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Abstract. Let P be a set of points in the plane and let T be a maximum-weight
spanning tree of P . For an edge (p, q), let Dpq be the diametral disk induced by (p, q),
i.e., the disk having the segment pq as its diameter. Let DT be the set of the diametral
disks induced by the edges of T . In this paper, we show that one point is sufficient to
pierce all the disks in DT . Actually, we show that the center of the smallest enclosing
circle of P is contained in all the disks of DT , and thus the piercing point can be
computed in linear time.

1 Introduction

Let P be a set of points in the plane and let G = (P,E) be the complete weighted graph over P ,
where the weight of an edge (p, q) ∈ E is the Euclidean distance between p and q, and denoted
by |pq|. A maximum-weight spanning tree of P is a spanning tree of G with maximum edge
weight. Let T = (P,ET ) be a maximum-weight spanning tree of P . For an edge (p, q) ∈ ET ,
let Dpq denote the diametral disk induced by (p, q), i.e., the disk having the segment pq as its
diameter, see Figure 1. Let DT be the set of the diametral disks obtained by the edges of T , i.e.,
DT = {Dpq : (p, q) ∈ ET }. In this paper, we prove that the disks in DT have a non-empty
intersection.
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Figure 1: The Maximum Spanning Tree T of the points a, b, c, d, and the set DT of the diametral
disks induced by its edges.

1.1 Related works

Let F be a set of geometric objects in the plane. A set S of points in the plane pierces F if every
object in F contains a point of S, in this case, we say that S is a piercing set of F . The piercing
problem, i.e., finding a minimum cardinality set S that pierces a set of geometric objects, has
attracted researchers for the past century.

A famous result is Helly’s theorem [7, 8], which states that for a set F of convex objects in the
plane, if every three objects have a non-empty intersection, then there is one point that pierces
all objects in F . The problem of piercing pairwise intersecting objects has been also studied,
particularly when the objects are disks in the plane. It has been proven by Danzer [4] and by
Stacho [14, 15] that a set of pairwise intersecting disks in the plane can be pierced by four points.
However, these proofs are involved and it seems that they can not lead to an efficient algorithm.
Recently, Har-Peled et al. [6] showed that every set of pairwise intersecting disks in the plane can
be pierced by five points and gave a linear time algorithm for finding these points. Carmi et al. [2]
improved this result by showing that four points are always sufficient to pierce any set of pairwise
intersecting disks in the plane, and also gave a linear time algorithm for finding these points.

In 1995, Fingerhut [5] conjectured that for any maximum-weight perfect matching M =
{(a1, b1), (a2, b2), . . . , (an, bn)} of 2n points in the plane, there exists a point c, such that |cai| +
|cbi| ≤ α · |aibi|, for every 1 ≤ i ≤ n, where α = 2√

3
. That is, the set of the ellipses Ei with foci

at ai and bi, and contain all the points x, such that |aix| + |xbi| ≤ 2√
3
· |aibi|, have a non-empty

intersection. Recently, variants of this conjecture has been introduced in [1, 9, 12, 13]. Huemer et
al. [9] showed that the diametral disks obtained by the edges of a red-blue matching that maxi-
mizes the sum of the squared distances between n red points and n blue points in the plane have
a non-empty intersection. Later, Bereg et al [1] proved that the diametral disks obtained by the
edges of a maximum-weight matching of any 2n points in the plane have a non-empty intersection.
Soberón and Tang [13] showed that, for any set of odd number of points in the plane, there exists
a Hamiltonian cycle H such that the diametral disks obtained by the edges of H have a non-empty
intersection. Recently, Pirahmad et al. [12] generalized the result in [13] for sets of even number
of points and extended the results in [1, 9] to higher dimensions.
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1.2 Our contribution

A common and natural approach to prove that all the disks in DT have a non-empty intersection is
using Helly’s Theorem, i.e., to show that every three disks have a non-empty intersection. However,
we use a different approach and show that all the disks in DT have a non-empty intersection by
characterizing a specific point that pierces all the disks in DT . More precisely, we prove the
following theorem.

Theorem 1 Let C∗ be the smallest enclosing circle of the points of P and let c∗ be its center.
Then, c∗ pierces all the disks in DT .

This approach is even stronger since it implies a linear-time algorithm for finding the piercing
point, using Megiddo’s linear-time algorithm [10] for computing the smallest enclosing circle of P .

The result in this paper can be considered as a variant of Fingerhut’s Conjecture. That is, for
a maximum-weight spanning tree (instead of a maximum-weight perfect matching) and α =

√
2

(instead of α = 2√
3
) the conjecture holds.

2 Preliminaries

Let P be a set of points in the plane, let T be a maximum-weight spanning tree of P , and let DT

be the set of the diametral disks induced by the edges of T . Let C∗ be the smallest enclosing circle
of the points of P , and let r∗ and c∗ be its radius and its center, respectively. We assume, w.l.o.g.,
that r∗ = 1 and c∗ is located at the origin (0, 0). Let D∗ be the disk having C∗ as its boundary.
Let A1, A2, A3, and A4 (resp., Q1, Q2, Q3, and Q4) be the four arcs (resp., the four quarters)
obtained by dividing C∗ (resp., D∗) by the x and the y-axis; see Figure 2 for an illustration.

Lemma 1 Each one of the arcs A1 and A3 contains at least one point of P or each one of the
arcs A2 and A4 contains at least one point of P .

Proof: By definition, there are at least two points of P on C∗. If there are exactly two points p
and q on C∗, then the segment pq is a diameter of C∗, and clearly, p and q are on non-adjacent arcs
of C∗; see Figure 2(a). Otherwise, there are at least three points of P on C∗; see Figure 2(b). In
this case, there are three points p, q, and t on C∗, such that the triangle △pqt contains c∗. Thus,
every angle in this triangle is acute, and therefore two points from p, q, t are on non-adjacent arcs
of C∗. □

Lemma 2 Let p and q be two points in Q3, such that p is on the negative x-axis, the angle
∠pc∗q < π

2 , and |c∗p| ≥ |c∗q|; see Figure 3. Then,

(i) for every point t on A1 ∪A2, we have |qt| > |pq|,

(ii) for every point t on A1 ∪A4, we have |pt| > |pq|, and

(iii) for every two points t and t′ on A2 and A4, respectively, we have |tt′| > |pq|.

Proof:
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Figure 2: The smallest enclosing circle C∗ of P . (a) Two points on C∗. (b) and (c) Three points
on C∗.

(i) Let a = (−1, 0) and b = (1, 0) be the intersection points of C∗ with the negative and the
positive x-axis, respectively; see Figure 3(a). Let Dq be the disk with center q and radius
|qa|. Since |c∗q| ≤ |c∗p|, we have ∠c∗pq ≤ ∠c∗qp, and thus ∠c∗pq ≤ π

2 . Hence, ∠qpa > π
2 ,

and thus |qa| > |qp|. Let q′ be the intersection point of the line passing through a and q with
the y-axis, and let Dq′ be the disk with center q′ and radius |q′a|; see Figure 3(a). Since Dq′

intersects C∗ at the points a and b, the arc A1 ∪ A2 is outside Dq′ (this is correct for every
disk centered at a point x on the negative y-axis and has a radius |xa|). Thus, for every
point t on A1 ∪A2, we have |q′t| ≥ |qa|. Since Dq is contained in Dq′ , this is also correct for
Dq. Therefore, for every point t on A1 ∪A2, we have |qt| ≥ |qa| > |qp|.
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Figure 3: Illustration of the proof of Lemma 2. (a) Any point t on A1 ∪A2 satisfies |qt| > |pq|. (b)
Any point t on A1 ∪A4 satisfies |pt| > |pq|.

(ii) Let a and b be the intersection points of C∗ with the negative and the positive y-axis, re-
spectively; see Figure 3(b). Let Dp be the disk centered at p with radius |pa|. Hence, Dp
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contains Q3, and thus for every point z ∈ Q3, we have |pz| < |pa|, particularly |pq| < |pa|.
Since Dp intersects C∗ at the points a and b, the arc A1 ∪ A4 is outside Dp (this is correct
for every disk centered at a point x on the negative x-axis and has a radius |xa|). Therefore,
for every point t on A1 ∪A4, we have |pt| > |pa| > |pq|.

(iii) Since ∠pc∗q < π
2 , we have |pq| <

√
2. Moreover, by the location of t and t′, we have |tt′| ≥

√
2.

Therefore, |tt′| > |pq|.

□

Notice that Lemma 2 holds for every two points p and q inside C∗, such that ∠pc∗q < π
2 . This

is true since we can always rotate the points of P around c∗ (and reflect them with respect to the
x-axis if needed) until the farthest point from c∗ among p and q lays on the negative x-axis and
the other point lays inside Q3.

Corollary 1 Lemma 2 holds for every two points p and q inside C∗, such that ∠pc∗q < π
2 .

3 Proof of Theorem 1

Let G = (P,E) be the complete graph over P and let T = (P,ET ) be the maximum-weight
spanning tree of P (i.e., of G). A maximum-weight spanning tree can be computed by Kruskal’s
algorithm [3] (or by the algorithm provided by Monma et al. [11]) which uses the fact that for any
cycle C in G, if the weight of an edge e ∈ C is less than the weight of each other edge in C, then
e cannot be an edge in any maximum-weight spanning tree of P . Kruskal’s algorithm works as
follows. It sorts the edges in E in non-increasing order of their weight, and then goes over these
edges in this order and adds an edge (p, q) to ET if it does not produce a cycle in T . Based on this
fact, we prove that for every edge (p, q) ∈ ET , the disk Dpq contains c∗. More precisely, we prove
that for each edge (p, q) ∈ ET the angle ∠pc∗q is at least π

2 .

Lemma 3 For every edge (p, q) ∈ ET , we have ∠pc∗q ≥ π
2 .

Proof: Let (p, q) be an edge in ET . We show that if ∠pc∗q < π
2 , then there is a cycle in G in

which the edge (p, q) has the minimum weight among the edges of this cycle, and thus (p, q) can
not be in a maximum-weight spanning tree of P . Assume towards a contradiction that ∠pc∗q < π

2 ,
and assume, w.l.o.g., that p and q are in Q3, p is on the x-axis, and |c∗p| > |c∗q|. We distinguish
between two cases:

(i) If there is a point t on A1, then, by Lemma 2, we have |tp| > |pq| and |tq| > |pq|. Thus,
the edges (t, p), (p, q), and (q, t) form a cycle and the edge (p, q) has a weight less than the
weight of each other edge in this cycle; see Figure 4(a). This contradicts that (p, q) ∈ ET .

(ii) Otherwise, by Lemma 1, there exist two points t and t′ on A2 and A4, respectively. By
Lemma 2, we have |tq| > |pq|, |t′p| > |pq| and |tt′| > |pq|. Thus, the edges (t, t′), (t′, p),
(p, q), and (q, t) form a cycle and the edge (p, q) has a weight less than the weight of each
other edge in this cycle; see Figure 4(b). This contradicts that (p, q) ∈ ET .

□
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Figure 4: Illustration of the proof of Lemma 3. (a) (p, q) is of minimum weight in the cycle
< t, p, q >. (b) (p, q) is of minimum weight in the cycle < t, p, q, t′ >.

4 Conclusion and Future Works

In this paper, we have shown that the diametral disks obtained by the edges of a maximum-weight
spanning tree of a set of points P have a non-empty intersection. We showed that the disks can
be pierced by the center of the smallest enclosing circle of P , which can be computed in linear
time [10].

Fingerhut [5] conjectured that for any maximum-weight perfect matchingM = {(a1, b1), (a2, b2),
. . . , (an, bn)} of 2n points in the plane, the set of the ellipses Ei with foci at ai and bi, and contains
all the points x, such that |aix| + |xbi| ≤ α · |aibi|, for every 1 ≤ i ≤ n, where α = 2√

3
, have a

non-empty intersection. The smallest known value for α is α =
√
2, which was provided by Bereg

et al. [1].

In this paper, we considered a variant of Fingerhut’s Conjecture for maximum-weight spanning
tree instead of maximum-weight perfect matching. We showed that for any maximum-weight
spanning tree T and α =

√
2, there exists a point c∗, such that for every edge (a, b) in T , |c∗a| +

|c∗b| ≤ α · |ab|. In Figure 5(a), we show an example of a maximum-weight spanning tree, such that

for any α < 1+
√
3

2 , the conjecture does not hold. This provides a lower bound on α.

Moreover, in Figure 5(b), we show an example of a maximum-weight spanning tree for which

the center c∗ of the smallest enclosing circle does not satisfy the inequality for α = 1+
√
3

2 . This

means that our approach does not work for α = 1+
√
3

2 , but does not mean that the conjecture does

not hold for α = 1+
√
3

2 . Even though the gap between
√
2 ≈ 1.414 and 1+

√
3

2 ≈ 1.366 is very small,
it is an interesting open question to find the exact value for α for which the conjecture holds.

An interesting variant of Fingerhut’s Conjecture is the Max-TSP problem. Given a set P of
points in the plane, let T be a maximum traveling salesperson tour (max TSP) of P . For which
value of α, there exists a point c∗, such that |c∗a|+ |c∗b| ≤ α · |ab|, for every edge (a, b) in T?

Another variant of the conjecture is the red-blue spanning tree. Given two colored sets of points
in the plane: a set R of n red points and a set B of m blue points, a red-blue spanning tree of R∪B
is a spanning tree T of R ∪B, such that each edge in T connects points of different colors. In this
variant, the diametral disks induced by the edges of a maximum-weight red-blue spanning tree of
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Figure 5: A maximum-weight spanning tree of the points {a, b, c, d} (red edges) and α = 1+
√
3

2 .
(a) The ellipses defined by the edges (a, b) and (c, d) are tangent to each other. (b) The ellipse
defined by the edge (a, b) does not contain the point c∗.
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Figure 6: A maximum-weight red-blue spanning tree of the sets R = {r1, r2} and B = {b1, b2}.
The diametral disks induced by the edges of the tree have an empty intersection.

R ∪B cannot always be pierced by one point, as shown in Figure 6. However, it is an interesting
open question to compute the minimum number of points that are needed to pierce these disks.
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