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Abstract. In an upward-planar L-drawing of a directed acyclic graph (DAG)
each edge e = (v, w) is represented as a polyline composed of a vertical segment with its
lowest endpoint at the tail v of e and of a horizontal segment ending at the head w of e.
Distinct edges may overlap, but must not cross. Recently, upward-planar L-drawings
have been studied for st-graphs, i.e., planar DAGs with a single source s and a single
sink t containing an edge directed from s to t. It is known that a plane st-graph, i.e.,
an embedded st-graph in which the edge (s, t) is incident to the outer face, admits an
upward-planar L-drawing if and only if it admits a bitonic st-ordering, which can be
tested in linear time.

We study upward-planar L-drawings of DAGs that are not necessarily st-graphs. As
a combinatorial result, we show that a plane DAG admits an upward-planar L-drawing
if and only if it is a subgraph of a plane st-graph admitting a bitonic st-ordering.
This allows us to show that not every tree with a fixed bimodal embedding admits an
upward-planar L-drawing. Moreover, we prove that any directed acyclic cactus with
a single source (or a single sink) admits an upward-planar L-drawing, which respects
a given outerplanar embedding if there are no transitive edges. On the algorithmic
side, we consider DAGs with a single source (or a single sink). We give linear-time
testing algorithms for these DAGs in two cases: (a) when the drawing must respect a
prescribed embedding and (b) when no restriction is given on the embedding, but the
underlying undirected graph is series-parallel. For the single-sink case of (b) it even
suffices that each biconnected component is series-parallel.

Da Lozzo was supported, in part, by MUR of Italy (PRIN Project no. 2022ME9Z78 – NextGRAAL and PRIN

Project no. 2022TS4Y3N – EXPAND). A preliminary version of this paper appeared in [2].

E-mail addresses: pangelini@johncabot.edu (Patrizio Angelini) s.chaplick@maastrichtuniversity.nl (Steven Chaplick)
sabine.cornelsen@uni-konstanz.de (Sabine Cornelsen) giordano.dalozzo@uniroma3.it (Giordano Da Lozzo)

This work is licensed under the terms of the CC-BY license.

http://dx.doi.org/10.7155/jgaa.v28i1.2950
mailto:pangelini@johncabot.edu
mailto:s.chaplick@maastrichtuniversity.nl
mailto:sabine.cornelsen@uni-konstanz.de
mailto:giordano.dalozzo@uniroma3.it
https://creativecommons.org/licenses/by/4.0/


276 Angelini, Chaplick, Cornelsen, Da Lozzo On Upward-Planar L-Drawings of Graphs

S

vx

N

wy

t

(a) DAG

S

x

y

v

w

N

t

(b) Planar L-drawing

S

x

y

v

w

N

t

(c) Upward-planar L-drawing

Figure 1: (a) A single-source series-parallel DAG G with poles S and N . (b) A planar L-drawing
of G. (c) An upward-planar L-drawing of G without the edge {S, t}.

1 Introduction

In order to visualize hierarchies, directed acyclic graphs (DAGs) are often drawn in such a way that
the geometric representation of the edges reflects their direction. To this aim, upward drawings have
been introduced, i.e., drawings in which edges are monotonically increasing curves in the y-direction
if traversed from tail to head. Sugiyama et al. [24] provided a general framework for drawing DAGs
in an upward way. To support readability, it is desirable to avoid edge crossings [23, 26]. However,
not every planar DAG admits an upward-planar drawing, i.e., an upward drawing in which no
two edges intersect except in common endpoints. A necessary condition is that the corresponding
embedding is bimodal, i.e., all incoming edges are consecutive in the cyclic sequence of edges around
any vertex. Di Battista and Tamassia [15] showed that a DAG is upward-planar if and only if it is
a subgraph of a planar st-graph, i.e., a planar DAG with a single source and a single sink that are
connected by an edge. Based on this characterization, it can be decided in near-linear time whether
a DAG admits an upward-planar drawing respecting a given planar embedding [6, 9]. However,
it is NP -complete to decide whether a DAG admits an upward-planar drawing when no fixed
embedding is given [19]. For special cases, upward-planarity testing in the variable embedding
setting can be performed in polynomial time: e.g. if the DAG has only one source [7, 10, 22],
or if the underlying undirected graph is a partial 2-tree [13, 17], i.e. the biconnected components
are series-parallel. See Fig. 1a for an example of a DAG that is both single-source and series-
parallel. Furthermore, parameterized algorithms for upward-planarity testing exist with respect to
the number of sources or the treewidth of the input DAG [12].

Every upward-planar DAG admits a straight-line upward-planar drawing [15], however such
a drawing may require exponential area [16]. The class of plane st-graphs admitting an upward-
planar drawing in quadratic area include those that also admit a bitonic st-ordering [20], i.e., an
enumeration of the vertices such that edges point from lower numbers to greater numbers and such
that the left-to-right successor list of each vertex is enumerated first ascending and then descending.
It can be tested in linear time whether a plane st-graph admits a bitonic st-ordering [20], and
whether a planar st-graph admits a planar embedding that allows for a bitonic st-ordering [1, 11].
By subdividing some transitive edges once, every plane st-graph can be extended such that it admits
a bitonic st-ordering. Moreover, the minimum number of edges that have to be subdivided can be
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determined in linear time, both in the variable [1] and in the fixed embedding setting [20]. This
implies in particular that each upward-planar graph has an upward-planar drawing in quadratic
area with at most one bend per edge.

In an L-drawing of a directed graph [5] each edge e is represented as a polyline composed of a
vertical segment incident to the tail of e and a horizontal segment incident to the head of e. In
a planar L-drawing, distinct edges may overlap, but not cross. See Fig. 1b for an example. The
problem of testing for the existence of a planar L-drawing of a directed graph is NP -complete [11].
On the other hand, every upward-planar DAG admits a planar L-drawing [4]. A planar L-drawing
is upward if the lowest end vertex of the vertical segment of every edge e is the tail of e. See
Fig. 1c for an example. A planar st-graph admits an upward-planar L-drawing if and only it
admits a bitonic st-ordering [11]. Planar confluent orthogonal drawings, which are L-drawings of
graph subdivisions, are considered in [14].

Our Contribution. In Section 3, we characterize the plane DAGs admitting an upward-planar L-
drawing as the subgraphs of plane st-graphs admitting a bitonic st-ordering (Section 3). Together
with [20], this implies that plane DAGs admitting an upward-planar L-drawing also admit an
upward-planar straight-line drawing in quadratic area. We first apply this characterization to
prove that there are trees with a fixed bimodal embedding that do not admit an upward-planar
L-drawing (Section 3). Moreover, the characterization allows us to test in linear time whether any
DAG with a single source or a single sink admits an upward-planar L-drawing preserving a given
embedding (Section 4.2) in Section 4.

In Section 4, we further show that every single-source acyclic cactus admits an upward-planar
L-drawing by directly computing the x- and y-coordinates as post- and pre-order numbers, respec-
tively, in a DFS-traversal (Section 4.1). The respective result holds for single-sink acyclic cacti.
Finally, in Section 5, we give a dynamic-programming approach to decide in linear time whether (i)
a (biconnected) series-parallel DAG with a single source or (ii) a DAG with a single sink where each
biconnected component is series-parallel has an embedding admitting an upward-planar L-drawing
(Section 5). To this end, we characterize the L-drawings of the different components by a constant
set of regular expressions of constant length, i.e., independent of the size of the DAG. Observe that
a plane st-graph does not necessarily admit an upward-planar L-drawing if the st-graph obtained
by reversing the orientation of its edges does. This justifies studying single-source and -sink graphs
independently.

2 Preliminaries

For standard graph theoretic notations and definitions we refer the reader to [25].

Digraphs. A directed graph (digraph) G = (V,E) is a pair consisting of a finite set V of vertices
and a set E of edges containing ordered pairs of distinct vertices. A vertex of a digraph is a source
if it is only incident to outgoing edges and a sink if it is only incident to incoming edges. A walk is
a sequence of vertices such that any two consecutive vertices in the sequence are adjacent. A path
is a walk with distinct vertices. In this work we assume that all graphs are connected, i.e., that
there is always a path between any two vertices. A cycle is a walk with distinct vertices except for
the first and the last vertex which must be equal. A directed path (directed cycle) is a path (cycle)
where for any vertex v and its successor u in the path (cycle) there is an edge directed from u
to v. In the following, we only consider acyclic digraphs (DAGs), i.e., digraphs that do not contain
directed cycles. A DAG is a tree if it is connected and contains no cycles. It is a cactus if it is
connected and each edge is contained in at most one cycle.
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Drawings. In a drawing (node-link diagram) of a digraph vertices are drawn as points in the
plane and edges are drawn as simple curves between their end vertices. A drawing of a DAG is
planar if no two edges intersect except in common endpoints. A planar drawing splits the plane
into connected regions – called faces. A planar embedding of a DAG is the counter-clockwise cyclic
order of the edges around each vertex according to a planar drawing. A plane DAG is a DAG with
a fixed planar embedding and a fixed unbounded face. A planar embedding of a DAG is bimodal
if all incoming edges are consecutive in the cyclic sequence of edges around any vertex, i.e. if in
the cyclic sequence of edges around any vertex v there are at most two pairs of consecutive edges
that are neither both incoming nor both outgoing.

In general, the rotation of a polygonal chain is the sum over the angular deviations from a
straight line at each bend, where counterclockwise counts positive and clockwise counts negative.
More specifically, the rotation of an orthogonal polygonal chain, possibly with overlapping edges,
is defined as follows: We start with rotation zero. If the curve bends to the left, i.e., if there is
a convex angle to the left of the curve, then we add π/2 to the rotation. If the curve bends to
the right, i.e., if there is a concave angle to the left of the curve, then we subtract π/2 from the
rotation. Moreover, if the curve has a 2π angle to the left, we handle this as if bending twice to the
right, and if there is a 0 angle to the left, we handle this as if bending twice to the left. The rotation
of a simple polygon – with possible overlaps of consecutive edges – traversed in counterclockwise
direction is 2π.

Planar st-graphs and bitonic st-ordering. A planar st-graph is a planar DAG with a single
source s, a single sink t, and an edge (s, t). An st-ordering of a planar st-graph is an enumeration π
of the vertices with distinct integers, such that π(u) < π(v) for every edge (u, v). A plane st-graph
is a planar st-graph with a planar embedding in which the edge (s, t) is incident to the outer face.
Every plane st-graph admits an upward-planar drawing [15].

For each vertex v of a plane st-graph, we consider the ordered list S(v) = ⟨v1, v2, . . . , vk⟩
of the successors of v as they appear from left to right in an upward-planar drawing. An st-
ordering of a plane st-graph is bitonic, if there is a vertex vh in S(v) = ⟨v1, v2, . . . , vk⟩ such that
π(vi) < π(vi+1), i = 1, . . . , h− 1, and π(vi) > π(vi+1), i = h, . . . , k − 1. We say that the successor
list S(v) = ⟨v1, v2, . . . , vk⟩ of a vertex v contains a valley if there are 1 < i ≤ j < k such that there
are both, a directed vi-vi−1-path and a directed vj-vj+1-path in G. See Fig. 5. Gronemann [20]
characterized the plane st-graphs that admit a bitonic st-ordering as follows.

Theorem 1 ([20]) A plane st-graph admits a bitonic st-ordering if and only if the successor list
of no vertex contains a valley.

Series-parallel DAGs. A series-parallel digraph is a digraph whose underlying undirected graph
is series-parallel, i.e., a graph with two distinguished vertices, called poles, which can be defined
recursively as follows: A single edge is a series-parallel graph. Given two series-parallel graphs G1

and G2 (components), with poles vi, ui, i = 1, 2, a series-parallel graph G with poles v and u can
be obtained in two ways: by merging v1, v2 and u1, u2, respectively, into the new poles v and u
(parallel composition), or by merging the vertices u2 and v1 and setting u = u1 and v = v2 (series
composition). We remark that with this definition series-parallel graphs are always biconnected
after the addition of an edge between the poles.

On the other hand, given a biconnected series-parallel DAG G with an edge e between the
poles, we represent the recursive construction of the graph G− e, which is obtained by removing e
from G, in a binary decomposition tree T . We refer to the vertices of T as nodes. The leaves (nodes
of degree one) of T are labeled Q and represent the edges. The other nodes (inner nodes) are
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Figure 3: A single-source series-parallel DAG with (a) an embedding that is not upward-plane (b)
a different embedding that is upward-planar.

labeled P for parallel composition or S for series composition. Finally, we consider T rooted at an
additional Q-node representing the edge e, which connects the poles of its unique child component.
Fig. 2b shows a binary decomposition tree of the graph in Fig. 2a.

The canonical decomposition tree of G is obtained from the binary decomposition tree by merg-
ing maximal connected components of P- or S-nodes, respectively, into a single P- or S-node. See
Fig. 4a. Observe that in the canonical decomposition tree T no two adjacent nodes of T have the
same label. While different orderings of the children of an S-node represent different graphs, the
different permutations of the children of a P-node in the canonical decomposition tree represent
different planar embeddings of the same series-parallel graph. We say that a P-node or S-node,
respectively, of the canonical decomposition tree represents a parallel or series composition of ℓ
components if it has ℓ children. Moreover, the canonical descendants of a node µ of the binary
decomposition tree are the descendants µ′ of µ such that µ′ has a different type than µ and the
nodes in the unique path between µ and µ′ have the same type as µ. See Fig. 4b.

Let µ be a node of a decomposition tree T and let ν be a neighbor of µ. We denote by Tν(µ)
the connected component of T without the edge {µ, ν} that contains µ. Analogously, we denote
by Gν(µ) the subgraph of G corresponding to Tν(µ), i.e., the subgraph of G formed by the edges
corresponding to the leaves of Tν(µ). The poles of Gν(µ) are the two vertices shared by Gν(µ)
and Gµ(ν). The vertices of Gν(µ) that are different from its poles are called internal. We omit
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Figure 4: The canonical decomposition tree is obtained from a binary decomposition tree by
merging maximal connected components of nodes of the same type.

the subscript ν from the notation if it is clear from the context. Given an arbitrary biconnected
digraph G, it can be determined in linear time whether it is series-parallel, and a decomposition
tree of G can be computed also in linear time [21]. Moreover, rooting a decomposition tree of
a biconnected series-parallel digraph G at an arbitrary Q-node yields again a decomposition tree
of G, but with different poles. Observe that the choice of the root represents a planar embedding
with the respective edge incident to the outer face.

In the following, we assume that G is a biconnected series-parallel DAG with a single source s
or a single sink t. We root the decomposition tree T at a Q-node corresponding to an edge incident
to s or t, respectively. Observe that G(µ) = Gν(µ) where ν is the neighbor of µ on the path to the
root. This implies that for any node µ of T no internal vertex of G(µ) can be a source (sink) of
G(µ) and at least one of the poles of G(µ) is a source (sink) of G(µ).

It follows from [7] that every single-source series-parallel DAG is upward-planar if each vertex
is incident to at most one incoming or at most one outgoing edge. However, even in that case, not
every bimodal embedding is already upward-planar, see Fig. 3a. Moreover, not every single-source
series-parallel DAG is upward-planar, even if it admits a bimodal embedding, see Fig. 2a. The
reason for that is a P-node µ with two children µ1 and µ2 such that a pole N of G(µ) is incident
to an incoming edge in G − G(µ), and to both incoming and outgoing edges in both, G(µ1) and
G(µ2). (No matter how we would permute the edges of G(µ1) and G(µ2) around N , there would
always be an outgoing edge of N that is trapped between two incoming edges of N .) Bimodal
single-source series-parallel DAGs without this property are always upward-planar [3].

Given an upward-planar drawing of G with distinct y-coordinates for the vertices, we call the
pole of G(µ) with lower y-coordinate the South pole of G(µ) and the other pole the North pole of
G(µ). Observe that in the single-source case the South pole of G is the unique source s and the
North pole does not have to be a sink; see Fig. 1a. In the single-sink case, the North-pole is the
unique sink. If µ is a P-node with children µ1, . . . , µℓ, then the South pole of G(µi), i = 1, . . . , ℓ is
the South pole of G(µ). Finally, if µ is an S-node with children µ1, . . . , µℓ, then observe that at most
one among the components G(µi), i = 1, . . . , ℓ can have more than one source (sink) – otherwise G
would have more than one source (sink). The South (North) pole of all other components is their
unique source (sink).
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Figure 5: (a) Forbidden configuration for bitonic st-orderings. (b+c) Single-source series-parallel
plane DAG that does not admit an upward-planar L-drawing since it contains a valley, in case (c)
in any upward-planar embedding.

3 Upward-Planar L-Drawings – A Characterization

A plane st-graph admits an upward-planar L-drawing if and only it admits a bitonic st-ordering [11].
We extend this result to general plane DAGs and discuss some consequences.

Theorem 2 (Relationship to bitonic st-orderings) A plane DAG admits an upward-planar
L-drawing if and only if it can be augmented to a plane st-graph that admits an upward-planar
L-drawing, i.e., a plane st-graph that admits a bitonic st-ordering.

Proof: Let G be a plane DAG. Clearly, if an augmentation of G admits an upward-planar L-
drawing, then so does G. Let now an upward-planar L-drawing of G be given. Add a directed
triangle with a new source s, a new sink t, and a new vertex x enclosing the drawing of G. As
long as there is a vertex v of G that is not incident to an incoming or outgoing edge, shoot a
ray from v to the right or the top, respectively, until it hits another edge and follow the segment
to the incident vertex – recall that one end of any segment is a vertex and one end is a bend.
The orientation of the added edge is implied by the L-drawing. The result is an upward-planar
L-drawing of a digraph with the single source s and the single sink t. □

Observe that every series-parallel st-graph admits a bitonic st-ordering [1, 11] and, thus, an
upward-planar L-drawing. This is no longer true for upward-planar series-parallel DAGs with
several sources or several sinks. Figs. 5b and 5c show examples of two single-source upward-planar
series-parallel DAGs that contain a valley. There are even upward-planar series-parallel DAGs
with a single source or a single sink that do not admit an upward-planar L-drawing, even though
the successor list of no vertex contains a valley.

Consider the DAG G in Fig. 6a (without the dashed edge). G has a unique upward-planar
embedding up to symmetry. Since no vertex has more than two successors there cannot be a
valley. Assume G admits a planar L-drawing. By Section 3 there should be an extension of G
to a plane st-graph G′ that admits a bitonic st-ordering. But the internal source w can only be
eliminated by adding the edge (v, w). Thus w is a successor of v in G′. Hence, the successor list
of v in G′ contains a valley. By Section 2, G′ is not bitonic, a contradiction.

Now consider the DAG G in Fig. 6b (without the dashed edge). G has two symmetric upward-
planar embeddings: with the curved edge to the right or the left of the remainder of the DAG.
Suppose G admits a planar L-drawing. We may assume that the curved edge is to the right. But
then an augmentation to a plane st-graph G′ must contain the dashed edge or its reversal, which
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Figure 6: DAGs that do not admit an upward-planar L-drawing even though they do not contain
a valley. Dashed edges indicate augmentations and are not part of the DAG.

completes a valley at the single source and its three rightmost outgoing edges. By Section 2, G′ is
not bitonic, a contradiction.

A planar L-drawing is upward-leftward [11] if all edges are upward and point to the left.

Theorem 3 (Trees) Every directed tree admits an upward-leftward planar L-drawing, but not
every tree with a fixed bimodal embedding admits an upward-planar L-drawing.

Proof: If the embedding is not fixed, we can construct an upward-planar L-drawing of the input
tree by removing one leaf v and its incident edge e, drawing the smaller directed tree inductively,
and inserting the removed leaf into this upward-leftward planar L-drawing. To this end let u be
the unique neighbor of v. We embed e as the first incoming or outgoing edge of u, respectively, in
counterclockwise direction, and draw v slightly to the right and below u, if e is an incoming edge
of u, or slightly to the left and above u, if e is an outgoing edge of v. This guarantees that the
resulting L-drawing is upward-leftward and planar.

When the embedding is fixed, we consider a family of plane trees Tk, k ≥ 1, proposed by Frati
[18, Fig. 4a], that have 2k vertices and require an exponential area Ω(2k/2) in any embedding-
preserving straight-line upward-planar drawing; see Fig. 6c. We claim that, for sufficiently large k,
the tree Tk does not admit an upward-planar L-drawing. Suppose, for a contradiction, that it
admits one. By Section 3, we can augment this drawing to an upward-planar L-drawing of a plane
st-graph G with n = 2k+3 vertices. This implies that G admits a bitonic st-ordering [11]. Hence, G
(and thus Tk) admits a straight-line upward-planar drawing in quadratic area (2n−2)×(n−1) [20],
a contradiction. □

4 Single-Source or -Sink DAGs with Fixed Embedding

In the fixed embedding scenario, we first prove that every single-source or -sink acyclic cactus with
no transitive edge admits an upward-planar L-drawing and then give a linear-time algorithm to
test whether a single-source or -sink DAG admits an upward-planar L-drawing.

4.1 Cacti

Theorem 4 (Plane Single-Source or Single-Sink Cacti) Every acyclic cactus G with a sin-
gle source or single sink admits an upward-leftward outerplanar L-drawing. Moreover, if there are
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Figure 7: Single-source acyclic cactus. The dashed edges are the last edges on a left path of some
cycles.

no transitive edges (e.g., if G is a tree) then such a drawing can be constructed so to maintain a
given outerplanar embedding.

Proof: Let G be an acyclic cactus. We first consider the case that G has a single source s.
Observe that then each biconnected component C of G (which is either an edge or a cycle) has a
single source, namely the cut-vertex of G that separates it from the part of the DAG containing s.
This implies that C also has a single sink (although G may have multiple sinks, belonging to
different biconnected components). In particular, if C is a cycle, it consists of a left path Pℓ and
a right path Pr between its single source and single sink. By flipping the cycle C – maintaining
outerplanarity – we can ensure that Pℓ contains more than one edge. Note that this flipping is
only performed if there are transitive edges. Consider the tree T that results from G by removing
the last edge of every left path.

We perform a depth-first search on T starting from s where the edges around a vertex are
traversed in clockwise order. We enumerate each vertex twice, once when we first meet it (DFS-
number or preorder number) and once when we finally backtrack from it (postorder number). To
also obtain that each edge points to the left, backtracking has to be altered from the usual DFS:
Before backtracking on a left path Pℓ of a cycle C, we directly jump to the single source sC of C
and continue the DFS from there, following the right path Pr of C. Only once we have backtracked
from the single sink tC of C, we give each vertex on Pℓ, excluding sC , a postorder number and
then we continue backtracking on Pr. See Fig. 7.

Let the y-coordinate of a vertex be its preorder number and let the x-coordinate be its thus
constructed postorder number. Since each vertex has a larger preorder- and a lower postorder-
number than its parent, we draw every edge (u, v) with a vertical segment exiting u from above, a
horizontal segment entering v from the right, thus, the drawing is upward-leftward. We now prove
in three steps that the thus constructed drawing is planar and preserves the embedding. Observe
that the embedding was updated only in the presence of transitive edges.

1. The drawing of T preserves the given embedding: Each vertex has at most one incoming
edge since we have removed the last edge of every left path. Let (v, w1) and (v, w2) be two
outgoing edges of a vertex v such that (v, w1) is to the left of (v, w2) in the order of the
outgoing edges of v. By outerplanarity, the children of v are traversed from left to right. It
follows that w1 has a lower preorder-number (y-coordinate) than w2.

2. The drawing of T is planar: Let v be a vertex and let w1 and w2 be two children of a vertex v
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such that w1 is to the left of w2. Since the children of v are traversed from left to right it
follows that the vertices in subtree T1 rooted at w1 obtain a lower preorder-number than the
vertices in the subtree T2 rooted at w2. Thus, the bounding box of T1 is below the bounding
box of T2. Hence, no edge of T1 can intersect an edge of T2. Further, w1 and w2 are the
rightmost points in T1 and T2, respectively, and v is to the right of both T1 and T2. Thus,
edges incident to v cannot cross edges within T1 or T2. Recursively, we obtain that there are
no crossings.

3. The drawing of G is planar and preserves its embedding. Let now (u, tC) be the last edge
on the left path of a cycle C. Recall that (u, tC) is not a transitive edge. Thus, by the
special care we took for the backtracking, we know that the x-coordinates of u and tC differ
only by one. This implies that (u, tC) is the leftmost incoming edge of tC . Moreover, (u, tC)
could at most be crossed by a horizontal segment of an edge in T . However, the vertices
with y-coordinate between the y-coordinate of u and the y-coordinate of tC are either in the
subtree Tu rooted at u, and thus to the left of u, or they are on the right path Pr of C and,
thus to the right of u. Since there are no edges between vertices in Tu and Pr, it follows that
(u, tC) is not crossed. Moreover, (u, tC) is the rightmost outgoing edge of u.

Now consider the case that G has a single sink. Flip the embedding, i.e., reverse the linear
order of the incoming (outgoing) edges around each vertex. Reverse the orientation of the edges,
construct the drawing of the resulting single-source DAG, rotate it by 90 degrees in counter-
clockwise direction, and mirror it horizontally. This yields the desired drawing. □

4.2 General Single-Source or Single-Sink DAGs

Next we consider general DAGs with a single source or a single sink and a fixed embedding. We
show how to test in linear time whether such graphs admit an upward-planar L-drawing. We first
introduce some notation and tools and use these to prove Section 4.2.

Two consecutive incident edges of a vertex form an angle. A large angle in an upward-planar
straight-line drawing is an angle greater than π between two consecutive edges incident to a source
or a sink, respectively. An upward-planar embedding of an upward-planar DAG is a planar embed-
ding with the assignment of large angles according to a straight-line upward-planar drawing. For
single-source or single-sink DAGs, respectively, a planar embedding and a fixed outer face already
determine an upward-planar embedding [7].

An angle is a source-switch or a sink-switch, respectively, if the two edges are both outgoing or
both incoming edges of the common end vertex. Observe that the number A(f) of source-switches
in a face f equals the number of sink-switches in f . Bertolazzi et al. [6] proved that in biconnected
upward-planar DAGs, the number L(f) of large angles in a face f is A(f)− 1, if f is an inner face,
and A(f) + 1, otherwise, and mentioned in the conclusion that this result could be extended to
simply connected graphs. For completeness, we now provide an explicit proof for single-source or
-sink DAGs.

Lemma 1 In a plane single-source or -sink DAG, the number L(f) of large angles in a face f is
A(f)− 1, if f is an inner face, and A(f) + 1, otherwise.

Proof: By symmetry, it suffices to consider an upward-planar DAG G with a single source s and
with a fixed upward-planar drawing. Observe that one angle at s in the outer face is the only
large angle of G at a source-switch. We do induction on the number of biconnected components.
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Figure 8: A new sink t and the dashed edges augment a plane single-source DAG to a plane st-
graph.

If G is biconnected the statement follows from [6]. So let C be a biconnected component of G that
contains exactly one cut vertex v and such that C−v does not contain the single source s. Observe
that then v is the single source of C: Indeed on one hand if C had another source then this would
be also a source of G. On the other hand, C is a DAG and, thus, has a source. Additionally, we
may assume that the interior of C does not contain any other vertex of G. Let G′ be the DAG
obtained from G by removing C but not v. Similarly as for v, the vertex s is the single source
of G′. By the inductive hypothesis, G′ and C have the required property. Now consider the face f ′

of G′ containing C, let f0 be the outer face of C, and let f be the face in G contained in both, f ′

and f0.
Since v is a source in C, all sink-switches of C are still sink-switches of G. Assume first that

the angle at v in f ′ was not a sink-switch of G′. Then the sink-switches of G′ are still sink-switches
of G. Hence, in this case, we have that A(f) = A(f ′) + A(f0). Moreover, the large angles at
sink-switches of G in f are the large angles at sink-switches of G′ in f ′ plus the large angles at
sink-switches of C in f0. The source-switch in f0 at the source v of C is large, since f0 is the outer
face of C. However, if f is an inner face, then the source-switch at v in f cannot be large. Thus
L(f) = L(f ′)+L(f0)− 1 = A(f ′)− 1+A(f0)+ 1− 1 = A(f)− 1. If f is the outer face, then both,
C and G′ had a large angle at a source-switch in the outer face, but G has only one. We obtain
L(f) = L(f ′) + L(f0)− 1 = A(f ′) + 1 + A(f0) + 1− 1 = A(f) + 1. Finally, if C is contained in a
sink-switch angle of G′ at v then this must be a large angle and we get A(f) = A(f ′)− 1 +A(f0)
and L(f) = L(f ′) − 1 + L(f0) − 1 = A(f ′) ± 1 − 1 + A(f0) + 1 − 1 = A(f) ± 1, where the ±1
distinguishes between the outer and the inner face. □

Theorem 5 Given an upward-plane single-source or single-sink DAG, it can be tested in linear
time whether it admits an upward-planar L-drawing.

Single Source. We first prove the theorem for a DAG G with a single source s. In an upward-
planar straight-line drawing of G, the only large angle at a source-switch is the angle at s in the
outer face. Thus, by Section 4.2, in the outer face all angles at sink-switches are large and in an
inner face f all but one angle at sink-switches are large. For an inner face f , let top(f) be the
sink-switch of f without large angle. See Fig. 8.

Lemma 2 Let G be a single source upward-planar DAG with a fixed upward-planar embedding,
let f be an inner face, and let v be a sink with a large angle in f . Every plane st-graph extending G
contains a directed v-top(f)-path.
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Proof: Consider a planar st-graph extending G. In this graph there must be an outgoing edge e
of v towards the interior of f . Let w be the head of e. Follow a path from w on the boundary
of f upward until a sink-switch v′ is met. If this sink-switch is top(f), we are done. Otherwise
continue recursively by considering an outgoing edge e′ of v′ toward the interior of f . Eventually
this process terminates when top(f) is reached. □

Proof: [Proof of Section 4.2, single-source case] Let G be an upward-planar single-source DAG
with a fixed upward-planar embedding. Let G′ be the DAG that results from G by adding in
each inner face f edges from all sinks with a large angle in f to top(f) and by adding a new
sink t together with edges from all sink-switches on the outer face. We will show that G admits
an upward-planar L-drawing if and only if G′ does. This implies the statement, since testing
whether G′ admits a bitonic st-ordering can be performed in linear time [20].

Clearly, if G′ ⊇ G admits an upward-planar L-drawing, then so does G. In order to prove
the other direction, suppose that G has an upward-planar L-drawing. In order to prove that G′

admits an upward-planar L-drawing, we show that it is a planar st-graph that admits a bitonic
st-ordering [11]. To show this, we argue that G′ is acyclic, has a single source and a single sink,
and the successor list of no vertex contains a valley by Section 2.

Namely, the edges to the new sink t cannot be contained in any directed cycle. Furthermore,
by Section 3, there is an augmentation G′′ of G such that (a) G′′ is a planar st-graph and such
that (b) G′′ admits an upward-planar L-drawing. By Section 4.2, the edges added into inner faces
of G either belong to G′′ or are transitive edges in G′′. Thus, G′ is acyclic.

Since G′ does not have more sources than G, there is only one source in G′. Each sink has
a large angle in some face. Thus, in G′ each vertex other than t has at least one outgoing edge.
Therefore, G′ is a planar st-graph.

Assume now that there is a face f with a sink w such that the edge (w,top(f)) would be part
of a valley at a vertex v in G′, i.e., assume there are successors vi−1, vi, vj , vj+1 of v from left
to right (with possibly vi = vj) such that there is both, a directed vi-vi−1-path and a directed
vj-vj+1-path. Since the out-degree of w in G′ is one, it follows that w ̸= v. Thus, (w,top(f)) could
only be part of the vi-vi−1-path or the vj-vj+1-path. But then, by Section 4.2, there would be such
a path in any augmentation of G to a planar st-graph, which, by Section 3, contradicts the fact
the G admits an upward-planar L-drawing.

Finally, the edges incident to t cannot be involved in any valley, since all the tails have out-
degree 1. Thus, G′ contains no valleys. □

Single-Sink. The results for single-source DAGs translate to single-sink DAGs. Each inner face f
has exactly one source-switch v that is not large which we call bottom(f). With the analogous
proof as for Section 4.2, we obtain.

Lemma 3 Let G be a single sink upward-planar DAG with a fixed upward-planar embedding, let f
be an inner face, and let v be a source with a large angle in f . Every plane st-graph extending G
contains a directed bottom(f)-v-path.

Proof: [Proof of Section 4.2, single-sink case] Let G be an upward-planar single-sink DAG. Aug-
ment each inner face f by edges from bottom(f) to the incident source-switches with large angle.
Add a new source s together with edges from all source-switches on the outer face.

Analogously as in the previous section, the thus constructed DAG has a single sink, a single
source, and is acyclic.
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Figure 9: A single-source DAG that has no upward-planar L-drawing even though each biconnected
component does.

The edges incident to s cannot be contained in a valley since their heads have all in-degree one.
By upward-planarity, the new edges incident to bottom(f) for some face f cannot be the transitive
edges of a valley. Finally, if an edge incident to bottom(f) would be contained in a path then this
path is unavoidable due to Section 4.2.

Thus, we have a planar st-graph G′ that admits an upward-planar L-drawing if and only if the
original DAG G did. It can be tested in linear time whether G′ admits a bitonic st-ordering and
thus an upward-planar L-drawing [20]. □

5 Single-Source or -Sink Series-Parallel DAGs
with Variable Embedding

The goal of this section is to prove the following theorem.

Theorem 6 Let G be a DAG where each biconnected component is series-parallel. We can test in
linear time whether G admits an upward-planar L-drawing,

1. if G has a single sink, or

2. if G is biconnected and has a single source.

Lubiw and Hutton [22] showed that a single-source or single-sink DAG, respectively, is upward-
planar if and only if all its biconnected components are. We show that for upward-planar L-
drawings this is still true for single-sink DAGs, but in general not for single-source DAGs. See the
DAG G in Fig. 9a which consists out of two identical biconnected components. An upward-planar
L-drawing of this biconnected component is indicated in Fig. 9b. However, no matter how the
embeddings of the two components are combined at S, there is always a valley.

Lemma 4 A DAG with a single sink, whose embedding is not fixed, admits an upward-planar
L-drawing if and only if all its biconnected components do.

Proof: LetG be a DAG with a single sink t. Clearly, ifG admits an upward-planar L-drawing, then
so does every of its biconnected components. For the other direction, assume that all biconnected
components of G admit an upward-planar L-drawing. We prove by induction on the number of
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Figure 10: The different types of a path between the poles. (a,b) South types; (c-h) North types.

biconnected components that G admits an upward-planar L-drawing. If G is biconnected there
is nothing to show. Otherwise, let H be a biconnected component of G containing exactly one
cut vertex v and such that H − v does not contain t; this component exists since there exist at
least two components with exactly one cut vertex. Note that v is the single sink of H. Let G′ be
the graph obtained from G by removing H, but not v. If v ̸= t then v cannot be a sink of G′,
otherwise v would be a sink of G. Thus, by the inductive hypothesis, G′ and H have upward-planar
L-drawings. We insert the edges incident to v in H between the bottommost incoming edge of G′

entering v from the left and the bottommost incoming edge of G′ entering v from the right (if any).
This results in an upward-planar L-drawing of G. □

In the following we assume that G is a biconnected series-parallel DAG.

Single Source. We follow a dynamic-programming approach inspired by Binucci et al. [8] and
Chaplick et al. [12]. We define feasible types that combinatorially describe the “shapes” attainable
in an upward-planar L-drawing of each component. We show that these types are sufficient to
determine the possible types of a graph obtained with parallel or series compositions, and show how
to compute them efficiently. The types depend on the choice of the South pole as the bottommost
pole (if it is not uniquely determined by the structure of the graph, e.g., if one of them is the unique
source), and on the type of the leftmost S-N -path PL and the rightmost S-N -path PR between the
South-pole S and the North-pole N . Observe that PL and PR do not have to be directed paths.

More precisely, the type of an S-N -path P is defined as follows: There are two South-types
depending on the edge incident to S: L (outgoing edge bending to the left; Fig. 10a) and R
(outgoing edge bending to the right; Fig. 10b). For the last edge incident to the North pole N
we have in addition the types for the incoming edges: W (incoming edge entering from the left –
West; Fig. 10e) and E (incoming edge entering from the right – East; Fig. 10f). For the types R
and L we further distinguish whether P passes to the left of N (Rcc/Lcc; Figs. 10c and 10d) or
to the right of N (Rc/Lc; Figs. 10g and 10h): Let h be the horizontal line through N . We say
that P passes to the left (right) of N if the last edge of P (from S to N) that intersects h does
so to the left (right) of N . See Fig. 11. Thus, there are six North-types for a path between the
poles: Rcc, Lcc,W,E,Rc, Lc. The superscripts c and cc stand for clockwise and counter-clockwise,
respectively, to denote the rotation of a path that passes to the left (right) of N , when walking
from N to S. This is justified in the next lemma and depicted e.g., in Fig. 12a, where the right
S-N -path has type Lc, since (walking from N to S) it first bends to the left and then passes to
the right of N by rotating clockwise.

Lemma 5 Let G be a series-parallel DAG with no internal sources. Let an upward-planar L-
drawing of G be given where the poles S and N of G are incident to the outer face and S is
below N . Let P be a not necessarily directed S-N -path. Let P ′ be the polygonal chain obtained
from P by adding a vertical segment pointing from N downward. The rotation of P ′ is

� π if the type of P at N is in {E,Lc, Rc}.
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Figure 11: Solid edges indicate an S-N -path P of type Lcc at the North pole. Dashed edges are
other edges of the graph. The path P passes to the left of N which is determined by the edge (u, v).

� −π if the type of P at N is in {Lcc, Rcc,W}.

Proof: Observe that S is the bottommost vertex of G, since it is lower than N and no internal
vertex of G is a source; refer to Fig. 13. Let h be the horizontal line through N and let hℓ (hr) be
the part of h to the left (right) of N . We claim that, since G has no internal source, the drawing
of P does not contain a subcurve C in the half plane above h that connects hℓ and hr: Otherwise,
let eℓ and er, respectively, be the edges of P containing the two end points of C. Let vℓ and vr
be the tails of eℓ and er, respectively. Since G has no internal source, there must be a descending
path Pℓ and Pr, respectively, from vℓ and vr to a pole. Since the North pole is above vℓ and vr,
the descending paths must end at the South pole. However, this implies that the union of P , Pℓ,
and Pr contains a cycle in G enclosing N , contradicting that N is incident to the outer face.

We now first consider the case in which the type of P at N is any in {Lc, Rc, E}. Let p = (x, y)
be the end point of P ′ different from S, i.e., the point below N . We may assume that p is very close
to N . The above claim implies that by shortening some vertical and horizontal parts of P ′, we can
ensure that P ′ does not traverse the horizontal line through p to the left of p. This does not change
the rotation of P ′. Let xmin be the minimum x-coordinate of P ′. Now consider the orthogonal
polyline Q : p, (xmin − 1, y), (xmin − 1, yS), S where yS is the y-coordinate of S. Concatenating P ′

and Q yields a simple polygon traversed in counterclockwise order. Thus the rotation of P equals
the rotation of a polygon minus the rotation of the two convex bends in Q minus the convex bend
in S minus the concave bend at p. Thus the rotation of P ′ is 2π − 3 · π/2 + π/2 = π.

If the type of P at N is in {Lcc, Rcc,W} then we obtain the respective result, by concatenating
the reversion of P ′ and the polygonal chain S, (xmax + 1, yS), (xmax + 1, y), p where xmax is the
maximum x coordinate of P . Thus, the reversion of P ′ has rotation 2π − 3 · π/2 + π/2 = π and
the rotation of P ′ is the negative of it. □

S
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(a) ⟨(E,L), (Lc, R)⟩

N
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(b) ⟨(E,L), (Lc, L)⟩
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N

(c) ⟨(Rcc, L), (Rc, R)⟩

S
Nright-free

not
left-free

(d) flag at N

Figure 12: The type of a component consists of the North- and South-type of the leftmost, and
rightmost path PL and PR, respectively, as well as four flags indicating whether the first and the
last bend on PL and PR is free, i.e. not contained in another edge.
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Figure 13: Illustration, supporting Section 5, showing that if a curve C (shown thicker) connects
hℓ and hr in the half-plane above N , then N is not incident to the outer face.

We say that the type of a path between the poles is (X,x), if X is the North-type and x is
the South-type of the path, e.g., the type of a path that bends right at the South-pole, passes to
the right of the North-pole and ends in an edge that leaves the North-pole bending to the left is
(Lc, R), see PR in Fig. 12a. For two North-types X and Y , we say X < Y if X is before Y in the
ordering [RccLccWERcLc]. The South-types are ordered L < R. For two types (X,x) and (Y, y)
we say that (X,x) ≤ (Y, y) if X ≤ Y and x ≤ y, and (X,x) < (Y, y) if (X,x) ≤ (Y, y) and X < Y
or x < y. These orderings correspond to orderings of paths of the respective type from left to right
at the South pole.

The type of a component is determined by eight entries, whether the component is a single
edge or not, the choice of the bottommost pole (South pole), the type of PL, the type of PR, and
additionally four free-flags: For each pole, two flags left-free and right-free indicating whether
the bend on PL and PR, respectively, on the edge incident to the pole is free on the left or the
right, respectively: More precisely, let P be an S-N -path and let e be an edge of P incident to
a pole Z. We say that e is free on the right (left) at Z if e bends to the right (left) – walking
from S to N – or if the bend on e is not contained in an edge not incident to Z; see Fig. 12d. We
denote a type by ⟨(X,x), (Y, y)⟩ where (X,x) is the type of PL and (Y, y) is the type of PR without
explicitly mentioning the flags or the choice of the South pole. Observe that Y < Lc if X = Rcc

and ⟨(X,x), (Y, y)⟩ is the type of a component. Fig. 14a illustrates how components of different
types can be composed in parallel.

Lemma 6 (Parallel Composition) In the context of a canonical decomposition tree, a compo-
nent C of type ⟨(X,x), (Y, y)⟩ with the given four free-flags can be obtained as a parallel composi-
tion of components C1, . . . , Cℓ of type ⟨(X1, x1), (Y1, y1)⟩ , . . . , ⟨(Xℓ, xℓ), (Yℓ, yℓ)⟩ with the respective
free-flags from left to right at the South pole if and only if

1. X1 = X, Yℓ = Y , x1 = x, yℓ = y,

2. C is left(right)-free at the North- and South-pole, respectively, if and only if C1 (Cℓ) is,

3. At the South-pole

� yi = xi+1 = L and Ci is right-free, or
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Figure 14: (a) A parallel composition of eight components of the following types: ⟨(Rcc, L), (W,L)⟩,
⟨(W,L), (W,L)⟩, ⟨(W,L), (W,L)⟩, ⟨(W,L), (E,L)⟩, ⟨(E,L), (E,L)⟩ single edge, ⟨(E,R), (E,R)⟩ not
left-free at N , ⟨(Rc, R), (Rc, R)⟩. The result is of type ⟨(Rcc, L), (Rc, R)⟩. (b+c) shows a partition
of the set of components into two sets A and B.

� yi = xi+1 = R and Ci+1 is left-free, or

� yi = L and xi+1 = R and Ci is right-free or Ci+1 is left-free.

4. Yi ≤ Xi+1 and at the North-pole

� Ci is right-free if Yi = Xi+1 ∈ {Rcc, E,Rc}
� Ci+1 is left-free if Yi = Xi+1 ∈ {Lcc,W,Lc}
� Ci is right-free or Ci+1 is left-free if Yi ∈ {Lcc, Lc} and Xi+1 ∈ {Rcc, Rc} or vice versa.

5. and single edges are the first among the components with a boundary path of type (W,R) and
the last among the components with a boundary path of type (E,L).

Proof: Necessity: Item 2 and Item 1 are obvious. We next prove Item 3. Assume that an upward-
planar L-drawing of C is given. Let S and N be the North- and South-pole of C, respectively.
In an upward-planar L-drawing the edges incident to S from left to right must be first all edges
bending to the left and then all edges bending to the right. This yields yi ≤ xi+1, i = 1, . . . , ℓ− 1.

Assume now that the rightmost S-N -path PR of Ci has South-type L and that the bend b of
the first edge e of PR is contained in the horizontal segment of another edge e′ of Ci. Then the first
edge e′′ of the leftmost path of Ci+1 cannot bend to the left. Otherwise, e′′ would have to intersect
e or e′. Analogously, e cannot bend to the right if the leftmost path of Ci+1 has South-type R and
the bend on e′′ is contained in another edge of Ci+1. Finally consider the case that e bends to the
left and e′′ bends to the right. If the vertical segment of e is longer than the vertical segment of e′′,
then the bend of e′′ cannot be contained in the horizontal segment of another edge and vice versa.

Now, we handle Item 4. Any set of disjoint S-N -paths in the order from left to right at the
South pole must have the North type in this order: Rcc, Lcc,W,E,Rc, Lc where there cannot be
both, paths of type Lc and paths of type Rcc. It follows that Yi ≤ Xi+1, i = 1, . . . , ℓ − 1. If the
leftmost S-N -path PL of a component Ci is of type Rcc (E) and if the bend b in the last edge e
of PL is not free at the North-pole, i.e., if there is an edge e′ in Ci that is not incident to N
but contains b, then the rightmost S-N -path of Ci+1 cannot be of type Rcc (E). Similarly, if the
rightmost S-N -path PR of a component Ci+1 is of type Lc (W ) and if the bend b in the last edge e
of PR is not free at the North-pole, i.e., if there is an edge e′ in Ci+1 that is not incident to N but
contains b, then the leftmost S-N -path of Ci cannot be of type Lc (W ). Moreover, since C has
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no source other than the poles, the rightmost path of type Rc and a leftmost path of type Lcc is
always free. Finally, if the last edges of PR and PL bend to opposite sides, then the bend on the
edge with the shorter vertical segment cannot be contained in the horizontal segment of another
edge.

Finally, we discuss Item 5. Assume now that there is an edge (S,N) of North type W . Let Ci

be the component preceding (S,N) and assume that the North-type of the rightmost path PR of Ci

is of type W . Then the South type of PR cannot be R. Similarly, if (S,N) has North type E and
the leftmost path PL of the component succeeding (S,N) has also North type E, then the South
type of PL must be R.

Sufficiency: By construction, we ensure that the angle between two incoming edges is 0 or π
and the angle between an incoming and an outgoing edge is π/2 or 3π/2. It remains to show
the following three conditions [11]: (i) The sum of the angles at a vertex is 2π, (ii) the rotation
at any inner face is 2π, (iii) and the bend-or-end property is fulfilled, i.e., there is an assignment
that assigns each edge to one of its end vertices with the following property. Let e1 and e2 be
two incident edges that are consecutive in the cyclic order and attached to the same side of the
common end vertex v. Let f be the face/angle between e1 and e2. Then at least one among e1
and e2 is assigned to v and its bend leaves a concave angle in f .

We first show that the bend-or-end property is fulfilled. To this end, we have to define an
assignment of edges to end vertices: Consider upward-planar L-drawings of the components re-
specting the given types. Consider an edge e whose bend is contained in another edge e′. Let v be
the common end vertex of e and e′. Assume first that e and e′ are in the same component. Then
we assign the bend on e to v.

Assume now that e and e′ belong to different components. Then these components must be
consecutive, say Ci and Ci+1. Moreover, e and e′ are both the first or both the last edges of
the rightmost S-N -path PR of Ci and the leftmost S-N -path PL of Ci+1 or vice versa. In the
following case distinction, the edge that is assigned is always the edge e, i.e., the edge whose bend
is contained in the other.

We first consider the case in which e and e′ are the first edges of PL and PR, i.e., e and e′ are
both incident to the South pole. If PR and PL both have South-type L, then e is the first edge
of PR. By Item 3, Ci must be right-free. Thus, we can assign the bend on e to S without violating
any previous assignments. Similarly, if PR and PL both have South-type R, then we can assign the
first edge of PL to S without violating any previous assignments. If PR has South type L and PL

has South type R, then we assign the first edge of PR or PL to S depending on whether Ci is
right-free or Ci+1 is left-free at the South pole. In Fig. 15, the assigned edge e is the first edge
of PL since Ci+1 is left-free.

Now, we consider the case where e and e′ are the last edges of PL and PR, i.e., e and e′ are both
incident to the North pole. We denote the last edges of PR and PL by eR and eL, respectively. If e
and e′ are both outgoing edges of N , the assignment is analogous to the South pole: If PR and PL

have both North-type Lc or both Lcc, we assign the last edge of PL to N . If PR and PL have both
North-type Rc or both Rcc, we assign the last edge of PR to N . If PR has North type Lc or Lcc

and PL has North type Rc or Rcc, or vice versa, then we assign the last edge of PR or PL to N
depending on whether Ci is right-free or Ci+1 is left-free at the North pole.

Consider now the case that PR and PL are both of type W . Then Ci+1 is left-free. Moreover,
if Ci+1 is a single edge, then Ci cannot have South-type R, thus, we have not assigned eL to S.
Hence, we can assign eL to N . Finally, if PR and PL are both of type E we can assign eR to N .
We assign all edges that have not been assigned yet to an arbitrary end vertex. This assignment
fulfils the bend-or-end property.
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N

Ci

Ci+1

S

PR PL

e′

e

Figure 15: Assignment of the edge e when PR has South type L and PL has South type R, for
the case in which Ci+1 is left-free at the South pole.

By the construction, the angular sum around a vertex is always 2π. It remains to show that the
rotation of all inner faces is 2π, which implies that the rotation of the outer face is −2π. If f is an
inner face of a component, then its rotation is 2π by induction. So consider the face fi between the
components Ci and Ci+1. The boundary of fi in counter-clockwise direction is combined by the
reversed rightmost path PR of Ci and the leftmost path PL of Ci+1. Let P

′
R be the concatenation

of PR and a short vertical segment s emanating under N and let P ′
L be the concatenation of PL

and s. Consider the face f ′
i bounded by P ′

R and the reversion of P ′
L. Then fi has the same rotation

as f ′
i . Let rot(P ) be the rotation of a path. The rotation of f ′

i at S is 2 · π/2. The rotation
of f ′

i at the bottommost end point p of s is 2 · (−π/2) or 2 · π/2, depending on whether the 2π
angle between P ′

R and P ′
L at p is in the interior of f ′

i or not, i.e. whether PL and PR pass to
different sides of N or not. Thus, rot(fi) = rot(P ′

R)± π− rot(P ′
L) + π. Observe that by Section 5,

rot(P ′
R),rot(P

′
L) ∈ {±π} on one hand and rot(P ′

R) = −rot(P ′
L) if and only if PL and PR pass to

different sides of N on the other hand. Thus, if they pass to the same side then rot(P ′
R) and

−rot(P ′
L) cancel out and rot(fi) = rot(P ′

R) + π− rot(P ′
L) + π = 2π. In the other case rot(P ′

R) and
−rot(P ′

L) sum to 2π and rot(fi) = rot(P ′
R)−π− rot(P ′

L)+π = 2π. In any case, it follows that the
rotation of fi is 2π. □

Section 5 yields a strict order of the possible types from left to right that can be composed
in parallel. Moreover, let σ be a sequence of types of components from left to right that can be
composed in parallel and let τ be a type in σ. Then Section 5 implies that τ appears exactly once in
σ or the leftmost path and the rightmost path have both the same type in τ and all four free-flags
are positive. In that case the type τ might occur arbitrarily many times and all appearances are
consecutive. Thus, σ can be expressed as a simple regular expression on an alphabet T , i.e., a
sequence ρ of elements in T ∪ {⋆} such that ⋆ does not occur as the first symbol of ρ and there
are no two consecutive ⋆ in ρ. A sequence s of elements in T is represented by a simple regular
expression ρ if it can be obtained from ρ by either removing the symbol preceding a ⋆ or by
repeating it arbitrarily many times.

Observe that the elements from T in the simple regular expression ρ representing σ appear at
most twice, once without a star and once with a star. Thus, the length of ρ is bounded by the
number of types, i.e., constant. In particular, this means that there are only a constant number of
expressions ρ which we need to consider in order to capture all possible feasible sequences σ.

In order to compute the type of a component, we proceed bottom-up on the binary decom-
position tree. Observe that if a P-node has one or two P-node children then it does not suffice
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N
S

left-free
at N

not right-free
at N

left- and right-free at S

(a) ⟨(Rcc, R), (Rcc, R)⟩

N
S

right-free
at S

not left-free
at S

left- and right-free at N

(b) ⟨(Rc, R), (Rc, R)⟩

Figure 16: An easy case of the series composition.

to put the drawings of the two sub components side by side. We have to merge the two subcom-
ponents in order to consider all possible embeddings. See Fig. 14. Also recall that in the binary
decomposition tree the components of a P-node µ are the subgraphs associated with the canonical
descendants, i.e., the descendants µ′ of µ that are S- or Q-nodes with the property that there are
only P-nodes between µ and any µ′. The possible regular expressions associated with µ describe
the ordering of the possible types of these components. Further, we associate with an S- or Q-node
the set of regular expressions of length one that correspond to the different types of the respective
components.

Lemma 7 Let µ be a P-node of a binary decomposition tree T , let ν be the parent of µ, and let
νA and νB be the children of µ. We can compute the collection of possible regular expressions
and, thus, of all types of Gν(µ), in constant time under the condition that the possible regular
expressions for Gµ(νA) and Gµ(νB) are known.

Proof: Consider a planar L-drawing of Gν(µ). Let µ′
1, . . . , µ

′
k be the canonical descendants of µ.

Let σ be the sequence of types of the respective child components G(µ′
1), . . . , G(µ′

k) and let ρ be
the respective regular expression. Consider the partition of µ′

1, . . . , µ
′
k into the set A of canonical

descendants of νA and the set B of canonical descendants of νB .
Notice that, by taking the components G(µ′), µ′ ∈ A in the order they appear in σ, we obtain a

sequence σA which leads to a valid L-drawing of the corresponding components. This similarly holds
for B. From this we can infer the following strategy to compute all possible regular expressions
admitted by Gν(µ): We take any possible expression ρ for Gν(µ). Take a subsequence ρA of ρ of
not necessarily consecutive symbols. Let ρB be the subsequence of ρ after removing the non-stared
entries of ρA. If Gµ(νA) and Gµ(νB) realize ρA and ρB , respectively, then Gν(µ) realizes ρ. If no
such split leads to ρA and ρB realizing Gµ(νA) and Gµ(νB) then Gν(µ) does not realize ρ. □

To understand how the type of a series composition is determined from the types of the children,
let us first consider an easy example (see Figs. 16a and 16b): Assume that G1 and G2 consist both
of a single edge e1 and e2, respectively, and that the type of both is (W,R). Assume further that G
is obtained by merging the North poles N1 and N2 of G1 and G2, respectively. There are two
ways how this can be done, namely e1 can be attached to N1 = N2 before e2 or after it in the
counterclockwise order starting from Rcc and ending at Lc. In the first case the North type of G
is Rcc, in the second case it is Rc. Moreover, in the first case G is left-free but not right-free at
the North-pole, while in the second case it is right-free but not left-free at the South-pole.

Lemma 8 (Series Composition) Let G1 and G2 be two series-parallel DAGs with no internal
source that admit an upward-planar L-drawing of type ⟨(X1, x1), (Y1, y1)⟩ and ⟨(X2, x2), (Y2, y2)⟩,
respectively, with the poles on the outer face. Let G be the DAG obtained by a series combination
of G1 and G2, such that the common pole of G1 and G2 is not a source in at least one of G1
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Figure 17: Different free-flags in the case that the North pole is merged with the South pole

S

N

G1

N

G2

not right-free
at N

S

Figure 18: A series composition of G1 and G2 at the common North-pole is not possible with the
given types since G1 is not right-free at its North pole.

and G2. Then the possible types of G in an upward-planar L-drawing maintaining the types of G1

and G2 can be determined in constant time.

Proof: Let Si and Ni, respectively, be the South and North pole of Gi, i = 1, 2. We may assume
that S1 is the South pole of G and, thus, N1 is the common pole of G1 and G2. We distinguish
two cases, based on whether N1 = S2 or N1 = N2.

First suppose that N1 = S2, i.e., that N2 is the North pole of G. It follows that on one hand N1

cannot be a source of G1. On the other G2 must be contained in the external face of G1. Thus, G
admits an upward-planar L-drawing if and only if

� x2 = L ⇒ X1 /∈ {Rcc, Rc} and

� y2 = R ⇒ Y1 /∈ {Lcc, Lc}.

The South-type of G is the South type of G1. The North-type of G is the North-type of G2 except
for the free-flags, which might have to be updated if the next-to-last edge on the leftmost or
rightmost path, respectively, is already contained in G1 and is an outgoing edge of N1. This might
yield different North-types concerning the flags. See Fig. 17.

Now suppose that N1 = N2. Then G admits an upward-planar L-drawing if and only if one of
the following three cases holds (see Fig. 19)

1. X1 < Y2 and Y1 ≤ X2, and not (X1 = Rcc and Y2 = Lc) implying that G1 can only be
embedded before G2 or

2. X2 < Y1 and Y2 ≤ X1, and not (X2 = Rcc and Y1 = Lc) implying that G2 can only be
embedded before G1, or

3. X1 = Y1 = X2 = Y2 ∈ {E,W} which might give rise to two upward-planar L-drawings
with distinct labels by adding G2 before or after G1 at the common pole. (Observe that
X1 = Y1 = X2 = Y2 but not in {E,W} is impossible since N1 and N2 are not both sources.)
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Figure 19: The three cases of a series composition at the North pole. In the third case G1 can be
before G2 or vice versa.
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Figure 20: How to find a suitable root of the decomposition tree in linear time.

and the respective free-conditions (see Fig. 18) are fulfilled at N1 = N2: namely assume that G1

is embedded before G2. In the case that the right path of G1 uses the same port and bends to
the same side as the left path of G2 then G1 has to be right-free and G2 has to be left-free at the
North pole. The necessity and sufficiency of these conditions can be proven analogously as in the
parallel case.

The free-flags might have to be updated if the second edge on the leftmost or rightmost path,
respectively, is already contained in G2 or if the next-to-last edge on the leftmost or rightmost
path, respectively, is already contained in G1 and the type of G1 at N1 equals the respective type
of G2 at N2. Except for the flags, the South-type of G is the South type of G1 and the North
type of G2 yields the North type of G except for the specifications c or cc (also see Fig. 16): First
observe that both, the leftmost path and the rightmost path, either have both type c or both
type cc. Otherwise, G2 would be contained in an inner face of G1. The North type of both paths
is indexed c if G2 is embedded before G1. Otherwise, the North type is indexed cc. Regarding the
time complexity, observe that our computation of the set of possible types of G does not depend
on the size of G1 and G2, but only on the number of types in their admissible sets. Since these sets
have constant size and the above conditions on the types of G1 and G2 can be tested in constant
time, we thus output the desired set in constant time. □

Finally, we discuss how to consider different rootings. Recall that we root the decomposition
tree T at a Q-node corresponding to an edge incident to the single source s. Consider any tree
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traversal from any suitable root. Label an edge with the direction parent to child. If the edge
was already labeled in the same direction in a previous traversal, we stop the recursion, since at
this point the type of the respective component was already determined. Bottom-up, we can now
determine for each node the possible types and in addition for each P-node the possible regular
expressions as described in Section 5 in constant time per node. Recall that the root corresponds
to a final parallel composition and is treated as such. Over all choices of the root, we have to
traverse each edge of the binary decomposition tree once in each direction. Thus, the whole run
time is linear.

For an example see Fig. 20. The encircled Q-nodes represent edges incident to the single
source S. We start with the topmost Q-node as a root. When choosing the dashed encircled
Q-node as a root next, we only have to traverse the dashed edges in the decomposition tree. The
types of all other subcomponents have already been determined.

Single Sink. For the case that G has a single sink, the algorithmic principles are the same as in
the single-source case. The main difference is the type of an N -S-path P in a component C, where
S and N are the South- and North-pole of C. The North pole of a component is always a sink
and the North-type of P is W or E in this order from left to right. The South-type is one among
Ec,W c, L,R,Ecc,W cc in this order from left to right (according to the outgoing edges at N),
depending on whether the last edge of P (traversed from N to S) is an incoming edge entering
from the left (W) or the right (E), or an outgoing edge bending to the left (L) or the right (R),
and whether the last edge of P leaving the half-space above the horizontal line through S does so
to the right of S (cc) or the left of S (c).

The type consists again of the choice of the topmost pole (North pole), the type of the leftmost
N -S-path, the type of the rightmost N -S-path, the four free-flags – which are defined the same
way as in the single source case – and whether the component is a single edge or not.

6 Conclusion and Future Work

We have shown that a DAG admits an upward-planar L-drawing if and only if it is a subgraph of a
planar st-graph that admits a bitonic st-ordering. This implies that DAGs admitting an upward-
planar L-drawing also admit a straight-line upward-planar drawing in quadratic area. We have
devised an algorithm to decide in linear time whether a plane single-source or -sink DAG admits an
upward-planar L-drawing. A natural extension of this work would be to consider plane DAGs with
multiple sinks and sources, the complexity of which is open. In the variable embedding setting,
we have presented a linear-time testing algorithm for single-source or -sink series-parallel DAGs.
Some next directions are to consider general single-source or -sink DAGs or general series-parallel
DAGs. In the case of single-sink DAGs we could even handle the case in which all biconnected
components are series-parallel in linear time. It would be interesting to study whether this result
could be extended to the single-source case and, more generally, whether the single-source case is
more complex than the single-sink case. We remark that the complexity of testing for the existence
of upward-planar L-drawings of upward-planar graphs in general also remains open.
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