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Abstract. The eternal vertex cover problem is a variant of the vertex cover prob-
lem. It is a two-player (attacker and defender) game in which, given a graph G = (V,E),
the defender needs to allocate guards at some vertices so that the allocated vertices
form a vertex cover. The attacker can attack one edge at a time, and the defender
needs to move the guards along the edges such that at least one guard moves through
the attacked edge and the new configuration still remains a vertex cover. The attacker
wins if no such move exists for the defender. The defender wins if there exists a strat-
egy to defend the graph against infinite sequence of attacks. The minimum number
of guards with which the defender can form a winning strategy is called the eternal
vertex cover number of G, and is denoted by evc(G). Given a graph G, the problem
of finding the eternal vertex cover number is NP-hard for general graphs and remains
NP-hard even for bipartite graphs. We have given a polynomial time algorithm to find
the Eternal vertex cover number in chain graphs and P4-sparse graphs. We have also
given a linear-time algorithm to find the eternal vertex cover number for split graphs,
an important subclass of chordal graphs.

1 Introduction

Given a graph G = (V,E), several problems have been formulated on the vertex attacking problem.
Mobile robots are used to defend against those attacks. Several papers have explored different issues
related to safeguarding the vertices of G against a series of attacks. A variant of this problem is
the eternal domination problem, also known as the eternal security problem (refer to [10]). In this
scenario, there is a restriction of having at most one guard positioned at each vertex. Guards
are capable of safeguarding the vertex they occupy and can relocate to neighboring vertices to
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defend against attacks. The sequence of attacks can extend infinitely, and it necessitates that the
arrangement of guards forms a dominating set both before and after each attack is repelled. In
2009, Klostermeyer et al. redirected their attention towards infinite sequences of attacks on edges
rather than the vertices [11]. To defend against an attack, a guard situated at an incident vertex
traverses the attacked edge. Now, we define the problem formally.

Formally, the Eternal vertex cover problem is a two-player (attacker and defender) game such
that given a graph G = (V,E), the defender is permitted to allocate guards in some vertices of
G so that the vertices, where guards are allocated form a vertex cover. The attacker can attack
one edge at a time. Now, for each guard, the defender can either move the guard to one of its
neighbours or can keep it untouched, such that at least one guard from any of the endpoints of
the attacked edge moves through the edge to settle at the other endpoint. So, the new allocation
should also remain a vertex cover to defend the next attack. If no such configuration exists, then
the attacker wins. If the allocation can defend any infinite sequence of attacks, then the defender
wins. The minimum number of guards with which a winning strategy for the defender can be
formed is known as the eternal vertex cover number of G, and is denoted by evc(G). In this paper,
we are assuming that at most one guard can be allocated to each vertex. If Ci be the allocation
of the guards before the i-th attack, then after defending the i-th attack by moving the guards to
configuration Ci+1, Ci+1 needs to be a vertex cover(for each i ∈ N), to form a winning strategy
for the defender. If it is not then the (i+ 1)-th attack will be on the edge which is not covered by
Ci+1 and the attacker will win. So after reconfiguring at each step, the vertices where the guards
are allocated should form a vertex cover. The problem of finding the eternal vertex cover number
is known as eternal vertex cover problem. A preliminary version of this article was published in
the proceedings of the WALCOM 2023 conference [13].

1.1 Related Works

In 2009, Klostermeyer et al. introduced the eternal vertex cover problem. In the same paper,
they showed that for any graph G, we have mvc(G) ≤ evc(G) ≤ 2mvc(G) [11]. They gave a
characterization of the graphs for which evc(G) = 2mvc(G) is attained [11]. Babu et al. have given
some special graph classes for which evc(G) attains the lower bound, that is evc(G) = mvc(G) [2].

The first NP-hard result for this problem was given by Fomin et al., where they showed that
the problem is NP-hard for general graphs [7]. They also show that the problem is in PSPACE,
though it is still unknown whether the problem belongs to the class NP or not [7]. In the same
paper, they also proposed a 2-approximation algorithm for the problem [7]. Babu et al. proved
that the problem remains NP-hard even for locally connected graphs, which includes the family
of all the biconnected internally triangulated planar graphs [2]. They proposed polynomial-time
algorithms for cactus graphs and chordal graphs [4, 5]. The most recent development on the NP-
hardness result has also been produced by Babu et al., where they proved the NP-hardness of the
problem for the class of bipartite graphs. Along with that, they also proved that the problem can
also be solved in polynomial time for co-bipartite graphs [3]. Araki et al. computed the evc(G) for
generalized trees where each edge of the tree is replaced by some elementary bipartite graphs [1].

1.2 Our Results

In this paper, we further extend the algorithmic study of the problem by proposing polynomial-
time algorithms for some special graph classes. The rest of the paper is organized as follows: In
Section 2.1, all notations and definitions used in the paper are presented. In Section 2.2, some



JGAA, 28(3) 69–85 (2024) 71

theorems from existing literature are stated, which are used in the proofs presented in this paper.
In Section 2.3, eternal vertex cover number is provided for some special subclasses of bipartite
graphs. In Section 3, a linear-time algorithm is given to compute evc(G) in chain graphs. In
Section 4, a linear-time algorithm to compute evc(G) in split graphs is presented. In Section 5, a
polynomial time algorithm to compute evc(G) for P4-sparse graphs is presented. Finally, Section
6 concludes the paper.

2 Preliminaries

2.1 Definitions and Notations

All graphs considered in this paper are finite, connected, undirected, and simple. Let G = (V,E)
be a graph. The set of neighbours of a vertex v in G is denoted by N(v). A set I ⊆ V is called
an independent set of G if for all u, v ∈ I, {u, v} /∈ E. Degree of a vertex v ∈ V is the number of
neighbours of v in G and it is denoted as deg(v). Given a subset V ′ of V , the number of neighbours
of v in V ′ is denoted by degV ′(v). A vertex v ∈ V is said to be a cut vertex if G[V \ {v}] is not
connected. The join of two graphs H1 and H2 is a graph formed from disjoint copies of H1 and
H2 by connecting each vertex of V (H1) to each vertex of V (H2).

A vertex cover S of G = (V,E) is a subset of V , which contains at least one endpoint from
each edge in E. A vertex cover of minimum cardinality is called a minimum vertex cover. The
cardinality of a minimum vertex cover is denoted as minimum vertex cover number or mvc(G).
Given B ⊆ V , the cardinality of the minimum vertex cover containing B is denoted as mvcB(G).
If the graph induced on S, i.e. G[S] is connected, then S is called a connected vertex cover. The
cardinality of minimum connected vertex cover is denoted as cvc(G). The independent set of
maximum cardinality is called maximum independent set of G and its cardinality is denoted as
mis(G).

Consider a graph G = (V,E) with |V | = n and |E| = m. A hamiltonian cycle of a graph
G = (V,E) is a cycle in G, that visits each v ∈ V exactly once. A graph possessing a hamiltonian
cycle is known as hamiltonian graph. A graph G = (V,E) is said to be k-regular if deg(v) = k, for
each v ∈ V .

Let G = (X ∪ Y,E) be a bipartite graph. G is said to be a chain graph if vertices in X can
be ordered {x1, x2, . . . , x|X|}, such that N(x1) ⊆ N(x2) ⊆ . . . ⊆ N(x|X|). Similarly vertices of
Y can be ordered {y1, y2, . . . , y|Y |}, such that N(y1) ⊇ N(y2) ⊇ . . . ⊇ N(y|Y |). Throughout this
manuscript, we assume all the chain graphs considered are connected. The cardinality of X and
Y are denoted by p and q, respectively, in this paper. An example of a chain graph is given below
in Figure 1.

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5 y6

Figure 1: An example of chain graph G = (X ∪ Y,E)
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A graph G = (V,E) is called a split graph if V can be partitioned in K and I, such that K is
clique and I is an independent set. An example of a chain graph is given below in Figure 2. The
class of split graphs is an important subclass of the class of chordal graphs.

K I

Figure 2: An example of split graph G = (K ∪ I, E)

Cographs are P4-free graphs. A graph G = (V,E) is said to be P4-sparse graph if a subgraph
induced on any 5 vertices of G contains at most one P4. A spider is a graph G = (V,E), where V
admits a partition in three subsets S,C and R such that

� C = {c1, . . . , cl} (l ≥ 2) is a clique.

� S = {s1, . . . , sl} is an independent set.

� Every vertex in R is adjacent to every vertex in C and nonadjacent to all vertex of S.

A spider G(S,C,R) is said to be a thin spider if for every i ∈ [l], N(si) = {ci} and it is called a
thick spider if for every i ∈ [l], N(si) = C \ {ci} (refer to Figure 3). This definition of spider can
be found in [9].

R

C

S

(a) Thin spider

R

C

S

(b) Thick spider

Figure 3: Examples of spiders with spider partition (S,C,R)

2.2 Existing Results

For the sake of convenience, we are stating some important theorems which will be used in the
proofs presented in our paper.

Theorem 1 [2] Let G = (V,E) be a graph with no isolated vertex and every minimum vertex cover
of G is connected. If for every vertex v ∈ V , there exists a minimum vertex cover Sv of G such
that v ∈ Sv, then evc(G) = mvc(G). Otherwise, evc(G) = mvc(G) + 1.
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Theorem 2 [11] Let G = (V,E) be a nontrivial, connected graph and let D be a minimum con-
nected vertex cover of G. Then evc(G) ≤ |D| + 1 and D ∪ {v} forms an initial configuration of
eternal vertex cover, where v ∈ V \D.

Theorem 3 [2] Let G = (V,E) be a graph with at least 2 vertices and X be the set of cut ver-
tices of G. If every minimum vertex cover S of G with X ⊆ S is connected, then the following
characterization holds: evc(G) = mvc(G) if and only if for every vertex v ∈ V \X, there exists a
minimum vertex cover Sv of G such that X ∪ {v} ⊆ Sv.

Theorem 4 [2] Let G = (V,E) be a graph with no isolated vertices. If evc(G) = mvc(G), then
for every vertex v ∈ V , there is some minimum vertex cover of G containing v.

2.3 Eternal Vertex Cover Number for Some Subclasses of Bipartite
Graph

For a k-regular bipartite graph, the following observation can be made.

Observation 1 Given a k-regular bipartite graph G = (X ∪ Y,E), for each e ∈ E, there exists a
perfect matching that contains e.

Note that, if the initial guard allocation is X (or Y ), then attack on any edge e can be defended by
moving the guards to Y (or X) through the perfect matching that contains e. So, from the Obser-
vation 1 it can be concluded that for a k-regular bipartite graph G, evc(G) = mvc(G) = |X| = |Y |.

For a hamiltonian bipartite graph G = (X ∪ Y,E) (with |X| = |Y | = n), suppose a hamilto-
nian cycle of G is v1v2 · · · v2nv1, where X = {v1, v3, . . . , v2n−1} and Y = {v2, v4, . . . , v2n}. Then,
we have the following observation.

Observation 2 Given a hamiltonian bipartite graph G = (X ∪ Y,E) and a hamiltonian cycle
C = v1v2 · · · v2nv1 of G; for every edge e ∈ E, there exists a perfect matching of G that contains e.

Proof: Note that X = {v1, v3, . . . , v2n−1} and Y = {v2, v4, . . . , v2n} and G has at least two perfect
matchings U1 and U2, where U1 = {v1v2, v3v4, . . . , v2n−1v2n} and U2 = {v2v3, v4v5, . . . , v2nv1}.
Now consider any edge e = vivj , where without loss of generality, let us assume vi ∈ X and
vj ∈ Y . If vi and vj are consecutive vertices in the cycle, then e is an edge of the cycle C. Hence
e is contained in either U1 or U2. Now if vi and vj are not consecutive in C, then note that the
edge e splits the cycle C in two cycles C1 and C2 (refer to Figure 4).

vi

v1

v2n

vj

C1

C2

vi+1

vi−1

vj+1

vj−1

Figure 4: A Hamiltonian Bipartite graph
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Note that C1 and C2 are also even cycles, as G is a bipartite graph. Hence either U1 ∩ C2

contains both the edges vivi+1 and vj−1vj or U2 ∩ C2 contains both the edges. Without loss of
generality, let U2∩C2 contain both the two edges. Hence U1 does not contain the edges vivi+1 and
vj−1vj but contains the edges vi−1vi and vjvj+1. But since U1 ∩U2 = ∅, then U2 does not contain
the edges vi−1vi and vjvj+1. Hence, (U1 ∩C2)∪ (U2 ∩C1)∪ {vivj} forms a perfect matching of G.
Hence, for every edge e ∈ E, there exists a perfect matching of G that contains e. □

From Observation 2, it can be concluded that evc(G) = mvc(G) = |X| = |Y |, where X (or Y )
is the initial configuration of guards.

3 A Polynomial Time Algorithm for Chain Graphs

In this section, we present a linear-time algorithm to compute the evc(G) of a given chain graph
G. We also show that for a chain graph G, evc(G) ∈ {mvc(G),mvc(G) + 1,mvc(G) + 2}.

For a chain graph G = (X ∪ Y,E), we assume that it is connected and |X| ≤ |Y |. The eternal
vertex cover problem in the class of chain graphs is studied in 2 exhaustive cases: (i) chain graphs
having pendant vertices only in Y , and (ii) chain graphs having pendant vertices both in X and
Y or only in X.

3.1 For chain graphs where only Y can have pendant vertices

In this section we will assume that either there exists no pendant vertex in the graph or only Y
contains pendant vertices. Note that a minimum vertex cover of a chain graph can be computed
in linear time [12]. Let S be a minimum vertex cover G. If |S| < min{|X|, |Y |}, then X ∩ S ̸= ∅
and Y ∩ S ̸= ∅. First, we state the following observation.

Observation 3 Given a chain graph G = (X ∪ Y,E) and a minimum vertex cover S of G; if
xi ∈ S, then xj ∈ S, for each i ≤ j ≤ p and if yi ∈ S, then yj ∈ S, for each 1 ≤ j ≤ i.

Proof: For the sake of contradiction, let xi ∈ S, but xj /∈ S, for some i < j. Since xj /∈ S,
then N(xj) ⊆ S. This implies N(xi) ⊆ N(xj) ⊆ S, hence S \ {xi} is also a vertex cover, which
contradicts the assumption that S is a minimum vertex cover. Hence xj ∈ S. Similarly, the proof
can be done for vertices of Y . □

Lemma 1 For a chain graph G = (X ∪ Y,E), if mvc(G) < min{|X|, |Y |}, then evc(G) =
mvc(G) + 1.

Proof: Let S be a minimum vertex cover. Note that, if |S| < min{|X|, |Y |}, then S has nonempty
intersection with both X and Y . Hence, by Observation 3, S contains both xp and y1. This implies
that S is a connected vertex cover, and hence cvc(G) = mvc(G). Hence, every vertex cover of size
mvc(G) is connected (as an example, refer to Figure 5, where the set of red vertices, that is
{y1, y2.x4, x5}, forms a minimum vertex cover which is also connected).

But there does not exist any minimum vertex cover S′ that contains x1 (If x1 ∈ S′, then by
Observation 3, X ⊆ S′, which implies that mvc(G) ≥ |X| > |S|, a contradiction). So, by Theorem
1, if for a chain graph G, mvc(G) < min{|X|, |Y |}, then evc(G) = mvc(G)+ 1 and by Theorem 2,
the initial configuration of guards is {u} ∪ S, where u ∈ V (G) \ S. □

Now we consider the case when mvc(G) = min{|X|, |Y |}. Again two cases may arise, one is
|X| < |Y | and the another is |X| = |Y |.
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x1 x2 x3 x4 x5

y1 y2 y3 y4 y5 y6

Figure 5: A chain graph G with mvc(G) < min{|X|, |Y |}

Claim 1 For a chain graph G = (X ∪ Y,E), if |X| < |Y | and mvc(G) = min{|X|, |Y |}, then
evc(G) ̸= mvc(G).

Proof: Let evc(G) = mvc(G), then xp ∈ S, for any minimum vertex cover S of G (by Observation
3). If the attacker attacks {xp, yq}, then the guard at xp moves to yq and rest of the guards are
adjusted so that the new configuration remains a vertex cover. Since in the new configuration,
yq ∈ S′, (where S′ is a minimum vertex cover), by Observation 3, Y ⊆ S′. Which leads to a
contradiction since mvc(G) < |Y |. Hence mvc(G) ̸= evc(G). □

Lemma 2 For a chain graph G = (X ∪ Y,E), if |X| < |Y |, mvc(G) = min{|X|, |Y |}, and there
exists a minimum vertex cover containing xp, y1, then mvc(G) = evc(G) + 1.

Proof: If for a given chain graph G, there exists a minimum vertex cover that contains xp, y1,
then cvc(G) = mvc(G). Since evc(G) ̸= mvc(G) and by Theorem 2, evc(G) ≤ cvc(G) + 1, we may
conclude that evc(G) = mvc(G) + 1. □

Now let us consider the case when there does not exist any minimum vertex cover that contains
xp, y1, mvc(G) = min{|X|, |Y |} and |X| < |Y |. In this case, X is the only minimum vertex cover.

Lemma 3 For a given chain graph G = (X∪Y,E), if mvc(G) = min{|X|, |Y |} and |Y | = |X|+1,
and X is the only minimum vertex cover of G, then evc(G) = mvc(G) + 1.

Proof: Let |N(x1)| > 2 or yq−1 /∈ N(x1). If the initial configuration is {x1, x2, . . . , xp, yq}, attack
any edge {xi, yj}(yj ̸= yq); by Hall’s Theorem there exists a perfect matching from X \ {xi} to
Y \ {yj , yq}, since | ∪k

j=1N(xj) |≥ k+1, for each k ∈ [p] (Refer to Figure 6). So all the guards can
be moved from X ∪ {yq} to Y .

Now if Y is the guard allocation configuration and {yj , xi}(yj ̸= yq) is attacked then the next
configuration will be X ∪ {yq}. If yj = yq then the configuration will be X ∪ {yq−1}. Thus any
infinite sequence of attack can be defended using mvc(G) + 1 guards. So evc(G) = mvc(G) + 1.
If |N(x1)| ≤ 2 and yq−1 ∈ N(x1), then |Y | ≤ 3 and |X| ≤ 2. For this case, it is easy to observe
evc(G) = mvc(G) + 1. □

Observation 4 Let G = (X ∪ Y,E) is a chain graph with |Y | > |X| + 1 for which the only
minimum vertex cover is X and S be a vertex cover of size mvc(G)+1. If | S∩Y |≥ 2 and yi ∈ S,
then yj ∈ S, for each j ∈ [i]. We may also conclude that there exists two kinds of vertex covers of
size mvc(G) + 1

i. X ∪ {yi}; i ∈ [q].
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X

Y
y1 y2 y3 y4 y5

x1 x2 x3 x4

Figure 6: The attacked edge is x3y4, highlighted in red. The perfect matching from X \ {xi} to
Y \ {yj , yq} is highlighted in blue.

ii. {y1, . . . , yi+1, xi+1, . . . , xp}; i ∈ [p− 2].

Let k = min{i | {xi, yq} ∈ E}.

Lemma 4 For a given chain graph G = (X∪Y,E) with mvc(G) = min{|X|, |Y |} and |Y | > |X|+
1, if X is the only minimum vertex cover of G and | ∪k−1

j=1N(xj) |= k, then evc(G) = mvc(G) + 1.

Proof: By above definition k = min{i | {xi, yq} ∈ E}, if | ∪k−1
j=1 N(xj)| = k. Then any at-

tack can be defended by moving the guards from the configuration X ∪ {yq} to configuration
{y1, . . . , yk, xk, . . . , xp} (or from {y1, . . . , yk, xk, . . . , xp} to X ∪ {yq}). So, in this case evc(G) =
mvc(G) + 1. □

Let V ′ = {i | | ∪i
j=1 N(xj)| = i+ 1}.

Lemma 5 For a given chain graph G = (X∪Y,E) with mvc(G) = min{|X|, |Y |} and |Y | > |X|+
1, if X is the only minimum vertex cover of G and | ∪k−1

j=1 N(xj)| > k, then evc(G) = mvc(G) + 2.

Proof: mvc(G) = |X|, and X ∪ {y1} forms a connected vertex cover. Hence by Theorem 2,
evc(G) ≤ |X∪{y1}|+1 = mvc(G)+2. If |∪k−1

j=1N(xj)| > k and V ′ ̸= ∅, then let l = max{i | i ∈ V ′}.
If the initial configuration is of type-ii, then attack {xp, yq} and make the configuration X ∪ {yq},
if possible. Then attack {xl+1, yl+1}, the guard at xl+1 moves to yl+1 and since {yq, xl+1} /∈ E,
so there does not exist any guard which can move to xl+1, hence no defending move exists, hence
evc(G) = mvc(G) + 2.

If the set V ′ = ∅, then | ∪i
j=1N(xj) |> i+2, which implies all vertex covers of size mvc(G) + 1

are of type-i. Now whatever the initial configuration be attack {xp, yq}. The configuration after
defending this should be X ∪ {yq}. Now attack {xk−1, yk−1}, the guard at xk−1 moves to yk−1

now there is no guard which can move to xk−1 and form a vertex cover. So evc(G) = mvc(G) + 2.
□

Now, consider the case when |X| = |Y |.

Lemma 6 For a given chain graph G = (X ∪ Y,E), if mvc(G) = min{|X|, |Y |}, |X| = |Y | and
there exists a minimum vertex cover containing y1 and xp, then evc(G) = mvc(G) + 1.

Proof: There exists a minimum vertex cover of G that contains both y1 and xp. This implies
there exists i ∈ [p], such that ∪i

j=1N(xj) = ∪i
j=1{yj} and evc(G) ∈ {mvc(G),mvc(G) + 1}.



JGAA, 28(3) 69–85 (2024) 77

If evc(G) = mvc(G), then the initial configuration can be of 3 types: (i) X, (ii) Y and (iii)
{y1, . . . , yi, xi+1, . . . , xp}, i ∈ [p].

If the initial configuration is of type-iii, then attack {x1, y1} and change it to X if possible.
Then attack {yi, xi+1}, so the guard at xi+1 moves to yi and i guards at x1, x2, . . . , xi have i− 1
places, i.e. y1, y2, . . . , yi−1 to move. Hence no new configuration can be made which will form a
vertex cover.

If the initial configuration is Y , then attack {yi, xi+1}. The guard at yi moves to xi+1 and p− i
guards at yi+1, . . . , yp have p− i− 1 places, i.e. xi+2, . . . , xp to move. Hence no new configuration
can be made which will form a vertex cover.

This implies G can not be defended with mvc(G) guards. So, evc(G) = mvc(G) + 1. □

Lemma 7 For a given chain graph G = (X ∪Y,E), with mvc(G) = min{|X|, |Y |} and |Y | = |X|,
if the only minimum vertex covers are X and Y , then evc(G) = mvc(G).

Proof: The only type of minimum vertex covers are X and Y . This implies | ∪l
j=1N(xj) |≥ l+1,

for all l ∈ [p − 1]. Now if the initial configuration is X, then attack on any edge {xi, yj} can be
defended by moving all the guards to Y , this can be done since by Hall’s Theorem there exists a
perfect matching in (X \ {xi}, Y \ {yj}). Similarly, if the initial configuration is Y , then attack on
any edge {xi, yj} can be defended by moving all the guards to X, this can also be done since by
Hall’s Theorem there exists a perfect matching in (X \ {xi}, Y \ {yj}). So, evc(G) = mvc(G). □

Hence, from the above lemmas and observations, the following theorem can be concluded.

Theorem 5 Given a chain graph G = (X ∪ Y,E), where only Y can contain pendant vertices,
evc(G) can be computed in time linear time.

3.2 For chain graphs with pendant vertices in X or in X, Y both

If y1 and xp both have pendant vertices attached (consider that the graph is not K2; for K2,
evc(G) = mvc(G) = 1), then there exists a minimum vertex cover that contains xp and y1,
which implies evc(G) ∈ {mvc(G),mvc(G) + 1}. Now if evc(G) = mvc(G), then there exists a
configuration such that a guard is allocated at the pendant vertex x1 (if not then we can attack
the edge {y1, x1} and shift the guard at y1 to x1). This implies that there is no guard in y1. Now
attack {xp, y1}, then the guard at xp moves to y1 and the guard at x1 has to stay at x1. So in
this new configuration, x1 and y1 both have guards allocated, a contradiction since no minimum
vertex cover can contain the pendant vertex and its respective stem. So, evc(G) = mvc(G) + 1.

Now consider the case when only X has pendant vertices, that is, only y1 is the stem. If
mvc(G) < min{|X|, |Y |}, then evc(G) = mvc(G) + 1. If mvc(G) = |X|, then y1 has only one
pendant neighbour (otherwise mvc(G) < |X|, leading to a contradiction). Since {y1, x2, . . . , xp}
forms a minimum vertex cover and it is connected, mvc(G) = cvc(G). This implies that evc(G) ∈
{mvc(G),mvc(G) + 1} Further, two cases may arise.
Case 1: |X| < |Y |
If evc(G) = mvc(G), the initial guard allocation can be of 2 types; X and {y1, . . . , yi, xi+1, . . . , xp}.

If the initial configuration is X, then if {xp, y1} is attacked then the guard at x1 can not move
anywhere, failing to produce a valid defending move.

If the initial configuration is {y1, . . . , yi, xi+1, . . . , xp} then attack {x1, y1}, the only configura-
tion it can form is X. But then, attacking {xp, y1} will lead to a win for the attacker.

So, evc(G) ̸= mvc(G). This implies evc(G) = mvc(G) + 1.
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Case 2: |X| = |Y |
If the initial guard allocation is X or Y , then attacking {xp, y1} will lead to a win for the attacker.

If the initial configuration is {y1, . . . , yi, xi+1, . . . , xp} then attack {x1, y1}, the only configura-
tion it can form is X. But then, attacking {xp, y1} will lead to a win for the attacker.

So, evc(G) ̸= mvc(G). This implies that evc(G) = mvc(G) + 1.

The above characterization is done by observing a property that for a given chain graph G =
(X ∪ Y,E), whether there exists a minimum vertex cover S that contains both xp and y1 or not.
This property can be checked in polynomial time for a given chain graph. Before starting the
process of the algorithm, by preprocessing, an array A[1, 2, . . . , p] can be formed, where ith cell
contains the degree of xi. If there exists a j ∈ [p − 1], such that A[j] ≤ j, then there exists a
minimum vertex cover of G that contains both xp and y1. If there does not exist such j, then the
only vertex covers are of the form X or Y .

From the above lemmas and Theorem 5, we can conclude the following theorem and Algorithm
1.

Algorithm 1: An algorithm to compute the evc(G) for connected chain graphs

Input: A connected chain graph G = (X ∪ Y,E), where |X| ≤ |Y |.
Output: evc(G).
Compute mvc(G);
if G is isomorphic to some complete bipartite graph Kf,g then

if f = g then
evc(G) = mvc(G);

else
evc(G) = mvc(G) + 1;

else
if There exists a minimum vertex cover that contains both y1 & xp then

evc(G) = mvc(G) + 1;
else

if G does not has any pendant vertex or only Y has pendant vertex then
if |Y | = |X|+ 1 then

evc(G) = mvc(G);
else if |Y | > |X|+ 1 then

k = min{i|{xi, yq} ∈ E};
if | ∪k−1

j=1 N(xj)| = k then
evc(G) = mvc(G) + 1;

else
evc(G) = mvc(G) + 2;

else
evc(G) = mvc(G);

else
evc(G) = mvc(G) + 1;

return evc(G);

Theorem 6 Given a connected chain graph G = (V,E), evc(G) can be computed in O(n + m)
time.
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4 A Linear Time Algorithm for Split Graphs

In this section, we present a linear-time algorithm to compute the eternal vertex cover number
for split graphs. Note that, there already exists a quadratic time algorithm to compute evc(G)
for chordal graphs. Since the class of split graphs is a subclass of chordal graphs, we also have a
quadratic time algorithm to compute evc(G) for split graphs. But, in this section, we present a
linear-time algorithm to compute evc(G) for any split graph G.

The following result is already known regarding the eternal vertex cover number of chordal
graphs.

Theorem 7 [4] Given a connected chordal graph G = (V,E) and the set of all cut vertices X of
G, evc(G) = mvcX(G) if and only if for every vertex v ∈ V (G) \ X, we have mvcX∪{v}(G) =
mvcX(G); otherwise evc(G) = mvcX(G) + 1.

Since split graphs are chordal graphs, for any split graph G we have evc(G) ∈ {mvcX(G),
mvcX(G) + 1}.

Let G = (K ∪ I, E) be a connected split graph, where K is a clique and I is an independent
set. Without loss of generality, we may assume that K is a maximal clique of G. Let X denote
the set of cut vertices of G. Now, we first prove the following lemmas.

Lemma 8 If for each x ∈ K, |N(x)| > |K| − 1, then mvc(G) = mvcX(G) = |K|. Otherwise
mvc(G) = mvcX(G) = |K| − 1.

Proof: If for each x ∈ K, |N(x)| > |K| − 1, then each x ∈ K has at least one neighbour in I.
Note that any minimum vertex cover must contain at least |K| − 1 vertices from K. If there exists
a minimum vertex cover S that contains only |K| − 1 vertices from K, then there exists a vertex
v ∈ K, which does not belong to S. So, S must contain all neighbours of v from I, implying that
|S| ≥ |K|. Since K is itself a vertex cover of size |K|, if v has more than one neighbour in I, then
|S| > |K|, a contradiction. So, K always form a minimum vertex cover in this case. Since X ⊆ K,
it can be concluded that mvc(G) = mvcX(G) = |K|.

Now if there exists x ∈ K, such that |N(x)| = |K| − 1, then K \ {x} forms a minimum vertex
cover of cardinality |K| − 1. Note that x cannot be a cut vertex (as it has no neighbour in I). So,
X ⊆ K \ {x} and K \ {x} forms a minimum vertex cover, implying that mvc(G) = mvcX(G) =
|K| − 1. □

Lemma 9 evc(G) ∈ {mvc(G),mvc(G) + 1}.

Proof: The proof follows from the fact that evc(G) ∈ {mvcX(G),mvcX(G) + 1} and mvc(G) =
mvcX(G). □

Lemma 10 Let mvc(G) = |K| − 1. Then evc(G) = mvc(G) + 1 if I ̸= ∅ and evc(G) = mvc(G) if
I = ∅.

Proof: If I ̸= ∅, then consider a vertex y ∈ I. By Theorem 4, if evc(G) = mvc(G) = |K|− 1, then
there exists a minimum vertex cover S that contains y, which implies |S ∩K| ≤ |K| − 2, leading
to a contradiction. Hence evc(G) = mvc(G) + 1. If I = ∅, then G is a complete graph, implying
evc(G) = mvc(G). □

Lemma 11 Let mvc(G) = |K| and there exists at least one pendant vertex yi ∈ I, then evc(G) =
mvc(G) + 1.
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Algorithm 2: An algorithm to compute the evc(G) for connected split graphs

Input: A connected split graph G = (K ∪ I, E), K (̸= ∅) and I (̸= ∅) are clique and
independent set respectively.
Output: evc(G).
Find mvc(G) in linear time for G;
if mvc(G) = |K| − 1 then

evc(G) = mvc(G) + 1;
return evc(G);

else
if there exists at least one pendant vertex in G then

evc(G) = mvc(G) + 1;
return evc(G);

else
if deg(x) ≥ |K|+ 1, for all x ∈ K then

evc(G) = mvc(G) + 1;
return evc(G);

Derive X1; X1= Set of all vertices in K with degree |K|+ 1

if NI(X1) = I then
evc(G) = mvc(G);

else
evc(G) = mvc(G) + 1;

return evc(G);

Proof: Let xj be the only neighbour of the pendant vertex yi, then xj ∈ X. On contrary assume
that evc(G) = mvc(G), then by Theorem 7 there exists a minimum vertex cover S that contains
both X and yi. Hence xj ∈ S as yi ∈ S. Then there must be a vertex xk ∈ K, which does not
belong to S. Since mvc(G) = |K|, by Lemma 8, N(x)∩ I ̸= ∅ for all x ∈ K. Hence, if xk is not in
S then all of its neighbours should be in S. Since yi is not a neighbour of xk, no neighbour of xk

in I belongs to S. Hence contradiction arises. So, evc(G) = mvc(G) + 1. □

Lemma 12 Let mvc(G) = |K|, G has no pendant vertices and for each x ∈ K, deg(x) ≥ |K|+1.
Then, evc(G) = mvc(G) + 1.

Proof: Note that mvcX(G) = mvc(G). On contrary assume that evc(G) = mvc(G). Then,
by Theorem 4, for any yi ∈ I, there exists a minimum vertex cover S that contains yi. Then
|K ∩ S| = |K| − 1. Let xj ∈ K be the vertex which is not in S. Since |NI(xj)| ≥ 2, S contains at
least 2 vertices from I. But, then |S| ≥ |K|+1, a contradiction arises. Hence, evc(G) = mvc(G)+1.

□

Lemma 13 Let G does not has any pendant vertex with mvc(G) = |K| and X1 = {x ∈ K : degI(x) =
1}. If N(X1) ∩ I = I, then evc(G) = mvc(G), otherwise if N(X1) ∩ I is properly contained in I,
then evc(G) = mvc(G) + 1.

Proof: Since G is a connected split graph with no pendant vertex, then any minimum vertex
cover is connected. So, by Theorem 1, if for each v ∈ V , there is a minimum vertex cover Sv that
contains v, then evc(G) = mvc(G). Now K is a minimum vertex cover; so, there exists a minimum
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vertex cover which contains all the vertices of K. Since N(X1)∩ I = I, then for each yi ∈ I, there
exists xj ∈ X1, such that {xj , yi} ∈ E. Which implies S = {yi} ∪ (X \ {xj}) is a minimum vertex
cover. So, evc(G) = mvc(G).

If N(X1) ∩ I ⊂ I, then there exists yi ∈ I such that there does not exist any x ∈ X1 so that
{x, yi} ∈ E. Let there exists a minimum vertex cover S′ that contains yi. So, there exists xj ∈ K
such that xj /∈ S′. Take any xl ∈ N(yi); degI(xl) ≥ 2, which implies xl ∈ S′. If degI(xj) ≥ 2, then
|S′ ∩ I| ≥ 2, contradiction arises. So, degI(xj) = 1, and let NI(xj) = {yk} where (k ̸= i). Clearly
yk /∈ S′ as S′ ∩ I = {yi}. Which implies xj ∈ S′, a contradiction. So there does not exists any
minimum vertex cover that contains yi. So by Theorem 4, evc(G) = mvc(G) + 1. □

Theorem 8 For a connected split graph G(K ∪ I, E), evc(G) can be computed in time O(n+m).

Proof: The proof of the theorem is straightforward from the above lemmas and Algorithm 2.
Before starting the algorithm, by preprocessing, an array A[1, 2, . . . , n] can be formed, such that
A[i] stores the degree of the vertex vi. With the help of this array, the algorithm can run in
O(n+m) time. □

5 Algorithm for P4-sparse Graphs

In [13], we propose a polynomial time algorithm to compute evc(G) for cographs. In this section,
we present a polynomial-time algorithm to solve the eternal vertex cover problem for P4-sparse
graphs. The class of P4-sparse graphs is a superclass of the class of cographs. Below, we present
a characterization theorem for P4-sparse graphs.

Theorem 9 [6] A graph G is said to be P4-sparse if and only if one of the following conditions
hold

� G is a single vertex graph.

� G = G1 ∪G2, where G1 and G2 are P4-sparse graphs.

� G = G1 ⊕G2, where G1 and G2 are P4-sparse graphs.

� G is a spider which admits a spider partition (S,C,R) where either G[R] is a P4-sparse graph
or R = ϕ.

Hence, by Theorem 9, a connected graph that is P4-sparse and contains at least two vertices
can be classified as either a join of two P4-sparse graphs or a particular type of spider (thick or
thin). Note that if G is a spider such that |R| ≤ 1; then G is a split graph, and evc(G) can be
computed in linear time by Algorithm 2.

Now let us consider the case when G = (S,C,R) is a spider with |R| ≥ 2.

Lemma 14 Let G = (V,E) be a thin spider with the property: |R| ≥ 2 in the spider partition
(S,C,R); then evc(G) = mvc(G) + 1.

Proof: Let D be a minimum vertex cover of G. Then, it is easy to observe that D = C ∪ D′,
where D′ is a minimum vertex cover of G[R]. Note that G[D] is also connected. This implies that
D is a minimum connected vertex cover as well. Hence evc(G) ≤ |D|+ 1.

Let si be a vertex in S. For the sake of contradiction, let evc(G) = |D|. Hence, there exists
a minimum vertex cover D of G that contains si, which is a contradiction since all the minimum
vertex covers of G are of the form D = C ∪ D′, where D′ is a minimum vertex cover of G[R].
Hence, evc(G) = mvc(G) + 1. □
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Lemma 15 Let G = (V,E) be a thick spider with the property: |R| ≥ 2 in the spider partition
(S,C,R); then evc(G) = mvc(G) + 1.

Proof: The proof is exactly similar to the proof of previous lemma. □

Now the case that is yet to be seen is when G is a join of two P4-sparse graphs G1 and G2.
By Theorem 1, given a connected P4-sparse graph G = (V,E), for which each minimum vertex

cover is connected, evc(G) can be calculated by checking mvcv(G) = mvc(G) for each v ∈ V .
To check this condition for any v ∈ V , a new graph G′ = (V ′, E′) can be formed from G, where
V ′ = V ∪ {u}, E′ = E ∪ {uv}; then we can check whether mvc(G) = mvc(G′). The class of
P4-sparse graphs is not closed under pendant vertex addition. But P4-sparse graphs are also
weakly chordal graphs, which are closed under pendant vertex addition. So, we are proposing a
polynomial time algorithm EV C CHECK(G) for connected P4-sparse graph G, for which every
minimum vertex cover is connected, to compute evc(G). We are using the algorithm given in [8]
to compute minimum vertex cover for weakly chordal graphs.

Algorithm 3: EVC CHECK(G)

Input : A connected P4-sparse graph G = (V,E), for which every minimum vertex cover
is connected.
Output : evc(G).
Compute mvc(G);
count = 0;
for each u ∈ V do

Add a pendant vertex v to u in G, the new graph is Gv;
Compute mvc(Gv) from the algorithm in [8];
if mvc(G) = mvc(Gv) then

count = count+ 1;
if count = |V | then

evc(G) = mvc(G);
else

evc(G) = mvc(G) + 1;
return evc(G);

Note that to calculate mvc(G) in a weakly chordal graph G, the time complexity of the algo-
rithm mentioned in [8], is O(nm). Hence the time complexity of EV C CHECK(G) is O(n2m).

Now let us consider the graph G is join of two P4-sparse graphs G1 and G2. Here we
are assuming |V (G1)| ≤ |V (G2)| and both V (G1) and V (G2) are non-empty. If mis(G) >
min{|V (G1)|, |V (G2)|}, then a maximum independent set I of G is a subset of G2. If I ⊂ G2,
then every minimum vertex cover D is connected, since G2 ∩D ̸= ∅ and V (G1) ⊂ D. So evc(G)
can be computed by EV C CHECK(G). If I = V (G2), then V (G1) is the only minimum vertex
cover and there does not exist any minimum vertex cover D that contains any vertex of G2, so by
Theorem 4, evc(G) ̸= mvc(G). In this case, V (G1) ∪ {u}, such that u ∈ V (G2), forms an initial
configuration of guards, as G2 is independent, implying evc(G) = mvc(G) + 1.

So, the case that remains to be observed is, when mis(G) ≤ min{|G1|, |G2|}. If mis(G) <
min{|G1|, |G2|}, then any minimum vertex cover D is connected, since G2∩D ̸= ∅ and G1∩D ̸= ∅.
So, evc(G) can be computed by EV C CHECK(G).

Now for the case when mis(G) = min{|V (G1)|, |V (G2)|}. If |G1| = |G2|, then at least one
among the sets V (G1) and V (G2) is an independent set.
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If both are independent then G is K|V (G1)|,|V (G1)|, and evc(G) = mvc(G).
If G2 is not independent, then G1 is independent. This implies V (G2) is the only minimum

vertex cover ofG. Hence, no minimum vertex cover contains any vertex fromG1. So, by Theorem 4,
evc(G) ̸= mvc(G). So, evc(G) = mvc(G) + 1 and G2 ∪ {u} where u ∈ G1, forms an initial guard
allocation configuration.

Lemma 16 Given a connected P4-sparse graph G = (V,E) which is a join of two P4-sparse
graphs G1 and G2. If mis(G) = min{|V (G1)|, |V (G2)|} and |V (G1)| < |V (G2)|, then evc(G) can
be calculated in polynomial time.

Proof: Since |V (G1)| < |V (G2)|, V (G2) is not an independent set. If V (G1) is not an independent
set, then mis(G2) = mis(G). So, each minimum vertex cover is connected. So, evc(G) = mvc(G)
or evc(G) = mvc(G) + 1 can be decided in polynomial time by EV C CHECK(G). Now if G1 is
independent, then two cases may arise.
Case 1: mis(G2) = |V (G1)|. Let I2 be a maximum independent set of G2. So, we have at least
2 minimum vertex covers; V (G2) and V (G1) ∪ (V (G2) \ I2). If at some point of time, the guards
are allocated at G2 then consider any attack on uv ∈ E(G); where u ∈ V (G1) and v ∈ V (G2). If
v ∈ I2 then move all guards of I2 to V (G1) and reach the configuration V (G1) ∪ (V (G2) \ I2). If
v ∈ V (G2) \ I2, then the guard at v moves to u. v has at least one neighbour in I2(since I2 is a
maximum independent set of G2), say w. The guard at w moves to v and all the guards at I2 \{w}
moves to V (G1) \ {u} to reach the configuration V (G1) ∪ (V (G2) \ I2). So, when the guards are
allocated at configuration V (G2), any attack(on edges for which at least one end point does not
has any guard) can be defended by changing the configuration to V (G1) ∪ (V (G2) \ I2).
If the guards are allocated in V (G1) ∪ (V (G2) \ I2). Attack an edge uv ∈ E(G). If u ∈ I2 and
v ∈ V (G2) \ I2, then move the guard at v to u and all the guards at V (G1) to (I2 \ {u}) ∪ {v}
reaching the new configuration G2. Now if u ∈ I2 and v ∈ V (G1), then move all guards at v(G1)
to I2 to reach the configuration V (G2). So, any attack can be defended by placing mvc(G) number
of guards in configuration V (G2) or V (G1) ∪ (G2 \ I2). So, evc(G) = mvc(G).
Case 2: mis(G2) < |V (G1)|. Then V (G2) is the only possible minimum vertex cover of G. So, any
attack on edge uv ∈ E(G), where u ∈ G1 and v ∈ V (G2) can not be defended because there does not
exist any minimum vertex cover which contains any vertex from G1, implying evc(G) ̸= mvc(G),
by Theorem 4. So, evc(G) = mvc(G) + 1 and V (G2) ∪ {u}, such that u ∈ V (G1), forms an initial
configuration of guard allocation. □

Hence, by the above discussion, we can conclude the following theorem.

Theorem 10 Given a connected P4-sparse graph G, evc(G) can be computed in time O(n2m).

6 Conclusion and Future Aspects

In this paper, we have given polynomial time algorithms for three restricted subclasses of perfect
graphs, i.e., chain graphs, split graphs, and P4-sparse graphs. For split graphs, the running time
of our algorithm is linear. The class of split graphs is an important subclass of chordal graphs, for
which a quadratic time algorithm was already known in the literature. It will also be interesting
to look for linear-time algorithms for eternal vertex cover problem for chordal graphs, or some
other important subclasses of chordal graphs. The eternal vertex cover problem is NP-hard for
bipartite graphs and the class of chain graphs is the largest class of bipartite graphs for which linear
time algorithm has been found. The complexity status of the eternal vertex cover problem is still
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unknown for other important subclasses of bipartite graphs. Here, we have solved the complexity
status of the eternal vertex cover problem for P4-sparse graphs. It will be interesting to check
the complexity status of the problem for other well-known graph classes like distance-hereditary
graphs and AT-free graphs.
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