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Abstract. Given a graph G and positive integers b and w, the Black-and-White
Coloring problem asks about the existence of a partial vertex-coloring of G, with b
vertices colored black and w white, such that there is no edge between a black and a
white vertex. The problem is known to be NP-complete.

In this paper, we deal with the optimization version, mainly for random graphs.
Using the method of conditional expectations, we develop a heuristic with a good
performance. We also obtain theoretical results on some of the relevant quantities, and
compare the performance of the heuristic with that of several others.

1 Introduction

An anticoloring of a graph is a coloring of some of the vertices, such that no two adjacent vertices
are colored in distinct colors. In the basic anticoloring problem, we are given a graph G = (V,E),
where |V | = n, and positive integers b1, ..., bk, and have to determine whether there exists an

anticoloring of G such that bi vertices are colored in color i, i = 1, ..., k (thus leaving n−
k∑

i=1

bi

vertices uncolored). The anticoloring problem with k = 2 is the Black-and-White Coloring problem
(henceforward BWC).

The problem has been studied mainly in its optimization version, in which we are given a graph
G and a positive integer b, and have to color b of the vertices in black, so that there will remain as
many vertices as possible which are non-adjacent to any of those b vertices. (These latter vertices
are to be colored in white.) We denote by Wb the maximum possible number of such vertices, by
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B the set of the vertices we color in black, by W the set of all vertices we can color in white after
those of B have been colored in black, and by C the set of vertices we leave uncolored.

The BWC problem was introduced by Berge (see (10)): Given positive integers n and b, place
b black and w white queens on an n × n chessboard, so that no black queen and white queen
attack each other, with w as large as possible. (This problem itself is not tackled in this paper,
and its complexity remains open.) The BWC problem was introduced and proved to be NP-hard
by Hansen, Hertz, and Quinodoz (10). In the same paper, they gave an O(n3) algorithm for trees,
that was later superseded by an O(n2 log3 n) algorithm (7). Kobler, Korach, and Hertz (11) gave
a polynomial algorithm for partial k-trees with �xed k. In (5), the BWC problem has been studied
for planar graphs, and an algorithm with some bound on the additive error relative to the optimal
solution was given. In addition, an optimal solution for a special instance of the problem, namely,
the problem suggested by Berge, using kings instead of queens (4), and knights instead of queens
(13), was given, and the problem was studied on other families of graphs as well (3; 2; 6; 17).
Various algorithms have been suggested for the problem (6; 14; 18).

In this paper, we start with a naive approach for solving the problem. We color uniformly
random b vertices in black, and then color in white every vertex that is not a neighbor of a black
vertex. Analyzing this approach and using conditional expectations, we are led to develop an
improved heuristic. The improvement lies in going over the vertices in a �smart� order and not in a
random order. In each step, we color in black the vertex v0, for which the conditional expectation
of the size of the white vertices set, given that v0 color in black, is maximal. Note that, while
we try to color in black at each step the most promising vertex, the calculation of the �pro�t�
resulting from each possible choice is based on the assumption that the rest of the process will
continue naively according to a naive approach.

For some families of random graphs, our approach yields the optimal anticoloring with high
probability. In the general case, we obtain a lower bound on the performance. We also compare
its performance to that of several other heuristics in practice.

In Section 2 we present the heuristics and state the main results. The proofs appear in Section 3.
We wish to express our gratitude to the referee for numerous helpful comments on the �rst

version of the paper.

2 Heuristics and Theoretical Results

2.1 Random Anticoloring

We start with a naive approach. This approach will lead to a baseline solution, that will be used
later to develop a better heuristic. Out of the n vertices of G, we color b arbitrary vertices in black.
Coloring now in white every vertex that is not a neighbor of a black vertex, we get an anticoloring
of G. This is what we do in Algorithm 1, where the black vertices are selected uniformly randomly
(each of the

(
n
b

)
possibilities having the same probability 1/

(
n
b

)
).

The neighborhood N(v) of a vertex v ∈ V is the set of vertices adjacent to v, and the
closed neighborhood is N [v] = N(v) ∪ {v} .

2.2 The Performance of Algorithm 1 (Random Anticoloring)

In the following proposition, we will use Pochhammer's symbol (falling factorial)

(n)k = n(n− 1) · · · · · (n− k + 1), n, k ≥ 0.
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Algorithm 1 � Random Anticoloring

Input: A graph G = (V,E) and a non-negative integer b.
Output: An anticoloring (B,W ) of G : B − black vertices, W − white vertices.
procedure Random(G, b)

B ← ∅
W ← V
for i← 1, 2, . . . , b do

select vi ∈ V \B uniformly randomly
W = W \N [vi]
B = B

⋃
{vi}

remove all edges incident to vi from E
end for

return B,W
end procedure

We denote by d(v) the degree of a vertex v ∈ V.
The basic measures of the performance of Random Anticoloring are given by

Proposition 1. Let W be the (random) set of white vertices provided by Algorithm 1. Then:

(a) E (|W |) = 1

(n)b

∑
v∈V

(n− d(v)− 1)b. (2.1)

(b) V (|W |) = 1

(n)2b

∑
v∈V

(
(n− d(v)− 1)b · (n)b − (n− d(v)− 1)2b

)
+

2

(n)b

∑
(u,v)∈E

(n− d(u)− d(v) +muv)b

+
2

(n)b

∑
(u,v)/∈E

(n− d(u)− d(v) +muv − 2)b

− 2

(n)2b

∑
(u,v)∈E∪EC

(n− d(u)− 1)b · (n− d(v)− 1)b,

(2.2)

where muv denotes the number of common neighbors of vertices u and v and EC is the set
of non-edges of G.

While the proof of the proposition will be given in Section 3, it will be important, for the
discussion in Subsection 2.3, to understand intuitively the �rst part of the proposition. In the sum
on the right-hand side of (2.1), each summand

(n− d(v)− 1) · · · (n− d(v)− b)

n · · · (n− b+ 1)

is actually the probability that neither v nor any of its neighbors will be colored black, so that we
will be able to color it white. By denoting

P (v) =
(n− d(v)− 1) · · · (n− d(v)− b)

n · · · (n− b+ 1)
, (2.3)
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we may write (2.1) in an alternative way:

E (|W |) =
∑
v∈V

P (v).

Note that P (v) is the same for all vertices of the same degree. Moreover, once we have calculated
P (v) for vertices of any degree k, we can �nd P (v) for vertices of degree k + 1 in constant time.
Thus, we can �nd P (v) for all v ∈ V in linear time in n.

2.3 An Improved Heuristic

Proposition 1 provides the average size of W if we choose uniformly randomly b vertices and color
them black. We can guarantee this performance by derandomization (1, p.249). Namely, using
conditional expectations, we will convert Algorithm 1 into a deterministic heuristic, for which the
size ofW will be at least the value of the expression on the right-hand side of (2.1). We will improve
Algorithm 1 by choosing the black vertices in a di�erent way. Similarly to Algorithm 1, we start
with no vertices colored in black, and then color b vertices one by one. Di�erently from Random
Anticoloring, we now color at each step not a random vertex, but rather the �most promising�
vertex. Here, by the most promising vertex we mean that vertex which, if colored black, will yield
on average the largest number of white vertices at the end of the process. Namely, at each step,
for each of the vertices not colored in black, we �nd the conditional expectation of the size of W
at the end of the process if we color this vertex in black and continue the process randomly as in
Random Anticoloring.

As in Random Anticoloring, initially we have B = ∅ and W = V . As we continue, the set B is
augmented at each step by the vertex we color at that step. The set W is always the set of vertices
which may still be white � all vertices neither colored black nor neighboring a black vertex at this
stage. Now it is also important to keep track of the set of those vertices which have not been
colored in black by this stage, but have a black neighbor, so they will be either black or uncolored
by the end of the process. Denote this set of vertices by C. Note that the sets B,W,C are always
pairwise disjoint, and together comprise V . Once we keep track of C, we do not need to know
exactly which black vertex (or vertices) blocks each vertex in C from being colored white. Thus,
at each step, after a vertex has been added to B, we remove from the graph all the edges incident
to this vertex, and update the sets B,W,C and the probabilities P (v). Note that P (v) = 0 for
v ∈ B ∪ C.

Suppose we have already chosen i − 1 vertices v1, ..., vi−1 for B. The current expected size of
W is E(|W | | v1, v2, . . . , vi−1) (where the condition means that v1, . . . , vi−1 ∈ B). Let us explain
in detail how we select the next vertex to be colored black. To this end, we need to �nd the e�ect
of adding any candidate v ∈W ∪ C to B as the next black vertex vi.

On the one hand, we lose the chance of coloring in white v and all its neighbors (i.e., those
vertices of N [v] belonging to W ). More speci�cally, denote by n′ = n − |B| = n − (i − 1) the
current number of non-black vertices in G, and by b′ = b − |B| the number of vertices yet to be
colored black. Before coloring v, the probability of any vertex u, currently in W , to remain white
by the end of the process, if the rest of the coloring is done randomly, is

P (u) =
(n′ − d(u)− 1) · · · (n′ − d(u)− b′)

n′ · · · (n′ − b′ + 1)
. (2.4)
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Thus, by adding v to B, we reduce the conditional expectation of |W | by∑
u∈N [v]∩W

P (u) =
∑

u∈N [v]∩W

(n′ − d(u)− 1) · · · (n′ − d(u)− b′)

n′ · · · (n′ − b′ + 1)

due to all those vertices of W moving to B ∪ C.
On the other hand, all vertices of W \N [v] have, if we add v to B, a better chance of remaining

white by the end of the run. Namely, P (u) increases for each such vertex u. Indeed, after we have
colored v in black, it only remains to color b′ − 1 vertices out of the remaining non-black n′ − 1
vertices. Thus, the probability that a vertex u ∈W \N [v] will remain white by the end of the run
becomes

Pnew(u) =
n′

n′ − d(u)− 1
· P (u). (2.5)

Hence, the expected increase in |W | due to each such vertex u is the di�erence between the
right-hand sides of (2.5) and (2.4)

(n′ − d(u)− 2) · · · (n′ − d(u)− b′)

(n′ − 1) · · · (n′ − b′ + 1)
− (n′ − d(u)− 1) · · · (n′ − d(u)− b′)

n′ · · · (n′ − b′ + 1)

=
(n′ − d(u)− 2) · · · (n′ − d(u)− b′) (d(u) + 1)

n′ · · · (n′ − b′ + 1)
.

Thus, for v ∈ V \B, we denote

g− (v) =
∑

u∈N [v]∩W

P (u), (2.6)

and

g+ (v) =
∑

u∈W\N [v]

(n′ − d(u)− 2) · · · (n′ − d(u)− b′) (d(u) + 1)

n′ · · · (n′ − b′ + 1)

=
∑

u∈W\N [v]

d(u) + 1

n′ − d(u)− 1
· P (u).

(2.7)

We will refer to g− (v) and g+ (v) as the expected negative gain and the expected positive gain,
respectively, associated with adding v to B. The total expected gain is:

g(v) = g+ (v)− g− (v) , v ∈ V \B. (2.8)

At each iteration i, we will act in the same way and color in black the vertex vi ∈ V \ B such
that g (vi) is maximal among all g(v), v ∈ V \B. (Ties are broken arbitrarily.) After adding vi to
B, we update P (v), and accordingly g− (v), g+ (v), g (v), for each v ∈ V \B. We call this heuristic
Max Expectation. See Algorithm 2 for the details.



370 D. Berend, S. Mamana A Greedy Probabilistic Heuristic for Graph Black-and-White
Anticoloring

Algorithm 2 � Max Expectation

Input: A graph G = (V,E), with |V | = n, and a non-negative integer b.
Output: An anticoloring of G with b black vertices.
procedure Max Expectation(G, b)

Initialize
(
B,W,C, n′, b′, (P (v) , g− (v) , g+ (v) , g (v))v∈V

)
for i← 1, 2, . . . , b do

vi =Select Vertex(W, g(v)v∈W )

Color

(
vi, B,W,C, n′, b′, (P (v) , g− (v) , g+ (v) , g (v))v∈V \B

)
end for

return B,W
end procedure

procedure Initialize(B,W,C, n′, b′, (P (v) , g− (v) , g+ (v) , g (v))v∈V )
B ← ∅
W ← V
C ← ∅
n′ ← n
b′ ← b
for each v ∈ V do

P (v) ← the right hand-side of (2.4)
g− (v)← the right hand-side of (2.6)
g+ (v)← the right hand-side of (2.7)
g (v) ← the right hand-side of (2.8)

end for

end procedure

Theorem 2. Consider Max Expectation on a graph G = (V,E).
(i) It �nds a legal anticoloring with b black vertices.
(ii) The size |W | of the set of vertices it colors in white is at least the right-hand side of (2.1).
(iii) Its runtime is O(b · n2).

2.4 The Case of Random Graphs

We will be particularly interested in random graphs. Under the G(n, p) random graph model (9),
the graph consists of n labeled vertices, such that the probability of having an edge between any
pair of vertices is p, independently of the other pairs. We will deal with sparse graphs: p = λ/n
for an arbitrary �xed λ > 0.

We will analyze the performance of Random Anticoloring for G(n, p) graphs, which will yield a
lower bound on the performance of Max Expectation. In Proposition 1, the graph was given and
the sample space was the set Sn of all orderings of the graph's vertices, endowed with the uniform
distribution. Now the sample space is the product space Gn × Sn , where Gn is the collection of all
2n(n−1)/2 graphs on n labeled vertices, with the probability measure de�ned by the G(n, p) model.

Given a sequence (Yk)
∞
k=1 of random variables, and a distribution law L, we write Yk

D−−−−→
k→∞

L if

the sequence converges in distribution to L.We denote by N(0, 1) the standard normal distribution.
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procedure Select Vertex((W, g(v)v∈W ))
u← argmax

v∈W
g (v) /* break ties arbitrarily. */

return u
end procedure

procedure Color(u,B,W,C, n′, b′, (P (v) , g− (v) , g+ (v) , g (v))v∈V \B)

W ←W \N [u]
B ← B

⋃
{u}

C ← C
⋃
N(u) \ {u}

remove all edges incident to u from E
n′ ← n′ − 1
b′ ← b′ − 1
for v ∈ V \B do

update P (v) , g− (v) , g+ (v) , g (v) /*by (2.5), (2.6), (2.7), (2.8), respectively.*/
end for

end procedure

Proposition 3. The size of the set W, provided by Random Anticoloring, for a random G(n, λ/n)

graph and b = βn, 0 < β < 1, is B
(
n− b, (1− λ/n)

b
)
-distributed. In particular:

(a) EGn×Sn
(|W |) = (1− β) e−λβn+O (1) ,

(b) VGn×Sn (|W |) = (1− β) (e−λβ − e−2λβ)n+O (1) ,

(c)
|W | − (1− β) e−λβn√
(1− β) (e−λβ − e−2λβ)n

D−−−−→
n−→∞

N (0, 1).

Remark 1. One can formulate the proposition for general G(n, p) graphs, not necessarily sparse;
just replace λ by pn. However, it is easy to see that, for any �xed p and β, the resulting set of
white vertices will become very small with high probability as n → ∞. Hence, the interesting
random graphs to test our method are sparse.

Recall that, for a sequence (Ej)
∞
j=1 of events in a probability space, Ej occurs with high probability (w.h.p.)

if P (Ej) −−−→
j→∞

1. It is well known that (see, for example, (16)) the component structure of

G(n, λ/n) is:

(i) For λ < 1, w.h.p. the largest connected component of G is of size O (log n) .

(ii) For λ = 1, w.h.p. the largest connected component of G is of size O
(
n2/3

)
.

(iii) For λ > 1, w.h.p. there exists a single largest component of G of size γn (1 + o(1)) , where
γ ∈ (0, 1) is the unique solution of the equation

γ + e−λγ = 1. (2.9)

Moreover, the next largest component in G is of size O (log n) .
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Recall that the Lambert W function (see, for example, (8, p.241)) is de�ned implicitly on
[−1/e,∞) by the equation W (x) eW (x) = x. Note that, in the interval (−1/e, 0), the function has
two branches; we take the top (principal) one (see Figure 1).

Figure 1: The graph of the Lambert W function. The single-valued function corresponding to the
blue solid graph is the principal branch, and the dashed red graph is the negative branch.

The value of γ solving (2.9) is given by (9):

L (λ) =
W
(
−λe−λ

)
+ λ

λ
.
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A trivial upper bound on Wb is n− b. When G is not connected, it may be the case that there
exists a union of connected components of G with exactly b vertices. In this case we color in black
these b vertices and get n−b white vertices. The following theorem guarantees that, for some pairs
λ and b, this is possible w.h.p.

Theorem 4. For G(n, λ/n) and ε > 0
(i) For λ < L−1 (1/2) , w.h.p. we have Wb = n− b for every 0 ≤ b ≤ n.
(ii) For λ ≥ L−1 (1/2) and ε > 0, w.h.p. we have Wb = n− b for every
b ∈ [0, n (1− L (λ)− ε)]

⋃
[n (L (λ) + ε) , n].

Remark 2. In fact, the second part holds for λ < L−1 (1/2) as well. For such λ we have L(λ) <
1/2, and therefore

[0, n (1− L (λ)− ε)]
⋃

[n (L (λ) + ε) , n] = [0, n].

We preferred to state this case more explicitly in part (i).

The proof of Theorem 4 is algorithmic. One starts with B = ∅, and adds to it at each step the
largest possible connected component. See Algorithm 3 for details.
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Algorithm 3 � Largest Connected Components

Input: A graph G = (V,E) and a non-negative integer b.
Output: An anticoloring of G with b black vertices.
procedure Largest connected components(G, b)

B ← ∅
W ← V
Sort the connected components of G according to descending order of size: |V1| ≥ |V2| ≥

· · · ≥ |Vk|.
for i← 1, 2, . . . , k do

if |B|+ |Vi| ≤ b then
B = B

⋃
Vi

W = W \ Vi

end if

end for

return B,W
end procedure

Knowing the performance of any anticoloring heuristic, we obtain a lower bound on the size of
the optimal W . Thus, Proposition 3 guarantees that the optimum is at least (1− β)e−λβn+O(1)
for G(n, λ/n) with b = βn black vertices w.h.p. The bound is based on the performance of the
trivial solution, obtained by coloring b random vertices in black. Algorithm 2 would provide a
better bound, but we do not know how to �nd its typical performance. A simple heuristic, starting
from the same basic idea, is the following greedy heuristic. Note that, when coloring vertices in
black one by one, as we color some vertex v, we block all vertices of N [v], not adjacent to any
vertex already colored, from being eventually colored in white. Thus, it is natural to color in each
step a vertex v for which |N [v] ∩W | is minimal. See Algorithm 4 for details.

Unfortunately, even Algorithm 4 is not readily amenable to analysis. Hence, we take a similar,
but even simpler heuristic. We simply color in black the b vertices of minimal degrees. More
precisely, denote by Ak the set of all vertices of degree k, 0 ≤ k ≤ n − 1. Let t be the largest
number such that the number of vertices of degree up to t does not exceed b:

t∑
k=0

|Ak| ≤ b <

t+1∑
k=0

|Ak|. (2.10)

We color in black all the vertices of
t⋃

k=0

Ak, and b−
t−1∑
k=0

|Ak| additional random vertices out of

At+1. See Algorithm 5 for the details.
Theorem 5 provides the average performance of Algorithm 5, and thus gives a lower bound on

the average value of Wb.
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Algorithm 4 � Greedy

Input: A graph G = (V,E) and a non-negative integer b.
Output: An anticoloring of G with b black vertices.
procedure Greedy(G, b)

B ← ∅
W ← V
for i← 1, 2, . . . , b do

vi ← argmin
v∈V

|N [v] ∩W | /* break ties arbitrarily. */

B = B
⋃
{vi}

W = W \N [vi]
remove all edges incident to vi from E
remove vi from V

end for

return B,W
end procedure

Algorithm 5 � Min Degree

Input: A graph G = (V,E) and a non-negative integer b.
Output: An anticoloring of G with b black vertices.
procedure Min Degree(G, b)

Sort the vertices of G according to ascending order of degrees:
d(v1) ≤ d(v2) ≤ · · · ≤ d(vn).
/* between vertices of the same degree, the order is uniformly random. */
B = {v1, v2, . . . , vb}

W = V \
b⋃

i=1

N [vi]

return B,W
end procedure
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Theorem 5. For G(n, λ/n) and b = βn, where 0 < β < 1 is �xed and n → ∞, let W be the
(random) set of white vertices provided by Min Degree. De�ne the integer t by the inequalities

t−1∑
k=0

e−λλk

k!
≤ β <

t∑
k=0

e−λλk

k!
,

and let r =
t∑

k=0

e−λλk

k!
− β, s =

e−λλt

t!
. Then:

EGn (|W |) =



n (1− β) +O(1), t = 0,

n ·

[
∞∑

k=t+1

e−λλk

k!

(
r

s
· e

−λλt−1

(t− 1)!
+

∞∑
j=t

e−λλj

j!

)k

+r ·

(
r

s
· e

−λλt−1

(t− 1)!
+

∞∑
j=t

e−λλj

j!

)t ]
+O(1),

t ≥ 1.
(2.11)

In the next theorem we present an upper bound on Wb.

Theorem 6. For G(n, λ/n) and b = βn, where

λ >
−β log β − (1− β) log (1− β)

β (1− β)
, (2.12)

w.h.p. we have Wb ≤ α0n, where α0 is the unique solution of the equation

α logα+ β log β + (1− α− β) log (1− α− β) + λαβ = 0 (2.13)

in the interval (0, 1− β).

We have run a simulation to test the performance of Greedy and Max Expectation. We tested
G(1000, λ/1000) graphs for λ = 0.1, 0.2, . . . , 10.0. The proportion of black vertices was β = 1/4 for
each graph. We took 100 random instances for each λ, and ran both heuristics on these instances.
In Figure 2 we depict the proportion of white vertices for each heuristic over these instances.
In addition, we present the theoretical prediction for the performance of Random Anticoloring,
given in Proposition 3.(a), as well as the lower bound of Theorem 5 and the upper bound of
Theorem 6. Max Expectation achieved better results than Min Greedy for all values of λ, which
in turn performed better than Degree. The theoretical prediction for the performance of Random
Anticoloring was worse than all, and the upper bound above them all.
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Figure 2: The performance of Greedy and Max Expectation vs. Random Anticoloring and
theoretical bounds.

3 Proofs

Proof of Proposition 1. Let V = {v1, v2, . . . , vn} and let

Xi =

{
1, vi ∈W,

0, otherwise,
1 ≤ i ≤ n. (3.1)

It is easy to see that Xi ∼ Ber

(
(n− d(vi)− 1)b

(n)b

)
, and

|W | = X1 +X2 + · · ·+Xn. (3.2)

(a) We have:

E (|W |) =
n∑

i=1

E (Xi) =
1

(n)b

n∑
i=1

(n− d(vi)− 1)b.

(b) By (3.2),

V (|W |) = V

(
n∑

i=1

Xi

)

=

n∑
i=1

V (Xi) + 2

n−1∑
i=1

n∑
j=i+1

Cov (Xi, Xj) .

(3.3)

Clearly,

V (Xi) =
(n− d(vi)− 1)b

(n)b
·
(
1− (n− d(vi)− 1)b

(n)b

)
=

(n− d(vi)− 1)b · (n)b − (n− d(vi)− 1)2b
(n)2b

, 1 ≤ i ≤ n.

(3.4)
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It remains to calculate Cov (Xi ,Xj ) = E (XiXj)− E (Xi)E (Xj) . We have

E (XiXj) = P (Xi = Xj = 1) .

If (vi, vj) ∈ E, then

P (Xi = Xj = 1) =

(
n− (d(vi) + d(vj)) +mij

b

)/(n
b

)
,

and therefore:

Cov (Xi, Xj) =
(n− d(vi)− d(vj) +mij)b

(n)b

− (n− d(vi)− 1)b
(n)b

· (n− d(vj)− 1)b
(n)b

.

(3.5)

Now let (vi, vj) /∈ E. Then

P (Xi = Xj = 1) =

(
n− (d(vi) + d(vj) + 2) +mij

b

)/(n
b

)
.

Therefore, for (vi, vj) /∈ E:

Cov (Xi, Xj) =
(n− d(vi)− d(vj) +mij − 2)b

(n)b

− (n− d(vi)− 1)b
(n)b

· (n− d(vj)− 1)b
(n)b

.

(3.6)

Our claim follows from (3.3), (3.4), (3.5) and (3.6).

Proof of Theorem 2. (i) According to the heuristic, at each step, after a vertex vi has been added
to B, we remove from the graph all the edges incident to this vertex, and all its neighbors which
belong to W move to C. During the run, no vertices are added to W , so there is no black vertex
that has a white neighbor.
(ii) In this process, at each iteration the expected size of W does not decrease. In fact, if we
add to B a vertex vi = argmax g (v)

v∈V \B
, the expected size of W will increase by g (vi) . Clearly,∑

v∈V \B
g (v) = 0, so it is impossible that g (v) < 0 for all v ∈ V \ B. (We note that it is possible,

though, that at some point during the run we have g (v) = 0 for all v ∈ V \B. In this case, we add
to B any v ∈ V \B, and the expected size of W does not change.)
(iii) Most of the time is spent on the b calls to Color. Within this procedure, most of the time is
spent on the updates of g−(v) and g+(v). Each update takes O(n) time for each vertex, and we
have to deal with |V −B| ≤ n vertices. Hence the runtime is O(b · n2).

In the proofs of the theorems relating to sparse random graphs, we use the Poissonian approximation
to the binomial distribution. Let the random variable Di denote the degree of vi. Clearly, Di ∼
B (n− 1, λ/n). By the Poissonian approximation, Di is distributed approximately Po (λ) . More
precisely,

P (Di = k) =
e−λλk

k!
+ εk,
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where, by (12, p.187),
∞∑
k=0

| εk |≤
4λ

n
.

As is usually done, in most proofs we will treat Di as exactly Poissonian. The involved error is
easily seen to be absorbed in the big Oh term.

Proof of Proposition 3. By symmetry, we may assume that we take n vertices {v1, v2, . . . , vn},
color in black the �rst b of them, so that B = {v1, v2, . . . , vb}, and then select the edges/ non-
edges randomly. The probability of each of the remaining vertices vb+1, . . . , vn to belong to W is

(1−λ/n)b, and the respective events are independent. Hence, |W | ∼ B
(
n− b, (1− λ/n)

b
)
. Thus:

(a) E (|W |) = (n− b)(1− λ/n)b = n(1− β)e−λβ +O (1) .

(b) V (|W |) = (n− b)(1− λ/n)b(1− (1− λ/n)b)

= n(1− β)(e−λβe−2λβ) +O (1) .

(c) Follows from (a), (b), and the Central Limit Theorem.

Proof of Theorem 4. (i) We use Algorithm 3. If we have colored in black all the components of
size larger than 1, and the process is not over, we continue to color in black components of size
1, until we color b vertices. If we have skipped along the way at least one of the components of
size larger than 1, it means that there remain to color in black less than O (log n) vertices. By
[1, Theorem 3.1, p.52], the number of isolated vertices in G(n, λ/n) is approximately ne−λ. Since
ne−λ = ω (log n) , we can �nd a union of components of G with exactly b vertices, and therefore
Wb = n− b.

(ii) If b ∈ [0, n (1− L (λ)− ε)] then b ≤ |
k⋃

i=2

Vi|. By using Algorithm 3, we skip over V1. If we have

colored in black all the components of size larger than 1, and the process is not over, we continue to
color in black components of size 1, until we color b vertices. If we have skipped another component
of size larger than 1, then according to the argument we mentioned in the �rst part, we can �nd
a union of components of G with exactly b vertices.
If b ∈ [n (L (λ) + ε) , n] then b ≥ |V1|. We color V1 in black. If we did not skip on one of the
components of size larger than one, and the process is not over yet, then we will get to components
of size one, and we can �nd an union of components of G with exactly b vertices. If we skipped
on one of the components of size larger than one, then according to the argument we mentioned
in the �rst part, we can �nd an union of components of G with exactly b vertices.

Proof of Theorem 5. Let Xi, 1 ≤ i ≤ n, be as in (3.1). For

t−1∑
k=0

e−λλk

k!
< β <

t∑
k=0

e−λλk

k!
,

w.h.p. all the vertices v ∈ V with d(v) < t are colored black by the end of the run, while vertices
with d(v) > t are not. Some of the vertices v ∈ V with d(v) = t are colored black, and some are
not. Hence, a vertex v ∈ V with
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� d (v) < t � does not belong to W ,

� d (v) = t � belongs to W if it is neither black nor a neighbor of a black vertex,

� d (v) > t � belongs to W if it is not a neighbor of a black vertex.

The probability that a vertex v ∈ V is of degree exceeding t is
∞∑

k=t+1

e−λλk

k!
. Suppose that d(v) = k.

The probability that a neighbor u of v is of some degree j ≥ 1 is about e−λλj−1/(j − 1)!. The
probability of such a vertex u being non-black is therefore

r

s
· e

−λλt−1

(t− 1)!
+

∞∑
j=t

e−λλj

j!
.

Hence the probability of a vertex v being of degree exceeding t and white is

∞∑
k=t+1

e−λλk

k!

r

s
· e

−λλt−1

(t− 1)!
+

∞∑
j=t

e−λλj

j!

k

. (3.7)

Similarly, the probability that a vertex v of degree t is white is

r ·

r

s
· e

−λλt−1

(t− 1)!
+

∞∑
j=t

e−λλj

j!

t

. (3.8)

The result follows from (3.7) and (3.8).

Proof of Theorem 6. Let B and W be disjoint sets of sizes βn and αn, respectively, where 0 <
α < 1− β. We upbound the probability that B and W may serve as the required sets of black and
of white vertices, namely that there are no edges connecting the two sets. Draw the edges of the
graph according to the G(n, λ/n) model. The probability that (u, v) /∈ E for every u ∈ B, v ∈W is

(1− λ/n)
n2αβ

. The number of all possible choices of these sets B andW is

(
n

αn, βb, n(1− α− β)

)
.

By the union bound,

P (Wb ≥ αn) ≤
(

n

αn, βn, n(1− α− β)

)
(1− λ/n)

n2αβ
.

By Stirling's Formula (15),

√
2πnn+

1
2 e−ne

1
12n+1 < n! <

√
2πnn+

1
2 e−ne

1
12n .

A routine calculation yields

(
n

αn, βb, n(1− α− β)

)
(1− λ/n)

n2αβ
<

c

n
·
(
α−αβ−β (1− α− β)

α+β−1
)n

· (1− λ/n)
n2αβ

,
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where c = 1/
(
2π
√
αβ (1− α− β)

)
.

De�ne g : (0, 1− β) −→ R by:

g (α) = α logα+ β log β + (1− α− β) log (1− α− β) , 0 < α < 1− β.

Since log (1− λ/n) < −λ/n,

(
α−αβ−β (1− α− β)

α+β−1
)n
· (1− λ/n)

n2αβ
< e−n(g(α)+nαβ·(λ/n))

= e−n(g(α)+λαβ).
(3.9)

De�ne f : [0, 1− β] −→ R by:

f (α) =


β log β + (1− β) log (1− β) , α = 0,

α logα+ β log β + (1− α− β) log (1− α− β) + λαβ, 0 < α < 1− β,

(1− β) log (1− β) + β log β + λ (1− β)β, α = 1− β.

(Here and below, refer to Figure 3.) Then,

f ′ (α) = logα− log (1− α− β) + λβ, 0 < α < 1− β,

and lim
α→0+

f ′ (α) = −∞, lim
α→(1−β)−

f ′ (α) =∞. Note that

f ′′ (α) =
1− β

α (1− α− β)
, 0 < α < 1− β,

so that f ′′ (α) > 0 for all 0 < α < 1− β. Therefore, f ′ is an increasing function. Denote by α1 the
unique solution of f ′ (α) = 0. Thus, f decreases in [0, α1] and increases in [α1, 1− β]. Notice that
f(0) < 0 and f(1− β) > 0 for

λ >
− (1− β) log (1− β)− β log β

β (1− β)
.

Hence, there is indeed a unique α0 such that f(α0) = 0, namely an α0 solving (2.13). For α > α0

we have f(α) > 0, so that the value of the right-hand side of (3.9) goes to 0 as n →∞. Thus, the
probability that Wb > α0n goes to 0 as n →∞.
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Figure 3: The functions f and f ′ for β = 0.1, λ = 10.
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