.) Then, G′ is connected.

Since uv /∈ E(G) and dG′(v, t) = dG(v, t), we have

dG′(u, t) = dG′(u, v) + dG′(v, t) > 1 + dG′(v, t) = 1 + dG(v, t) = dG(u, t).

This contradicts the assumption that G is a distance-hereditary graph. 2

Note that any split graph is of diameter at most 3, and hence we can drop the factor d in
Theorem 2 for split graphs. On the other hand, the diameter of distance-hereditary graphs can be
Ω(n). We also note that a complete bipartite graph is distance hereditary, and hence the RVDSP
problem can be solved in polynomial time for complete bipartite graphs. Therefore, Theorem 1 and
Corollary 1 give an interesting contrast of the complexity of the RVDSP problem. (See Figure 2
again.)
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3.1 Characterization of reachability

Let (G,P,Q) be an instance of the RVDSP problem such that G is siti-complete for each i ∈
{1, 2, . . . , k}. We denote by Lij the j-th siti-layer for each pair of integers i ∈ {1, 2, . . . , k} and
j ∈ {0, 1, . . . , dG(si, ti)}. For G and P, we define a directed graph GP , called an auxiliary graph for
P, as follows: the vertex set of GP is V (G), and for each i, j, we add arcs (u, v) from u ∈ V (Pi)∩Lij
to all vertices v ∈ Lij \ {u}; more specifically, the arc set of GP is

⋃
i,j{(u, v) | u ∈ V (Pi)∩Lij , v ∈

Lij \ {u}}. Then, only the vertices in P have out-going arcs in GP .

For each pair of i ∈ {1, 2, . . . , k} and j ∈ {0, 1, . . . , dG(si, ti)}, we place a (labeled) token tij
on the vertex u ∈ V (Pi) ∩ Lij in the auxiliary graph GP . Note that no two tokens are placed
on the same vertex, because paths in P are vertex-disjoint. Conversely, the siti-completeness of
G ensures that any placement of the token tij to a vertex in Lij yields a shortest siti-path in G.

The vertex on which tij is placed is sometimes referred simply as tij . We say that the token tij is

P-movable if there exists a directed path in GP from tij to a vertex v /∈ V (P). We sometimes call

such a tijv-path a tij-escape path under P. Recall that only the vertices in P have out-going arcs

in GP , and hence only the last vertex v in the tij-escape path under P is not contained in V (P);

in other words, tokens are placed on all the intermediate vertices in the tij-escape path under P.
The P-movable tokens have a good property, as follows.

Lemma 2 Let P and P ′ be two tuples of vertex-disjoint shortest paths in G such that P ↔ P ′.
Then, a token tij is P-movable if and only if tij is P ′-movable.

Proof: We only prove the only-if direction; the other direction is symmetric. Suppose that P ′ is
obtained from P by moving some token on a vertex y1 to another vertex y2. Consider any token tij
which is P-movable. Then, there exists a tij-escape path under P; let P = x1x2 · · ·xl. Since only
the vertices in P have out-going arcs in GP , we know that x1, x2, . . . , xl−1 ∈ V (P). In addition,
by the definition of tij-escape paths, we know that xl /∈ V (P). If neither y1 nor y2 appears in P ,

then P is a tij-escape path also under P ′.

Consider the case where y1 appears in P . If x1 = y1 and hence the token tij was moved from

y1 = x1 to y2, then the auxiliary graph GP′ has an arc (y2, y1); this arc forms a tij-escape path

under P ′, and hence tij is P ′-movable. We thus consider the case where y1 appears in P and
x1 ̸= y1; let xr = y1, r > 1. Then, xr ̸∈ V (P ′), since we moved the token on y1 = xr to y2.
Therefore, x1x2 · · ·xr forms a tij-escape path under P ′, and hence tij is P ′-movable.

We consider the remaining case: y2 appears in P but y1 does not appear in P . In this case,
since x1, x2, . . . , xl−1 ∈ V (P) and xl /∈ V (P), we know that y2 = xl. Then, a token is placed
on y2 = xl (which was moved from y1) under P ′, and hence the auxiliary graph GP′ has an arc
(xl, y1). Therefore, x1x2 · · ·xly1 forms a tij-escape path under P ′, and hence tij is P ′-movable. 2

For each pair of integers i ∈ {1, 2, . . . , k} and j ∈ {0, 1, . . . , dG(si, ti)}, the vertex in V (Qi)∩Lij
is called the target position for the token tij . For a tuple P ′ of vertex-disjoint shortest paths, we
denote by TP′ the set of all tokens that are not placed on their target positions in P ′. The following
lemma is the key for the proof of Theorem 2.

Lemma 3 (G,P,Q) is a yes-instance if and only if every token in TP is P-movable.

Proof: We first prove the only-if direction. Suppose that (G,P,Q) is a yes-instance, and hence
there is a reconfiguration sequence ⟨P0,P1, . . . ,Pℓ⟩ between P = P0 and Q = Pℓ. Because every
token tij in TP is not placed on its target position in P, the token must be moved at least once
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Figure 4: Illustration for Case (b).

in the reconfiguration sequence. Assume that tij was moved between Pr and Pr+1, from a vertex

y1 ∈ Lij ∩ V (Pr) to another vertex y2 ∈ Lij \ V (Pr) = Lij \ {y1}. Then, the auxiliary graph GPr

has an arc (y1, y2); this arc forms a tij-escape path under Pr, and hence tij is Pr-movable. Since

Pr ↔ Pr−1 ↔ · · · ↔ P0 = P, Lemma 2 implies that tij is P-movable.
We then prove the if direction, by induction on |TP |. If |TP | = 0, then P = Q and hence

(G,P,Q) is a yes-instance. Thus, suppose that |TP | ≥ 1 and every token in TP is P-movable. We
consider two following cases.

Case (a): We first consider the case where there exists a token tij placed on the vertex y1 ∈
V (Pi)∩Lij such that its target position y2 is not occupied by any token in P, that is, V (Qi)∩Lij =
{y2} and y2 /∈ V (P). In this case, we can move tij to y2 directly, and obtain the tuple P ′ of
vertex-disjoint shortest paths; notice that there is an arc (y1, y2) in GP by the definition of GP .
Since P ↔ P ′, Lemma 2 says that every P-movable token is P ′-movable. Since tij reaches its
target position y2, we have |TP′ | = |TP | − 1. Therefore, we can apply the induction hypothesis to
(G,P ′,Q).

Case (b): We then consider the other case, that is, the target positions of all tokens are
occupied by tokens in P. In this case, we can find a directed cycle C = x1x2 . . . xα in GP such
that xr+1 is the target position of the token placed on xr for all r ∈ {1, 2, . . . , α}; for convenience,
we regard xα+1 = x1. Since |TP | ≥ 1, we can assume that α ≥ 2 (i.e., C is not a self-loop). All
tokens placed on x1, x2, . . . , xα belong to TP , and hence all of them are P-movable. Then, there
exists at least one token t such that t is placed on a vertex in C, say xα, and GP has a t-escape
path xαy1y2 . . . yβ with y1, y2, . . . , yβ /∈ V (C). (See Figure 4.) Then, we move tokens as follows:

Step 1. move the token on yr to yr+1 for each r, β − 1 ≥ r ≥ 1;

Step 2. move the token on xα to y1 (now no token is placed on xα);

Step 3. move the token on xr to xr+1 for each r, α− 1 ≥ r ≥ 1;

Step 4. move the token on y1 (which was placed on xα in P) to x1; and

Step 5. move the token on yr to yr−1 for each r, 2 ≤ r ≤ β.

Note that, in Step 4, we can move the token on y1 directly to x1, because x1 is the target position
of the token which was placed on xα in P. After Step 5, each token on y1, y2, . . . , yβ are placed on
the same vertex as in P, and each token on x1, x2, . . . , xα reaches its target position. Let P ′ be
the resulting tuple of vertex-disjoint shortest paths. Lemma 2 says that every P-movable token is
P ′-movable. Since |TP′ | = |TP |−α and α ≥ 2, we can apply the induction hypothesis to (G,P ′,Q).

2
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3.2 Proof of Theorem 2

Our proof of Lemma 3 naturally yields an algorithm which finds an actual reconfiguration sequence
between P and Q if exists. Starting from any token t in TP , we traverse GP by repeatedly visiting
the target position of the currently visited token; if we reach a vertex which is not occupied by
any token (that is, the vertex is not contained in any path in P), then we apply Case (a) of the
proof; otherwise we find a directed cycle x1, x2, . . . , xα to which we apply Case (b). In Case (b)
we can find the path xαy1y2 . . . yβ by a breadth-first search on GP starting from any vertex in the
directed cycle.

We now estimate the length of our reconfiguration sequence between P and Q. Recall that
there are O(dk) tokens, where d is the diameter of G and k is the number of terminal pairs. In
Case (a), one token in TP reaches its target position by one step. In Case (b), α tokens in TP reach
their target positions by (β− 1)+1+ (α− 1)+1+ (β− 1) = α+2β− 1 = O(dk) steps. Therefore,
in both cases, at least one token in TP reaches its target position by O(dk) steps. Since there are
O(dk) tokens, the length of our reconfiguration sequence between P and Q can be bounded by
O(dk)×O(dk) = O(d2k2) in total.

Finally, we estimate the running time of the algorithm. By Lemma 1 we can check if a given
graph G is st-complete for all k terminal pairs, and construct layers in O(k(n +m)) time. Since∑d(si,ti)
j=1 |Lij | ≤ n for each i ∈ {1, 2, . . . , k}, the auxiliary graph GP has at most nk arcs. For each

token in TP , we traverse GP at most twice to apply Case (a) or (b). Thus, we can move at least
one token in TP to its target position in O(nk) + O(dk) = O(nk) time. Since there are O(dk)
tokens, all tokens can be moved to their target positions in O(nk) × O(dk) = O(ndk2) time. In
total, our algorithm runs in O(mk + ndk2) time. This completes the proof of Theorem 2. 2

4 Shortest variant

Our polynomial-time algorithm in Section 3 for the RVDSP problem does not always return a
reconfiguration sequence of the shortest length. Indeed, we will show in this section that the
SRVDSP problem is NP-complete even for split graphs, while the RVDSP problem is solvable in
polynomial time for split graphs.

4.1 Polynomial-time solvable cases

We first give tractable cases of the SRVDSP problem, based on the algorithm in Section 3. We
say that k terminal pairs are identical if (s1, t1) = (s2, t2) = · · · = (sk, tk). Then, we have the
following theorem.

Theorem 3 Let (G,P,Q, ℓ) be an instance of the SRVDSP problem such that k terminal pairs
are identical and G is st-complete for the terminal pairs. Then, the SRVDSP problem is solvable
in polynomial time.

Proof: By Theorem 2 we first check if there is a reconfiguration sequence between P and Q; if not,
(G,P,Q, ℓ) is a no-instance. Since k terminal pairs are identical, let (s, t) = (s1, t1) = (s2, t2) =
· · · = (sk, tk), and let Lj denote the j-th st-layer for each j ∈ {0, 1, . . . , dG(s, t)}. Then, we have

Lj = L1
j = L2

j = · · · = Lkj for all j.
Recall our algorithm in Section 3. First consider Case (a) in the proof of Lemma 3. Then, the

algorithm moves a token in TP to its target position directly by one step. Since every token in TP
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must be moved at least once in any reconfiguration sequence between P and Q, this step preserves
the shortest length.

We thus consider Case (b) in the proof of Lemma 3. In this case, the algorithm finds a
directed cycle C = x1x2 . . . xα in GP such that xr+1 is the target position of the token placed
on xr for all r ∈ {1, 2, . . . , α}, where α ≥ 2. (See Figure 4 again.) Then, the definition of GP
implies that all vertices x1, x2, . . . , xα are contained in the same st-layer Lj for some j, because

Lj = L1
j = L2

j = · · · = Lkj . Furthermore, there exists at least one vertex y1 ∈ Lj \ V (P),
because tokens placed on the vertices in C are P-movable. Then, GP has an arc (xr, y1) for each
r ∈ {1, 2, . . . , α}. We take the arc (xα, y1) as a t-escape path for the token t placed on xα, that is,
β = 1 in Figure 4. Then, α tokens in TP can reach their target positions by α + 2β − 1 = α + 1
steps. Since any reconfiguration sequence between P and Q needs to move at least one token
placed on V (C) to some vertices in Lj \ V (P), this step also preserves the shortest length. 2

Similarly as in Corollary 1, we have the following corollary from Theorem 3. Note that, if
k = 1, then it is an identical terminal pair.

Corollary 2 The SRVDSP problem is solvable in polynomial time for split graphs, and for
distance-hereditary graphs, if k terminal pairs are identical. In particular, the shortest variant
of the SPR problem is solvable in polynomial time for split graphs, and for distance-hereditary
graphs.

4.2 NP-completeness

We finally prove the following theorem.

Theorem 4 The SRVDSP problem is NP-complete for split graphs.

By Theorem 2, recall that the RVDSP problem for split graphs can be solved in polynomial
time, and admits a reconfiguration sequence of length O(k2) if exists. Therefore, the SRVDSP
problem for split graphs belongs to the class NP. As a proof of Theorem 4, we will thus prove that
the SRVDSP problem is NP-hard for split graphs, by giving a polynomial-time reduction from
3SAT [5].

Suppose that we are given a 3CNF formula ϕ, where each clause consists of exactly three literals.
Let α and β be the numbers of variables and clauses in ϕ, respectively. We write x1, x2, . . . , xα
for variables in ϕ, and C1, C2, . . . , Cβ for clauses in ϕ. We will construct the corresponding graph
Gϕ which forms a split graph. Recall that a split graph Gϕ can be partitioned into a clique and
an independent set. In the following, we call a vertex in the clique a clique vertex, and call a
vertex in the independent set an independent vertex. In our reduction, independent vertices will
be terminals. As shown in Corollary 1, a split graph Gϕ is st-complete for any terminal pair (s, t).
Therefore, roughly speaking, we will focus on how to move tokens placed on clique vertices in Gϕ.

4.2.1 Reduction

We first create a variable gadget Gxi for each variable xi in ϕ. The variable gadget Gxi has five
clique vertices ai, bi, ci, x

⊤
i , x

⊥
i , and eight independent vertices si1, si2, si3, si4, ti1, ti2, ti3, ti4. Then,

we define four vertex sets Li1, Li2, Li3, Li4, as follows:

Li1 = {ai, bi, x⊤i }, Li2 = {ai, bi, x⊥i }, Li3 = {ci, x⊤i }, Li4 = {ci, x⊥i }.
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Figure 5: (a)(c) Clique vertices in the variable gadget Gxi
, and (b)(d) clique vertices in the clause

gadget GCi for Ci = (xp ∨ xq ∨ ¬xr), where we omit the edges in the graph.

In Figure 5(a) and (c), we illustrate only clique vertices in Gxi
, and each colored box in the figure

surrounding vertices corresponds to the sets above. We join the clique and independent vertices
in Gxi

so that each Lir forms the first sirtir-layer for the terminal pair (sir, tir), r ∈ {1, 2, 3, 4};
more specifically, for each r ∈ {1, 2, 3, 4}, we join each of sir and tir with all clique vertices in Lir.
For each r ∈ {1, 2, 3, 4}, we define shortest sirtir-paths Pir and Qir, as follows:

Pi1 = si1aiti1, Qi1 = si1biti1,

Pi2 = si2biti2, Qi2 = si2aiti2,

Pi3 = Qi3 = si3x
⊤
i ti3,

Pi4 = Qi4 = si4x
⊥
i ti4.

Notice that only the internal vertices of Pi1 and Pi2 are swapped in Qi1 and Qi2. By the con-
struction, it suffices to focus on which clique vertex is chosen as an internal vertex of a shortest
sirtir-path. In Figure 5(a) and (c), each colored box represents the vertices that can be an internal
vertex of shortest sirtir-paths, and assume that a token with the same color is placed on a vertex
when the vertex is chosen as the internal vertex of a shortest sirtir-path; the vertex colored with
white (i.e., the vertex ci in the figure) is not chosen by any shortest path, and no token is placed on
it. For example, the orange box in the figure represents the the first si1ti1-layer L

i1 = {ai, bi, x⊤i },
and the orange token represents the internal vertex ai (resp. bi) of the shortest si1ti1-path Pi1
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(resp. Qi1). By the construction of the gadgets, any shortest sirtir-path passes through one of the
vertices in Lir for all r ∈ {1, 2, 3, 4}. Thus, any token cannot be moved to a vertex outside the box
of the same color.

We then create a clause gadget GCj for each clause Cj in ϕ. Let Cj = (ljp ∨ ljq ∨ ljr), where
ljh is either xh or ¬xh for each h ∈ {p, q, r}. Let σ(j, h) denote ⊤ if ljh = xh, otherwise ⊥. The
clause gadget GCj

has six new clique vertices ajh, bjh where h ∈ {p, q, r}, and three clique vertices

x
σ(j,p)
p , x

σ(j,q)
q , x

σ(j,r)
r which are already introduced in variable gadgets. In addition, GCj

has 12
new independent vertices sjh1, sjh2, tjh1, tjh2 where h ∈ {p, q, r}. We define six vertex sets, as
follows (see also Figure 5(b) and (d)):

Ljp1 = {xσ(j,p)p , bjp, ajp, bjr},

Ljq1 = {xσ(j,q)q , bjq, ajq, bjp},

Ljr1 = {xσ(j,r)r , bjr, ajr, bjq},
Ljh2 = {ajh, bjh} for h ∈ {p, q, r}.

Similarly as in the variable gadgets, we join the clique and independent vertices in GCj
, as follows:

for each h ∈ {p, q, r}, we join each of sjh1 and tjh1 with all clique vertices in Ljh1, and also join
each of sjh2 and tjh2 with all clique vertices in Ljh2. For each h ∈ {p, q, r}, we define shortest
sjh1tjh1-paths Pjh1 and Qjh1, and shortest sjh2tjh2-paths Pjh2 and Qjh2, as follows:

Pjh1 = sjh1ajhtjh1, Qjh1 = sjh1bjhtjh1,

Pjh2 = sjh2bjhtjh2, Qjh2 = sjh2ajhtjh2.

We next join all clique vertices in variable and clause gadgets so that they form a clique in Gϕ.
This completes the constructions of Gϕ, P, and Q. Then, there are k = 4α + 6β terminal pairs,
and we set ℓ = 5α + 9β. In this way, the corresponding instance (Gϕ,P,Q, ℓ) of the SRVDSP
problem can be constructed in time polynomial in α and β.

4.2.2 Correctness of the reduction

We first observe that there is a reconfiguration sequence between P and Q. To see this, by Lemma 3
it suffices to show that all tokens in TP (placed on the swapped vertices between P and Q) are
P-movable. Notice that V (Gϕ) \ V (P) consists of only α vertices ci in variable gadgets Gxi

,
i ∈ {1, 2, . . . , α}. In the variable gadget Gxi

, each token placed on ai (resp. bi) has an escape
path under P to ci via x

⊤
i (resp. x⊥i ). In the clause gadget GCj , tokens placed on ajh and bjh

have escape paths under P to ch via x
σ(j,h)
h , where h ∈ {p, q, r}. Therefore, all tokens in TP are

P-movable, and hence there is a reconfiguration sequence between P and Q.
Before proving the correctness of our reduction, we roughly explain how our gadgets work. In

order to swap the tokens on ai and bi in a variable gadget Gxi
, we need to move a token placed on

either x⊤i or x⊥i to ci. Note that this token movement is required in any reconfiguration sequence
between P and Q. If we move the token placed on x⊤i (resp. x⊥i ) to ci, we can also exchange
all tokens in the clause gadget GCj to their target positions if the corresponding clause Cj has
the literal xi (resp. ¬xi). Therefore, if ϕ is satisfiable, we can save token movements required for
moving the tokens in GCj

to their target positions. Formally, we prove the following lemma, which
completes the proof of Theorem 4.

Lemma 4 ϕ is satisfiable if and only if (Gϕ,P,Q, ℓ) is a yes-instance.
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Proof: We first prove the only-if direction. Let ψ : {x1, x2, . . . , xα} → {⊤,⊥} be a truth assign-
ment which satisfies all clauses of ϕ, where ⊤ corresponds to true and ⊥ to false. We construct a
reconfiguration sequence of length at most ℓ, as follows (see also Figure 5):

Step 1. Move the token on x
ψ(xi)
i to ci for each i ∈ {1, 2, . . . , α}.

Step 2. Move the tokens on ai and bi to their target positions using the vertex x
ψ(xi)
i .

Step 3. Since each clause Cj = (ljp ∨ ljq ∨ ljr) has at least one literal, say ljp, satisfied by

ψ, there is at least one vertex x
ψ(xp)
p on which no token is placed. Then, the path

bjr ajr bjq ajq bjp ajp x
ψ(xp)
p forms an escape path, and we can move the tokens

through this escape path.

Step 4. Move the tokens on bjq, bjp and x
ψ(xp)
p to their target positions.

Step 5. Move back the token on ci to x
ψ(xi)
i for each i ∈ {1, 2, . . . , α}.

In this way, we obtain a reconfiguration sequence between P and Q, whose length is

α+ 3α+ 6β + 3β + α = 5α+ 9β = ℓ.

Therefore, (Gϕ,P,Q, ℓ) is a yes-instance.
We then prove the if direction. Suppose that there is a reconfiguration sequence ⟨P0,P1, . . . ,Pℓ′⟩,

where P0 = P, Pℓ′ = Q and ℓ′ ≤ ℓ = 5α+9β. Then, we define a truth assignment ψ : {x1, x2, . . . , xα} →
{⊤,⊥}, as follows:

ψ(xi) =

{
⊤ if there is a tuple Pλ in ⟨P0,P1, . . . ,Pℓ′⟩ such that x⊤i /∈ V (Pλ);
⊥ otherwise.

(2)

As a proof of the if direction, we will show that ψ satisfies all clauses in ϕ.
We first observe that there are (α+3β) pairs of tokens that need to be swapped between P and

Q: one pair of tokens placed on ai and bi in each variable gadget Gxi
, i ∈ {1, 2, . . . , α}; and three

pairs of tokens placed on ajh and bjh, h ∈ {p, q, r}, in each clause gadget GCj , j ∈ {1, 2, . . . , β}.
Since swapping a pair of tokens requires at least three token movements, any reconfiguration
sequence between P and Q requires at least 3(α+3β) token movements. Furthermore, recall that
only the vertex ci in each variable gadget Gxi

, i ∈ {1, 2, . . . , α}, is unoccupied by a token, and
only two tokens placed on x⊤i and x⊥i can move to ci. Therefore, any reconfiguration sequence
between P and Q needs to move at least one of the two tokens to ci, and move back the token
to the original position; that is, 2α token movements are required. In total, any reconfiguration
sequence between P and Q requires at least

3(α+ 3β) + 2α = 5α+ 9β = ℓ

token movements. (Thus, we indeed know that ℓ′ = ℓ.)
By the arguments above, we can conclude that exactly one of the two tokens placed on x⊤i

and x⊥i moves to ci in every variable gadget Gxi
, i ∈ {1, 2, . . . , α}; otherwise the reconfiguration

sequence is of length more than ℓ. Therefore, the truth assignment ψ defined by (2) is consistent
with the reconfiguration sequence ⟨P0,P1, . . . ,Pℓ′⟩. Furthermore, recall that all vertices in the
clause gadgets GCj

for each clause Cj = (ljp ∨ ljq ∨ ljr) are occupied by tokens. Thus, any

reconfiguration sequence between P and Q needs to move at least one of tokens placed on x
σ(j,p)
p ,

x
σ(j,q)
q and x

σ(j,r)
r . This ensures that every clause in ϕ has at least one true literal, and hence ψ

satisfies all clauses in ϕ. 2
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5 Conclusions

In this paper, we introduced two reconfiguration problems, the RVDSP and SRVDSP problems,
as generalizations of the well-studied SPR problem. We studied the computational complexity of
theRVDSP and SRVDSP problems from the viewpoint of graph classes, and gave some interesting
contrast. (Recall Figure 2 and the numbered list at the end of the introduction.)

It remains open to clarify the complexity status of the RVDSP problem for chordal graphs,
and for planar graphs. Indeed, our algorithm in Section 3 does not work even for interval graphs,
which form a subclass of chordal graphs. Note that the SPR problem (i.e., the RVDSP problem
for k = 1) is solvable in polynomial time for chordal graphs [2], and for planar graphs [3]. Another
interesting viewpoint is the parameterized complexity of the RVDSP and SRVDSP problems. For
example, it is unclear yet whether the problem admits an XP-algorithm for planar graphs when
parameterized by k.
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