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Abstract. We introduce I/O-efficient certifying algorithms for the recognition of
bipartite, split, threshold, bipartite chain, and trivially perfect graphs. When the input
graph is a member of the respective class, the certifying algorithm returns a certificate
that characterizes this class. Otherwise, it returns a forbidden induced subgraph as a
certificate for non-membership. On a graph with n vertices andm edges, our algorithms
take O(sort(n+m)) I/Os in the worst case for split, threshold and trivially perfect
graphs. In the same complexity bipartite and bipartite chain graphs can be certified
with high probability. We provide implementations and an experimental evaluation for
split and threshold graphs.

1 Introduction

Certifying algorithms [28] ensure the correctness of an algorithm’s output without having to trust
the algorithm itself. The user of a certifying algorithm inputs x and receives the output y with a
certificate or witness w that proves that y is a correct output for input x. In a subsequent step,
the certificate can be inspected using an authentication algorithm that considers the input, output
and certificate and returns whether the output is indeed correct. Certifying the bipartiteness
of a graph is a textbook example where the returned witness w is a bipartition of the vertices
(YES-certificate) or an odd-length cycle subgraph, i.e. a cycle of vertices with an odd number of
edges (NO-certificate). In this case, the authentication algorithm either verifies that all edges have
endpoints in both bipartition classes, or verifies that the returned cycle is indeed an odd-length
cycle, see Figure 1 for an illustration.
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(a) In the positive case, the bipartition classes
(V,U) serve as a YES-certificate.

V U

(b) In the negative case, an odd length cycle
serves as a NO-certificate.

Figure 1: Illustration of the respective certificates when recognizing bipartite graphs.

Emerging big data applications, spanning domains such as databases, geographical informa-
tion systems, bioinformatics, network analysis and beyond, require efficient processing of massive
datasets. Further applications consider computing regimes with limited internal memory, e.g. mo-
bile devices and (swarm) robotics with a central server. Standard models of computation in internal
memory (RAM, pointer machine) do not capture the algorithmic complexity of processing data
with sizes that exceed the main memory. The I/O-model by Aggarwal and Vitter [1] is suitable
for studying large data stored in an external memory hierarchy, e.g. comprised of cache, RAM
and hard disk memories. The input data elements are stored in external memory (EM) packed in
blocks of at most B elements and computation is free in main memory for at most M elements.
The I/O-complexity is measured in I/O-operations (I/Os) that transfer a block from external to
main memory and vice versa. Common tasks of many algorithms include reading or writing n
contiguous items (which is referred to as scanning) requiring scan(n) := Θ(n/B) I/Os and sorting
n consecutive elements1 requiring sort(n) := Θ((n/B) logM/B(n/B)) I/Os.

1.1 Previous Work

There has been extensive work on certifying algorithms with different applications, including prop-
erty testing [31, 27], graph problems [12, 13, 6], graph recognition, e.g. most famously planarity
tests [22] and many more [23, 15, 21, 36, 10, 34, 20] (see also the survey of McConnell et al. [28]).
Most of the aforementioned references are algorithms for the standard model of computation, and
to the best of our knowledge none exist for the external memory model.

Most internal memory graph recognition algorithms use techniques that are in a direct transla-
tion inapplicable to the external memory model. This can be exemplified by the simple problem of
bipartiteness testing where a graph traversal, e.g. depth-first or breadth-first search, can produce
the correct output with a certificate in linear time. In external memory, however, breadth-first
search [29, 2, 32] and depth-first search [7, 4] algorithms take sub-optimal ω (sort (n+m)) I/Os
for an input graph with n vertices and m edges.

Nevertheless, some of the aforementioned algorithms follow a commonly used paradigm that
may be efficiently exploited in external memory, see [30, 20, 24] for a few examples where the
paradigm is used. It consists of a few essential parts2: incrementally consider the vertices in a
judicious order (v1, . . . , vn), if the induced subgraph Gi+1 of the first (i+1) vertices does not have
a desired property then search for a forbidden subgraph in Gi+1 based on the addition of vi+1.

1This is typically implemented by a k-way Mergesort with a suitable k leading to the sort(n) complexity.
2These requirements essentially describe a pseudo-incremental semi-certifying recognition algorithm.
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This requires a constructive model depending on Gi.

Heggernes and Kratsch [20] present optimal internal memory algorithms for certifying whether
a graph belongs to the classes of split, threshold, bipartite chain, and trivially perfect graphs fol-
lowing this paradigm. They return in linear time a YES-certificate characterizing the corresponding
class or a forbidden induced subgraph of the class (NO-certificate). The YES- and NO-certificates
are authenticated in linear and constant time, respectively. A straightforward application to the
I/O-model leads to suboptimal certifying algorithms since graph traversal algorithms in external
memory are much more involved and no worst-case efficient algorithms are known.

1.2 Our Results

We present I/O-efficient certifying algorithms for

� split,

� threshold,

� bipartite,

� bipartite chain, and

� trivially perfect graphs.

All algorithms return in the membership case, a YES-certificate w characterizing the graph class,
or a O(1)-size NO-certificate in the non-membership case. The YES- and NO-certificates can be
authenticated using O(sort(n+m)) and O(1) I/Os, respectively. As a subroutine for the certi-
fication of bipartite chain graphs we develop a certifying algorithm to recognize bipartite graphs
using O(sort(n+m)) I/Os with high probability. Additionally, we perform experiments for split
and threshold graphs showing scaling well beyond the size of main memory.

2 Preliminaries and Notation

For a graph G = (V,E), let n = |V | and m = |E| denote the number of vertices in V and edges
in E, respectively. We assume that the vertices V = {v1, . . . , vn} are ordered by their indices. For
a vertex v ∈ V we denote by N(v) the neighborhood of v and by N [v] = N(v) ∪ {v} the closed
neighborhood of v. The degree deg(v) of a vertex v is given by deg(v) = |N(v)|. A vertex v is
called simplicial if N(v) is a clique and universal if N [v] = V .

Subgraphs and Orderings The subgraph of G that is induced by a subset A ⊆ V of vertices
is denoted by G[A]. The substructure (subgraph) of a cycle on k vertices is denoted by Ck and
of a path on k vertices is denoted by Pk. The 2K2 is a graph that is isomorphic to the following
constant size graph: ({a, b, c, d}, {ab, cd}).

All algorithms reorganize the initial input by a suitable ordering of the vertices. For any given
vertex ordering σ, we partition the set of neighbors N(v) into L(v) = {x ∈ N(v) : v is ranked
higher than x in σ} and H(v) = {x ∈ N(v) : v is ranked lower than x in σ} where L(v) and H(v)
denote the lower and higher ranked neighbors, respectively.
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(a) Dependency graph of the Fibonacci sequence.
At vi, messages ⟨vi+1, zi⟩ and ⟨vi+1, zi⟩ are inserted
into the minimum priority-queue.
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(b) Dependency graph of the Maximal Independent
Set problem when using the canonical ordering. At
vi, messages ⟨vk, zi⟩ for all neighbors vk with k > i
are inserted into the minimum priority-queue.

Figure 2: Message forwarding scheme using time-forward processing.

Graph Relabeling A relabeling of a graph G = (V,E) is defined by a bijection f : V → V
where each edge {u, v} ∈ E is reflected by an edge {f(u), f(v)} of relabeled endpoints. For an
ordering α = (u1, . . . , un), a relabeling of G by α corresponds to the mapping where each vi is
mapped to its rank in α, e.g. f(vi) = vr where r is the rank of vi in α.

Employing this subroutine can lead to a more suitable representation of the graph in memory
and often allows for more efficient data processing. The relabeling can be done I/O-efficiently
in a constant number of scanning and sorting steps incuring O(sort(n+m)) I/Os [5]. As all
our algorithms perform an initial relabeling according to some ordering, we use the vertex labels
obtained by this initial relabeling.

Graph Representation We assume an adjacency array representation [35] where the graph
G = (V,E) is represented by two arrays P = [ Pi ]ni=1 and E = [ ui ]mi=1, where P points to
a location of the edge-list of G. The neighbors of a vertex vi are then given in sorted order
by the vertices at position Pi to Pi+1−1 in E. This representation allows for efficient straight-
forward processing of G: (i) scanning k consecutive adjacency lists consisting of m′ edges requires
O(scan(m′)) I/Os and (ii) computing and scanning the degrees of k consecutive vertices requires
O(scan(k)) I/Os.

3 Certifying Graph Classes in External Memory

Our algorithms follow the same base structure with further details depending on the considered
graph class. In order to allow for more data locality, the vertices of the input graph are first
relabeled according to some vertex ordering that characterizes the graph class. Then, on the
resulting graph representation, computation is carried out in the order of the used vertex ordering
leading to significantly less I/Os. Typically, in order to certify the required properties of the graph
class, when iterating over all vertices, additional information beyond its own neighbors is required
and has to be provided I/O-efficiently at the time of processing. For this, the main algorithmic
technique used is called time-forward processing and will be later illustrated using two examples.
Time-forward processing (TFP) is a generic technique to manage data dependencies of external
memory algorithms [26]. These dependencies are typically modeled by a directed acyclic graph
G = (V,E) where every vertex vi ∈ V models the computation of a corresponding value zi and an
edge (vi, vj) ∈ E indicates that zi is required for the computation of zj .

Computing a solution then requires the algorithm to traverse G according to some topological
order ≺T of the vertices V . The TFP technique achieves this in the following way: after zi has been
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calculated, the algorithm inserts a message ⟨vj , zi⟩ into a minimum priority-queue data structure
for every successor (vi, vj) ∈ E where the items are sorted by the recipients according to ≺T . By
construction, vj receives all required values zi of its predecessors vi ≺T vj as messages in the data
structure. Since these predecessors already removed their messages from the priority-queue, items
addressed to vj are currently the smallest elements in the data structure and thus can be dequeued
with a delete-minimum operation. By using suitable external memory priority-queues [3], TFP
incurs O(sort(k)) I/Os, where k is the number of messages sent.

We provide two simple examples. First, consider the computation of the Fibonacci sequence
z0 = 0, z1 = 1 and zi = zi−1 + zi−2 for all i ≥ 2 where each node vi with i ≥ 2 depends on
only its two predecessors, see Figure 2a. While a linear scan over increasing i suffices to solve the
dependencies, it serves as an instructive example showing how messages at vi are used to compute
the value of zi and how to forward it to later vertices. Second, a more complex problem is to find
a Maximal Independent Set. This can be realized by a simple greedy algorithm that iterates over
any ordering of the vertices and extending a currently computed independent set I, if possible.
In order to I/O-efficiently verify whether candidate vertices are eligible, TFP can be employed to
forward the status of a vertex to its neighbors, see Figure 2b. For this, let zi represent whether
vi is in the independent set I, i.e. zi = 1 if vi ∈ I and zi = 0 otherwise. When processing vi,
messages of the form ⟨vi, zj⟩ are accumulated and evaluated where vj is a neighbor of vi. If any of
the received values zj is equal to 1 then vi is ineligible as a neighboring vertex is already present
in I. In this case, the value zi = 0 is forwarded to future neighbors and zi = 1 otherwise. Contrary
to the first example, the use of the priority-queue alone is insufficient, as this algorithm has to
perform a concurrent scan over the edges while processing the vertices vi to forward messages to
the neighbors. Note that, messages of the form ⟨vi, zj = 0⟩ can be omitted entirely and only serve
an instructive purpose in this example.

3.1 Split Graphs

A split graph is a graph that can be partitioned into two sets of vertices (K, I) whereK and I induce
a clique and an independent set, respectively. The partition (K, I) is called the split partition. They
are additionally characterized by the forbidden induced subgraphs 2K2, C4 and C5, meaning that
any vertex subset of a split graph cannot induce these substructures [18]. Remarkably, any split
graph G can be solely recognized by its degree sequence d = (d1, d2, . . . , dn) [19] where a group of
the highest degree vertices forms the cliqueK, however, without providing a certificate. In fact, any
non-decreasing degree ordering of G is a perfect elimination ordering [16, 20], providing enough
structure to enable time-forward processing as a means to find a certificate I/O-efficiently. An
ordering (u1, . . . , un) is a perfect elimination ordering (peo) if ui is simplicial inG[{ui, ui+1, . . . , un}]
for all i ∈ {1, . . . , n}. Intuitively, a non-decreasing degree ordering that is a perfect elimination
ordering reflects some of the desired properties directly. Given a vertex v ∈ I, any neighbor u of
v cannot be in I as I is an induced independent set. As such u has to be part of the clique K, in
particular N(u) \ I has to be a clique itself, therefore u has to be simplicial in its corresponding
subgraph given by the perfect elimination ordering. Similarly, for any vertex v ∈ K all higher
ranked vertices in the degree ordering have to be a part of the clique K as only the highest degree
vertices actually form the clique, see Figure 3.

Our algorithm adapts the internal memory certifying algorithm of Heggernes and Kratsch [20]
to external memory by adopting time-forward processing in the critical subroutines as described
below. As output it either returns the split partition (K, I) as a YES-certificate or one of the
forbidden substructures C4, C5 or 2K2 as a NO-certificate. We present the certifying algorithm and
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(a) Example of a split graph where the vertices
are ordered non-decreasingly by degree from left to
right. The ordering is a perfect elimination order-
ing.

2 2 2 2 2

(b) The C5 graph that certifies non-membership for
split graphs. Here, the leftmost vertex invalidates
the perfect elimination ordering. Its neighbors are
not a clique since they are not connected, therefore
the first vertex is not simplicial.

Figure 3: Example visualization of a non-decreasing degree ordering for a split graph in (a) and
one of its forbidden induced subgraphs in (b).

its corresponding authentication algorithm and provide details in Proposition 1 and Proposition 2
and conclude with Theorem 1 at the end of this subsection.

Algorithm Description First, we compute a non-decreasing degree ordering α = (v1, . . . , vn)
and relabel the graph according to α. Thereafter we check whether α is a perfect elimination
ordering in O(sort(n+m)) I/Os by Proposition 1. In the case that α is not a perfect elimination
ordering, the algorithm returns three vertices vj , vk, vi where {vi, vj}, {vi, vk} ∈ E but {vj , vk} /∈ E
and i < j < k, violating that vi is simplicial in G[{vi, . . . , vn}], similar to the counterexample
provided in Figure 3b. In order to return a forbidden substructure we find additional vertices that
complete the induced subgraphs. Note that (vk, vi, vj) already forms a P3 and may extend to a C4

if N(vk)∩N(vj) contains a vertex z ̸= vi that is not adjacent to vi, see Figure 4 for an illustration.
Computing (N(vk)∩N(vj)) \N(vi) requires scanning the adjacencies of three vertices totaling

to O(scan(n)) I/Os. If (N(vk)∩N(vj))\N(vi) is empty we try to extend the P3 to a C5 or output
a 2K2 otherwise. To do so, we find vertices x ̸= vi and y ̸= vi for which {x, vj}, {y, vk} ∈ E but
{x, vk}, {y, vj} /∈ E that are also not adjacent to vi, i.e. {x, vi}, {y, vi} /∈ E. Both x and y exist
due to the ordering α [20] and are found using O(1) scanning steps requiring O(scan(n)) I/Os. If
{x, y} ∈ E then (vj , vi, vk, y, x) is a C5, otherwise G[{vj , x, vk, y}] constitutes a 2K2. Determining
whether {x, y} ∈ E requires scanning N(x) and N(y) using O(scan(n)) I/Os, see Figure 4.

In the membership case, α is a perfect elimination ordering and the algorithm proceeds to verify
first the clique K and then the independent set I of the split partition (K, I). Note that for a split
graph the maximum clique of size k must consist of the k-highest ranked vertices in α [20] where
k can be computed using O(sort(n+m)) I/Os by Proposition 2. Therefore, it suffices to verify for
each of the k candidates vi whether it is connected to {vi+1, . . . , vn} since the graph is undirected.
For a sorted sequence of edges relabeled by α, we check this property using O(scan(m)) I/Os. If we
find a vertex vi ∈ {vn−k+1, . . . , vn} where {vi, vj} /∈ E with i < j then G[{vi, . . . , vn}] already does
not constitute a clique and we have to return a NO-certificate. Since the maximum clique has size k,
there are k vertices with degree at least k−1. By these degree constraints there must exist an edge
{vi, x} ∈ E where x ∈ {v1, . . . , vi−1} [20]. Additionally, it holds that {x, vj} /∈ E and there exists
an edge {z, vj} ∈ E where z ∈ {v1, . . . , vi−1} that cannot be connected to x, i.e. {x, z} /∈ E [20].
Thus, we first scan the adjacency lists of vi and vj to find x and z in O(scan(n)) I/Os and return
G[{vi, vj , x, z}] as the 2K2 NO-certificate. Otherwise let K = {vn−k+1, . . . , vn} be the confirmed
clique.

Lastly, the algorithm verifies whether the remaining vertices form an independent set. We verify
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Initially:

vjvi vk

Extend to C4:

vjvi vk z

Extend to either C5 or 2K2,
depending on whether {x, y} exists:

vjvi vk y x

∈E?

Figure 4: Sequence of operations in case α is not a perfect elimination ordering. We highlight
non-edges {u, v} /∈ E by a red dashed line as the certificates are induced subgraphs. In the last
case, if {x, y} ∈ E then the whole subgraph is a C5 and otherwise G[{vj , x, vk, y}] is a 2K2.

that each candidate vi is not connected to {vi+1, . . . , vn−k}, since the graph is undirected. For
this, it suffices to scan over n− k consecutive adjacency lists in O(scan(m)) I/Os. More precisely,
we scan the adjacency lists from vn−k to v1 and in case an edge {vi, vj} where i < j ≤ n − k is
found we find two more vertices to again complete a 2K2. For the first occurrence of such a vertex
vi, we remark that {vi+1, . . . , vn−k} and {vn−k+1, . . . , vn} form an independent set and a clique,
respectively. Therefore there exists a vertex y ∈ K that is adjacent to x but not to vi [20]. We
find y by scanning N(x) and N(vi) in O(scan(n)) I/Os. To complete the 2K2 we similarly find
z ∈ N(y) \ (N(x) ∪N(vi)) in O(scan(n)) I/Os which is guaranteed to exist [20].

Authentication Given G and a split partition (K, I) we can verify in O(sort(n+m)) I/Os that
G is indeed a split partition. After relabeling G by a non-decreasing degree ordering α, we verify
that the relabeled vertices of K correspond to the k-highest ranked vertices in α. By a subsequent
scan over the relabeled edges we check whether any edge runs between vertices of I and that the
last k vertices form a clique.

For a graph G and any of the forbidden substructures 2K2, C4 or C5 we not only return the
corresponding vertex subsets but also the edge positions in the adjacency array representation for
both edges and non-edges. To do so, we revert the relabeling in O(sort(n+m)) I/Os and access
all O(1) corresponding adjacency lists in O(scan(n)) I/Os and return appropriate pointers to the
adjacency array representation. For edges that are present in the substructure we directly point to
the corresponding entry. Conversely, as non-edges are not present, we instead return pointers to
the position the edge would have occupied if it existed using the fact that the individual adjacency
lists are sorted. Since all NO-certificates are of constant size, authentication therefore only requires
O(1) I/Os by direct accesses to memory.

Proposition 1 Verifying that a non-decreasing degree ordering α = (v1, . . . , vn) of a graph G is
a perfect elimination ordering takes O(sort(n+m)) I/Os.

Proof: We follow the approach of [17, Theorem 4.5] and adapt it to the external memory using
time-forward processing, see Algorithm 1.

After relabeling and sorting the edges by α, we iterate over the vertices in the order given by α.
For a vertex vi the set of neighbors N(vi) needs to be a clique in order for vi to be simplicial. In
order to verify this for all vertices, we iterate over α and at vertex vi retrieve H(vi) by a continuous
scan over E. Then, let u ∈ H(vi) be the smallest higher ranked neighbor. As u ∈ H(vi) ⊆ N(vi)
is adjacent to vi, it has to be verified that it also is adjacent to the remaining neighbors. We verify
this property partially for higher ranked neighbors in time-forward fashion. To do so, we insert a
message ⟨u,w⟩ into a priority-queue where w ∈ H(vi)\{u} to inform u of every vertex it should be
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Algorithm 1: Recognizing Perfect Elimination in External Memory

Data: edges E of graph G, non-decreasing degree ordering α = (v1, . . . , vn)
Output: bool whether α is a peo, three invalidating vertices {vi, vj , vk} if not a peo

1 Relabel G according to α
2 for i = 1, . . . , n do
3 Retrieve H(vi) from E
4 if H(vi) ̸= ∅ then
5 Let u be the smallest successor of vi in H(vi)
6 for x ∈ H(vi) \ {u} do
7 PQ.push(⟨u, x, vi⟩) // inform u of x coming from vi

8 while ⟨v, vk, vj⟩ ← PQ.top() where v = vi do // for each message to vi
9 if vk /∈ H(vi) then // vi does not fulfill peo property

10 return false, {vi, vj , vk}
11 PQ.pop()

12 return true

adjacent to. For any given vi it is therefore verified that N(vi) is a clique after the processing of all
neighbors has finished. Conversely, after sending all required adjacency information, we retrieve
for vi all messages ⟨vi,−⟩ directed to vi and check that all received vertices are indeed neighbors
of vi by comparison to the existing adjacencies as seen by the scan over E.

Relabeling and sorting the edges takes O(sort(m)) I/Os. Every vertex vi inserts at most all
its higher ranked neighbors into the priority-queue totaling up to O(m) messages which takes
O(sort(m)) I/Os in total. Checking that all received vertices are indeed neighbors only requires a
concurrent scan over all edges since vertices are handled in ascending order by α. □

Proposition 2 Computing the size of a maximum clique in a split graph takes O(sort(n+m)) I/Os.

Proof: Note that split graphs are both chordal and co-chordal [18]. For chordal graphs, computing
the size of a maximum clique in internal memory takes linear time [17, Theorem 4.17] and can be
adapted straight-forwardly to an external memory algorithm using O(sort(m)) I/Os.

To do so, we simulate the data accesses of the internal memory variant using priority-queues to
employ time-forward processing, see Algorithm 2. The algorithm proceeds similar to Algorithm 1
but relays different information forward in time. For a vertex vi we instead inform the smallest
successor u ∈ H(vi) of the fact that it is in a clique of size |H(vi)|, namely the higher ranked
neighbors of vi. Conversely, at each vertex vi, we collect all sent messages and compute the size of
the maximum clique that vi is a part of and update the global maximum accordingly. □

By the above description and Proposition 1 and Proposition 2 it follows that split graphs can
be recognized certifiably using O(sort(n+m)) I/Os which we summarize in Theorem 1.

Theorem 1 A graph G can be recognized whether it is a split graph or not in O(sort(n+m))
I/Os. In the membership case the algorithm returns the split partition (K, I) as the YES-certificate,
and otherwise it returns an O(1)-size NO-certificate.
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Algorithm 2: Maximum Clique Size for Chordal Graphs in External Memory

Data: edges E of input graph G, perfect elimination ordering α = (v1, . . . , vn)
Output: maximum clique size χ

1 Relabel G according to α
2 χ← 0
3 for i = 1, . . . , n do
4 Retrieve H(vi) from E // scan E

5 if H(vi) ̸= ∅ then
6 Let u be the smallest successor of vi in H(vi)
7 PQ.push(⟨u, |H(vi)| − 1⟩) // vi simplicial ⇒ G[N(vi)] is clique

8 S(vi)← −∞
9 while ⟨v, S⟩ ← PQ.top() where v = vi do

10 S(vi)← max{S(vi), S} // compute maximum over all

11 PQ.pop()

12 χ← max{χ, 1 + S(vi)}
13 return χ

3.2 Threshold Graphs

Threshold graphs [11, 17, 25] are split graphs with the additional property that the independent
set I of the split partition (K, I) has a nested neighborhood ordering. In this context, a sub-
set X = {u1, . . . , uk} ⊆ V has a nested neighborhood ordering (nno) if there exists an ordering
(u1, . . . , uk) such that (N(u1) \ X) ⊆ (N(u2) \ X)) ⊆ . . . ⊆ (N(uk) \ X). Its corresponding for-
bidden substructures are 2K2, P4 and C4. Alternatively, threshold graphs can be characterized
by a graph generation process: repeatedly add universal or isolated vertices to an initially empty
graph. Conversely, by repeatedly removing universal and isolated vertices from a threshold graph
the resulting graph must be the empty graph.

Intuitively, the relation between the non-decreasing degree ordering α with the nested neighbor-
hood ordering on the independent set is precisely explained by the graph generation process. When
tracking the sorted degree sequence d of a threshold graph along the graph generation process, it
is clear that adding isolated vertices just adds a zero entry at the front of d. Furthermore, this
temporarily isolated vertex will retain its relative order in comparison to the other existing vertices
as the degrees of them all will increase simultaneously when adding a universal vertex at the back
of d. The nested neighborhood ordering therefore emerges naturally by the order the isolated
vertices are added, see Figure 5b for an illustration of this and Figure 5a for a counterexample.

Our algorithm adapts the internal memory certifying algorithm of Heggernes and Kratsch [20]
to external memory by adding an I/O-efficient preprocessing subroutine that differentiates the
certification to that of split graphs. As output it either returns a nested neighborhood ordering β of
I as a YES-certificate3 or one of the forbidden induced subgraphs C4, P4 or 2K2 as a NO-certificate.
We again present the certifying algorithm and its corresponding authentication algorithm and
provide details in Proposition 3 and conclude with Theorem 2 at the end of the subsection.

3Note that, the ordering β of I suffices as output since K = V \ I.
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1 2 3 3 3

KI

(a) Example of a split graph that is not a thresh-
old graph. The vertices in I do not emit a nested
neighborhood ordering. The first three vertices to-
gether with the last vertex form a P4, a forbidden
induced subgraph for threshold graphs.

1 2 2 3 4

KI

(b) Example of a threshold graph generated by
adding isolated and universal vertices in the follow-
ing order: (I, I,U , I,U) where I and U indicate
the addition of an isolated and universal vertex, re-
spectively.

Figure 5: Illustrations of graphs ordered non-decreasingly by degree from left to right.

Algorithm Description First, the algorithm certifies whether the input is a split graph. In
the non-membership case, if the returned NO-certificate is a C5 we extract a P4 otherwise we
return the substructure immediately. For the membership case, we recognize whether the input
is a threshold graph by repeatedly removing universal and isolated vertices using the previously
computed perfect elimination ordering α in O(sort(n+m)) I/Os by Proposition 3 (see below).
If the remaining graph is empty, we return the independent set I with its non-decreasing degree
ordering. Note that after removing a universal vertex vi, adjacent vertices with degree one become
isolated. Hence, the removal of a high-degree universal vertex that is located at the back of α
has an effect on low-degree vertices that are at the front of α. These changes cannot be reflected
on-the-fly by an I/O-efficient algorithm as these incur unstructured I/Os. Therefore preprocessing
is required.

For every vertex vi we compute the number of vertices S(vi) that become isolated after the
removal of {vi, . . . , vn}. To do so, we iterate over α in ascending order and consider vertices
vi where L(vi) = ∅. Since vi has no lower ranked neighbors, it would become isolated after
removing all vertices in H(vi), in particular this happens when the last successor with smallest
index vj ∈ H(vi) is removed. To capture this information, we save vj in a vector S and sort S
in non-ascending order incuring O(sort(m)) I/Os. The number of consecutive occurrences of any
vertex vj in S correspond to the number of isolated vertices that are created by the removal of
the vertices {vj , . . . , vn}. Thus, the aforementioned values S(vn), . . . , S(v1) are now accessible by
a scan over S after counting the occurrences of each vj in O(scan(m)) I/Os.

The algorithm now proceeds to check whether removing universal and isolated vertices leads
to an empty graph. By iterating in reverse order of α, vertices are considered in non-increasing
degree order and verified to be universal using the values that are computed in the preprocessing
stage without the need to actually remove them. This incurs a total of O(scan(n)) I/Os. In
the membership case, the resulting graph would be empty and we return a non-decreasing degree
ordering β on the vertices of the independent set I. In the non-membership case, there must exist
a P4 since the input is a split graph and can therefore not contain a C4 or a 2K2.

To find a P4, we can disregard further vertices from the remaining graph that cannot be part of
a P4. For this, let K ′ ⊂ K and I ′ ⊂ I be the remaining vertices when the non-universal vertex is
discovered. Any v ∈ K where N(v) ∩ I ′ = ∅ and any v ∈ I where N(v) ∩K ′ = K ′ cannot be part
of a P4 and can therefore be disregarded [20]. We proceed by considering and removing vertices
of K by non-descending degree and vertices of I by non-ascending degree. After this process, we
retrieve the highest-degree vertex v in I for which there exists {v, y} /∈ E and {y, z} ∈ E where
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Algorithm 3: Recognizing Threshold Graphs for Split Graphs in External Memory

Data: edges E of split graph G, perfect elimination ordering α = (v1, . . . , vn)
Output: bool whether G is threshold

1 Relabel G according to α
2 Vector S
3 for i = 1, . . . , n do
4 if L(vi) = ∅ then
5 Let vj be the smallest successor of vi in H(vi)
6 S.push(vj) // vi would be isolated after deleting {vj , . . . , vn}

7 Sort S in non-ascending order
8 ndel ← 0 // number of deleted universal/isolated vertices

9 for i = n, . . . , 1 do
10 if L(vi) ̸= ∅ then // vi not isolated in G[{v1, . . . , vn}]
11 if |L(vi)| < (n− 1)− ndel then // vi not universal

12 return false

13 ndel ← ndel + 1 + occurrences of vi // vi removed, scan S

14 return true

y ∈ K and z ∈ I [20]. Additionally, there is a neighbor w ∈ K of v for which {w, z} /∈ E [20] and
we return the P4 given by G[{v, w, y, z}], see Figure 5a for an example. Finding the P4 at this
stage therefore only requires O(scan(n+m)) I/Os.

Authentication Given G and a nested neighborhood ordering β, we authenticate that the im-
plicitly given split partition (K, I) certifies that G is a split graph using O(sort(n+m)) I/Os, as
detailed in subsection 3.1. It remains to verify that β = (v1, . . . , v|I|) is indeed a nested neighbor-
hood ordering of I. To do so, we verify for increasing i that N(vi) ⊆ N(vi+1) by a concurrent scan
over both neighborhoods requiring a total of O(scan(m)) I/Os for all i.

Since the NO-certificates are again of constant size, authenticating in the non-membership case
takes O(1) I/Os, as detailed in subsection 3.1.

Proposition 3 Verifying that G emits an empty graph after repeatedly removing universal and
isolated vertices requires O(sort(n+m)) I/Os.

Proof: The described algorithm can be seen in Algorithm 3. Relabeling ofG by any non-decreasing
degree ordering takes O(sort(n+m)) I/Os. Generating the values S(vn), . . . , S(v1) requires a scan
over all adjacency lists in ascending order and sorting S which takes O(scan(m) + sort(n)) I/Os.
After preprocessing, the algorithm only requires a reverse scan over the vertices vn, . . . , v1. While
iterating over α in reverse order, we check for each vi whether L(vi) = ∅. If vi is not isolated it must
be universal. Therefore we compare its current degree deg(vi) with the value (n− 1)− ndel where
ndel =

∑n
j=j+1 S(vj) is the number of already removed vertices. All operations take O(scan(m))

I/Os in total. □

By the above description and Proposition 3 it follows that there exists a certifying algorithm for
the recognition of threshold graphs using O(sort(n+m)) I/Os which is summarized in Theorem 2.
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x w y z

(a) The P4 substructure does not emit a uco.

x w y z

(b) The C4 substructure does not emit a uco.

Figure 6: Forbidden induced subgraphs for trivially perfect graphs. We only highlight the critical
non-edge that should exist if x is the earliest vertex in the uco. Note that, (a) only shows one
possible layout of a P4.

Theorem 2 A graph G can be recognized whether it is a threshold graph or not in O(sort(n+m))
I/Os. In the membership case the algorithm returns a nested neighborhood ordering β as the YES-
certificate, and otherwise it returns an O(1)-size NO-certificate.

3.3 Trivially Perfect Graphs

Trivially perfect graphs have no vertex subset that induces a P4 or a C4 [17]. In contrast to split
graphs, any non-increasing degree ordering of a trivially perfect graph is a universal-in-a-component
ordering [20]. A vertex ordering γ = (u1, . . . , un) is a universal-in-a-component ordering (uco) if ui

is universal in its connected component in G[{ui, ui+1, . . . , un}] for all i ∈ {1, . . . , n}. In fact, this is
a one-to-one correspondence: a non-increasing sorted degree sequence of a graph is a universal-in-a-
component ordering if and only if the graph is trivially perfect [20]. To provide further intuition, we
reiterate the reason why a P4 or C4 cannot exist in a graph that emits a universal-in-a-component
ordering γ. Suppose {w, x, y, z} are the vertices of a P4 or C4 where x is wlog. the vertex with
the earliest occurrence among the four in γ. Since P4 and C4 are connected subgraphs and γ is a
uco, x has to be connected to all remaining vertices, i.e. w, y and z. However this contradicts the
structure of the P4 or C4 as these are induced subgraphs, see Figure 6 for an example.

In external memory this can be verified using time-forward processing by adapting the algorithm
in [20]. As output it either returns a universal-in-a-component ordering γ as a YES-certificate or
one of the two forbidden subgraphs C4, P4 as a NO-certificate. We again present the certifying
algorithm and its corresponding authentication algorithm and provide details in Proposition 4 and
conclude with Theorem 3 at the end of the subsection.

Algorithm Description After computing a non-increasing degree ordering γ the algorithm
relabels the edges of the graph according to γ and sorts them. Now we iterate over the vertices in
ascending order of γ, process for each vertex vi its received messages and relay further messages
forward in time. Initially all vertices are labeled with 0. Then, at step i vertex vi checks that all
adjacent vertices N(vi) have the same label as vi. After this, vi relabels each vertex u ∈ N(vi)
with its own index i and is then removed from the graph.

In the external memory setting we cannot access labels of vertices and relabel them on-the-fly
but rather postpone the comparison of the labels to the adjacent vertices instead. To do so, vi
forwards its own label ℓ(vi) to u ∈ H(vi) by sending two messages ⟨u, vi, ℓ(vi)⟩ and ⟨u, vi, i⟩ to u,
signaling that u should compare its own label to vi’s label ℓ(vi) and then update it to i. Since the
label of any adjacent vertex is changed after processing a vertex, when arriving at vertex vj an
odd number of messages will be targeted to vj , where the last one corresponds to its actual label
at step j. Then, after collecting all received labels, we compare disjoint consecutive pairs of labels
and check whether they match. In the membership case, we do not find any mismatch and return
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Algorithm 4: Recognizing Universal-in-a-Component Orderings in External Memory

Data: edges E of graph G, non-increasing degree ordering γ = (v1, . . . , vn)
Output: bool whether γ is a uco

1 Relabel G according to γ
2 for i = 1, . . . , n do
3 Vector L = [0] // initialize with 0

4 while ⟨v, vj , ℓ⟩ ← PQ.top() where v = vi do // vi’s received labels

5 L.push(ℓ)
6 PQ.pop()

7 for i = 1, . . . ,L.size/2 do // L.size is even

8 if L[2i] ̸= L[2i+1] and L.size > 1 then // mismatch / anomaly

9 return false

10 ℓ(vi)← L[L.size] // assign label of vi
11 Retrieve H(vi) from E // scan E

12 for u ∈ H(vi) do
13 PQ.push(⟨u, vi, ℓ(vi)⟩)
14 PQ.push(⟨u, vi, i⟩)

15 return true

γ as the YES-certificate. Otherwise, we have to return a P4 or C4.
In the description of [20] the authors stop at the first anomaly where vi detects a mismatch

in its own label and one of its neighbors. We simulate the same behavior by writing out every
anomaly we find, e.g. that vj does not have the expected label of vi via an entry ⟨vi, vj , k⟩ where
k denotes the label of vj . After sorting the entries, we find the earliest anomaly ⟨vi, vj , k⟩ with the
largest label k of vi’s neighbors in O(sort(m)) I/Os. Since vj received the label k from vk, but vi
did not, it is clear that vk is not universal in its connected component in G[{vk, vk+1, . . . , vn}] and
we thus find a P4 or C4. Note that (vk, vj , vi) already constitutes a P3 where deg(vk) ≥ deg(vj),
since vj received the label k. Since vj is adjacent to both vk and vi and deg(vk) ≥ deg(vj), there
must exist a vertex x ∈ N(vk) where {vj , x} /∈ E. Thus, G[{vk, vj , vi, x}] is a P4 if {vi, x} /∈ E
and a C4 otherwise. Finding x and determining whether the forbidden subgraph is a P4 or a C4

requires scanning O(1) adjacency lists using O(scan(n)) I/Os.

Authentication Given G and a universal-in-a-component ordering we run Algorithm 4 using
O(sort(n+m)) I/Os by Proposition 4. In the case of non-membership, we find the given substruc-
ture in O(1) I/Os, as detailed in subsection 3.1.

Proposition 4 Verifying that a non-increasing degree ordering γ = (v1, . . . , vn) of a graph G with
n vertices and m edges is a universal-in-a-component ordering requires O(sort(m)) I/Os.

Proof: Every vertex vi receives exactly two messages per neighbor in L(vi) and verifies that all
consecutive pairs of labels match. Then, either the label i is sent to each higher ranked neighbor of
H(vi) via time-forward processing or it is verified that γ is not a universal-in-a-component ordering.
Since at most O(m) messages are forwarded, the resulting overall complexity is O(sort(m)) I/Os.
Correctness follows from [20] since the adapted algorithm performs the same operations but only
delays the label comparisons. □
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By the above description and Proposition 4 it follows that there exists a certifying algorithm
for the recognition of trivially perfect graphs using O(sort(n+m)) I/Os which we summarize in
Theorem 3.

Theorem 3 A graph G can be recognized whether it is a trivially perfect graph or not using
O(sort(n+m)) I/Os. In the membership case the algorithm returns the universal-in-a-component
ordering γ as the YES-certificate, and otherwise it returns an O(1)-size NO-certificate.

3.4 Bipartite Chain Graphs

Bipartite chain graphs are bipartite graphs where one part of the bipartition has a nested neigh-
borhood ordering [37] similar to threshold graphs. Interestingly, for chain graphs one side of the
bipartition exhibits this property if and only if both partitions do [37]. Its forbidden induced sub-
structures are 2K2, C3 and C5. By definition, bipartite chain graphs are bipartite graphs which
therefore requires I/O-efficient bipartiteness testing.

Our algorithm adapts the internal memory certifying algorithm of Heggernes and Kratsch [20]
to external memory. As a byproduct, we develop a certifying algorithm to recognize whether an
input graph is bipartite or not and use it as a subroutine, see Lemma 1. The algorithm either
returns a bipartition (U, V \U) with two nested neighborhood orderings on U and V \U as a YES-
certificate or one of the forbidden induced subgraphs C3, C5 or 2K2 as a NO-certificate. We present
the full certifying algorithm first and provide details in Lemma 1, Corollary 1 and conclude with
Theorem 4 at the end of the subsection.

Algorithm Description We follow the linear time internal memory approach of [20] with slight
adjustments to accommodate the external memory setting. First, we check whether the input
is indeed a bipartite graph. Instead of using breadth-first search which is very costly in external
memory, even for constrained settings [7, 29, 2], we can use a more efficient approach with spanning
trees which is presented in Lemma 1. In case the input is not connected, we simply return two
edges of two different components as the 2K2. If the graph is connected, we proceed to verify that
the graph is bipartite and return a NO-certificate in the form of a C3, C5 or 2K2 in case it is not.
In order to find a C3, C5 or 2K2 some modifications to Lemma 1 are necessary. Essentially, the
algorithm instead returns a minimum odd cycle that is built from the spanning tree T and a single
non-tree edge. Due to minimality we can then find a C3, C5 or a 2K2. The result is summarized
in Corollary 1.

Then, it remains to show that each side of the bipartition has a nested neighborhood ordering.
Let U be the larger side of the partition. By [25] it suffices to show that the input is a bipartite
chain graph if and only if the graph obtained by adding all possible edges with both endpoints in
U is a threshold graph. Instead of materializing the threshold graph, we implicitly represent the
new adjacencies of vertices in U to retain the same I/O-complexity and apply Theorem 2 using
O(sort(n+m)) I/Os. Note that, in this threshold graph vertices of U have higher degrees than
vertices in V \U since U is the larger side of the bipartition. If the input is bipartite but not bipartite
chain, we repeatedly delete vertices that are connected to all other vertices of the other side4 and
the resulting isolated vertices, similar to subsection 3.2 and [20]. After this, the vertex v with
highest degree has a non-neighbor y in the other partition. By similar arguments to subsection 3.2
y is adjacent to another vertex z that is adjacent to a vertex x where {v, x} /∈ E [20]. As such,
G[{v, y, z, x}] is a 2K2 and can be found in O(scan(n)) I/Os and returned as the NO-certificate.

4These correspond to the universal vertices in the case of threshold graphs but applied to bipartite graphs.
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Figure 7: Visualization of the different NO-certificates that are produced in Corollary 1.

Authentication Given G and a bipartition (U, V \U) with two nested neighborhood orderings on
U and V \U we first confirm that U and V \U are indeed independent sets usingO(sort(n+m)) I/Os
similar to subsection 3.1. After this, we confirm that the provided orderings are nested neighbor-
hood orderings as detailed in subsection 3.2.

As the NO-certificates are of constant size, authentication again only takes O(1) I/Os in the
non-membership case similar to subsection 3.1.

Lemma 1 A graph G can be recognized whether it is a bipartite graph or not in O(sort(n+m))
I/Os, given a spanning forest of the input graph. In the membership case the algorithm returns
a bipartition (U, V \U) as the YES-certificate, and otherwise it returns an odd cycle as the NO-
certificate.

Proof: In case there are multiple connected components, we operate on each individually and
thus assume that the input is connected. Let T be the edges of the spanning tree and E \ T the
non-tree edges. Any edge e ∈ E \ T may produce an odd cycle by its addition to T . In fact,
the input is bipartite if and only if T ∪ {e} is bipartite for all e ∈ E \ T 5. We check whether
an edge e = {u, v} closes an odd cycle in T by computing the distance dT (u, v) of its endpoints
in T , see also Figure 7. Since this is required for every non-tree edge E \ T , we resort to batch-
processing. Note that T is a tree and hence after choosing a designated root r ∈ V it holds
that dT (u, v) = dT (u,LCAT (u, v)) + dT (v,LCAT (u, v)) where LCAT (u, v) is the lowest common
ancestor of u and v in T . Therefore for every edge E \ T we compute its lowest common ancestor
in T using O((1 +m/n) · sort(n)) = O(sort(m)) I/Os [9].

Additionally, for each vertex v ∈ V we compute its depth in T in O(sort(m)) I/Os using Euler
Tours [9] and inform each incident edge of this value by a few scanning and sorting steps. Similarly,
each edge e = {u, v} is provided of the depth of LCAT (u, v). Then, after a single scan over E \ T
we compute dT (u, v) and check if it is even. If any value is even, we return the odd cycle as a
NO-certificate or a bipartition in T as the YES-certificate. Both can be computed using Euler Tours
in O(sort(m)) I/Os. □

Corollary 1 If a connected graph G contains a C3, C5 or 2K2 then any of these subgraphs can be
found in O(sort(n+m)) I/Os given a spanning tree of G.

5Since T is bipartite, one can think of T as a representation of a 2-coloring on T .



64 U. Meyer et al. Certifying Induced Subgraphs in Large Graphs

Proof: We extend the algorithm presented in Lemma 1 to either return the induced cycles C3

and C5 or a 2K2. While iterating over the edges to find an odd cycle we save the smallest one by
keeping a copy of the edge e ∈ E \ T and the length of the minimum odd cycle. In case we find
a C3 or a C5 we are done and return the NO-certificate immediately, see Figure 7a and Figure 7b.
Otherwise for an odd (non-induced) cycle of length k with k = 2ℓ + 1 > 5 we return a 2K2 by
finding a matching edge to the non-tree edge e ∈ E \ T in the cycle.

Let C = (u1, . . . , uk, u1) be the returned cycle where {uk, u1} is the non-tree edge6. In this
case we return for the 2K2 the graph ({uℓ, uℓ+1, u1, uk}, {{u1, uk}, {uℓ, uℓ+1}}). If ℓ is odd,
the non-edges of the 2K2 cannot exist since otherwise any of the following smaller odd cycles
(u1, u2, . . . , uℓ+1, uk, u1), (u1, u2, . . . , uℓ, u1), (uℓ, uℓ+1, . . . , uk, uℓ) and (u1, uℓ+1, uℓ+2, . . . , uk, u1)
would be present, contradicting the minimality of C. For the other case where ℓ is even, a similar
argument can be found. The I/O-complexity therefore remains the same, an overall illustration is
given in Figure 7. □

We summarize our findings for bipartite chain graphs in Theorem 4.

Theorem 4 A graph G can be recognized whether it is a bipartite chain graph or not using
O(sort(n+m)) I/Os with high probability. In the membership case the algorithm returns a bi-
partition (U, V \U) and nested neighborhood orderings of both partitions as the YES-certificate, and
otherwise it returns a O(1)-size NO-certificate.

Proof: Computing a spanning tree T requires O(sort(n+m)) I/Os with high probability by an
external memory variant of the Karger, Klein and Tarjan minimum spanning tree algorithm [9,
5]. By Corollary 1 we find a C3, C5 or 2K2 if the input is not bipartite or not connected. We
proceed by checking the nested neighborhood orderings of both partitions in O(sort(n+m)) I/Os
using Theorem 2. □

4 Experimental Evaluation

We implemented our external memory certifying algorithms for split and threshold graphs in C++
using the STXXL library [14]. STXXL offers external memory versions of fundamental algorithmic
building blocks like scanning, sorting and several data structures. Our benchmarks are built with
GNU g++-10.3 and executed on a machine equipped with an AMD EPYC 7302P processor and
64 GB RAM running Ubuntu 20.04 using six 500 GB solid-state disks.

To provide a comparison of our algorithms, we also implemented the internal memory state-of-
the-art algorithms by Heggernes and Kratsch [20]. Our internal memory implementations are direct
translations of the descriptions provided in [20] making use of standard STL containers especially
hash-maps to answer adjacency-queries in constant time. These data structures are infeasible for
external-memory algorithms due to the frequently incurred random accesses.

In order to validate the predicted scaling behavior we generate our instances parameterized
by n. For yes-instances of split graphs we generate a split partition (K, I) with |K| = n/10 and
add each possible edge {u, v} with probability 1/4 for u ∈ I and v ∈ K. Analogously, yes-instances
of threshold graphs are generated by repeatedly adding either isolated or universal vertices with
probability 9/10 and 1/10, respectively. We additionally attempt to generate no-instances by
adding O(1) many random edges to the yes-instances. In a last step, we randomize the vertex
indices to remove any biases emerging from the generation process.

6Note that, C is not an induced cycle unlike C3 and C5.
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Figure 8: Running times of the certifying algorithms for split (left) and threshold graphs (right)
for different random graph instances. The black vertical lines depict the number of elements that
can concurrently be held in internal memory.

In Figure 8 we present the running times of all algorithms on multiple yes- and no-instances.
It is clear that the performance of both external memory algorithms is not impacted by the main
memory barrier while the running time of their internal memory counterparts already increases
when at least half the main memory is used. This effect is amplified immensely after exceeding
the size of main memory for split graphs.

Certifying the produced no-instances of split graphs seems to require less time than their
corresponding unmodified yes-instances as the algorithm typically stops early. Furthermore, due
to the low data locality of the internal memory variant it is apparent that the external memory
algorithm is superior for the yes-instances. The performance on both yes- and no-instances is
very similar in external memory. This is in part due to the fact that the common relabeling step is
already relatively costly. For threshold graphs, however, the external memory variant outperforms
the internal memory variant due to improved data locality.

5 Conclusions

We have presented the first I/O-efficient certifying recognition algorithms for split, threshold,
trivially perfect, bipartite and bipartite chain graphs. Our algorithms require O(sort(n+m)) I/Os
matching common lower bounds for many algorithms in external memory. In our experiments we
show that the algorithms perform well even for graphs exceeding the size of main memory.

Further, it would be interesting to extend the scope of certifying recognition algorithms to more
graph classes for the external memory regime. In internal memory, a plethora of graph classes are
efficiently certifiable which currently have no efficient external memory pendant, e.g. circular-
arc graphs [15], HHD-free graphs [34], interval graphs [24], normal helly circular-arc graphs [8],
permutation graphs [24], proper interval graphs [21], proper interval bigraphs [21] and many more.
Due to limited data locality, straight-forward applications of these algorithms are highly inefficient
for use in external memory. In turn, new algorithmic techniques are necessary to bridge the gap
to larger processing scales.
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