
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 28, no. 3, pp. 31–48 (2024)
DOI: 10.7155/jgaa.v28i3.2970

Splitting Plane Graphs to Outerplanarity

Martin Gronemann 1 Martin Nöllenburg 1 Anäıs Villedieu 1

1Algorithms and Complexity Group,
TU Wien, Vienna, Austria

Submitted: June 2023 Accepted: May 2024 Published: September
2024

Article type: Regular paper
Communicated by: C.-C. Lin, B. M.-T.

Lin, G. Liotta

Abstract. Vertex splitting replaces a vertex by two copies and partitions its in-
cident edges amongst the copies. This problem has been studied as a graph editing
operation to achieve desired properties with as few splits as possible, most often pla-
narity, for which the problem is NP-hard. Here we study how to minimize the number
of splits to turn a plane graph into an outerplane one. We tackle this problem by
establishing a direct connection between splitting a plane graph to outerplanarity, find-
ing a connected face cover, and finding a feedback vertex set in its dual. We prove
NP-completeness for plane biconnected graphs, while we show that a polynomial-time
algorithm exists for maximal planar graphs. Additionally, we show upper and lower
bounds for certain families of maximal planar graphs. Finally, we provide a SAT for-
mulation for the problem, and evaluate it on a small benchmark.

1 Introduction

Graph editing problems are fundamental problems in graph theory. They define a set of basic
operations on a graph G and ask for the minimum number of these operations necessary in order
to turn G into a graph of a desired target graph class G [29, 34, 39, 47]. For instance, in the
Cluster Editing problem [43] the operations are insertions or deletions of individual edges and
the target graph class are cluster graphs, i.e., unions of vertex-disjoint cliques. In graph drawing,
a particularly interesting graph class are planar graphs, for which several related graph editing
problems have been studied, e.g., how many vertex deletions are needed to turn an arbitrary graph
into a planar one [37] or how many vertex splits are needed to obtain a planar graph [19, 28]. In
this paper, we are interested in the latter operation: vertex splitting. A vertex split creates two
copies of a vertex v, distributes its edges among these two copies and then deletes v from G.

Further, we are translating the graph editing problem into a more geometric or topological
drawing editing problem. This means that we apply the splitting operations not to the vertices of

Anäıs Villedieu is supported by the Austrian Science Fund (FWF) under grant P31119.

E-mail addresses: mgronemann@ac.tuwien.ac.at (Martin Gronemann) noellenburg@ac.tuwien.ac.at (Martin
Nöllenburg) avilledieu@ac.tuwien.ac.at (Anäıs Villedieu)

This work is licensed under the terms of the CC-BY license.

http://dx.doi.org/10.7155/jgaa.v28i3.2970
https://orcid.org/0000-0003-2565-090X
https://orcid.org/0000-0003-0454-3937
https://orcid.org/0000-0001-6196-8347
mailto:mgronemann@ac.tuwien.ac.at
mailto:noellenburg@ac.tuwien.ac.at
mailto:avilledieu@ac.tuwien.ac.at
https://creativecommons.org/licenses/by/4.0/

32 Gronemann et al. Splitting Plane Graphs to Outerplanarity

(a) (b)

Figure 1: (a) An instance of Outerplane Splitting Number, where the colored vertices will
be split; (b) resulting outerplane graph after the minimum 3 splits.

an abstract graph, but to the vertices of a planar graph drawing, or more generally to a planar
embedded (or plane) graph. In a plane graph, each vertex has an induced cyclic counterclockwise
order of its incident edges, which needs to be respected by any vertex split in the sense that we
must split its cyclic order into two contiguous intervals, one for each of the two copies. From a
different perspective, the two faces that serve as the separators of these two edge intervals are
actually merged into a single face by the vertex split.

Finally, we consider outerplanar graphs as the target graph class. Thus, we want to apply a
minimum number of vertex splits to a plane graph G, which merge a minimum number of faces
in order to obtain an outerplanar embedded graph G′, where all vertices are incident to a single
face, called the outer face. We denote this minimum number of splits as the outerplane splitting
number osn(G) of G (see Figure 1). Outerplanar graphs are a prominent graph class in graph
drawing (see, e.g., [10, 22, 32, 33]) as well as in graph theory and graph algorithms more generally
(e.g., [13, 23, 36]). For instance, outerplanar graphs admit planar circular layouts or 1-page book
embeddings [8]. Additionally, outerplanar graphs often serve as a simpler subclass of planar graphs
with good algorithmic properties. For instance, they have treewidth 2 and their generalizations
to k-outerplanar graphs still have bounded treewidth [9, 12], which allows for polynomial-time
algorithms for NP-complete problems that are tractable for such bounded-treewidth graphs. This,
in turn, can be used to obtain a PTAS for these problems on planar graphs [5].

We are now ready to define our main computational problem as follows.

Problem 1 (Outerplane Splitting Number) Given a plane biconnected graph G = (V,E) and
an integer k, can we transform G into an outerplane graph G′ by applying at most k vertex splits
to G?

Contributions. In this paper, we introduce the above problem Outerplane Splitting Num-
ber. We start by showing the key property for our subsequent results, namely that (minimum)
sets of vertex splits to turn a plane biconnected graph G into an outerplane one correspond to
(minimum) connected face covers in G (Section 2), which in turn are equivalent to (minimum)
feedback vertex sets in the dual graph of G. Using this tool we then show that for general plane
biconnected graphs Outerplane Splitting Number is NP-complete (Section 3), whereas for
maximal planar graphs we can solve it in polynomial time (Section 4). We also provide upper and
lower bounds on the outerplane splitting number for maximal planar graphs (Section 5). Finally,
we propose a SAT formulation to split arbitrary simple graphs to outerplanarity (Section 6). We
evaluate it on a collection of small sparse graphs and show that it performs well for these instances.

JGAA, 28(3) 31–48 (2024) 33

Related Work. Splitting numbers have been studied mostly for abstract (non-planar) graphs
with the goal of turning them into planar graphs. The Planar Splitting Number problem is
NP-complete in general [19], but exact splitting numbers are known for complete and complete
bipartite graphs [26,28], as well as for the 4-cube [18]. For two-layer drawings of general bipartite
graphs, the problem is still NP-complete in general with some restrictions that are polynomial-
time solvable [2], but FPT [3] when parametrized by the number of split vertices. It has also
been studied for other surfaces such as the torus [24] and the projective plane [25]. Another
related concept is the split thickness of a graph G (or its folded covering number [31]), which is
the smallest k such that G can be transformed into a planar graph by applying at most k splits
per vertex. Recognizing graphs with split thickness 2 is NP-hard, but there is a constant-factor
approximation algorithm and a fixed-parameter algorithm for graphs of bounded treewidth [17].
Recently, the complexity of the embedded splitting number problem of transforming non-planar
graph drawings into plane ones has been investigated [40]. The authors showed that the problem
is NP-hard, and presented an FPT algorithm for the case, where the set of vertices that should be
split is given. Beyond the theoretical investigations of splitting numbers and planarity, there are
also applied works in graph drawing making use of vertex splitting to untangle edges [46] or to
improve layout quality for community exploration [4,27]. Our investigations on the Outerplane
Splitting Number problem could be of practical interest in the sense that outerplane drawings
allow for adding crossing-free links to all vertices of a particular component from the outside, which
is required, for instance, in the ChordLink model [4].

Regarding vertex splitting for achieving graph properties other than planarity, Trotter and
Harary [44] studied vertex splitting to turn a graph into an interval graph. Paik et al. [41] considered
vertex splitting to remove long paths in directed acyclic graphs and Abu-Khzam et al. [1] studied
heuristics using vertex splitting for a cluster editing problem. Baumann et al. [6] showed that
vertex splitting to a graph of pathwidth 1 admits a linear kernel when parameterized by the
solution size; they further showed that testing if k vertex splits can turn an input graph into one of
a graph class Π that can be expressed in monadic second order logic and has bounded treewidth is
FPT in k. This includes, e.g., outerplanar graphs, Halin graphs, and generally graphs of bounded
treewidth or pathwidth. Firbas and Sorge [21] studied the classical and parameterized complexity
of vertex splitting to obtain hereditary graph properties and Firbas et al. [20] considered vertex
splitting to obtain a cluster graph, i.e., a disjoint union of cliques, and showed that this problem
is NP-complete, but admits a linear kernel.

Preliminaries. The key concept of our approach is to merge a set of faces of a given plane
graph G = (V,E) with vertex set V = V (G) and edge set E = E(G) into one big face which
is incident to all vertices of G. Hence, the result is outerplanar. The idea is that if two faces
f1 and f2 share a vertex v on their boundary (we say f1 and f2 touch, see Figure 2a), then we
can split v into two new vertices v1, v2. In this way, we are able to create a narrow gap, which
merges f1, f2 into a bigger face f (see Figure 2b). With this in mind, we formally define an
embedding-preserving split of a vertex v w.r.t. two incident faces f1 and f2. We construct a
new plane graph G′ = (V ′, E′) with V ′ = V \ {v} ∪ {v1, v2}. Consider the two neighbors of v
both incident to f1 and let w1 be the second neighbor in clockwise order. Similarly, let wi be
the second vertex adjacent to v and incident to f2. We call wd the vertex preceding w1 in the
cyclic ordering of the neighbors, with d being the degree of v, see Figure 2a. Note that while
w1 = wi−1 and wi = wd is possible, wd ̸= w1 and wi−1 ̸= wi. For the set of edges, we now set
E′ = E \{(v, w1), . . . , (v, wd)}∪{(v2, w1), . . . , (v2, wi−1)}∪{(v1, wi), . . . , (v1, wd)} and assume that
they inherit their embedding from G. From now on we refer to this operation simply as a split or

34 Gronemann et al. Splitting Plane Graphs to Outerplanarity

f2

f1

v

wi

wd w1

wi−1

(a)

v2v1

f

wi

wd w1

wi−1

(b)

f1 f2

f3f4
v

(c) (d)

Figure 2: (a) Two touching faces f1, f2 with a common vertex v on their boundary. (b) Result of
the split of v with respect to f1, f2 joining them into a new face f . (c-d) Merging 4 faces f1, . . . , f4
covering a single vertex v with 3 splits.

when f1, f2 are clear from the context, we may refer to merging the two faces at v. The vertices
v1, v2 introduced in place of v are called copies of v. If a copy vi of a vertex v is split again, then
any copy of vi is also called a copy of the original vertex v.

We can now reformulate the task of using as few splits as possible. Our objective is to find a
set of faces S that satisfies two conditions. (1) Every vertex in G has to be on the boundary of at
least one face f ∈ S, that is, the faces in S cover all vertices in V .1 And (2) for every two faces
f, f ′ ∈ S there exists a set of faces {f1, . . . , fk} ⊆ S such that f = f1, . . . , fk = f ′, and fi touches
fi+1 for 1 ≤ i < k. In other words, a solution S must be connected in terms of touching faces.2

We now introduce the main tool in our constructions that formalizes this concept.

2 Face-Vertex Incidence Graph

Let G = (V,E) be a plane biconnected graph and F its set of faces. The face-vertex inci-
dence graph is defined as H = (V ∪ F,EH) and contains the edges EH = {(v, f) ∈ V × F :
v is on the boundary of f}. Graph H is by construction bipartite and we assume that it is plane
by placing each vertex f ∈ F into its corresponding face in G.

Definition 1 Let G be a plane biconnected graph, let F be the set of faces of G, and let H be its
face-vertex incidence graph. A face cover of G is a set S ⊆ F of faces such that every vertex v ∈ V
is incident to at least one face in S. A face cover S of G is a connected face cover if the induced
subgraph H[S ∪ V] of S ∪ V in H is connected.

We point out that the problem of finding a connected face cover is not equivalent to the Connected
Face Hitting Set Problem [42], where a connected set of vertices incident to every face is computed.
We continue with two lemmas that are concerned with merging multiple faces at the same vertex
(Figure 2c).

Lemma 1 Let G be a plane biconnected graph, v ∈ V a vertex of G, and S ⊆ F a subset of the
faces F of G, where each face f ∈ S has the vertex v on its boundary. Then |S| − 1 splits are
sufficient to merge the faces in S into one.

1Testing whether such S with |S| ≤ k exists, is the NP-complete problem Face Cover [11].
2Notice that the conditions (1) and (2) are slightly stronger than the definition of connected face cover in

Definition 1 below.

JGAA, 28(3) 31–48 (2024) 35

Proof: Let f1, . . . , fk with k = |S| be the faces of S in the clockwise order as they appear around
v (f1 chosen arbitrarily). We start by merging f1 with f2, and iteratively merge the resulting face
with fi for i = 3, . . . , k, which requires in total |S| − 1 splits (see Figure 2c and Figure 2d). □

Lemma 2 Let G be a plane biconnected graph and let S be a connected face cover of G. Then
|S| − 1 splits are sufficient to merge the faces of S into one.

Proof: LetH ′ = H[S∪V] and compute a spanning tree T inH ′. For every vertex v ∈ V (T)∩V (G),
we apply Section 2 with the face set F ′(v) = {f ∈ S ∩ V (T) | (v, f) ∈ E(T)}. We root the tree
at an arbitrary face f ′ ∈ S, which provides a hierarchy on the vertices and faces in T . Every
vertex v ∈ V (T) ∩ V (G) requires by Section 2 |F ′(v)| − 1 splits. Note that for all leaf vertices in
T , |F ′(v)| = 1, i.e., they will not be split. Each split is charged to the children of v in T . Since H
is bipartite, so is T . It follows that every face f ∈ S \ {f ′} is charged exactly once by its parent,
thus |S| − 1 splits suffice. □

Lemma 3 Let G be a plane biconnected graph and σ a sequence of k splits to make G outerplane.
Then G has a connected face cover of size k + 1.

Proof: Since by definition applying σ to G creates a single big face that is incident to all vertices
in V (G) by iteratively merging pairs of original faces defining a set S ⊆ F , it is clear that S is a
face cover of G and since the result of the vertex splits and face merges creates a single face, set S
must also be connected. □

As a consequence of Section 2 we obtain thatOuterplane Splitting Number and computing
a minimum connected face cover are equivalent.

Theorem 1 Let G be a plane biconnected graph. Then G has outerplane splitting number k if and
only if it has a connected face cover of size k + 1.

3 NP-completeness

In this section, we prove that finding a connected face cover of size k (and thus Outerplane
Splitting Number) is NP-complete. The idea is to take the dual of a planar biconnected Vertex
Cover instance and subdivide every edge once (we call this an all-1-subdivision). Note that the all-
1-subdivision of a graph G corresponds to its vertex-edge incidence graph and the all-1-subdivision
of the dual of G corresponds to the face-edge incidence graph of G. A connected face cover then
corresponds to a vertex cover in the original graph, and vice versa. The following property greatly
simplifies the arguments regarding Section 2.

Property 1 Let G′ be an all-1-subdivision of a biconnected planar graph G and S a set of faces
that cover V (G′). Then S is a connected face cover of G′.

Proof: Let H be the face-vertex incidence graph of G′, and assume to the contrary that the
induced subgraph H ′ = H[S ∪ V (G′)] is not connected. Then there exists an edge (u, v) ∈ E(G)
such that u and v are in different connected components in H ′. Let w be the subdivision vertex of
(u, v) in G′. As a subdivision vertex, w is incident to only two faces, one of which, say f , must be
contained in S. But f is also incident to u and v and hence u and v are in the same component of
H ′ via face f , a contradiction. Hence H ′ is connected and S is a connected face cover of G′. □

36 Gronemann et al. Splitting Plane Graphs to Outerplanarity

D

G

(a) primal (black) and
dual graph (gray)

D∗

(b) subdivision and connected
face cover of the dual graph

(c) vertex cover (red) in
the primal graph

Figure 3: Link between the primal graph G, its vertex cover, the dual D and its subdivision D∗.

The proof of the next theorem is very similar to the reduction of Bienstock and Monma to
show NP-completeness of Face Cover [11]; due to differences in the problem definitions, such as
the connectivity of the face cover and whether the input graph is plane or not, we provide the full
reduction for the sake of completeness.

Theorem 2 Deciding whether a plane biconnected graph G has a connected face cover of size at
most k is NP-complete.

Proof: Clearly the problem is in NP. To prove hardness, we first introduce some notation. Let
G be a plane biconnected graph and D the corresponding dual graph. Furthermore, let D∗ be
the all-1-subdivision of D. We prove now that a connected face cover S∗ of size k in D∗ is in a
one-to-one correspondence with a vertex cover S of size k in G (see Figure 3). More specifically, we
show that the dual vertices of the faces of S∗ that form a connected face cover in D∗, are a vertex
cover for G and vice versa. The reduction is from the NP-complete Vertex Cover problem in
biconnected planar graphs in which all vertices have degree 3 (cubic graphs) [38].

Connected Face Cover ⇒ Vertex Cover: Let G be such a biconnected plane Vertex Cover
instance. Assume we have a connected face cover S∗ with |S∗| = k forD∗. Note that the faces ofD∗

correspond to the vertices in G. We claim that the faces S∗, when mapped to the corresponding
vertices S ⊆ V (G) are a vertex cover for G. Assume otherwise, that is, there exists an edge
e∗ ∈ E(G) that has no endpoints in S. However, e∗ has a dual edge e ∈ E(D) and therefore a
subdivision vertex ve ∈ V (D∗). Hence, there is a face f ∈ S∗ that has ve on its boundary by
definition of connected face cover. And when mapped to D, f has e on its boundary, which implies
that the primal edge e∗ has at least one endpoint in S∗; a contradiction.

Vertex Cover ⇒ Connected Face Cover: To prove that a vertex cover S induces a connected
face cover S∗ in D∗, we have to prove that S∗ covers all vertices and the induced subgraph in the
face-vertex incidence graph H is connected. We proceed as in the other direction. S covers all
edges in E(G), thus every edge e ∈ E(D) is bounded by at least one face of S∗. Hence, every
subdivision vertex in V (D∗) is covered by a face of S∗. Furthermore, every vertex in D∗ is adjacent
to a subdivision vertex, thus, also covered by a face in S∗. Since S∗ is covering all vertices, we
obtain from Section 3 that S∗ is a connected face cover. □

JGAA, 28(3) 31–48 (2024) 37

G

D

(a) primal (gray) and
dual graph (black)

(b) spanning tree (black) of
the connected face cover

(c) outerplanar graph after
splitting along the tree

Figure 4: The connected face cover (blue) is a feedback vertex set (red) in the dual.

4 Feedback Vertex Set Approach

A feedback vertex set S◦ ⊂ V (G) of a graph G is a vertex subset such that the induced subgraph
G[V (G) \ S◦] is acyclic. We show here that finding a connected face cover S of size k for a plane
biconnected graph G is equivalent to finding a feedback vertex set S◦ ⊂ V (D) of size k in the dual
graph D of G. The weak dual, i.e., the dual without a vertex for the outer face, of an outerplanar
graph is a forest. Thus we must find the smallest number of splits in G which transform D into
a forest. In other words, we must break all the cycles in D, and hence all of the vertices in
the feedback vertex set S◦ of D correspond to the faces of G that should be merged together
(see Figure 4).

Property 2 Let H be the face-vertex incidence graph of a plane biconnected graph G and let S◦

be a feedback vertex set in the dual D of G. Then S◦ induces a connected face cover S in G.

Proof: We need to show that S◦ is a face cover and that it is connected. First, assume there is a
vertex v ∈ V (G) of degree deg(v) = d that is not incident to a vertex in S◦, i.e., a face of G. Since
G is biconnected, v is incident to d faces f1, . . . , fd, none of which is contained in S◦. But then
D[V (D) \ S◦] has a cycle (f1, . . . , fd), a contradiction.

Next, we define S◦ = V (D)\S◦ as the complement of the feedback vertex set S◦ in D. Assume
that H[V ∪ S◦] has at least two separate connected components C1, C2. Then there must exist a
closed curve in the plane separating C1 from C2, which avoids the faces in S◦ and instead passes
through a sequence (f1, . . . , fℓ) of faces in S◦, where each pair (fi, fi+1) for i ∈ {1, . . . , ℓ − 1} as
well as (fℓ, f1) are adjacent in the dual D. Again this implies that there is a cycle in D[V (D)\S◦],
a contradiction. Thus S◦ is a connected face cover. □

Theorem 3 A plane biconnected graph G has outerplane splitting number k if and only if its dual
D has a minimum feedback vertex set of size k + 1.

Proof: Let S◦ be a minimum feedback vertex set of the dual D of G with cardinality |S◦| = k+1
and letH be the face-vertex incidence graph of G. We know from Section 4 thatH ′ = H[V (G)∪S◦]
is connected and hence S◦ induces a connected face cover S with |S| = k + 1. Then by Section 2
G has osn(G) ≤ k.

Let conversely σ be a sequence of k vertex splits that turn G into an outerplane graph G′ and
let F be the set of faces of G. By Section 2 we obtain a connected face cover S of size k + 1

38 Gronemann et al. Splitting Plane Graphs to Outerplanarity

consisting of all faces that are merged by σ. The complement S = F \ S consists of all faces of G
that are not merged by the splits in σ and thus are the remaining (inner) faces of the outerplane
graph G′. Since G′ is outerplane and biconnected, S is the vertex set of the weak dual of G′, which
must be a tree. Hence S is a feedback vertex set in D of size k + 1 and the minimum feedback
vertex set in D has size at most k + 1. □

Since all faces in a maximal planar graph are triangles, the maximum vertex degree of its
dual is 3. Thus, we can apply the polynomial-time algorithm of Ueno et al. [45] to this dual,
which computes the minimum feedback vertex set in graphs of maximum degree 3 by reducing the
instance to polynomial-solvable matroid parity problem instance, and obtain

Corollary 1 We can solve Outerplane Splitting Number for maximal planar graphs in poly-
nomial time.

Many other existing results for feedback vertex set extend to Outerplane Splitting Num-
ber, e.g., it has a kernel of size 13k [14] and admits a PTAS [16].

5 Upper and Lower Bounds

In this section we provide some upper and lower bounds on the outerplane splitting number in
certain maximal planar graphs.

5.1 Upper Bounds

Based on the equivalence of Section 4 we obtain upper bounds on the outerplane splitting number
from suitable upper bounds on the feedback vertex set problem, which has been studied for many
graph classes, among them cubic graphs [15]. Liu and Zhao [35] showed that cubic graphs G =

(V,E) of girth at least four (resp., three) have a minimum feedback vertex set of size at most |V |
3

(resp., 3|V |
8). Kelly and Liu [30] showed that connected planar subcubic graphs of girth at least

five have a minimum feedback vertex set of size at most 2|V |+2
7 . Recall that the girth of a graph

is the length of its shortest cycle.

Proposition 1 The outerplane splitting number of a maximal planar graph G = (V,E) of min-

imum degree (i) 3, (ii) 4, and (iii) 5, respectively, is at most (i) 3|V |−10
4 , (ii) 2|V |−7

3 , and (iii)
4|V |−13

7 , respectively.

Proof: Maximal planar graphs with n = |V | vertices have 2n−4 faces. So the corresponding dual
graphs have 2n− 4 vertices. Moreover, since the degree of a vertex in G corresponds to the length
of a facial cycle in the dual, graphs with minimum vertex degree 3, 4, or 5 have duals with girth
3, 4, or 5, respectively. So if the minimum degree in G is 3, we obtain an upper bound on the
feedback vertex set of (3n− 6)/4; if the minimum degree is 4, the bound is (2n− 4)/3; and if the
minimum degree is 5, the bound is (4n− 6)/7. The claim then follows from Section 4. □

5.2 Lower Bounds

We first provide a generic lower bound for the outerplane splitting number of maximal planar
graphs. Let G be an n-vertex maximal planar graph with 2n − 4 faces. Each face is a triangle

JGAA, 28(3) 31–48 (2024) 39

incident to three vertices. In a minimum-size connected face cover S∗, at least one face covers
three vertices. Due to the connectivity requirement, all other faces can add at most two newly
covered vertices. Hence we need at least n−1

2 faces in any connected face cover. By Section 2 this
implies that osn(G) ≥ n−3

2 .

Proposition 2 Any maximal planar graph G has outerplane splitting number at least |V (G)|−3
2 .

Next, towards a better bound, we define a family of maximal planar graphs Td = (Vd, Ed)

of girth 3 for d ≥ 0 that have outerplane splitting number at least 2|Vd|−8
3 . The family are the

complete planar 3-trees of depth d, which are defined recursively as follows. The graph T0 is the
4-clique K4. To obtain Td from Td−1 for d ≥ 1 we subdivide each inner triangular face of Td−1 into
three triangles by inserting a new vertex and connecting it to the three vertices on the boundary
of the face.

Proposition 3 The complete planar 3-tree Td of depth d has outerplane splitting number at least
2|Vd|−8

3 .

Proof: Each Td is a maximal planar graph with nd = 3 +
∑d

i=0 3
i = 3d+1+5

2 vertices. All 3d

leaf-level vertices added into the triangular faces of Td−1 in the last step of the construction have
degree 3 and are incident to three exclusive faces, i.e., there is no face that covers more than one
of these leaf-level vertices. This immediately implies that any face cover of Td, connected or not,

has size at least 3d. From nd = 3d+1+5
2 we obtain d = log3

2nd−5
3 and 3d = 2nd−5

3 . Section 2 then

implies that osn(Td) ≥ 2nd−8
3 . □

6 SAT Formulation

We showed above that Outerplane Splitting Number can be solved in polynomial time for
maximal planar graphs and that it is already NP-complete for plane biconnected graphs. In this
section, we propose a SAT formulation for a variant of the problem, that can compute an outerplane
embedding, if one exists, of any given simple input graph (not necessarily a planar biconnected
one) using up to k classical splitting operations, which do not need to respect any particular
embedding. Specifically, given a simple graph G and an integer k, the SAT formula decides if G
can be transformed into an outerplane graph G∗ with at most k vertex splits.

Our formulation is based on a SAT formulation for book embeddings, similar to the one proposed
by Bekos et al. [7], specifically to model crossings and transitivity. As outerplanar graphs are
exactly those graphs that admit 1-page book embeddings, our formulation aims, for the given
input graph, to find a set of splits which would allow for the graph to be embedded on a single
page. We use a weighted Max-SAT formulation, meaning each clause is weighted (and a specific
weight is used to describe hard clauses that must be satisfied), and the goal is to maximize the
sum of the weights of the satisfied clauses. To the best of our knowledge, vertex splitting problems
have not yet been modeled using SAT formulations or integer linear programming. As these are
common techniques when working with hard graph drawing and other combinatorial problems, we
hope that this initial effort can serve as a baseline to provide practical solutions to a larger set of
vertex splitting problems in the future.

Intuitively, we build a graph G′ = (V ′, E′), where every vertex of V is represented k + 1
times, once as the input vertex, and k times as its possible copies. For each edge (u, v), we create a
complete bipartite graph with one bipartition being u and all the new vertices representing potential

40 Gronemann et al. Splitting Plane Graphs to Outerplanarity

(a) (b)

Figure 5: (a) An example of the graph G′ computed for the formula from a K4, with a budget
of one split. The squares represent the vertices of the input graph, and the circles represent their
possible copies, the thick edges are the edges of the input and the thin edges are alternative edges
that can be used if the copy is selected, (b) the green vertex has been split, thus the copy (green
circle) is retained as well as some of its incident edges to other non-split vertices.

copies of u and the second bipartition being v and the new vertices that represent potential copies
of v. We then find a smallest outerplanar subgraph G∗ in G′ such that every edge and every vertex
is represented at least once in the subgraph, as shown in Figure 5.

The formula F(G, k) is written using the conjunctive normal form, and we now introduce the
different variables needed to build our constraints. For each vertex v ∈ V and each of the k global
copies denoted by c1, . . . , ck, the variable vertex(v, i) has value 1 if the ith copy ci is a copy of
vertex v and appears in G∗. For all v ∈ V , vertex(v, 0) corresponds to the input vertex and
necessarily, vertex(v, 0) = 1. Since edge (u, v) ∈ E can be represented in the final drawing by any
combination of copies of u and v, we create an edge from every copy of u to every copy of v in G′,
thus for 0 ≤ i, j ≤ k, we create a variable edge((u, i), (v, j)), and the value is set to 1 if the edge
between the ith copy of u and the jth copy of v is in G∗. For two edges e and e′, we create the
variable coexist(e, e′), such that coexist(e, e′) = 1 if both e and e′ are in G∗. Lastly, we need a
variable to represent the vertex ordering along the outerface (the spine of the book embedding).
More specifically, for every u, v ∈ V and 0 ≤ i, j ≤ k, we create before((u, i), (v, j)) such that
the value 1 implies that the ith copy of u appears before the jth copy of v on the spine when
embedding G∗.

We now introduce the set of constraints of F(G, k). For clarity, we simplify where possible the
notation of vertices, and use v to refer to a copy of a vertex in V (instead of (v, i)). This set of
vertices and their copies is called V ′. Similarly, we sometimes call e an edge between two vertices
of V ′, and denote this edge set with E′.

To fix the linear ordering of the vertices on the outerface, we require transitivity constraints.
Therefore, for all triples of distinct vertices u, v, w ∈ V ′, we create the two following clauses:

(¬before(u, v) ∨ ¬before(v, w) ∨ before(u,w)) (1)

(before(u, v) ∨ before(v, w) ∨ ¬before(u,w)) (2)

which respectively ensure that if u is before v and v is before w, then u is before w, and that if u
is after v and v after w, than u is after w (as shown in Figure 6(a)).

To minimize the number of copies used, for each vertex v ∈ V and each 1 ≤ i ≤ k we create
the following soft constraint (note that for i = 0 this constraint does not exist as the input vertices

JGAA, 28(3) 31–48 (2024) 41

are kept “for free”):

(¬vertex(v, i)) (3)

meaning that for every input vertex v that is not split, this clause is satisfied and its weight is
added to the objective function.

As our budget allows for k splits, every splitting operation is done on a single vertex, thus for
every value of 1 ≤ i ≤ k, only one vertex can correspond to the ith split, hence for all pairs of
distinct vertices u, v ∈ V :

(¬vertex(u, i) ∨ ¬vertex(v, i)) (4)

which ensures that for at most one v ∈ V , vertex(v, i) = 1.
Since for (u, v) ∈ E we create an edge between all the possible copies of u and v, we have to

ensure that at least one edge is present in G∗ between u or a copy of u, and v or a copy of v, thus:

(edge((u, 0), (v, 0))∨ · · · ∨ edge((u, 0), (v, k))∨
. . .

∨(edge((u, k), (v, 0))∨ · · · ∨ edge((u, k), (v, k))

(5)

hence, for at least one value of i and j with 0 ≤ i, j ≤ k, edge((u, i), (v, j)) = 1 (see Figure 6(b)).
Most importantly, we need to ensure no two pairs of active edges are crossing. To obtain this

we first need to know which edge pairs are coexisting in G∗ and can thus potentially intersect, for
e, e′ ∈ E′:

(coexist(e, e′) ∨ ¬edge(e) ∨ ¬edge(e′)) (6)

where coexist(e, e′) = 1 if edge(e) = edge(e′) = 1.
This allows us to build the crossing constraints, thus for e, e′ ∈ E′ such that e = (u, v) and

e′ = (s, t), we need to characterize all possible vertex orderings that can induce a crossing, which
forbids the two edges from coexisting, we set L = ¬coexist(e, e′):

(L ∨ ¬before(s, u) ∨ ¬before(u, t) ∨ ¬before(s, v) ∨ before(v, t)) (7)

(L ∨ ¬before(s, u) ∨ ¬before(u, t) ∨ before(s, v) ∨ ¬before(v, t)) (8)

(L ∨ ¬before(s, u) ∨ before(u, t) ∨ ¬before(s, v) ∨ ¬before(v, t)) (9)

(L ∨ before(s, u) ∨ ¬before(u, t) ∨ ¬before(s, v) ∨ ¬before(v, t)) (10)

(L ∨ ¬before(s, u) ∨ before(u, t) ∨ before(s, v) ∨ before(v, t)) (11)

(L ∨ before(s, u) ∨ ¬before(u, t) ∨ before(s, v) ∨ before(v, t)) (12)

(L ∨ before(s, u) ∨ before(u, t) ∨ ¬before(s, v) ∨ before(v, t)) (13)

(L ∨ before(s, u) ∨ before(u, t) ∨ before(s, v) ∨ ¬before(v, t)). (14)

Consider as an example Eq. 14. If before(s, u) = before(u, t) = before(s, v) = ¬before(v, t) = 0,
then the corresponding vertex ordering on the spine is in order v, t, u and s which induces a crossing,
thus, we must have L = 1 and consequently coexist(e, e′) = 0 as these two edges cannot coexist
in a planar drawing (see Figure 6(c)). The above clauses cover all eight possibilities of orderings
of u, v, s, t which would induce a crossing.

42 Gronemann et al. Splitting Plane Graphs to Outerplanarity

(a)

u

v

w

(b)

(u, 0)
(v, 0)

(v, 1)
(u, 1)

(c)

(v, 0)

(s, 0)

(t, 0)

(u, 0)

Figure 6: (a) Example of the before constraint, since u is before v, and v before w, then
before(u,w) = 1 to satisfy Equation (1), (b) if k = 1, for one edge, Equation (5) represents a choice
between four edges: edge((u, 0), (v, 0)), edge((u, 0), (v, 1)), edge((u, 1), (v, 0)), edge((u, 1), (v, 1)),
(c) the situation described by Equation (14), where the two edges ((u, 0), (v, 0)) and ((s, 0), (t, 0))
cannot coexist if the vertices are ordered (v, 0), (t, 0), (u, 0), (s, 0).

Lastly, we can only allow edges in G∗ if their endpoints are also in G∗, thus for (u, v) ∈ E′,

(¬edge(u, v) ∨ vertex(u)) ∧ (¬edge(u, v) ∨ vertex(v)) (15)

which ensures that edge(u, v) = 1 only if vertex(u) = vertex(v) = 1.

Only those clauses that track active copies are weighted (here soft) clauses, every other clause
is a hard clause. Since every edge e ∈ E has (k + 1)2 representatives in E′ we have |E′| =
|E|(k + 1)2, and since the coexistence variables are created for each pair of edges in E′, there are
O(|E′|2) = O(|E|2k4) constraints. As this formula does not model the splitting operation of the
Outerplane Splitting Number problem, a natural question remains whether it can be adapted
to handle embedded splitting operations. While a subordering of the vertices, e.g., on the outer
face, can be fixed by setting the values of some variables, it is difficult to encode how copies should
stay within specified faces during a split.

Experiments. We performed a small evaluation of the SAT formulation with a Python imple-
mentation using the MaxHS solver3 on a subset of graphs from the Rome graph collection4, which
contains 11,534 planar or almost planar graphs on 10 to 100 vertices. The experiments were run on
an Intel Core i7-9700 CPU with 16 GB of RAM. We sampled graphs on n = 10, 20, 30, 40 vertices,
as representatives of the small to medium-sized graphs in the benchmark set. For each value of n
we randomly chose ten graphs with increasing number of edges, from the smallest graph that was
not yet outerplanar to the densest graph available for the chosen value of n. We note that even
the densest of these graphs were sparse enough so that they are not yet trivially excluded from
being 3-splittable to an outerplanar graph (which can have at most 2n− 3 edges). For each graph
we attempted to solve the SAT formula corresponding to the outerplanar splitting problem for
k = 1, 2, 3 splits. The selected parameters almost always allowed us to solve each instance in under
a minute, which k = 4 exceeded significantly with up to 15 minutes. This increase in runtime and
the fact that each vertex split increases the visual complexity of keeping track of all the vertex
copies in the resulting drawings made us stop the experiment at k = 3 splits, which is a suitable
parameter for the chosen graph sizes. In fact, 29 out of the 40 graph instances in the experiment
could be successfully turned into an outerplanar graph with at most three splits. The full results
of the evaluation can be found in Table 1.

3http://www.maxhs.org/
4http://www.graphdrawing.org/data.html

http://www.maxhs.org/
http://www.graphdrawing.org/data.html

JGAA, 28(3) 31–48 (2024) 43

20 40 60 80 100
|V|+|E|

0

5

10

15

20

Fo
rm

ul
a

cr
ea

tio
n

tim
e

[s
]

k
1
2
3

Figure 7: Time required to create the formula in seconds, by the size of the graph (number of
vertices plus number of edges). Each color corresponds to a different number of allowed splits.

As expected from the number of constraints above, the time required to generate the formula
is largely influenced by the number k of splits and the size of the graph, see Figure 7. We note
that even for the largest of our instances, the formula was generated relatively quickly, e.g., it took
about 20 seconds for a graph with |V | = 40 vertices, about 60 edges, and k = 3 splits.

Interestingly, we see in Figure 8 that solving smaller instances is significantly faster than the
time required to generate their SAT formula. This trend is reversed for relatively higher values of
k = 3 on denser graphs. Specifically, note that larger instances that still admitted a solution take
significantly more time to be solved (dark blue outlier dots in Figure 8). In general, we can also
see that for instances that did not admit a solution for the given value of k, the solver relatively
quickly returned “UNSAT”.

Overall, in conclusion of our small experiment, we found that our SAT formulation is indeed
able to solve the outerplanar splitting problem for a small budget of k splits and graphs up to 40
vertices and 60 edges. For denser instances, that are expected to require a larger number of splits,
an outerplanar embedding cannot generally be efficiently computed with this approach, though it
appears that clear no-instances are still possible to detect within a reasonable amount of time.

7 Conclusion

We have introduced theOuterplane Splitting Number problem and established its complexity
for plane biconnected graphs. The most important open question revolves around the embedding
requirement. Splitting operations can be defined more loosely and allow for any new embedding and
neighborhood of the split vertices. In general, it is also of interest to understand how the problem
differs when the input graph does not have an embedding at all, as in the original splitting number

44 Gronemann et al. Splitting Plane Graphs to Outerplanarity

20 40 60 80 100
|V|+|E|

0

20

40

60

80
M

ax
SA

T
tim

e
[s

]

k
1
2
3
Output
SAT
UNSAT

Figure 8: Time required to compute a solution for the formula in seconds, by the size of the graph
(number of vertices plus number of edges). Each color corresponds to a different number of allowed
splits, dots correspond to formulas that were solved, and crosses to formulas that do not admit a
solution.

problem. Since Outerplane Splitting Number can be solved in polynomial time for maximal
planar graphs but is hard for plane biconnected graphs, there is a complexity gap to be closed
when faces of degree more than three are involved. Vertex splitting in graph drawings has so far
been studied to achieve planarity and outerplanarity. A natural extension is to study it for other
graph classes or graph properties.

Another direction for future work is to investigate algorithmic approaches for vertex splitting of
embedded graphs in practical scenarios. Our initial experiments with the SAT formulation indicate
that for small graphs with up to 40 vertices and a budget with up to three splits, computing exact
solutions is computationally feasible in a practical sense. Designing practically fast and effective
algorithms for larger graphs and more splits is an interesting algorithm engineering challenge.

References

[1] F. N. Abu-Khzam, J. R. Barr, A. Fakhereldine, and P. Shaw. A greedy heuristic for cluster
editing with vertex splitting. In Artificial Intelligence for Industries (AI4I’21), pages 38–41.
IEEE, 2021. doi:10.1109/AI4I51902.2021.00017.

[2] A. R. Ahmed, P. Angelini, M. A. Bekos, G. D. Battista, M. Kaufmann, P. Kindermann, S. G.
Kobourov, M. Nöllenburg, A. Symvonis, A. Villedieu, and M. Wallinger. Splitting vertices
in 2-layer graph drawings. IEEE Computer Graphics and Applications, 43(3):24–35, 2023.
doi:10.1109/MCG.2023.3264244.

https://doi.org/10.1109/AI4I51902.2021.00017
https://doi.org/10.1109/MCG.2023.3264244

JGAA, 28(3) 31–48 (2024) 45

[3] R. Ahmed, S. G. Kobourov, and M. Kryven. An FPT algorithm for bipartite vertex split-
ting. In P. Angelini and R. von Hanxleden, editors, Graph Drawing and Network Visu-
alization (GD’22), volume 13764 of LNCS, pages 261–268. Springer, 2022. doi:10.1007/

978-3-031-22203-0_19.

[4] L. Angori, W. Didimo, F. Montecchiani, D. Pagliuca, and A. Tappini. Hybrid graph visual-
izations with chordlink: Algorithms, experiments, and applications. IEEE Trans. Vis. and
Comput. Graph., 28(2):1288–1300, 2022. doi:10.1109/TVCG.2020.3016055.

[5] B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs. J. ACM,
41(1):153–180, 1994. doi:10.1145/174644.174650.

[6] J. Baumann, M. Pfretzschner, and I. Rutter. Parameterized complexity of vertex splitting
to pathwidth at most 1. In D. Paulusma and B. Ries, editors, Graph-Theoretic Concepts
in Computer Science (WG’23), volume 14093 of LNCS, pages 30–43. Springer, 2023. doi:

10.1007/978-3-031-43380-1_3.

[7] M. A. Bekos, M. Kaufmann, and C. Zielke. The book embedding problem from a SAT-
solving perspective. In E. D. Giacomo and A. Lubiw, editors, Graph Drawing and Network
Visualization (GD’15), volume 9411 of LNCS, pages 125–138. Springer, 2015. doi:10.1007/
978-3-319-27261-0_11.

[8] F. Bernhart and P. C. Kainen. The book thickness of a graph. J. Comb. Theory, Ser. B,
27(3):320–331, 1979. doi:10.1016/0095-8956(79)90021-2.

[9] T. Biedl. On triangulating k-outerplanar graphs. Discret. Appl. Math., 181:275–279, 2015.
doi:10.1016/j.dam.2014.10.017.

[10] T. C. Biedl. Small drawings of outerplanar graphs, series-parallel graphs, and other planar
graphs. Discret. Comput. Geom., 45(1):141–160, 2011. doi:10.1007/s00454-010-9310-z.

[11] D. Bienstock and C. L. Monma. On the complexity of covering vertices by faces in a planar
graph. SIAM J. Comput., 17(1):53–76, 1988. doi:10.1137/0217004.

[12] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comput.
Sci., 209(1-2):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.

[13] H. L. Bodlaender and F. V. Fomin. Approximation of pathwidth of outerplanar graphs. J.
Algorithms, 43(2):190–200, 2002. doi:10.1016/S0196-6774(02)00001-9.

[14] M. Bonamy and L. Kowalik. A 13k-kernel for planar feedback vertex set via region decompo-
sition. Theor. Comput. Sci., 645:25–40, 2016. doi:10.1016/j.tcs.2016.05.031.

[15] J. A. Bondy, G. Hopkins, and W. Staton. Lower bounds for induced forests in cubic graphs.
Can. Math. Bull., 30(2):193–199, 1987. doi:10.4153/CMB-1987-028-5.

[16] E. Demaine and M. Hajiaghayi. Bidimensionality: New connections between FPT algorithms
and PTASs. In Symposium on Discrete Algorithms (SODA’05), pages 590–601, 2005. URL:
https://dl.acm.org/doi/10.5555/1070432.1070514.

[17] D. Eppstein, P. Kindermann, S. G. Kobourov, G. Liotta, A. Lubiw, A. Maignan, D. Mondal,
H. Vosoughpour, S. Whitesides, and S. K. Wismath. On the planar split thickness of graphs.
Algorithmica, 80(3):977–994, 2018. doi:10.1007/s00453-017-0328-y.

https://doi.org/10.1007/978-3-031-22203-0_19
https://doi.org/10.1007/978-3-031-22203-0_19
https://doi.org/10.1109/TVCG.2020.3016055
https://doi.org/10.1145/174644.174650
https://doi.org/10.1007/978-3-031-43380-1_3
https://doi.org/10.1007/978-3-031-43380-1_3
https://doi.org/10.1007/978-3-319-27261-0_11
https://doi.org/10.1007/978-3-319-27261-0_11
https://doi.org/10.1016/0095-8956(79)90021-2
https://doi.org/10.1016/j.dam.2014.10.017
https://doi.org/10.1007/s00454-010-9310-z
https://doi.org/10.1137/0217004
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1016/S0196-6774(02)00001-9
https://doi.org/10.1016/j.tcs.2016.05.031
https://doi.org/10.4153/CMB-1987-028-5
https://dl.acm.org/doi/10.5555/1070432.1070514
https://doi.org/10.1007/s00453-017-0328-y

46 Gronemann et al. Splitting Plane Graphs to Outerplanarity

[18] L. Faria, C. M. H. de Figueiredo, and C. F. X. de Mendonça N. The splitting number of
the 4-cube. In C. L. Lucchesi and A. V. Moura, editors, Latin American Symposium on
Theoretical Informatics (LATIN’98), volume 1380 of LNCS, pages 141–150. Springer, 1998.
doi:10.1007/BFb0054317.

[19] L. Faria, C. M. H. de Figueiredo, and C. F. X. de Mendonça N. Splitting number is NP-
complete. Discret. Appl. Math., 108(1):65–83, 2001. doi:10.1016/S0166-218X(00)00220-1.

[20] A. Firbas, A. Dobler, F. Holzer, J. Schafellner, M. Sorge, A. Villedieu, and M. Wißmann. The
complexity of cluster vertex splitting and company. In H. Fernau, S. Gaspers, and R. Klasing,
editors, Theory and Practice of Computer Science (SOFSEM’24), volume 14519 of LNCS,
pages 226–239. Springer, 2024. doi:10.1007/978-3-031-52113-3_16.

[21] A. Firbas and M. Sorge. On the complexity of establishing hereditary graph properties via
vertex splitting. CoRR, abs/2401.16296, 2024. arXiv:2401.16296.

[22] F. Frati. Planar rectilinear drawings of outerplanar graphs in linear time. Computat. Geom.,
103:101854, 2022. doi:10.1016/j.comgeo.2021.101854.

[23] G. N. Frederickson. Searching among intervals and compact routing tables. Algorithmica,
15(5):448–466, 1996. doi:10.1007/BF01955044.

[24] N. Hartsfield. The toroidal splitting number of the complete graph Kn. Discret. Math.,
62(1):35–47, 1986. doi:10.1016/0012-365X(86)90039-7.

[25] N. Hartsfield. The splitting number of the complete graph in the projective plane. Graphs
Comb., 3(1):349–356, 1987. doi:10.1007/BF01788557.

[26] N. Hartsfield, B. Jackson, and G. Ringel. The splitting number of the complete graph. Graphs
Comb., 1(1):311–329, 1985. doi:10.1007/BF02582960.

[27] N. Henry, A. Bezerianos, and J. Fekete. Improving the readability of clustered social networks
using node duplication. IEEE Trans. Vis. Comput. Graph., 14(6):1317–1324, 2008. doi:

10.1109/TVCG.2008.141.

[28] B. Jackson and G. Ringel. The splitting number of complete bipartite graphs. Arch. Math.,
42(2):178–184, 1984. doi:10.1007/BF01772941.

[29] G. Kant. Augmenting outerplanar graphs. J. Algorithms, 21(1):1–25, 1996. doi:10.1006/

jagm.1996.0034.

[30] T. Kelly and C. Liu. Minimum size of feedback vertex sets of planar graphs of girth at least
five. Eur. J. Comb., 61:138–150, 2017. doi:10.1016/j.ejc.2016.10.009.

[31] K. B. Knauer and T. Ueckerdt. Three ways to cover a graph. Discret. Math., 339(2):745–758,
2016. doi:10.1016/j.disc.2015.10.023.

[32] S. Lazard, W. J. Lenhart, and G. Liotta. On the edge-length ratio of outerplanar graphs.
Theor. Comput. Sci., 770:88–94, 2019. doi:10.1016/j.tcs.2018.10.002.

[33] W. Lenhart and G. Liotta. Proximity drawings of outerplanar graphs. In S. C. North,
editor, Graph Drawing (GD’96), volume 1190 of LNCS, pages 286–302. Springer, 1996. doi:
10.1007/3-540-62495-3_55.

https://doi.org/10.1007/BFb0054317
https://doi.org/10.1016/S0166-218X(00)00220-1
https://doi.org/10.1007/978-3-031-52113-3_16
https://arxiv.org/abs/2401.16296
https://doi.org/10.1016/j.comgeo.2021.101854
https://doi.org/10.1007/BF01955044
https://doi.org/10.1016/0012-365X(86)90039-7
https://doi.org/10.1007/BF01788557
https://doi.org/10.1007/BF02582960
https://doi.org/10.1109/TVCG.2008.141
https://doi.org/10.1109/TVCG.2008.141
https://doi.org/10.1007/BF01772941
https://doi.org/10.1006/jagm.1996.0034
https://doi.org/10.1006/jagm.1996.0034
https://doi.org/10.1016/j.ejc.2016.10.009
https://doi.org/10.1016/j.disc.2015.10.023
https://doi.org/10.1016/j.tcs.2018.10.002
https://doi.org/10.1007/3-540-62495-3_55
https://doi.org/10.1007/3-540-62495-3_55

JGAA, 28(3) 31–48 (2024) 47

[34] J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary properties is NP-
complete. J. Comput. Syst. Sci., 20(2):219–230, 1980. doi:10.1016/0022-0000(80)90060-4.

[35] J. Liu and C. Zhao. A new bound on the feedback vertex sets in cubic graphs. Discret. Math.,
148(1-3):119–131, 1996. doi:10.1016/0012-365X(94)00268-N.

[36] A. Maheshwari and N. Zeh. External memory algorithms for outerplanar graphs. In A. Ag-
garwal and C. P. Rangan, editors, Algorithms and Computation (ISAAC’99), volume 1741 of
LNCS, pages 307–316. Springer, 1999. doi:10.1007/3-540-46632-0_31.

[37] D. Marx and I. Schlotter. Obtaining a planar graph by vertex deletion. Algorithmica, 62(3-
4):807–822, 2012. doi:10.1007/s00453-010-9484-z.

[38] B. Mohar. Face covers and the genus problem for apex graphs. J. Comb. Theory, Ser. B,
82(1):102–117, 2001. doi:10.1006/jctb.2000.2026.

[39] A. Natanzon, R. Shamir, and R. Sharan. Complexity classification of some edge modifica-
tion problems. Discret. Appl. Math., 113(1):109–128, 2001. doi:10.1016/S0166-218X(00)

00391-7.

[40] M. Nöllenburg, M. Sorge, S. Terziadis, A. Villedieu, H. Wu, and J. Wulms. Planarizing
graphs and their drawings by vertex splitting. In P. Angelini and R. von Hanxleden, editors,
Graph Drawing and Network Visualization (GD’22), volume 13764 of LNCS, pages 232–246.
Springer, 2022. doi:10.1007/978-3-031-22203-0_17.

[41] D. Paik, S. M. Reddy, and S. Sahni. Vertex splitting in dags and applications to partial scan
designs and lossy circuits. Int. J. Found. Comput. Sci., 9(4):377–398, 1998. doi:10.1142/

S0129054198000301.

[42] P. Schweitzer and P. Schweitzer. Connecting face hitting sets in planar graphs. Inf. Process.
Lett., 111(1):11–15, 2010. doi:10.1016/j.ipl.2010.10.008.

[43] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. Discret. Appl.
Math., 144(1-2):173–182, 2004. doi:10.1016/j.dam.2004.01.007.

[44] W. T. Trotter and F. Harary. On double and multiple interval graphs. J. Graph Theory,
3(3):205–211, 1979. doi:10.1002/jgt.3190030302.

[45] S. Ueno, Y. Kajitani, and S. Gotoh. On the nonseparating independent set problem and
feedback set problem for graphs with no vertex degree exceeding three. Discret. Math., 72(1-
3):355–360, 1988. doi:10.1016/0012-365X(88)90226-9.

[46] H.-Y. Wu, M. Nöllenburg, and I. Viola. Multi-level area balancing of clustered graphs. IEEE
Trans. Vis. Comput. Graph., 28(7):2682–2696, 2022. doi:10.1109/TVCG.2020.3038154.

[47] M. Yannakakis. Node-and edge-deletion NP-complete problems. In Symposium on Theory of
Computing (STOC’78), pages 253–264. ACM, 1978. doi:10.1145/800133.804355.

https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0012-365X(94)00268-N
https://doi.org/10.1007/3-540-46632-0_31
https://doi.org/10.1007/s00453-010-9484-z
https://doi.org/10.1006/jctb.2000.2026
https://doi.org/10.1016/S0166-218X(00)00391-7
https://doi.org/10.1016/S0166-218X(00)00391-7
https://doi.org/10.1007/978-3-031-22203-0_17
https://doi.org/10.1142/S0129054198000301
https://doi.org/10.1142/S0129054198000301
https://doi.org/10.1016/j.ipl.2010.10.008
https://doi.org/10.1016/j.dam.2004.01.007
https://doi.org/10.1002/jgt.3190030302
https://doi.org/10.1016/0012-365X(88)90226-9
https://doi.org/10.1109/TVCG.2020.3038154
https://doi.org/10.1145/800133.804355

48 Gronemann et al. Splitting Plane Graphs to Outerplanarity

Table 1: Results from the experiment, the time to create the formula is indicated under gen t
and the time to solve the formula under sol t, both in seconds, the Y/N columns indicates Y if a
solution exists and was computed and N otherwise.

|V | |E| k = 1 k = 2 k = 3
gen t [s] sol t [s] Y/N gen t [s] sol t [s] Y/N gen t [s] sol t[s] Y/N

10

12 0.08 <0.01 Y 0.14 0.01 Y 0.58 0.01 Y
13 0.04 <0.01 Y 0.21 0.02 Y 0.57 0.11 Y
14 0.07 <0.01 Y 0.22 0.01 Y 0.27 0.08 Y
14 0.07 0.01 Y 0.18 0.02 Y 0.54 0.07 Y
15 0.04 0.02 Y 0.20 0.02 Y 0.64 0.08 Y
15 0.05 <0.01 Y 0.23 0.02 Y 0.79 0.07 Y
15 0.04 <0.01 Y 0.20 0.01 Y 0.64 0.08 Y
15 0.04 <0.01 Y 0.20 0.02 Y 0.61 0.08 Y
15 0.04 <0.01 Y 0.19 0.01 Y 0.61 0.08 Y
16 0.04 0.01 N 0.25 0.14 Y 0.27 2.44 Y

20

22 0.21 0.05 Y 0.94 0.05 Y 2.50 0.85 Y
23 0.23 0.02 Y 0.99 0.10 Y 2.63 0.54 Y
24 0.23 0.02 N 1.05 0.52 Y 2.82 5.80 Y
25 0.23 0.02 Y 1.11 0.19 Y 2.93 0.71 Y
26 0.21 0.03 N 1.04 1.05 N 3.05 20.54 Y
27 0.25 0.04 N 1.12 1.01 N 3.24 26.30 Y
28 0.23 0.01 N 1.16 0.88 N 3.28 35.22 Y
29 0.27 0.04 N 1.20 0.53 Y 3.41 11.13 Y
30 0.31 0.02 N 1.32 0.96 N 3.68 14.73 N
31 0.24 0.04 N 1.33 0.99 N 3.73 13.10 N

30

32 0.68 0.04 Y 2.55 0.26 Y 6.92 0.88 Y
33 0.64 0.15 Y 2.71 1.85 Y 7.01 1.46 Y
35 0.64 0.09 N 2.70 2.93 N 9.30 20.20 Y
36 0.63 0.08 N 2.75 1.31 Y 7.77 18.46 Y
38 0.78 0.02 N 3.02 0.36 N 7.90 5.23 Y
39 0.65 0.06 N 2.95 3.87 N 8.01 35.15 Y
41 0.67 0.07 N 3.04 2.60 N 8.77 53.42 Y
42 0.76 0.06 N 3.24 2.02 N 8.86 12.20 N
45 0.90 0.05 N 3.50 0.44 N 9.57 13.44 N
46 0.78 0.03 N 3.47 2.37 N 9.72 15.44 N

40

42 1.21 0.09 Y 5.62 0.58 Y 13.96 2.28 Y
43 1.47 0.11 Y 5.35 0.41 Y 14.23 1.92 Y
47 1.31 0.17 N 5.71 6.81 Y 15.24 27.84 Y
48 1.58 0.18 N 5.98 3.47 N 15.63 86.79 Y
52 1.53 0.12 N 6.25 2.96 N 16.83 22.27 N
53 1.67 0.06 N 5.85 0.98 N 16.76 24.43 N
57 1.71 0.04 N 6.50 0.43 N 18.20 17.86 N
59 1.68 0.20 N 6.97 1.27 N 18.32 20.87 N
63 1.82 0.06 N 7.32 4.82 N 20.01 18.25 N
65 1.82 0.13 N 7.50 1.73 N 20.61 27.96 N

	Introduction
	Face-Vertex Incidence Graph
	NP-completeness
	Feedback Vertex Set Approach
	Upper and Lower Bounds
	Upper Bounds
	Lower Bounds

	SAT Formulation
	Conclusion

