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Abstract.
We prove that the following decision problems are co-NP-complete: Determine

whether a finite reflexive graph has the fixed clique property. Determine whether a
finite simplicial complex has the fixed simplex property. Determine whether a finite
truncated lattice has the fixed point property.

1 Introduction

An ordered set is a set equipped with a reflexive, antisymmetric and transitive relation ≤, the
order relation. A function f from one ordered set to another is order-preserving iff x ≤ y
implies f(x) ≤ f(y). The task to classify the finite ordered sets with the fixed point property
(every order-preserving self-map has a fixed point) was one of the original problems on the journal
ORDER’s list of leading open problems, until it was shown in [5] that the decision problem whether
a given finite ordered set has the fixed point property is co-NP-complete.

A reflexive graph is a pair (V,E) of a set V of vertices and a set E of subsets of V , called
edges, such that all singleton subsets of V are in E and all edges are singleton or doubleton
subsets of V . The vertices in an edge are called adjacent. For vertices v, w in a reflexive graph,
we write v ≃ w iff {v, w} ∈ E and we write v ∼ w iff v ≃ w and v ̸= w. For two reflexive graphs
G = (VG, EG) and H = (VH , EH), a function f : VG → VH is called a homomorphism iff, for
all vertices x, y with x ≃G y, we have f(x) ≃H f(y). A homomorphism for which domain and
codomain are equal is called an endomorphism. Most homomorphisms in this paper will be
endomorphisms. All graphs in this paper will be reflexive, and consequently all endomorphisms
will be allowed to map an edge between two distinct vertices to a single vertex.1

A clique is a set of vertices such that any two distinct vertices are adjacent, and a graph has
the fixed clique property (see [3], p.10; for earlier results, see [4], Section 1, [10, 12, 13]; for
more recent contributions, see [8, 11]) iff every endomorphism maps a clique to itself.
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The fixed clique property is a natural graph-theoretical analogue of the fixed point property.
On one hand, as first observed on page 346 in [10], for any reflexive graph with an edge {v, w}
between distinct vertices v ̸= w, mapping V \ {v} to w and w to v produces a fixed-point-free
endomorphism, which means that a fixed vertex property for endomorphisms of reflexive graphs
is futile. Note that, as shown in [14], the fixed vertex property for endomorphisms of irreflexive
graphs is quite rich, however.

On the other hand, and much more importantly, the fixed clique property serves as a waystation
in the connection between the order-theoretical fixed point property and the topological fixed point
property, which was first investigated in [2]. Said connection (also see Figure 9.2 in [15]) passes from
the fixed point property for the ordered set through the fixed clique property for the (reflexive)
comparability graph (two points x and y are adjacent iff x ≤ y or x ≥ y, which produces
a reflexive graph), or, equivalently through the fixed simplex property of the clique complex of
the comparability graph (every clique is considered to be a simplex), to the topological fixed
point property of the topological realization of the clique complex of the comparability graph.
By Theorem 2.3 in [2], the topological fixed point property of the topological realization of the
clique complex implies the fixed simplex property for the clique complex: Although the theorem
concludes the fixed point property for the ordered set, the proof shows there is a fixed simplex for
every endomorphism of the simplicial complex. An explicit proof is indicated on page 240 in [15].
Example 2.4 in [2] shows that the converse does not hold, as the clique complex given there has the
fixed simplex property; a more explicit example is in Exercise 9-27 in [15]. Because we work with
the same functions in each case, the fixed clique property for a comparability graph is equivalent
to the fixed simplex property for the comparability graph’s clique complex. It is easy to see that
the fixed clique property for a comparability graph implies the fixed point property for an ordered
set, see [3], remark before Corollaire 3.3, or Proposition 6.7 in [15]. However, the converse does
not hold, see Example 6.8 in [15].

The connection between order and topology continues to attract attention, see [1], and recently,
see Corollary 4.5 in [7], it led to an advance on the long-standing evasiveness conjecture.

Given the interest in these properties, it is natural to investigate the complexity of the corre-
sponding decision problems. Theorem 3 and Corollaries 12 and 13, though possibly unsurprising,
settle the complexity status of the following decision problems, thereby closing obvious gaps in the
theory for three interesting properties.

� Determine whether a finite reflexive graph has the fixed clique property.

� Determine whether a finite simplicial complex has the fixed simplex property.

� Determine whether a finite truncated lattice has the fixed point property.

Because of the above mentioned ability to translate problems into new settings, our primary
focus will be on the fixed clique property for reflexive graphs, with the remaining results being
simple corollaries. Our approach is a technical, though nontrivial, modification of Duffus and
Goddard’s construction from [5].

2 Background

This section presents fundamental definitions as well as results that will be needed in the main
proof, which is presented in Section 3. We start with retractions, which are a standard tool in
fixed point theory and which also play an important role in the investigation of the fixed clique
property.
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Definition 1 Let G = (V,E) be a reflexive graph. An endomorphism r : V → V such that r2 = r
is called a retraction. The induced graph G[r[V ]] is called a retract of G.

Lemma 2 Let G = (V,E) be a reflexive graph with the fixed clique property and let r : V → V be
a retraction. Then G[r[V ]] has the fixed clique property.

Proof. For any endomorphism f : r[V ] → r[V ] of G[r[V ]], we have that f ◦ r is an endo-
morphism of G. Hence f ◦ r fixes a clique C ⊆ r[V ], which means that C = f [r[C]] = f [C].

□

Lemma 3 Let G = (V,E) be a finite reflexive graph and let f : V → V be an endomorphism.
Then there are a retract R of G and an automorphism Φ of R such that Φ fixes a clique of R iff
f fixes a clique of G.

Proof. It is easy to check, by considering individual vertices, (see, for example, Proposition 4.4
in [15]) that the function r := f |V |! is a retraction of G. Let R := G

[
f |V |![V ]

]
and let Φ := f |f |V |![V ].

It is easy to check (similar to part 2 of Theorem 4.8 in [15]) that Φ is an automorphism that fixes
a clique of R iff f fixes a clique of G. □

The complement of a reflexive graph (V,E) is the graph (V,Ec), where Ec =
{
{v, w} : v, w ∈

V, v ̸= w, {v, w} ̸∈ E
}
∪
{
{v} : v ∈ V

}
. A graph is called codisconnected iff its complement

is disconnected. The components of the complement will be called the graph’s cocomponents.
Proposition 4 below characterizes the fixed clique property for codisconnected graphs.

Proposition 4 Let G = (V,E) be a finite codisconnected reflexive graph. Then G has the fixed
clique property iff G has a cocomponent K such that G[K] has the fixed clique property.

Proof. For the implication “⇒,” simply note that if, for every cocomponent K, there were an
endomorphism fK : K → K that does not fix any clique in G[K], then any union of such maps
would be an endomorphism that does not fix any clique in G.

For the implication “⇐,” let f : V → V be an endomorphism. By Lemma 3 and because a
retract of a codisconnected graph is codisconnected or a singleton, we can assume that f is an
automorphism.

Let m ∈ N be the smallest positive integer such that fm[K] = K. Then fm fixes a clique
C ⊆ K. Now

⋃m
j=1 f

j [C] is a clique fixed by f . □

For two disjoint nonempty sets of vertices A and B, we will write A ∼ B iff, for all a ∈ A and
b ∈ B, we have a ∼ b. If either set is a singleton, A = {a} or B = {b}, respectively, we will omit
the set braces and write a ∼ B or A ∼ b, respectively. A universal vertex is a vertex u ∈ V such
that u ∼ V \ {u}.

Lemma 5 Let G = (V,E) be a reflexive graph, and let r : V → VR be a retraction to the retract
R = G[VR]. Let C ⊆ V and t ∈ VR such that r[C] = {t} and such that, for every v ∈ V , there is a
vertex w ∈ C ∪ {t} such that v ≃ w. Then t is a universal vertex for R and R has the fixed clique
property.
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Proof. Let v ∈ VR be a vertex in R. By hypothesis, we have t ≃ v or there is a vertex w ∈ C
with v ≃ w. In the latter case, we have v = r(v) ≃ r(w) = t. Thus t is adjacent to all vertices in
VR, which means it is a universal vertex for R. Because R has a universal vertex t, by Proposition
4, R has the fixed clique property. □

Theorem 1 below shows that the fixed clique property is invariant under the addition or removal
of dominated vertices.

Definition 6 Let G = (V,E) be a graph and let a, b ∈ V be two distinct vertices. Then a is
dominated by b iff a ∼ b and, for all v ∈ V \ {a, b}, we have that a ∼ v implies b ∼ v.

Theorem 1 (See [3], Théorème 3.1.) Let G = (V,E) be a finite reflexive graph and let a ∈ V be
a dominated vertex. Then G has the fixed clique property iff the induced graph G[V \ {a}] has the
fixed clique property. □

Retractable vertices are a generalization of dominated vertices. Their addition or removal
affects the fixed clique property as stated in Theorem 2 below.

Definition 7 Let G = (V,E) be a graph and let a, b ∈ V be two distinct vertices. Then a is
retractable to b iff, for all v ∈ V \ {a, b}, we have that v ∼ a implies v ∼ b.

Definition 8 Let G = (V,E) be a finite graph and let a ∈ V . We define the neighborhood of a
to be N(a) := {v ∈ V : a ∼ v} \ {a}.

Theorem 2 (See [16], Theorem 8.9.2) Let G = (V,E) be a finite reflexive graph and let a ∈ V be
retractable to b ∈ V . Then G has the fixed clique property iff the induced subgraphs G[V \ {a}] and
G[N(a)] both have the fixed clique property. □

3 A Modification of Duffus and Goddard’s Construction

Perhaps unsurprisingly, it is a close analysis and subsequent modification of the argument in [5]
that provides the key to the results in this paper. Although the author did indeed look for a more
direct argument to settle the complexity status of deciding the fixed clique property for reflexive
graphs, it was to no avail. Duffus and Goddard’s approach apparently provides the most feasible,
and so far the only, path. For the following, recall that the height of an ordered set is one less
than the size of the largest clique in the comparability graph and that a 2n-crown is an ordered
set with elements c1 < c2 > c3 < · · · > c2n−1 < c2n > c1 and no further comparabilities beyond
what is indicated and reflexivity. Recall that a maximal element of an ordered set is an element
that is not strictly below any other element of the ordered set and that order relations are inherited
by subsets.

Although Definition 9 is primarily in terms of ordered sets, this is purely for the convenience of
being able to use transitivity as we establish the comparabilities in the comparability graph. The
argument itself is purely graph theoretical.

Definition 9 (Compare with [5], Section 3.) Throughout this paper, we let (X,≤X), (Y,≤Y ), and
(Z,≤Z) be finite ordered sets of height 1, we let (D6,≤D6

) be a 6-crown and we let (C2n,≤C2n
) be

a 2n-crown. We let H = (V,≤) be an ordered set with the following properties (also see Figure 1),
and we let G = (V,E) be the reflexive comparability graph of H.
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Figure 1: Modification of the construction in [5].

1. V = C2n ∪X ∪ Y ∪ Z ∪D6.

2. The set D6 is {a, b, c, a′, b′, c′}, and it is ordered by a < b′, c′; b < a′, c′; and c < a′, b′.

3. X, Y , Z, and C2n carry their original orders.

4. X < {a, b}, Y < {a, c}, Z < {b, c}, and C2n < {a, b, c}.

5. Between the elements of X,Y, Z and the elements of C2n, we have the following comparabil-
ities.

(a) The maximal elements of C2n are mx, ax, bx, c
x
1 , . . . , c

x
t , my, ay, by, c

y
1, . . . , c

y
t , mz, az,

bz, c
z
1, . . . , c

z
t , where t > 1, and any two consecutively listed elements (as well as czt and

mx) have a common lower bound.

(b) For every S ∈ {X,Y, Z}, the maximal elements as and bs of C2n are lower bounds of S.

(c) For every S ∈ {X,Y, Z} and every j ∈ {1, . . . , t}, each of the maximal elements csj of
C2n is below exactly one (necessarily maximal) element of S, which will be denoted sj.

(d) The 3 maximal elements mx, my, mz of C2n are not comparable to any element of X,
Y , or Z.

(e) Let M be the set of minimal elements of C2n. Then M < X ∪ Y ∪ Z.

6. The only further comparabilities are those added to the above by transitivity.

Moreover, we make the following additional assumptions on X, Y and Z.

A. None of X,Y, Z contains a 6-crown.

B. For every S ∈ {X,Y, Z}, and any two distinct elements si and sj (see Part 5c above), the
distance in the induced subgraph G[S] is at least 4.
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Remark 10 The construction in Definition 9 is a modification of the construction from Section 3
in [5], using the structure from Proposition 7.26 in [15]. Because the explicitly stated additional
conditions A and B in Proposition 11 are easily checked to be satisfied by the sets X := P ,
Y := P and Z := Q, with P and Q as constructed in Section 4 in [5], the only difference between
Proposition 11 and Duffus and Goddard’s construction is that we demand in condition 5e that
M < X ∪ Y ∪ Z.

Proposition 11 (Compare with [5], Section 3.) If G has an endomorphism that does not fix any
clique in G, then G has an endomorphism f : V → V that does not fix any clique in G and for
which the following hold.

I. The restrictions f |D6 and f |C2n are automorphisms.

II. We either have f [X] ⊆ Y , f [Y ] ⊆ Z, f [Z] ⊆ X, or f [X] ⊆ Z, f [Z] ⊆ Y , f [Y ] ⊆ X.

III. For every S ∈ {X,Y, Z}, with U ∈ {X,Y, Z} such that f [S] ⊆ U , we have f(s1) =
u1, . . . , f(st) = ut.

Proof. Let f : V → V be an endomorphism of G that does not fix any clique in G. By Lemma
3, we can assume without loss of generality, that f = Φ ◦ r, where r : V → V is a retraction onto
the induced subgraph R := G[r[V ]] = (VR, ER), and Φ : VR → VR is an automorphism that does
not fix any cliques in R.

Because, by Theorem 1, the presence or absence of dominated vertices does not affect whether a
finite reflexive graph has the fixed clique property, we can assume that no vertex in R is dominated
by another vertex in R. In particular, this means that R does not have a universal vertex.

Claim 1. r[C2n] ∩ {a′, b′, c′} = ∅.
Suppose, for a contradiction, that there is an x ∈ C2n that is retracted by r to a′. Because

a′ ∼ C2n ∪X ∪ Y ∪ Z and x ∼ D6, every vertex of R is adjacent to one of x or a′. Application of
Lemma 5 with C = {x} and t = a′ leads to existence of a universal vertex in R, a contradiction.
Similarly, we exclude elements of C2n being retracted to b′ or c′.

Claim 2. r[D6] ∩M = ∅.
Suppose, for a contradiction, that there is an x ∈ D6 that is retracted by r to a vertex m ∈ M .

Because m ∼ X ∪ Y ∪ Z ∪ D6 and x ∼ C2n, every vertex of R is adjacent to one of x or m.
Application of Lemma 5 with C = {x} and t = m leads to existence of a universal vertex in R, a
contradiction.

Claim 3. r[M ] ∩D6 = ∅.
Suppose, for a contradiction, that r[M ] ∩D6 ̸= ∅. By Claim 1, we have r[M ] ∩D6 ⊆ {a, b, c}.

Because M ∼ {a, b, c} and r is a retraction, we obtain that r[M ] ∩ D6 ⊆ {a, b, c} is a singleton
{t}. Now note that t ∼ C2n and that r−1(t) contains an element of M , which is adjacent to
X ∪ Y ∪ Z ∪D6. By Lemma 5 with C = r−1(t), R has a universal vertex, a contradiction.

Claim 4. VR intersects at least one of X,Y, Z.
Suppose, for a contradiction, that VR ⊆ C2n ∪ D6. Note that this means that r[C2n] and

r[D6] are unions of cocomponents of R. Because R does not have the fixed clique property, by
Proposition 4, no cocomponent of R[r[C2n]] and R[r[D6]] has the fixed clique property. Because
every component of a proper subgraph of a cycle is a path, this means that both R[r[C2n]] and
R[r[D6]] must be cycles, and hence r[C2n] = C2n and r[D6] = D6. Now, however, because every
vertex in X ∪Y ∪Z is adjacent to 5 vertices in D6 and to more than 5 vertices in C2n, and because
vertices in a cycle only have two neighbors in the cycle, no vertex in X ∪ Y ∪ Z can be retracted
to any vertex in C2n ∪D6, a contradiction.
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Claim 5. If VR intersects exactly one of X,Y, Z, then r[D6] ⊆ D6.
Without loss of generality, assume that VR only intersects X, that is, VR ⊆ C2n ∪X ∪D6.
Suppose, for a contradiction, that c ̸∈ VR. The path D6 \ {c} is a cocomponent of the induced

subgraph I := G[C2n∪X∪(D6\{c})]. Because paths have the fixed clique property, by Proposition
4, I has the fixed clique property. Now, via the restriction r|C2n∪X∪(D6\{c}), the graph R is a retract
of I and hence it has the fixed clique property, a contradiction. Thus c ∈ VR.

Suppose, for a contradiction, that r(a) ̸∈ D6. Because a ∼ X ∪C2n, we have r(a) ≃ r[X ∪C2n].
Because every vertex in X ∪ C2n is adjacent to the vertices a, b, a′, b′, c′, by Lemma 5 applied to
R− c with C = {a} and t = r(a), we obtain that r(a) is a universal vertex for R− c. In particular,
this means that R− c has the fixed clique property and that c is, in R, retractable to r(a).

If r(a) ∼ c, then r(a) would be a universal vertex for R, which cannot be. Thus r(a) ̸∼ c.
Consequently r(a) ̸∈ C2n, and hence r(a) ∈ X.

Now, because every vertex of C2n is adjacent to a and to c, we obtain r[C2n] ⊆ (N(r(a)) ∪
{r(a)})∩ (N(c)∪ {c}) ⊆ C2n ∪ {a′, b′}. By Claim 1, r[C2n] does not intersect {a′, b′, c′} and hence
r[C2n] ⊆ C2n. Because r(a) is not adjacent to all vertices in C2n, we have r[C2n] ̸= C2n and hence
r[C2n] is a path.

Because r[C2n] is a cocomponent of the neighborhood of c in R, by Proposition 4, the graph
induced by R on the neighborhood of c in R has the fixed clique property. By applying Theorem
2 to the graph R and the retractable vertex c, we conclude that R has the fixed clique property, a
contradiction. Thus r(a) ∈ D6.

The exact same argument can be used to prove r(b), r(c′) ∈ D6. The argument can also be
used to prove r(a′), r(b′) ∈ D6, and it is indeed simpler for these vertices: Because a′ ∼ c (b′ ∼ c)
leads to r(a′) ∼ c (r(b′) ∼ c), we immediately obtain a universal vertex and thus the desired
contradiction. Consequently r[D6] ⊆ D6, which completes the proof of Claim 5.

Claim 6. r[D6] ⊆ D6.
We first show r(a) ∈ D6. Suppose, for a contradiction, that r(a) ̸∈ D6. By Claim 2, r(a) ̸∈ M .

Therefore, there is an S ∈ {X,Y, Z} such that r(a) ∈ S∪{ms, as, bs, c
s
1, . . . , c

s
t}. In case r(a) = ms,

we would have that r(a) = ms is not adjacent to any element of X ∪Y , which, because a ∼ X ∪Y ,
means VR ∩ (X ∪ Y ) = r[X ∪ Y ] ∩ (X ∪ Y ) = ∅. By Claim 5, we would have r[D6] ⊆ D6, which
cannot be. Thus r(a) ∈ S ∪ {as, bs, cs1, . . . , cst}.

Now r[M ] ≃ r(a) and (Claim 3) r[M ] ∩D6 = ∅ means that no element of r[M ] is adjacent to
any element in (X ∪ Y ∪Z) \ S. Because every element of X ∪ Y ∪Z is adjacent to an element of
M , we obtain VR ∩ (X ∪ Y ∪ Z) \ S = ∅. Now, by Claim 5, r[D6] ⊆ D6, a contradiction.

The same argument shows r(a′) ∈ D6 and by symmetry we conclude r[D6] ⊆ D6.
Claim 7. r[D6] = D6.
Suppose, for a contradiction, that r[D6] ̸= D6. Recall that, by Claim 6, r[D6] ⊆ D6. If r[D6]

was a singleton {t}, then, via Lemma 5 with C = D6, R would have a universal vertex, which
cannot be. Hence r[D6] has at least 2 vertices. Because D6 is a cycle, r[D6] ⊊ D6, must be a path
in D6 with at most 4 vertices.

Thus at least one of a, b, c is not in r[D6]. Without loss of generality, assume that a ̸∈ r[D6].
Now, b′, c′ ∈ r[D6] would imply r(a) ∼ b′, c′ and hence r(a) = a ∈ D6, which cannot be. Without
loss of generality, we can assume that c′ ̸∈ r[D6]. If b ∈ r[D6], then, because r[D6] is a path in D6

with at least 2 and at most 4 vertices, a′ ∈ r[D6], and, in R, the vertex b would be dominated by
a′, which cannot be. Thus b ̸∈ r[D6], and r[D6] ⊆ {a′, b′, c}. Because R cannot have a universal
vertex, we must have a′, b′ ∈ r[D6] and hence r[D6] = {a′, b′, c}.

Now r must retract a vertex v ∈ {a, b, c′} to c. Because X ∼ v, we obtain r[X] ≃ r(v) = c and
c is a universal vertex for R, a contradiction. This completes the proof of Claim 7.
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Claim 8. r[C2n] ⊆ C2n, and, in case r[C2n] ̸= C2n, we have that r[C2n] is a path.

From r[D6] = D6, we immediately infer r[C2n] ⊆ C2n. In particular, in case r[C2n] ̸= C2n, we
have that r[C2n], being a retract of a cycle, is a path.

Claim 9. No induced 6-cycle in G intersects M .

Suppose, for a contradiction, that B is an induced 6-cycle that intersects M . Then, because
every vertex in a cycle has degree 2, B ∩ (X ∪ Y ∪Z ∪D6) has at most two vertices, and, because
B cannot be contained in C2n, B ∩ (X ∪ Y ∪ Z ∪D6) has at least one vertex. Therefore, because
every vertex in a cycle has degree 2 and |B ∩ (X ∪ Y ∪ Z ∪ D6)| ≥ 1, we have that B ∩ M has
at most two vertices, and, because B cannot contain a 4-cycle, |B ∩ (M ∪X ∪ Y ∪ Z ∪D6)| ≤ 3.
Consequently, B contains at least 3 vertices from C2n \M . Because no two vertices from C2n \M
are adjacent, B contains exactly 3 vertices from C2n \ M . Consequently B contains exactly 3
vertices from M ∪X∪Y ∪Z∪D6 and no two of these vertices are adjacent. By assumption 5e, this
contradicts the fact that B contains at least one vertex each from M and from X ∪ Y ∪ Z ∪D6.

Claim 10. Every induced 6-cycle in G intersects D6.

Suppose, for a contradiction that there is an induced 6-cycle B in G that does not intersect
D6.

Clearly, B is not contained in C2n, and, by assumption A, the set B is not contained in any of
X,Y, Z. Moreover, by Claim 9, we have B ∩M = ∅. Because, in X ∪ Y ∪ Z ∪ C2n \M , no two
distinct sets X, Y , or Z have a path from a vertex in one set to a vertex in the other set, we can
assume, without loss of generality, that B ⊆ X ∪ {ax, bx, cx1 , . . . , cxt }. Because each cxj has degree
1 in the induced graph G[X ∪ {ax, bx, cx1 , . . . , cxt }], we obtain B ⊆ X ∪ {ax, bx}. Because {ax, bx}
is a cocomponent of the induced graph G[X ∪ {ax, bx}], and because 6-cycles are coconnected, we
conclude that B ⊆ X, a contradiction.

Claim 11. The only induced 6-cycles in G are D6 and 6-cycles that contain a, b, c and one
element each from X,Y, Z.

Let B be an induced 6-cycle in G that contains a′. Because the degree of a′ in G[B] is 2, B
contains exactly two vertices from C2n ∪X ∪ Y ∪ Z ∪ {b, c}. Therefore, the remaining 3 vertices
of B must be a, b′ and c′. Now, because {a′, b′, c′} ∼ C2n ∪ X ∪ Y ∪ Z and again because the
G[B]-degree of every vertex in B must be 2, we conclude that B ∩ (C2n ∪ X ∪ Y ∪ Z) = ∅ and
hence B is contained in, and hence equal to, D6. Similarly, any induced 6-cycle that contains b′

or c′ must be equal to D6.

Now let B be an induced 6-cycle in G that does not intersect {a′, b′, c′}. By Claim 10, without
loss of generality, we can assume that a ∈ B. By Claim 9, the two neighbors of a in B are in
X ∪ Y ∪ C2n \M and B must contain exactly two vertices from this set. Thus, the remaining 3
vertices of B are in Z ∪ {b, c}.

Suppose, for a contradiction, that B∩{b, c} = ∅. Then B contains 3 vertices in Z. Consequently,
az, bz ̸∈ B, and the two neighbors of a in B are vertices czi and czj with i ̸= j. The second neighbor
of czi in B must be zi and the second neighbor of czj in B must be zj . However, this means that,
via the shortest path from zi to zj in B, that the distance from zi to zj in Z is 2, contradicting
the additional assumption B.

Thus, without loss of generality, b ∈ B. Now B contains at most one vertex in X ∪ C2n \M
and at least 3 remaining vertices of B are in Y ∪ Z ∪ {c}.

Suppose, for a contradiction, that c ̸∈ B. Then B contains 2 vertices in Y or in Z, say,
B ∩ Y ⊇ {v1, v2}. Then v1 and v2 are neighbors of a and the second neighbor of v1 in B would be
in {ay, by, cy1, . . . , c

y
t }, leading to a having degree at least 3 in B, a contradiction. Thus c ∈ B.

We have established that B∩{a′, b′, c′} = ∅ implies {a, b, c} ⊂ B. Consequently, the 3 remaining
vertices of B must be so that one is adjacent to a and b, but not c, which means this vertex is in
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X, one is adjacent to a and c, but not b, which means this vertex is in Y , and one is adjacent to b
and c, but not a, which means this vertex is in Z. This completes the proof of Claim 11.

We now turn to the automorphism Φ on R.

Claim 12. Φ[D6] = D6.

Suppose, for a contradiction, that Φ[D6] ̸= D6. The image of D6 under Φ must be an induced
6-cycle. By Claim 11, this means that Φ[D6] consists of a, b, c and one element each from X, Y ,
and Z. Moreover, Φ[D6] ∼ Φ[r[C2n]]. However, the only vertices that are adjacent to a, b, c and
one vertex each from X,Y, Z are the vertices of M . We conclude that Φ[r[C2n]] ⊂ M , which means
that there is an m ∈ M such that Φ[r[C2n]] = {m}. However, then, because Φ is an automorphism,
r[C2n] has exactly one element, and, because r is a retraction, r[C2n] = {m}. Now the vertex m is
fixed by Φ, a contradiction to Φ not fixing any cliques.

Claim 13. r[C2n] = C2n and part I of the conclusion holds.

Because C2n = {v ∈ V : v ∼ D6} and because Φ[D6] = D6, we have that Φ[r[C2n]] = r[C2n].
Because r[C2n] is either a path or equal to C2n, and because paths have the fixed clique property,
we infer that r[C2n] = C2n, and then Φ[C2n] = C2n. Together with Claim 12, this establishes part
I of the conclusion.

To prove part II of the conclusion, note that, by part I of the conclusion, the restrictions f |D6

and f |C2n
are automorphisms of the respective induced subgraphs. Every vertex v ∈ X ∪ Y ∪Z is

adjacent to 5 vertices in D6 and to more than 5 vertices in C2n. Therefore, for every v ∈ X∪Y ∪Z,
we have that f(v) cannot be in either of D6 or C2n. Thus f [X ∪ Y ∪ Z] ⊆ X ∪ Y ∪ Z.

If there was an x ∈ X such that f(x) ∈ X, then f [{a, b, a′, b′, c′}] ⊆ {a, b, a′, b′, c′} and f
would fix a clique. Thus f [X] ∩ X = ∅. Now, if we had f [X] ∩ Y ̸= ∅ and f [X] ∩ Z ̸= ∅, then
f [{a, b, a′, b′, c′}] ⊆ {c, a′, b′, c′}, contradicting that f is an automorphism on D6. Hence, we either
have f [X] ⊆ Y or f [X] ⊆ Z. Similarly, we either have f [Y ] ⊆ X or f [Y ] ⊆ Z and we either have
f [Z] ⊆ X or f [Z] ⊆ Y .

If we had f [X], f [Y ] ⊆ Z, then we would have f [D6] ⊆ {b, c, a′, b′, c′}, contradicting that f is
an automorphism on D6. Thus X and Y are not both mapped into Z. We conclude similarly that
no two distinct sets among X,Y, Z are mapped into the third set among X,Y, Z. Therefore we
either have f [X] ⊆ Y , f [Y ] ⊆ Z, f [Z] ⊆ X, or f [X] ⊆ Z, f [Z] ⊆ Y , f [Y ] ⊆ X, which is part II of
the conclusion.

To prove part III of the conclusion, we only consider the case that f [X] ⊆ Y , f [Y ] ⊆ Z,
f [Z] ⊆ X, as the other case is similar. Because M ∼ X ∪Y ∪Z and because no vertex in C2n \M
is adjacent to vertices in more than one set among X,Y, Z, we conclude that f [M ] = M and
f [C2n \ M ] = C2n \ M . Because f [X] ⊆ Y , and because every element of {ax, bx, cx1 , . . . , cxt }
is adjacent to an element of X, every element of f [{ax, bx, cx1 , . . . , cxt }] must be adjacent to an
element of Y . Therefore, f [{ax, bx, cx1 , . . . , cxt }] ⊆ {ay, by, cy1, . . . , c

y
t }, and, because f |C2n

is an
automorphism, f [{ax, bx, cx1 , . . . , cxt }] = {ay, by, cy1, . . . , c

y
t }.

Let j ∈ {1, . . . , t}. Then there are vertices p ∈ {ax, bx, cx1 , . . . , cxt } and xi ∈ X such that p ∼ xi

and f(p) = cyj . Thus cyj = f(p) ∼ f(xi) ∈ Y , and, because the only vertex in Y that is adjacent to
cyj is yj , we conclude that yj = f(xi) ∈ f [X]. We have shown f [{x1, . . . , xt}] ⊇ {y1, . . . , yt} which
implies f [{x1, . . . , xt}] = {y1, . . . , yt}. Because t > 1 and ax, bx are adjacent to all xi, we obtain
f [{ax, bx}] ⊆ {ay, by} and then f [{ax, bx}] = {ay, by} and f [{cx1 , . . . , cxt }] = {cy1, . . . , c

y
t }. Finally,

because the image of the path in C2n from ax to cxt that goes through cx1 must be a path in C2n,
we obtain that, for all j ∈ {1, . . . , t}, we have f(cxj ) = cyj . Now, for all j, we have xj ∼ cxj and
Y ∋ f(xj) ∼ f(cxj ) = cyj , which implies f(xj) = yj , which is part III of the conclusion. □
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4 Main Results

We are now ready to prove the main results in this paper. We first note that any proposed solution
for a decision problem in this section can be validated or rejected in polynomial time: For simplicity
of language, we consider order-preserving functions to be endomorphisms of ordered sets. Let n be
the number of vertices of the structure. Because there are n

2 (n+1) pairs of distinct vertices, for any
self map f , it can be checked in polynomial, indeed quadratic, time whether it is an endomorphism.
Moreover, for every vertex x, it takes n steps to compute the set

{
fk(x) : k = 1, . . . , n

}
. It then

takes fewer than n2 steps to check whether this set is a clique or a singleton, which means that,
independent of maximum clique size, we can check in fewer than n4 steps if f maps a clique
(or a point) to itself. Consequently, it takes polynomial time to check whether a function is an
endomorphism that does not fix any cliques or points. Hence all decision problems in this section
are NP.

Theorem 3 The following decision problem is NP-complete.
Given. A finite reflexive comparability graph G in which no clique has more than 6 vertices.
Question. Is there an endomorphism that does not fix any cliques of G?

Proof. Let G be a reflexive graph as in Definition 9 with the following additional properties.

i. G[X] is isomorphic to G[Y ] via an isomorphism Ψ : X → Y such that, for j = 1, . . . , t, we
have Ψ(xj) = yj .

ii. There is a homomorphism g from G[Z] to G[X] such that, for j = 1, . . . , t, we have g(zj) = xj .

Note that no clique in G has more than 6 vertices.
Claim. G has an endomorphism that does not fix any cliques iff the partial map fp

Y Z :
{y1, . . . , yt} → Z defined by fp

Y Z(yj) := zj for j = 1, . . . , t can be extended to a homomorphism
from G[Y ] to G[Z].

Let ∆ : D6 → D6 be the automorphism that maps a 7→ c 7→ b 7→ a and a′ 7→ c′ 7→ b′ 7→ a′, and
let Γ : C2n → C2n be the automorphism that maps mx 7→ my 7→ mz 7→ mx, ax 7→ ay 7→ az 7→ ax,
bx 7→ by 7→ bz 7→ bx, and, for j = 1, . . . , t, cxj 7→ cyj 7→ czj 7→ cxj , with the natural extension to the
minimal elements. If there is a homomorphism fY Z : Y → Z such that, for j = 1, . . . , t, we have
fY Z(yj) = zj , then

f(v) :=



Γ(v); if v ∈ C2n,

Ψ(v); if v ∈ X,

fY Z(v); if v ∈ Y,

g(v); if v ∈ Z,

∆(v); if v ∈ D6,

is an endomorphism for G that does not fix any cliques.
Conversely, assume that G has an endomorphism f that does not fix any cliques. By Proposition

11, we have that f |D6
and f |C2n

are automorphisms, and either f [X] ⊆ Y , f [Y ] ⊆ Z, f [Z] ⊆ X,
or f [X] ⊆ Z, f [Z] ⊆ Y , f [Y ] ⊆ X. Because X and Y are isomorphic via Ψ and because they
play symmetric roles in G, we are free to rename X as Y and Y as X, that is, we can assume that
f [X] ⊆ Y , f [Y ] ⊆ Z, and f [Z] ⊆ X. Now, by part III of Proposition 11, for j = 1, . . . , t, we have
that f (yj) = f (zj), which means that f |Y is an extension of the partial map fp

Y Z : {y1, . . . , yt} → Z
which, for j = 1, . . . , t, satisfies fp

Y Z(yj) = zj . This proves the Claim.
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The decision problem OPEXT (see Section 4 of [5]) asks whether, for given ordered sets P and
Q, an order-preserving function from a subset of P into Q that satisfies certain conditions can be
extended to an order-preserving map from all of P into Q. The proof that OPEXT is NP-complete
in Section 4 of [5] actually proves that a certain subproblem is NP-complete. This subproblem,
which we shall call SOPEXT here, asks whether, for two given connected ordered sets P and Q of
height 1, certain functions that map a subset of the maximal elements of P bijectively to maximal
elements of Q can be extended to order-preserving functions from P to Q.

The comparability graph of an ordered set of height 1 is bipartite. Conversely, if the vertices
of a bipartite graph B are bipartitioned into the discrete classes L and U , then there is a unique
ordered set of height 1 whose comparability graph is B and whose set of maximal elements is U .
Consequently, there is a unique way for ordered sets of height 1 to be embedded into and extracted
from G as G[Y ] or G[Z], as long as we demand that the elements y1, . . . , yt and z1, . . . , zt be
maximal elements. We shall assume this is the case from now on. Under this assumption, any
function from Y to Z that maps {y1, . . . , yt} to {z1, . . . , zt} is a homomorphism from G[Y ] to G[Z]
iff it is an order-preserving map between the corresponding ordered sets.

Consider an instance of SOPEXT as in Section 4 of [5] with ordered sets P and Q, and with
pairwise distinct maximal elements p1, . . . , pt ∈ P and q1, . . . , qt ∈ Q. Let G[Y ] be the compara-
bility graph of the ordered set P from SOPEXT and let yj := pj . Let G[Z] be the comparability
graph of the ordered set Q from SOPEXT and let zj := qj . Finally, let G[X] be another copy of
the comparability graph of the ordered set P from SOPEXT, assume that corresponding vertices
are denoted with primes, and let xj := p′j . Then the isomorphism Ψ : X → Y from assumption i
here is Ψ(p) := p′.

The additional conditions A and B from Proposition 11 and assumption ii here are easily
checked by examining the construction in Section 4 of [5]. To not repeat all the details, we defer
the exact details to the reader. Briefly speaking, the ordered sets P and Q are constructed as splits
of certain graphs (use the vertices as the maximal elements, the doubleton edges as the minimal
elements, and order v > e iff v ∈ e) which do not contain 3-cycles (hence no 6-crowns in P or
Q, which is condition A), and in which any two of the distinguished vertices pi ̸= pj (qi ̸= qj ,
respectiviely) have graph distance at least 2, which means the ordered set distance is at least 4
(which is condition B). Assumption ii here is satisfied, because P and Q are constructed such that
there is an order-preserving map that maps Q to P and each qj to pj .

By the Claim, the thus constructed graph G has an endomorphism that does not fix any cliques
iff the given instance of SOPEXT has a solution. Because the instances of SOPEXT in Section 4
of [5] are in bijective correspondence with instances of 3SAT, we have proved NP-completeness. □

Because no clique in the reflexive graph G from Proposition 11 has more than 6 vertices,
the number of simplices in the clique complex is bounded by c · |V |6. Hence the following is a
straightforward translation of Theorem 3.

Corollary 12 The following decision problem is NP-complete.
Given. A finite simplicial complex Σ that is the clique complex of a finite comparability graph and
in which all simplices have at most 6 points.
Question. Is there an endomorphism that does not fix any simplex of Σ? □

The canonical translation between simplicial complexes and truncated lattices yields the fol-
lowing refinement of Duffus and Goddard’s result from [5], which settles a natural problem in the
fixed point theory of ordered sets.
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Corollary 13 The following decision problem is NP-complete.
Given. A finite truncated lattice T of height ≤ 5.
Question. Is there an order-preserving self map that does not fix any of the points in T? □

Remark 14 By directly computing the homology groups, we can determine whether an ordered
set/graph/simplicial complex is acyclic. As long as the maximum chain/clique/simplex size is
uniformly bounded, this computation can be done in polynomial time. Hence, although an analogue
of Theorem 2 exists for acyclicity, see Corollary A.19 in [15], the arguments here cannot be applied
to an investigation of the complexity status of acyclicity. At best, large parts of the proof of
Proposition 11 could be used to show that certain retracts of the structure must be acyclic.

4.1 The Adjacent Vertex Property

A reflexive graph G = (V,E) has the adjacent vertex property iff, for each endomorphism
f : V → V , there is a v ∈ V such that f(v) ≃ v. The spectacular failure of the Abian-Brown
Theorem for the fixed clique property in Exercise 6-7 in [15] is indeed an example of a graph that
has the adjacent vertex property and not the fixed clique property. Because of the central role of
the Abian-Brown Theorem in the fixed point theory for ordered sets, it is natural to investigate
the adjacent vertex property, too.

Because existence of an endomorphism such that, for all vertices v of the graph, we have
f(v) ̸≃ v implies existence of an endomorphism that does not fix any cliques, Proposition 11 can
be applied in this situation. Moreover, for the reflexive graphs G from Proposition 11 for which
endomorphisms without fixed cliques exist, these endomorphisms satisfy f(v) ̸≃ v for all vertices.
Therefore, the argument for the fixed clique property can be replicated for the adjacent vertex
property, and we conclude the following.

Theorem 4 The following decision problem is NP-complete.
Given. A finite reflexive comparability graph G in which no clique has more than 6 vertices.
Question. Is there an endomorphism such that, for all v ∈ V , we have v ̸≃ f(v)? □

Note that D(P ) := max
f∈End(P )

min
p∈P

dist(p, f(p)) is the distortion (see [6, 9]) of an ordered set P ,

where End(P ) is the set of order-preserving self maps and dist is the distance in the comparability
graph. Theorem 4 shows (via the usual translation) that the question whether a truncated lattice
has a map with distortion ≤ 2 is co-NP-complete.
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