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Abstract. Graph burning is a deterministic, discrete-time process that can be
used to model how influence or contagion spreads in a graph. In the graph burning
process, each node starts as dormant, and becomes informed/burned over time; when
a node is burned, it remains burned until the end of the process. In each round, one
can burn a new node (source of fire) in the network. Once a node is burned in round
t, in round t + 1, each of its dormant neighbors becomes burned. The process ends
when all nodes are burned; the goal is to minimize the number of rounds. We study a
variation of graph burning in order to model spreading processes in community-based
networks. With respect to a specific piece of information, a community is satisfied when
this information reaches at least a prescribed number of its members. Specifically, we
consider the problem of identifying a minimum length sequence of nodes that, according
to a graph burning process, allows to satisfy all the communities of the network. We
investigate this NP-hard problem from an approximation point of view, showing both
a lower bound and a matching upper bound. We also investigate the case when the
number of communities is constant and show how to solve the problem with a constant
approximation factor. Moreover, we consider the problem of maximizing the number
of satisfied groups, given a budget k on the number of rounds.

1 Introduction

The study of complex networks has experienced a surge of interest over the past decade because of
the ubiquity of natural systems with such network structures in social sciences, transport infras-
tructures, biology, communications, financial markets, and more. In particular, spreading processes
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have recently gained a great deal of attention. There are many situations where members of a net-
work may influence their neighbors’ behavior and decisions, by swaying their opinions, suggesting
what products to buy, but also influencing the behavior to take in many social problems such as
public health awareness, financial inclusion, and more. A fundamental aspect to understand and
controlling the spreading dynamics is the identification of spreaders that can diffuse information
within the network in the least possible amount of time.

Small and marginalized groups within a larger community are those who need the most at-
tention, information and assistance. It is important, then, to ensure that each group receives an
appropriate amount of information and resources, so as to respect the diverse composition of the
communities.

To address the above issue, in this paper, we consider the problem of ensuring the right amount
of informed representatives for each group in the network within fast spreading processes.

In our model, the spreading process reflects the burning process in a graph. Bonato [5] intro-
duced the notion of graph burning as a simplified model for the spread of memes in a network.
Imagine someone trying to optimize the spread of a meme, hitting key actors in the network with
the meme in a given priority sequence. To recap graph burning, nodes start off as dormant and
become informed/burned over time. If a dormant node is neighboring an informed one, it becomes
informed too. One can burn/inform a new node anywhere in the network in each step. We can
then see the process to proceed in sequential discrete steps, where one node is selected at each
time-step t as a source of fire and burns all of its neighbors at the next time step t+1. The nodes
that are burned, can burn their neighbors at the next time step. That is, the information can pass
from a node who have been informed in the previous time step. Furthermore, an informed node
remains informed or burned throughout the process.

The analysis of the burning process enables evaluating the robustness of a network with respect
to misinformation strategies (diffusion of negative behaviors) and on the other hand, it allows
optimizing the impact of positive strategies.

Problems definitions. We model the network as an undirected graph G = (V,E), where V is
the set of individuals and the set of edges E represents the relationships among members of the
network, i.e., (u, v) ∈ E if individuals u and v can directly communicate. We denote by n = |V | the
number of individuals in the network. For any u, v ∈ V , we denote by d(u, v) the distance between
u and v in G. We denote by Nd[v] = {w |w ∈ V, 0 ≤ d(v, w) ≤ d} the set of all nodes having
distance at most d from v ∈ V ; we call Nd[v] the neighborhood of radius d around v (d-neighborhood
of v). We denote by N [v] = N1[v] the closed neighborhood of v, that is, the set composed by v
and its neighbors. Note also that N0[v] = {v}.

The Graph Burning problem [5] is defined as follows.

Graph Burning
Input: A graph G = (V,E).
Output: A sequence (v1, v2, . . . , vk), with vi ∈ V for each1 i ∈ [k], of minimum length

k such that
⋃k

i=1 Nk−i[vi] = V.

If (v1, v2, . . . , vk) is a burning sequence for the given graph G, then we say that a source vi, where
i ∈ [k], burns another node u ∈ V if u ∈ Nk−i[vi], that is vi burns only the nodes within distance
k− i from vi. We notice that a node can be burned by several sources (i.e., nodes belonging to the
burning sequence). Each node u ∈ V must be either a source or burned from at least one of the
sources. An example of Graph Burning is depicted in Fig. 1.

1For any integer a, we denote by [a] the set {1, 2, . . . , a}.
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Figure 1: Graph Burning example: An example of graph G = (V,E) with a burning sequence
S = (v1, v2, v3). Source nodes are depicted with a dotted border. The number close to the node
denotes the time step in which the node is burned.

In our setting, we are given a family of subsets {V1, . . . , Vω}, referred to as groups, of the
node set V and we are interested in the minimum time needed to reach at least a given number
of individuals in each group. In particular, a positive integer pj is assigned to each group Vj .
The value pj represents the minimum amount of nodes of the group Vj that have to be informed
(burned) during the spreading process. It is worth mentioning that the family {V1, . . . , Vω} is not
necessarily a partition of V (i.e., groups overlapping is allowed).

Burning with Groups (BG)
Input: G = (V,E), a group family Π = {V1, V2, . . . , Vω} (a collection of subsets of V ),
and a vector R = (p1, p2, . . . , pω) of requirements for each group.
Output: A sequence (v1, v2, . . . , vk), where vi ∈ V, of minimum length k such that∣∣∣∣∣

(
k⋃

i=1

Nk−i[vi]

)⋂
Vj

∣∣∣∣∣ ≥ pj , for each j ∈ [ω]. (1)

An example of Burning with Groups is depicted in Fig. 2. We notice that BG is a gen-
eralization of the Graph Burning problem. Indeed, starting from BG, the Graph Burning
problem is obtained considering each node as a single group (i.e. w = n) and fixing all the re-
quirements equal to 1, or alternatively, considering all the nodes in a single group (i.e., w = 1) and
fixing its requirement to n.

In the following we assume that for each j ∈ [ω], pj ≤ |Vj |, otherwise the equation (1) is
not satisfiable. Moreover, we assume that k ≤ n, since with a burning sequence of n nodes the
equation (1) is trivially satisfied.

We will also consider the following corresponding maximization problem.

Burning Max Groups (BMG)
Input: G = (V,E), a group family Π = {V1, V2, . . . , Vω} (a collection of subsets of V ),
a vector R = (p1, p2, . . . , pω) of requirements for each group, and an integer k.
Output: A sequence (v1, v2, . . . , vk), where vi ∈ V , and a set of integers J ⊆ [ω] such
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Figure 2: Burning with Groups example: An example of graph G = (V,E) having four groups
{Va, Vb, Vc, Vd} and a requirements vector R = (2, 2, 1, 1). The letters inside the node indicate the
groups to which the node belongs. The burning sequence S = (v1, v2) enables to satisfy all the
requirements. Burned nodes are depicted in grey, source nodes are depicted with a dotted border.
The number close to the node denotes the time step in which the node is burned.

that ∣∣∣∣∣
(

k⋃
i=1

Nk−i[vi]

)⋂
Vj

∣∣∣∣∣ ≥ pj , for each j ∈ J and |J | is maximized.

Given a sequence (v1, v2, . . . , vk), in the following we will say that the group Vj , for j ∈ [ω], is

satisfied iff
∣∣∣(⋃k

i=1 Nk−i[vi]
)⋂

Vj

∣∣∣ ≥ pj . In words, in the BG problem, the goal is to find the

sequence of the minimum length that satisfies all the groups, while in the BMG problem, given a
budget of at most k sources, the goal is to maximize the number of satisfied groups.

1.1 Our results

This paper introduces and analyzes a generalization of the graph burning process [5] in order
to model spreading processes in community-based networks. Then we define two optimization
problems, which aim at maximizing the dissemination of information.

Both problems share the same decision problem which generalizes the decision version of the
burning problem and therefore both problems are NP-hard. We investigate the Burning with
Groups problem from an approximation point of view, showing both a lower bound and a matching
upper bound. We also show that, when the number of communities is constant, the problem admits
a constant approximation factor. Moreover, we show that the Burning Max Groups problem
admits a 2-approximation when all requirements are unitary.

The preliminary version of this paper [20] considers the above problems where the groups do
not overlap, that is, they are a collection of pairwise disjoint subsets of V.

2 Related works

Information spreading has been intensively studied in the context of viral marketing, which uses
social networks to achieve marketing objectives through self-replicating viral processes, analogous
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to the spread of viruses. The goal here is to create a marketing message that can initially convince
a selected set of people and then spread to the whole network in a short period of time [22] In
general, an accurate information diffusion model can have many important impacts on predicting
and managing emergent behaviors in lifelike complex networks such as: (i) suggesting appropriate
strategies for boosting the impact of positive behaviors; (ii) measuring and evaluating the resilience
and robustness of the network with respect to manipulations through information of questionable
accuracy (e.g., fake news).

The problem of finding a source set of minimum size which, according to a spreading process,
is able to spread a piece of information to the whole (or a fixed fraction of the) network, has its
roots in the area of the spread of information in Social Networks.

The spread of viral information across a network naturally suggests many interesting optimiza-
tion problems like Influence Maximization and Target Set Selection (see [8, 23] and references
quoted therein). The first authors to study the spread of information in networks from an algo-
rithmic point of view were Kempe et al. [27] who proposed two diffusion models named Linear
Threshold and Independent Cascade. The Target Set Selection problem has been investigated in
several papers [1, 4, 9, 12]. Subsequently, a set of papers has delved into distinct variations of the
problem, presenting interesting perspectives [13, 15, 29]. Notably, the number of rounds neces-
sary to spread a piece of information is considered in [10, 11, 24], while a more detailed diffusion
model accounting for different categories of users is presented in [18, 19]. Moreover, being the
problem hard in general, researchers have introduced several heuristics to address its challenges
[14, 16, 17, 21, 30].

All the considered spreading processes are applied on a static snapshot of the network and ask
for the identification of a set of initial adapters, which will be in charge of triggering the diffusion of
the information. In a real setting, the network is dynamic, exhibiting structural changes over time.
Algorithms must exhibit adaptability to accommodate these network transformations. On the other
hand, observations indicate that while the network undergoes alterations, its fundamental backbone
remains stable. Consequently, exploring algorithms that transcend individual interactions and
operate on a broader scale becomes valuable. This approach ensures that localized changes in the
network do not significantly harm the effectiveness of the algorithm.

Recently, the classical Influence Maximization problem has been revised with the aim of fetching
the top influential users in social networks under a group influence perspective [25, 31, 32]. A
social network is characterized by the existence of numerous communities, where nodes within
each community share dense connections, while nodes across different communities have sparse
connections. Indeed, social network users naturally group together based on shared interests,
hobbies, or various relationships. Individuals can join multiple groups simultaneously. For example,
a user might be a part of a family group, a work group, and a friends group. The assumption is
that the interaction within a group is high and this favors the rapid dissemination of information
inside it. Moreover, the whole group decision is based on some specific rules that determine an
agreement on a concerned topic. The goal becomes reaching the desired agreement among all
groups or maximizing the number of groups that reach the desired agreement. To address this
objective, papers [25, 31, 32] consider the Group Influence Maximization (GIM) problem. In
this problem, given a graph G = (V,E), the diffusion process follows an independent cascade
model. A group U ⊆ V is activated if, during the diffusion process, at least β|U | nodes in U
are activated. The objective is to identify an initial set of at most k nodes that maximizes the
number of influenced groups. Since the problem has been proved to be NP-hard, as it generalizes
the Influence Maximization problem, three distinct heuristics are presented in [25, 31, 32].
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In contrast, our approach differs as we use a distinct diffusion process (burning), which we
believe is less susceptible to local network changes.

Closely related to our work is the colorful k-center problem studied in [3, 26].

Colorful k-center problem
Input: A set P of n points in a metric space, and an integer k, a partition {P1, P2, . . . , Pc}
of P into c color classes, and a coverage requirement 0 ≤ tj ≤ |Pj | for each color class
j ∈ [c].
Output: Find the smallest radius ρ such that using k balls of radius ρ, centered at
points of P , we can simultaneously cover at least tj points from each class Pj with
j ∈ [c].

Apart from the fact that the problem is defined in a metric space, the main difference with our
BG problem is the fact that the number of sources/centers is fixed to k, while the radius of
the neighbourhood (that is, the value to be minimized) is equal for each source, while in the BG
problem the number of sources varies as well as the radius of the neighbourhood, because it depends
on the position of the source in the output burning sequence.

3 Burning with Groups: The general case

3.1 Hardness results for Burning with Groups

We show that BG cannot be approximated in polynomial time within a factor c log n, for some

constant c < 1, unless NP has quasi polynomial time (i.e., NP ⊂ TIME(nO(polylog n)), where
TIME(t) denote the class of problems that admit a deterministic algorithm that runs in time t).
To this aim, we provide an approximation preserving reduction from Set cover.

Set cover (SC)
Input: A universe U = {1, 2, . . . , n} and a collection S of m subsets of U , whose union
equals the universe.
Output: A collection C ⊆ S of minimum size such that

⋃
C∈C C = U .

The following result has been proved in [2].

Theorem 1 [2] Set cover cannot be approximated, in polynomial time, within a factor (log n)/48,
unless NP has quasi polynomial time.

Remark 1 We remark that in the instance of Set cover produced by the reduction in the proof
of Theorem 1, the number of subsets (m) and the size of the universe (n) are polynomially related
(i.e., m ≈ na, for some constant a > 0).

Theorem 2 BG cannot be approximated, in polynomial time, to a factor c log n where c < 1 is a
certain constant, unless NP has quasi polynomial time, even if all the requirements are equal to 1.

Proof: We give an approximation preserving reduction from Set cover.
The theorem will follow by Theorem 1 and Remark 1, since the construction below provides a
graph G = (V,E) having |V | = O(n×m) nodes.

To our aim, given a SC instance ⟨U ,S⟩, we construct an instance ⟨G,Π, R⟩ of BG. Let |U| = n
and S = {C1, . . . , Cm}. We build the graph G = (V,E) where V is partitioned into the disjoint
sets V0, V1, . . . , Vn+2 (i.e., the group family is Π = {V0, V1, . . . , Vn+2}) and where all the group
requirements are fixed to 1 (i.e., R = (1, 1, . . . , 1)). Formally, G = (V,E) is build as follows:
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Figure 3: Representation of the graph G for the instance of SC ⟨U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, S =
{C1 = {1, 2, 3}, C2 = {3, 6}, C3 = {1, 4, 7}, C4 = {7, 8, 9}, C5 = {2, 4, 5, 6}}⟩.

� For any Ci ∈ S, if Ci = {a1, a2, . . . , ar} we add toG a star Si of r+1 nodes {ui, vi,1, vi,2, . . . , vi,r}
and edges {(ui, vi,j) | j ∈ [r]}. The center node ui is assigned to the group V0 and the leaf
node vi,j is assigned to Vaj , for j ∈ [r].

� Then, we add a node um+1. We assign um+1 to Vn+1.

� Finally, for each i ∈ [m], we add a path Pi of length 2n+ 1 connecting the node ui to ui+1;
all the nodes of the these m paths are assigned to Vn+2.

For instance, figure 3 shows the graphG build for the SC instance ⟨U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, S =
{C1 = {1, 2, 3}, C2 = {3, 6}, C3 = {1, 4, 7}, C4 = {7, 8, 9}, C5 = {2, 4, 5, 6}}⟩ where V0 =
{u1, u2, u3, u4, u5}, V1 = {v1,1, v3,1}, V2 = {v1,2, v5,1}, V3 = {v1,3, v2,1}, V4 = {v3,2, v5,2}, V5 =
{v5,3}, V6 = {v2,2, v5,4}, V7 = {v4,1}, V8 = {v4,2}, V9 = {v4,3}, V10 = {u6} and V11 comprises all
the nodes in the paths P1, P2, P3, P4, P5.

The following claim implies the correctness of the reduction.

The instance ⟨U ,S⟩ of SC admits a solution of size k if and only if the instance ⟨G,Π, R⟩
of BG admits a solution of size k + 1.

Assume that C ⊆ S is a solution of the SC problem and |C| = k. Let C = {Cb1 , . . . , Cbk}. We
will prove that the sequence

U = (ub1 , ub2 , . . . , ubk , um+1)

consisting of the centers of the stars Sb1 , Sb2 , . . . , Sbk and node um+1, in this order, satisfies the
requirements of all the groups. Recalling that all the requirements are set to 1, we have to prove
that at least one node of each group is burned to retain the groups satisfied.
Indeed, since the center node of each star belongs to V0 and our sequence U contains k ≥ 1 center
nodes, we have that V0 is satisfied. We also note that since k ≥ 1, then Nk[ub1 ] includes at least
one node of the path Pb1 , and since the nodes of Pb1 are assigned to the group Vn+2, we have
that also group Vn+2 is satisfied. Furthermore, since Vn+1 = {um+1} and node um+1 is a node in
U , also Vn+1 is satisfied. Finally, the requirements of all the remaining groups V1, V2, . . . , Vn are
satisfied because N [ubi ] ⊆ Nk+1−i[ubi ], for each i ∈ [k], and since C = {Cb1 , . . . , Cbk} is a solution

of the SC instance we have
(⋃k

i=1 N [ubi ]
)
∩ Vj ̸= ∅ for each j ∈ [n].
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Hence the sequence U , that has size k + 1, is a solution of the BG problem.

Assume now that the sequence U = (vℓ1 , . . . , vℓk+1
) is a solution of the BG instance. We will

show that we can always find a sequence of length k + 1 that is a solution of the BG instance
consisting of k centers of stars and where um+1 is the last source in the sequence. This will allow
us to construct a solution of size k of the SC instance. We first make considerations that will be
useful in the following. By the construction of graph G we have d(um+1, uℓ) ≥ 2n + 1 for each
uℓ ∈ V0 and any node v ∈ Nk[um+1]−{um+1} is a node in the path Pm. Hence, for any 1 ≤ i ≤ k
it holds

um+1 ̸∈ Nk+1−i[uℓ] and Nk+1−i[um+1] ⊆ (Vn+1 ∪ Vn+2). (2)

Furthermore, since the length of each path Pi, for 1 ≤ i ≤ m, connecting ui with ui+1 is 2n + 1,
we have that if v is a node in Pi then exactly one between ui and ui+1 is in Nn[v] and if otherwise
v is a leaf in the star Si then ui is the only center node in Nn[v]. Hence,

|Nn[v] ∩ (V0 ∪ Vn+1)| = 1 for each v ̸∈ V0 ∪ Vn+1. (3)

Given the sequence U = (vℓ1 , . . . , vℓk+1
), let vℓi be the source that enables to burn um+1, that

is um+1 ∈ Nk+1−i[vℓi ], for some 1 ≤ i ≤ k. If vℓi ̸= um+1 then i < k + 1 and since k + 1 ≤ n
we have Nk+1−i[vℓi ] ⊆ (Vn+1 ∪ Vn+2) (i.e., vℓi is a node in the path Pm). Hence replacing vℓi
with um+1 in the sequence U , we obtain a sequence that is again a solution of the BG instance.
Furthermore, we can assume that um+1 is the last node in the sequence U . Indeed, let on the
contrary um+1 be the i-th node in U , for some 1 ≤ i ≤ k. By (3) either vℓk+1

is a center of a star
(in this case we set u = vℓk+1

), or there exists a unique center of star, that we call u, at distance
at most n from vℓk+1

. Replacing vℓk+1
with u and exchanging u with um+1 in the sequence U , we

obtain a sequence that is again a solution of the BG instance. This can be seen considering that
N0[vℓk+1

] = {vℓk+1
} ⊂ Nk+1−i[u] (i.e., among the nodes burned by u, using it as i-th source, there

is vℓk+1
and some more nodes) and that one of the neighbors of u belongs to Vn+2 (i.e., group

Vn+2 is satisfied by u when we use it as i-th source, as like, by (2), Vn+2 was the only group, a
part Vn+1, satisfied by um+1 when it was used as i-th source). Hence, from here on we assume
U = (vℓ1 , . . . , vℓk , um+1).

While U = (vℓ1 , . . . , vℓk , um+1) contains at least one node vℓi ̸∈ V0 ∪ Vn+1, we iterate the
following replacing procedure.

Let vℓi ̸∈ V0∪Vn+1. By (3), let u be the only node in V0∪Vn+1 such that u ∈ Nn[vℓi ]. Then,
since k ≤ n, for each 0 ≤ j ≤ n+ 2,

if Nk+1−i[vℓi ] ∩ Vj ̸= ∅ then Nk+1−i[u] ∩ Vj ̸= ∅.

Hence replacing vℓi with u in the sequence U , we obtain a sequence U ′ that is again a solution
of the BG instance.

After the iteration of the replacing procedure, we can assume that U = (uℓ1 , . . . , uℓk , um+1).
Finally, since each group Vj , for 1 ≤ j ≤ n is satisfied, we have∣∣∣∣∣

(
k⋃

i=1

Nk+1−i[uℓi ]

)⋂
Vj

∣∣∣∣∣ ≥ 1, for each j ∈ [n],

and then (
k⋃

i=1

Nk+1−i[uℓi ]

)⋂
Vj ̸= ∅, for each j ∈ [n]. (4)
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Since by the construction of G, Nk+1−i[uℓi ] \N [uℓi ] ⊆ Vn+2, by (4) we have(
k⋃

i=1

N [uℓi ]

)⋂
Vj ̸= ∅, for each j ∈ [n].

Hence, let C = {Ci | ui is a node in U , and ui ̸= um+1}. We have that C is a solution of size k of
the SC instance. □

3.2 Approximation Algorithms for Burning with Groups

We show that BG can be approximated to a factor log n+ 1. To this aim, we first define a novel
maximization problem called Maximum Multi-Coverage Burning (MMCB) and show that it
admits a 2-approximation. We will then use the 2-approximation for MMCB to obtain a log n+1
approximation for BG.

Maximum Multi-Coverage Burning (MMCB)

Input: G = (V,E), a group family Π = {V1, V2, . . . , Vω} (a collection of subsets of V ),
a vector L = (ℓ1, ℓ2, . . . , ℓω) of ω non-negative values and an integer k.

Output: A sequence S = (v1, v2, . . . , vk), where vi ∈ V , such that

ω∑
j=1

min

{∣∣∣∣∣
(

k⋃
i=1

Nk−i[vi]

)⋂
Vj

∣∣∣∣∣ , ℓj
}

is maximum. (5)

Let S = (v1, . . . , vh) be a sequence of 1 ≤ h ≤ k nodes. We define NS,k =
⋃h

i=1 Nk−i[vi] as the
set of all the nodes burned by S by the k-th round and

f(S, k) =

ω∑
j=1

min

{∣∣∣∣∣
(

h⋃
i=1

Nk−i[vi]

)
∩Vj

∣∣∣∣∣ , ℓj
}

=

ω∑
j=1

min {|NS,k ∩ Vj | , ℓj} . (6)

When S is an empty sequence, we have NS,k = ∅ and f(S, k) = 0. In the following, we will use
NS and f(S), instead of NS,k and f(S, k), whenever the value of k is clear from the context.
Notice that MMCB asks for a sequence S of size k that maximizes f(S).

Moreover, let S = (v1, . . . , vh) be a sequence of 1 ≤ h ≤ k nodes, let i ∈ [k] and let v ∈ V be a
node, we define

fi(v | S) =
ω∑

j=1

min{|(Nk−i[v] \NS) ∩ Vj |,max{0, ℓj − |NS ∩ Vj |}}, (7)

the gain that is provided by burning the neighborhood of radius k − i around v, assuming that
nodes in NS are already burned.

When S is an empty sequence, we have fi(v | S) =
∑ω

j=1 min{|Nk−i[v] ∩ Vj |, ℓj}.
By equation (7) we can easily observe that given two sequences S and S′ such that NS ⊆ NS′

and a node v ∈ V we have

fi(v | S) ≥ fi(v | S′) for each i ∈ [k]. (8)

The following properties will be useful to prove the approximation factor.
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Algorithm 1 MMCB Algorithm(G,Π, L, k)

1: S = ()
2: for i = 1 to k do
3: v = argmaxu∈V fi(u | S) ▷ v is the node providing the maximum gain.
4: S(i) = v
5: end for
6: return S

Lemma 1 Let S = (v1, v2, . . . , vh−1) be a sequence of h−1 nodes and let S⊥v = (v1, v2, . . . , vh−1, v)
be the sequence obtained by queuing v at S. We have

f(S⊥v)− f(S) = fh(v | S). (9)

Proof: To prove (9) we are going to prove that for each j ∈ [ω],

min{|NS⊥v ∩ Vj |, ℓj} −min{|NS ∩ Vj |, ℓj} = min{|(Nk−h[v] \NS) ∩ Vj |,max{0, ℓj − |NS ∩ Vj |}}. (10)

Observing that |NS⊥v ∩Vj | = |(Nk−h[v]\NS)∩Vj |+ |NS ∩Vj |, we have three cases to consider:

case 1: (ℓj ≤ |NS ∩ Vj |). In this case, the equation (10) becomes ℓj − ℓj = 0.

case 2: (|NS ∩ Vj | < ℓj ≤ |NS⊥v ∩ Vj |). In this case the equation (10) becomes

ℓj − |NS ∩ Vj | = min{|(Nk−h[v] \NS) ∩ Vj |, ℓj − |NS ∩ Vj |}.

Moreover, we have,

ℓj ≤ |NS⊥v ∩ Vj | = |(Nk−h[v] \NS) ∩ Vj |+ |NS ∩ Vj |

and consequently,

min{|(Nk−h[v] \NS) ∩ Vj |, ℓj − |NS ∩ Vj |} = ℓj − |NS ∩ Vj |.

case 3: (ℓj > |NS⊥v ∩ Vj |). In this case the equation (10) becomes |NS⊥v ∩ Vj | − |NS ∩ Vj | =
|(Nk−h[v] \NS) ∩ Vj |.

□

Given the instance ⟨G,Π, L, k⟩ of MMCB, Algorithm 1 proceeds by iteratively adding nodes
to the sequence S. At each iteration i, for i ∈ [k], the node v to be added to the sequence is
greedily chosen to give with its (k− i)-neighborhood the maximum contribution to the sum in (5),
see line 3.

Let S = (v1, v2, . . . , vk) be the solution provided by Algorithm 1 on the instance ⟨G,Π, L, k⟩
and let O = (u1, u2, . . . , uk) be an optimal solution for the MMCB problem on the same instance
⟨G,Π, L, k⟩.

Denote by Si = (v1, . . . , vi) the sequence constructed by Algorithm 1 by the end of the i-th
step, for i ∈ [k]. We denote by S0 = () the empty sequence and recall that f(S0) = 0. Let vi be
the node selected at step i.

Lemma 2 For i ∈ [k], fi(vi | Si−1) ≥ fi(ui | S).
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Proof: If ui = va for some a < i (i.e., ui has already been chosen by the algorithm at step
a), then Nk−i[ui] ⊆ Nk−a[ui] ⊆ NSi−1

⊆ NS and consequently fi(ui | S) = 0. Otherwise, when
the algorithm picked vi, the node ui was available. However, the algorithm picked vi because the
contribution of vi was at least equal to the contribution of ui that is fi(vi | Si−1) ≥ fi(ui | Si−1).
Since NSi−1 ⊆ NS , by equation (8), the lemma follows. □

Lemma 3
∑k

i=1 fi(ui | S) ≥ f(O)− f(S).

Proof: We have

k∑
i=1

fi(ui | S) =

k∑
i=1

ω∑
j=1

min
{
|(Nk−i[ui] \NS) ∩ Vj |,max{0, ℓj − |NS ∩ Vj |}

}
=

ω∑
j=1

k∑
i=1

min
{
|(Nk−i[ui] \NS) ∩ Vj |,max{0, ℓj − |NS ∩ Vj |}

}
(i)

≥
ω∑

j=1

min

{
k∑

i=1

|(Nk−i[ui] \NS) ∩ Vj |,max{0, ℓj − |NS ∩ Vj |}

}
,

where (i) holds for the following arguments:
• If for each i ∈ [k], it holds |(Nk−i[ui] \NS) ∩ Vj | ≤ max{0, ℓj − |NS ∩ Vj |} then we have

k∑
i=1

min
{
|(Nk−i[ui] \NS) ∩ Vj |,max{0, ℓj − |NS ∩ Vj |}

}
=

k∑
i=1

|(Nk−i[ui] \NS) ∩ Vj |

≥ min

{
k∑

i=1

|(Nk−i[ui] \NS) ∩ Vj |,max{0, ℓj − |NS ∩ Vj |}

}
.

• If, otherwise there exist a ∈ [k] such that |(Nk−a[ua] \NS) ∩ Vj | > max{0, ℓj − |NS ∩ Vj |} then∑k
i=1 |(Nk−i[ui] \NS) ∩ Vj | ≥ |(Nk−a[ua] \NS) ∩ Vj | > max{0, ℓj − |NS ∩ Vj |}. Hence,

k∑
i=1

min
{
|(Nk−i[ui] \NS) ∩ Vj |,max{0, ℓj − |NS ∩ Vj |}

}
= max{0, ℓj − |NS ∩ Vj |}+

k∑
i=1,i̸=a

min
{
|(Nk−i[ui] \NS) ∩ Vj |,max{0, ℓj − |NS ∩ Vj |}

}
≥ max{0, ℓj − |NS ∩ Vj |}

= min

{
k∑

i=1

|(Nk−i[ui] \NS) ∩ Vj |,max{0, ℓj − |NS ∩ Vj |}

}
.

Noticing that

k∑
i=1

|(Nk−i[ui] \NS) ∩ Vj | ≥

∣∣∣∣∣
(

k⋃
i=1

Nk−i[ui] \NS

)
∩ Vj

∣∣∣∣∣ = |(NO \NS) ∩ Vj |
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we get
k∑

i=1

fi(ui | S) ≥
ω∑

j=1

min
{
|(NO \NS) ∩ Vj | ,max{0, ℓj − |NS ∩ Vj |}

}
.

To prove the Lemma, we are going to show that for each j ∈ [ω],

min
{
|(NO\NS)∩Vj | ,max{0, ℓj − |NS∩Vj |}

}
≥ min {|NO∩Vj | , ℓj} −min {|NS∩Vj | , ℓj} . (11)

If |NO ∩ Vj | ≤ |NS ∩ Vj | then the right side of the inequality is at most 0 and there is nothing
to prove. Now we consider |NO ∩ Vj | > |NS ∩ Vj | and observing that |(NO \ NS) ∩ Vj | ≥ |NO ∩
Vj | − |NS ∩ Vj |, we have three cases to consider:

case 1: (ℓj ≤ |NS ∩ Vj |). In this case the equation (11) becomes 0 ≥ ℓj − ℓj .

case 2: (|NS ∩ Vj | < ℓj ≤ |NO ∩ Vj |). In this case the equation (11) becomes

min{|(NO \NS) ∩ Vj |, ℓj − |NS ∩ Vj |} ≥ ℓj − |NS ∩ Vj |.

Moreover, we have,

ℓj ≤ |NO ∩ Vj | ≤ |(NO \NS) ∩ Vj |+ |NS ∩ Vj |

and consequently,

min{|(NO \NS) ∩ Vj |, ℓj − |NS ∩ Vj |} = ℓj − |NS ∩ Vj |.

case 3: (ℓj > |NO ∩ Vj |). In this case the equation (11) becomes

min
{
|(NO \NS) ∩ Vj | , ℓj − |NS ∩ Vj |

}
≥ |NO ∩ Vj | − |NS ∩ Vj | .

Moreover, we have,

min
{
|(NO \NS) ∩ Vj | , ℓj − |NS ∩ Vj |

}
≥ min

{
|NO ∩ Vj | − |NS ∩ Vj |, ℓj − |NS ∩ Vj |

}
= |NO ∩ Vj | − |NS ∩ Vj |.

□

Theorem 3 MMCB admits a 2-approximation algorithm.

Proof: Let S = (v1, v2, . . . , vk) be the solution provided by Algorithm 1 on the instance ⟨G,Π, L, k⟩
and let O = (u1, u2, . . . , uk) be an optimal solution for the MMCB problem on the same instance
⟨G,Π, L, k⟩.

We have that,

f(S) = (f(S)− f(Sk−1)) + (f(Sk−1)− f(Sk−2)) + . . .+ (f(S1)− f(S0)) + f(S0)

= fk(vk | Sk−1) + fk−1(vk−1 | Sk−2) + . . .+ f1(v1 | S0) by Lemma 1

=

k∑
i=1

fi(vi | Si−1)

≥
k∑

i=1

fi(ui | S) by Lemma 2

≥ f(O)− f(S). by Lemma 3 (12)
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Inequality (12) implies f(S) ≥ f(O)/2. □

We show now how the 2-approximation bound for MMCB can be used to obtain a log n + 1
approximation for BG.

Consider an instance ⟨G,Π, L, k⟩ of MMCB. Let ℓ =
∑ω

j=1 ℓj . By definition (6), we have that,
for any sequence S of size k:

(i) f(S) ≤ ℓ;

(ii) f(S) = ℓ if and only if |NS ∩ Vj | ≥ ℓj , for j ∈ [ω].

Hence, whenever f(S) = ℓ, the sequence S also satisfies the BG instance ⟨G,Π, R = L⟩.
Similarly, let ⟨G,Π, R⟩ be an instance of BG, let r =

∑ω
j=1 pj and let k∗ be the size of

the smallest sequence S∗ that satisfies all the requirements (i.e., the optimal value for the given
instance). Using the same sequence S∗ we get f(S∗, k∗) = r for the instance ⟨G,Π, R, k∗⟩ of
MMCB and we have:

(i) the optimum value for the instance ⟨G,Π, R, k∗⟩ of MMCB is r;

(ii) if the optimum value for ⟨G,Π, R, k⟩ of MMCB is r then k ≥ k∗.

Let ⟨G,Π, R⟩ be an instance of BG. For each k = 1, 2, . . . , n, we execute the Algorithm 2 and
take the smallest set obtained as the solution of the problem. Theorem 4 shows that, exploiting
Algorithm 2 and the above properties, one can obtain the desired approximation factor for BG.

Theorem 4 BG can be approximated to log n+ 1.

Proof: For a given k the obtained sequence S = S1⊥S2⊥ . . .⊥Stk has length at most k × tk.
We show now that by choosing the value k such that k × tk is minimum, one can get the desired
approximation factor.

Let k∗ denote the value of an optimal solution SBG = (v1, . . . , vk∗) for BG instance ⟨G,Π, R⟩.
Clearly f(SBG, k

∗) = r. Hence, when the Algorithm 2 is executed with k = k∗, we know, by
Theorem 3 and the above properties, that the greedy Algorithm 1 will compute a sequence S1

such that f(S1, k∗) ≥ r/2. By iterating the greedy Algorithm 1 t times, we get the sequences
S = S1⊥S2⊥ . . .⊥St (that is S is the concatenation of S1, S2, . . . , St) providing a solution for the
instance ⟨G,Π, R, k∗ × t⟩ of MMCB of value at least

f(S, k∗ × t) ≥
t∑

i=1

f(Si, k∗) ≥ r

(
1

2
+

1

4
+ . . .+

1

2t

)
= r

(
1− 1

2t

)
.

Hence, for some t ≤ log r + 1, the algorithm will find a sequence S such that f(S, k∗ × t) ≥ r and
the corresponding burning time is

|S| ≤ k∗ × t ≤ k∗ × (log r + 1) ≤ k∗ × (log n+ 1).

□
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Algorithm 2 BG Algorithm(G = (V,E),Π, R, k)

1: h = 1, Π1 = Π, R1 = R, V 1 = V
2: S1 = MMCB(G,Π1, R1, k)

3: while
(∑h

i=1 f(S
i) < r

)
do ▷ r =

∑ω
j=1 pj

4: h = h+ 1
5: V h = V h−1 \NSh−1 ▷ V h is the set of nodes not burned by S1, S2, . . . , Sh−1

6: Πh = {V h
1 , . . . , V h

ω } ▷ V h
j = V h ∩ Vj , for j ∈ [ω]

7: Rh = (ph1 , . . . , p
h
ω) ▷ phj = max{0, ph−1

j − |NSh−1 ∩ Vj |}, for j ∈ [ω]

8: Sh = MMCB(G,Πh, Rh, k)
9: end while

10: return S = S1⊥S2⊥ . . .⊥Sh ▷ the concatenation of S1, S2, . . . , Sh

4 Burning with O(1) groups

In this section, we assume that ω = O(1) and obtain a constant approximation factor for the BG
problem. Our solution goes through the following problem:

Square Domination with Groups (SDG)

Input: G = (V,E), a group family Π = {V1, V2, . . . , Vω} (a collection of subsets of V ),
and a vector R = (p1, p2, . . . , pω) of requirements for each group.

Output: A set {v1, v2, . . . , vk} ⊆ V of minimum size k such that∣∣∣(⋃k
i=1 Nk[vi]

)⋂
Vj

∣∣∣ ≥ pj , for each j ∈ [ω].

SDG differs from BG because in SDG each source covers a neighbourhood of the same radius
k and consequently the order of nodes in the solution does not matter, while in BG the radius of
the neighbourhood depends on the position of the source in the sequence.

We notice that given any sequence S, solution for BG on ⟨G,Π, R⟩, then the set containing the
nodes in S is a solution for SDG for the same instance. Moreover, from any solution {v1, v2, . . . , vk}
to SDG on ⟨G,Π, R⟩ we can get a solution for BG, of size 2k, for the same instance as any sequence
(v1, . . . , vk, u1, . . . , uk) where u1, . . . , uk are k arbitrary chosen nodes. Hence, denoted by OB and
OD the sizes of the optimal solution of the BG problem and the SDG problem, respectively, we
have OD ≤ OB ≤ 2OD.

In the following, we will show how to obtain, from this observation, a polynomial time algorithm
for the BG problem, whose solution is upper bounded by 3OB + ω − 1.

We assume that OD > ω, otherwise OD = O(1) and we are able to find the optimal solution
for the SDG problem in polynomial time by simply enumerating over all subsets of V of size OD,
which results in an exact algorithm having running time |V |O(OD) = |V |O(1).

We are going to use a result in [3], where the authors describe a pseudo-approximation algorithm
for the Colorful k-center problem (with two colors). They show how to find a solution of
radius at most 2r∗ using at most k + 1 centers (i.e., sources), where r∗ is the optimum radius for
the considered problem.

Let k-SDG be the decision version of SDG for a given integer k, that is, the problem asking if
there exists a subset S ⊆ V , with |S| = k such that∣∣(⋃

v∈S Nk[v]
)⋂

Vj

∣∣ ≥ pj , for each j ∈ [ω].
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Algorithm 3 Clustering Algorithm(G, k, x, z)

1: S = ∅, V ′ = V
2: while V ′ ̸= ∅ and maxv∈V ′ zv > 0 do
3: v = argmaxv′∈V ′ zv′

4: S = S ∪ {v}
5: yv = min{1,

∑
u∈Nk[v]

xu}
6: Cv = N2k[v] ∩ V ′

7: V ′ = V ′ \ Cv

8: end while
9: return S, {Cv | v ∈ S}, y

We use the solution of the following natural LP relaxation for the k-SDG problem, which we
name LPk-SDG (Fig. 4), to have a simplified LP version (Fig. 5). This will allow us to find a
2-approximation for the SDG problem.

Given a fractional solution (x, z) to LPk-SDG, the variable xu, for u ∈ V , represents the fraction
of node u that is used as a source and zv, for v ∈ V , represents the fraction of coverage that node
v receives by the other (fractional) sources nodes (namely, nodes u at distance at most k from v
with xu > 0).

LPk-SDG

∑
u∈Nk[v]

xu ≥ zv ∀v ∈ V

∑
u∈V

xu ≤ k∑
u∈Vj

zu ≥ pj ∀j ∈ [ω]

xu, zu ∈ [0, 1] ∀u ∈ V

Figure 4: The natural LP relaxation for the k-SDG problem.

Following [3], we present an algorithm that, given a feasible solution (x, z) to LPk-SDG, finds
a clustering of the nodes of V and a subset S of cluster centers (nodes with zv > 0), that we can
use to write a simplified version of LPk-SDG.

Let S and {Cv | v ∈ S} be the sets returned by Algorithm 3. For any v ∈ S and j ∈ [ω], let
Pjv = Cv ∩ Vj be the set of nodes of the group Vj in the cluster Cv. Fix pjv = |Pjv|. By using S
and the values pjv, for each v ∈ S and j ∈ [ω], we define the linear program LP ′

k-SDG (Fig. 5).
The variable yv in LP ′

k−SDG represents the fraction of node v that is used as a source to cover
pjv nodes of the group Vj . The following Lemma shows that the vector y returned by Algorithm
3 is a feasible solution to LP ′

k−SDG.

Lemma 4 Given a feasible solution (x, z) to LPk-SDG and the sets S ⊆ V and Cv, for v ∈ S
returned by Algorithm 3, the following proprieties hold:



26 Cordasco et al. Graph Burning in Community-based Networks

LP ′
k−SDG

max
∑
v∈S

p1vyv

subject to:∑
v∈S

pjvyv ≥ pj ∀j = 2, . . . , ω∑
v∈S

yv ≤ k

yv ∈ [0, 1] ∀v ∈ S

Figure 5: A simplified LP relaxation for the k-SDG problem.

(i) The clusters Cv, for v ∈ S are pairwise disjoint.
(ii) y is a feasible solution to LP ′

k-SDG.

Proof: Since at each iteration of the while loop in Algorithm 3, each selected cluster Cv is removed
from V ′ before choosing a new cluster among the nodes in V ′ at the next iteration, property (i)
comes.

To prove (ii) we first show that:

For each u ∈ V there is at most one v ∈ S such that u ∈ Nk[v]. (13)

Indeed, given any pair v, v′ of nodes in S, by Algorithm 3, it holds d(v, v′) > 2k. Hence, any node
u such that d(u, v) ≤ k (i.e., u ∈ Nk[v])) is such that d(u, v′) > k (i.e., u ̸∈ Nk[v

′])).
Then, we prove that:

yv ≥ zv for each v ∈ S. (14)

Recalling that yv = min{1,
∑

u∈Nk[v]
xu}, it follows that if yv = 1 then yv ≥ zv due to the fact

that zv ∈ [0, 1]. If yv < 1 then yv =
∑

u∈Nk[v]
xu ≥ zv where the last inequality is by the first

constraint in LPk-SDG.
Now, we are ready to prove that y is a feasible solution for LP ′

k-SDG. To this aim, we check
that the constraints in LP ′

k-SDG are satisfied. For each j ∈ [ω] we have∑
v∈S

pjvyv =
∑
v∈S

|Pjv| yv

=
∑
v∈S

∑
u∈Pjv

yv

≥
∑
v∈S

∑
u∈Pjv

zv by (14)

≥
∑
v∈S

∑
u∈Pjv

zu by the greedy choice of v in Alg. 3

=
∑
u∈Vj

zu by (i)

≥ pj . by the third constraint in LPk-SDG
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Finally, we check that
∑

v∈S yv ≤ k.∑
v∈S

yv ≤
∑
v∈S

∑
u∈Nk[v]

xu by the setting of yv in Alg. 3

≤
∑
u∈V

xu by (13)

≤ k. by the second constraint in LPk-SDG

□

As LP ′
k-SDG has only ω non-trivial constraints, any extreme point will have at most ω variables

attaining strictly fractional values [28]. So by the second constraint in LP ′
k-SDG at most k− 1+ω

variables of any feasible y are non-zero.
So, we choose to round up the fractional variables yv to 1 since the coverage of each group

Vi for i ∈ [ω] can only increase, and set S′ = {v ∈ S | yv > 0}. From the above, we get
|S′| = k− 1 + ω. Recalling that for each node v ∈ S′ it holds Cv ⊆ N2k[v] and that k > ω we have
that |S′| = k − 1 + ω < 2k − 1 and S′ is a solution for the k-SDG problem.

Recalling by the definition of the k-SDG problem that k ≤ diam(G), we can repeat the above
procedure for k = 1, · · · , diam(G), and stop at the smallest value of k for which a solution S′

is possible. Now, we notice that, if OD is the size of the optimal solution of the SDG problem,
then k ≤ OD, since an optimal solution SOD

for the SDG problem satisfies all the constraints of
LPk-SDG whenever k ≥ OD. Hence the following theorem follows.

Theorem 5 For ω = O(1), there exists a polynomial time algorithm that finds a 2-approximation
for the SDG problem.

By observing that the above strategy enables to identify a set of k− 1 + ω sources such that their
2k-neighborhoods satisfy all the requirements, we have that one can obtain a sequence S, solution
of the BG problem, by taking all the above sources in any order followed by other arbitrarily
chosen 2k nodes. Hence, |S| = 3k + ω − 1 and recalling that k ≤ OD ≤ OB the following result
holds.

Theorem 6 For ω = O(1), there exists a polynomial time algorithm to find a solution for the BG
problem whose size is upper bounded by 3OB + ω − 1.

Recalling that the Graph Burning problem is a special case of BG in which all the nodes form
a single group (i.e., ω = 1) with requirement n, the above result generalizes the 3-approximation
for the Graph Burning [6].

5 Burning Max Groups with unitary requirements

When all the requirements are equal to one, an instance of Burning Max Groups (BMG) can
be seen as an instance of the following problem [7].

MCG
Input: S = {S1, S2, . . . , Sm} partitioned into ℓ subsets G1, G2, . . . , Gℓ (where each set
Si is a subset of a given ground set X ), a global bound k and ℓ subset bounds ki, for
each Gi.
Output: H ⊆ S such that |H| ≤ k and |H ∩ Gi| ≤ ki for i ∈ [ℓ], and |

⋃
S∈H S| is

maximized.
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Indeed given an instance ⟨G,Π = {V1, V2, . . . , Vω}, R, k⟩ of the BMG problem, where all the
requirements are fixed to 1 (i.e., R = (1, . . . , 1)), we can set X = {1, 2, . . . , ω} and ℓ = k. For each
i ∈ [k], and for each v ∈ V let Si,v = {j | Nk−i[v] ∩ Vj ̸= ∅}, we set S = {Si,v | v ∈ V, i ∈ [k]} and
for each i ∈ [k], Gi = {Si,v | v ∈ V }. Finally set ki = 1, for each i ∈ [k]. Since MCG admits a
2-approximation algorithm [7], we have the following results.

Theorem 7 There exists a polynomial time algorithm to find a 2-approximation for the Burning
Max Groups problem with unitary requirements.

Open Problem: Can the above result be extended to the BMG problem in the general case?

By considering each node as a separate subset, the BMG problem becomes

Max Burning (MB)
Input: G = (V,E) and a integer k.

Output: A sequence of nodes (v1, v2, . . . , vk), such that maximizes
∣∣∣⋃k

i=1 Nk−i[vi]
∣∣∣.

Theorem 8 There exists a polynomial time algorithm to find a 2-approximation for the Max
Burning problem.

6 Conclusion

We introduced a variation of the graph burning process in order to study the spreading of infor-
mation in community-based networks, with or without overlapping communities. On top of this
diffusion process, we investigated the Burning with groups problem, with the aim of maximiz-
ing the dissemination of information at a minimum cost. This NP-hard problem has been analyzed
from an approximation point of view, showing both a lower bound and a matching upper bound.
We also showed that when the number of communities is constant the problem admits a constant
approximation factor. Eventually, we presented a preliminary analysis of the maximization version
of the problem, named Burning Max Groups, showing that it admits a 2-approximation, pro-
vided that all requirements are unitary. It would be interesting to investigate whether this result
can be extended to the general case.
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