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Abstract. A graph G is a k-leaf power, for an integer k ≥ 2, if there is a tree T
with leaf set V (G) such that, for all distinct vertices x, y ∈ V (G), the edge xy exists in
G if and only if the distance between x and y in T is at most k. Such a tree T is called
a k-leaf root of G. The computational problem of constructing a k-leaf root for a given
graph G and an integer k, if any, is motivated by the challenge from computational
biology to reconstruct phylogenetic trees. For fixed k, Lafond [SODA 2022] recently
solved this problem in polynomial time.

In this paper, we propose to study optimal leaf roots of graphs G, that is, the k-
leaf roots of G with minimum k value. Thus, all k′-leaf roots of G satisfy k ≤ k′.
In terms of computational biology, seeking optimal leaf roots is more justified as they
yield more probable phylogenetic trees. Lafond’s result does not imply polynomial-
time computability of optimal leaf roots, because, even for optimal k-leaf roots, k may
(exponentially) depend on the size of G. This paper presents a linear-time construction
of optimal leaf roots for chordal cographs (also known as trivially perfect graphs).
Additionally, it highlights the importance of the parity of the parameter k and provides
a deeper insight into the differences between optimal k-leaf roots of even versus odd k.

1 Introduction

Leaf powers have been introduced by Nishimura, Ragde and Thilikos [13] to model the phylogeny
reconstruction problem from computational biology: given a graphG that represents a set of species
with vertices V (G) and the interspecies similarity with edges E(G), how can we reconstruct an
evolutionary tree T with a given similarity threshold k? For an integer k ≥ 2, a k-leaf root of G,
a tree T with species V (G) as the leaf set and where distinct species x, y ∈ V (G) have distance at
most k in T if and only if they are similar on account of xy ∈ E(G), is considered a solution to this
problem. In case T exists, the graph G is called a k-leaf power. The challenge of finding a k-leaf
root for given G and k has, yet, been modelled as the k-leaf power recognition problem: given G
and k, decide if G has a k-leaf root.

*An extended abstract of this work appeared in the conference proceedings of FCT 2023 [11].
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Figure 1: A graph G (left), a 5-leaf root T of G (middle), a 4-leaf root T ′ of G (right).

For an example, see Figure 1 with the graph G called dart. The similarities between the five species
can be explained with similarity threshold k = 5 using the 5-leaf root T and with k = 4 by the
4-leaf root T ′, both depicted in Figure 1.

For a deeper discourse into the heavily studied field of k-leaf powers, the reader is kindly referred
to the survey [14]. Here, we just give a short overview.

Lately, Eppstein and Havvaei [8] showed that k-leaf power recognition for graphs G with n
vertices can be solved in O(f(k, ω) ·n) time with f(k, ω) exponential in k and ω, the clique number
of G. Quite simply put, they reduce k-leaf power recognition to the decision of a certain monadic
second order property in a graph derived from G having tree-width bounded by k and ω. Lafond’s
even more recent algorithm [10] solves k-leaf power recognition in O(ng(k)) time, where g(k) grows
superexponentially with k. It applies sophisticated dynamic programming on a tree decomposition
of G and exploits structural redundancies in G. Observe that, for fixed k, the latter method runs
in polynomial time.

Before these advances, k-leaf power recognition had only been solved for all fixed k between
2 and 6. The 2-leaf powers are exactly the graphs that have just cliques as their connected
components, which makes the problem trivial. For k = 3 (see [13] and [3]), k = 4 (see [13] and [4]),
k = 5 (see [5]) and k = 6 (see [7]) individual algorithms have been developed, all creating a certain
(tree-) decomposition of the input graph G and then attempting to fit together candidate k-leaf
roots for the components into one k-leaf root for G.

A general controversial aspect of modelling the reconstruction of a phylogenetic tree T with the
k-leaf power recognition problem is that k is part of the input. In the biological context, the value
of k describes an upper bound on the number of evolutionary events in T that lie between two
similar species x, y, thus, species adjacent in the given graph G by an edge xy. Unlike the model
suggests, biologists do not always have control over the parameter k. Instead, phylogenetic trees T
with as few as possible evolutionary events between all pairs of similar species are preferred. That
is because, in reality, a higher number of events between x and y makes a similarity between x
and y less likely. Conversely, this means that a k-leaf root of G with a small parameter k models
a more probable phylogenetic tree. This paper therefore proposes a subtle change in perspective
towards considering the following optimization problem.

Optimal Leaf Root (OLR)

Instance: A graph G.
Output: An optimal leaf root T of G, that is, a κ-leaf root of G such that κ ≤ k for all

k-leaf roots of G, or No, if T does not exist.

Subsequently, we use κ to indicate that the respective κ-leaf root is optimal. OLR is in a certain
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sense an optimization version of k-leaf power recognition. The answer No states that the given
graph G is not a k-leaf power for any k and, in particular, not for the given one. Getting an
optimal κ-leaf root of G helps to decide if G is a k-leaf power in many cases. A difficulty is that,
for all κ and k of different parity and with 2 ≤ κ < k < 2κ − 2, there are κ-leaf powers that are
not k-leaf powers [15]. Then, checking κ ≤ k does not decide correctly.

As for k-leaf power recognition, there are no known general efficient solutions for OLR. If
input was restricted to k-leaf powers with k ≤ K for some fixed K, we could repurpose Lafond’s
algorithm. Testing a given G with all 2 ≤ k ≤ K would finally reveal the minimum κ for which
G is κ-leaf power. At that point, a κ-leaf root of G could also be extracted from the algorithm.
But that classes of k-leaf powers have not been characterized well for any k ≥ 5 makes restricting
input in the proposed way difficult. Then again, it is unknown how to decide if a given graph G is
a k-leaf power for any arbitrary k. And on top of that, the minimum value κ for which a given G
is a κ-leaf power, if any, may exponentially depend on the size of G. This means that this brute
force searching may take exponentially or even infinitely many runs of Lafond’s algorithm.

It is known that, independent of k, all k-leaf powers are strongly chordal, but not vice versa.
Ptolemaic graphs are strongly chordal and a class of unbounded leaf powers. That is, there is no
bound β such that every Ptolemaic graph has a k-leaf root for some k ≤ β. Nevertheless, every
Ptolemaic graph on n vertices has a 2n-leaf root [1, 2]. Later, Theorem 5 shows that, often, this
is not optimal.

This paper considers a subclass of Ptolemaic graphs, the chordal cographs, as input to OLR.
By definition, chordal cographs form the intersection of the well-known chordal graphs and the
cographs and, thus, they are characterized as the graphs without induced cycles on four vertices
and without induced paths on four vertices [9, 16, 17]. Golumbic [9] named this class trivially
perfect graphs and also characterizes the class as the comparability graphs of rooted trees. As the
approach in this paper relies on the cotree of chordal cographs for a tree model instead of the rooted
tree behind the comparability graph interpretation, sticking to the former, less usual naming of
the graph class is more natural here.

As a side effect of Lemma 8, this paper proves that chordal cographs are still a class of un-
bounded leaf powers. This means that k-leaf power recognition on this class cannot be solved in
polynomial time with the algorithm of Lafond or the one of Eppstein and Havvaei. Nevertheless,
the following main result of our work states that OLR can be solved in linear time for chordal
cographs.

Theorem 1 Given a chordal cograph G on n vertices and m edges, a κ-leaf root of G with mini-
mum κ can be computed in O(n+m) time.

To the best of our knowledge, chordal cographs are, thus, the first class of unbounded leaf powers
with a polynomial-time solution for OLR. The linear time leaf root construction works by a divide
and conquer algorithm that utilizes the cotree of the input chordal cograph G to (i) recursively
identify a (universal) cut vertex u of G, (ii) divide G at u and (iii) conquer by merging recursively
computed optimal leaf roots of the connected components of G−u into one optimal leaf root of G.

Please note that while, in general, an OLR-solution does not entirely work for k-leaf power
recognition, as elaborated above, our OLR-approach can also be used for linear-time k-leaf power
recognition on chordal cographs. The key to this is the ability of our method to solve OLR with
a given parity, such that the computed κ-leaf root comes with the minimum κ of the given parity.
Hence, if we choose the parity of the given k, we can tell that a given graph G is a k-leaf power if
and only if the computed κ-leaf root with κ of the same parity as k satisfies κ ≤ k.
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At the end of our approach, in Section 5, Theorem 10 restates our main result with the pro-
nounced generalization of giving a desired parity as an input. The proof of Theorem 10, thus,
concludes our elaborations by also showing Theorem 1.

Realizing that the desired parity of κ plays a certain role in our construction, we research this
discrepancy here, and show, for certain chordal cographs, that the minimum κ can differ up to 25
percent depending on if it is wanted odd or even. The existence of κ-leaf powers that are not a
k-leaf power for any opposite parity k < 2κ− 2 is shown in [15]. Therefore, 100 percent is a strict
upper bound on the difference between minimum odd and even similarity threshold. However, we
believe that our examples in Section 6 achieve the uttermost deviation within chordal cographs.

The next section presents basic notation, definitions, and facts on trees and k-leaf powers used
in this paper. The optimal leaf root construction method for chordal cographs is introduced in
Section 3 and proved correct in Section 4. Section 5 provides a respective linear-time implementa-
tion, thus, proving Theorem 1. A deepened evaluation of the difference between chordal cographs
with κ-leaf roots of minimum odd versus even κ is carried out in the concluding Section 6.

2 Preliminaries

All considered graphs are finite and without multiple edges or loops. Let G = (V,E) be a graph
with vertex set V (G) = V and edge set E(G) = E. A universal vertex in G is one that is adjacent
to all other vertices. If all vertices of G are universal then G is complete. A vertex x that is
adjacent to exactly one other vertex of G is called a leaf and the edge containing x is a pendant
edge. Two adjacent vertices x, y ∈ V (G) are true twins if xz ∈ E(G), if and only if yz ∈ E(G) for
all z ∈ V (G) \ {x, y}.

A graphH is an induced subgraph of G if V (H) ⊆ V (G) and xy ∈ E(H) if and only if xy ∈ E(G)
for all x, y ∈ V (H). All subgraphs considered in this paper are induced. For X ⊂ V (G), G −X
denotes the induced subgraph H of G with V (H) = V (G) \X. If X consists of one vertex x then
we write G− x for G− {x}. Complete subgraphs of G are called cliques.

As usual, an x, y-path in G is a sequence v1, . . . , vn of distinct vertices from V (G) such that
x = v1, y = vn and vivi+1 ∈ E(G) for all i ∈ {1, . . . , n− 1}. An x, y-path is called a cycle in G if
xy ∈ E(G). The length of the x, y-path, respectively cycle, is the number of its edges, that is, n−1
in the x, y-path and n in the cycle. If there is an x, y-path in G for all distinct x, y ∈ V (G) then
G is connected. Otherwise, G is disconnected and, therefore, composed of connected components
G1, . . . , Gn, maximal induced subgraphs of G that are connected. A connected component is non-
trivial if it has more than one vertex and, otherwise, it is called isolated vertex. We call C ⊆ V (G)
a cut set if G− C has more connected components than G. If C is just a single vertex c then c is
a cut vertex.

Graphs G and H are isomorphic if a bijection σ : V (G) → V (H) exists with xy ∈ E(G) if
and only if σ(x)σ(y) ∈ E(H). If no induced subgraph of G is isomorphic to a graph H then G
is H-free. Trees are the connected cycle-free graphs. This means, a tree T contains exactly one
x, y-path for all x, y ∈ V (T ).

In this paper, we learn that, dependent on the given parity, the construction of an optimal leaf
root differs in several details. To avoid permanent case distinctions, we use π(i) for the parity of
an integer i, that is, π(i) = i mod 2.



JGAA, 28(1) 243–274 (2024) 247

2.1 Chordal Cographs and Cotrees

Chordal cographs, ccgs for short, are known as the graphs that are free of the path and the cycle
on 4 vertices. See the top row of Figure 2 for an example ccg. One particular ccg used in this
paper is the star (with t leaves), which consists of the vertices u, v1, . . . , vt for some t ≥ 2 and the
edges uv1, . . . , uvt.

Like all cographs, ccgs can be represented with cotrees [6]. For an example, see Figure 2. The
second row shows the cotree of the example cograph in the first row. For every cograph G, the
cotree T is a rooted tree with leaves V (G) and where every internal node is labelled with 0 for
disjoint union or 1 for full join. In this way, the leaves define single vertex graphs and every
internal node represents the cograph G combining the cographs H1, H2, . . . ,Hn of its children
with the respective graph operation. More precisely, V (G) = V (H1) ∪ V (H2) ∪ · · · ∪ V (Hn)
and G = 0 (H1, H2, . . . ,Hn) means the disconnected cograph on vertex set V (G) and edge set
E(G) = E(H1) ∪E(H2) ∪ · · · ∪E(Hn) and G = 1 (H1, H2, . . . ,Hn) means the connected cograph
with vertex set V (G) and edge set E(G) = E(H1) ∪ E(H2) ∪ · · · ∪ E(Hn) ∪ {xy | x ∈ V (Hi), y ∈
V (Hj), 1 ≤ i < j ≤ n}. The cotree T is unique, can be constructed in linear time, and has the
following properties:

� Every internal node has at least two children.
� No two internal nodes with the same label, 0 or 1 , are adjacent.
� The subtree TX rooted at node X is the cotree of the subgraph GX induced by the leaves of
TX . If X is labelled with 0 then GX is the disjoint union of the cographs represented by the
children of X and if it is labelled with 1 then GX is the full join of the children cographs.

� The cotree of an n-vertex cograph has at most 2n− 1 nodes.

We mostly work with ccgs without true twins, like G in Figure 2. These graphs have the following
properties, as observed in the upper rows of the figure.

Proposition 2 If G is a ccg without true twins and T is the cotree of G then every node of T
labelled with 1 has exactly two children, one leaf and one node labelled with 0 .

Proof: Consider any 1 -node X of T . Then X is not a leaf and, thus, has at least two children
none of which a 1 -node. Since G is free of true twins, there is at most one leaf among the children
of X. Distinct leaves x, y would be true twins since, by definition, both are adjacent to all z ∈ V (G)
with the least common ancestor in T labelled by 1 . Because G is free of cycles on four vertices, X
also has at most one 0 -child. Two distinct 0 -nodes Y, Z would represent two induced subgraphs
GY and GZ , where, by definition, GY contained two not adjacent vertices a, b and GZ two not
adjacent vertices c, d. Also by definition, there would be edges ac, ad, bc, bd in E(G) and, thus,
an induced cycle on four vertices in G. Hence, X having exactly two children, one leaf and one
0 -node, is the only remaining possibility. □

Proposition 3 (Wolk [16, 17]) Every connected ccg G without true twins has a unique universal
vertex u and G− u is disconnected (that is, u is a cut vertex).

Proof: Because G is connected, the cotree has a 1 -root X. By Proposition 2, X has a leaf child
u that, by definition, is universal in G and a 0 -child Y . Additional universal vertices would be
true twins of u. By definition, G− u = GY is disconnected and, thus, u is a cut vertex. □

2.2 Diameter, Radius and Center in Trees

Let T be a tree. The following notions are throughout used in the paper:
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Figure 2: A ccg G (top), the cotree T of G (2nd row), an optimal (odd) 11-leaf root T of G (3rd
row) as computed by Algorithm 1 (with input p = 1), and an optimal even 12-leaf root T ′ of G
(bottom) as computed by Algorithm 1 with input p = 0.
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� The distance between two vertices x and y in T , written distT (x, y), is the length of the
unique x, y-path in T .

� The diameter of T , denoted diam(T ), is the maximum distance between two vertices in T ,
that is, diam(T ) = max{distT (x, y) | x, y ∈ V (T )}.

� A diametral path in T is a path of length diam(T ).
� A vertex z is a center vertex of T if the maximum distance between z and any other vertex in
T is minimum, that is, all y ∈ V (T ) satisfy max{distT (x, z) | x ∈ V (T )} ≤ max{distT (x, y) |
x ∈ V (T )}.

� The radius of T , denoted rad(T ), is the maximum distance between a center z and other
vertices of T , that is, rad(T ) = max{distT (v, z) | v ∈ V (T )}.

For convenience, we define π(T ) = π(diam(T )), the parity of the diameter of T . It is well known
for all trees T that diam(T ) = 2 · rad(T )−π(T ) and that there is a single center vertex if π(T ) = 0
and two adjacent centers if π(T ) = 1. Furthermore, it is obvious for any diametral path in T that
the end-vertices x and y are leaves and the center coincides with the center of T . Thus, we have
min{distT (z, x),distT (z, y)} = rad(T ) − π(T ) and max{distT (z, x),distT (z, y)} = rad(T ) for any
center vertex z of T .

We call a center vertex z amin-max center of T if, for all center vertices z′ of T , min{distT (z, v) |
v is a leaf of T} ≥ min{distT (z′, v) | v is a leaf of T}. Thus, a min-max center maximizes the
distance to the closest leaf of T . For a min-max center z, the leaf distance is dmin

T = min{distT (z, v) |
v is a leaf of T}. The paper also requires the following technical lemma regarding the radius and
the diameter of trees:

Lemma 1 If T1, . . . , Ts are s ≥ 2 trees with diam(T1) ≥ · · · ≥ diam(Ts) then
(i) rad(T1) ≥ rad(T2) ≥ · · · ≥ rad(Ts),
(ii) for all 1 ≤ i < j ≤ s, if rad(Ti) = rad(Tj) then π(Ti) ≤ π(Tj), and
(iii) for all 1 ≤ i < j ≤ s, rad(Ti)− π(Ti) ≥ rad(Tj)− π(Tj).

Proof: Let i < j.

(i) By definition, 2rad(Ti) − π(Ti) = diam(Ti) ≥ diam(Tj) = 2rad(Tj) − π(Tj). Clearly, if
π(Ti) = π(Tj) then we directly get rad(Ti) ≥ rad(Tj). Otherwise, if only π(Ti) = 1, we argue
that

2rad(Ti) > 2rad(Ti)− 1 = diam(Ti) ≥ diam(Tj) = 2rad(Tj).

Finally, if just π(Tj) = 1 then the diameter of Ti is even and the diameter of Tj is odd, thus,
not equal. This immediately tells us that

2rad(Ti) = diam(Ti) > diam(Tj) = 2rad(Tj)− 1

and, hence, 2rad(Ti) ≥ 2rad(Tj) and we are done.

(ii) If rad(Ti) = rad(Tj), then 2rad(Ti) − π(Ti) = diam(Ti) ≥ diam(Tj) = 2rad(Tj) − π(Tj) =
2rad(Ti)− π(Tj). Hence, π(Ti) ≤ π(Tj).

(iii) By (i), rad(Ti) ≥ rad(Tj). If rad(Ti) > rad(Tj), then rad(Ti) − π(Ti) > rad(Tj) − π(Ti) ≥
rad(Tj)−1. Hence, rad(Ti)−π(Ti) ≥ rad(Tj) ≥ rad(Tj)−π(Tj). If rad(Ti) = rad(Tj), then,
by (ii), π(Ti) ≤ π(Tj). Hence, rad(Ti)− π(Ti) = rad(Tj)− π(Ti) ≥ rad(Tj)− π(Tj).

□
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2.3 Leaf Powers, Leaf Roots and their Basic Properties

Let k ≥ 2 be an integer. A graph G is a k-leaf power if a k-leaf root T of G exists, a tree with
leaves V (G) such that, for all distinct vertices x, y ∈ V (G), xy is an edge in G if and only if
distT (x, y) ≤ k. The example G in Figure 2 therefore is an 11-leaf power because of the 11-leaf
root T of G in the third row and also a 12-leaf power by the 12-leaf root T ′ in the bottom row.
Note that the figure shows compressed illustrations of T and T ′ where some long paths of vertices
with degree two are depicted by single weighted edges.

It is well-known that

� a complete graph is a k-leaf power for all k ≥ 2,
� a graph is a k-leaf power if and only if all of its connected components are k-leaf powers, and
� if x, y are true twins in G then G is a k-leaf power if and only if G− x is a k-leaf power.

Note for the last fact that Lemma 7.3 and Corollary 7.4 in [12] imply the possibility to identify
and remove all true twins from a graph in linear time. So, in the remainder of the paper, we can
simply focus on graphs without true twins.

Since the concept of k-leaf powers is slightly different for odd and even k, we formalize this
discrepancy as follows: We say that a k-leaf root is of even, respectively odd parity, if k is even,
respectively odd. A k-leaf root T of G is an optimal even, respectively optimal odd leaf root if k
is even, respectively odd, and all k′-leaf roots of G with k′ of the same parity as k satisfy k ≤ k′.
Finally, a k-leaf root T of G is (just) optimal if k ≤ k′ for all k′-leaf roots of G (independent of
parity). See the third row of Figure 2 for an optimal odd leaf root T of the example graph G in
the same figure and see the bottom row for an optimal even leaf root T ′ of G. Since T is an 11-leaf
root and T ′ a 12-leaf root, it follows that T is an optimal leaf root of G.

We conclude this section by establishing a few properties for leaf roots as considered in this
paper. The first one concerns a bound on the distance between center and leaves in T in case G is
connected.

Lemma 2 Every k-leaf root T of a connected graph satisfies dmin
T ≤ k

2 .

Proof: Let T be a k-leaf root of a connected graph G, and let z be a min-max center vertex of T .
Let T ′ be any subtree of T − z. Then, every pair of leaf v in T ′ and leaf w outside T ′ fulfills

distT (u, v) = distT (u, z) + distT (z, v) ≥ 2·dmin
T .

Thus, if dmin
T was larger than k

2 , then distT (u, v) > k and G would be disconnected. □

See Figure 2 with the 11-leaf root T of G having dmin
T = distT (u0, z0) = 2 ≤ 11

2 and the 12-leaf
root T ′ with dmin

T ′ = distT (u0, z0) = 2 ≤ 12
2 . Secondly, if G has a universal vertex u then the

distance between u and the center in T cannot exceed the difference between k and the radius
of T .

Lemma 3 If G is a non-complete graph with a universal vertex u and T is a k-leaf root of G then
distT (u, z) ≤ k − rad(T ) + π(T ) for all center vertices z of T . If z1 ̸= z2 are the center vertices of
T , then distT (u, z1) ≤ k − rad(T ) or distT (u, z2) ≤ k − rad(T ).

Proof: Consider a diametral path P in T , and let x, y be the end vertices of P . Since G is not
complete, x and y are not adjacent in G. Hence, u, x and y are different leaves in T . Because T
is a tree, the three paths in T , the x, u-path, the y, u-path, and P intersect at a unique (non-leaf)
vertex on P , say c.
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Let ℓ1 be the length of the x, c-path and ℓ2 be the length of the y, c-path in T . Since u is
universal in G, we have

distT (u, c) + ℓ1 ≤ k and distT (u, c) + ℓ2 ≤ k.

Let z1, z2 be the center vertices of T ; possibly with z1 = z2, if diam(T ) is even. Recall that, since
P is a diametral path, the centers of T and P coincide, and that z1z2 is an edge on P whenever
z1 ̸= z2. Let, without loss of generality, z1 be on the x, z2-path (and so z2 is on the y, z1-path).
Then

distT (z1, y) = rad(T ) = distT (z2, x) and

distT (z1, x) = rad(T )− π(T ) = distT (z2, y).

Since c is, like z1 and z2, on the path P , either the x, z1-path or the y, z2-path contains c. Assume
first that c is on the x, z1-path; possibly with c = z1. Then

distT (u, z1) = distT (u, c) +
(
ℓ2 − distT (z1, y)

)
=

(
distT (u, c) + ℓ2

)
− rad(T )

≤ k − rad(T ) and

distT (u, z2) = distT (u, c) +
(
ℓ2 − distT (z2, y)

)
=

(
distT (u, c) + ℓ2

)
−

(
rad(T )− π(T )

)
≤ k − rad(T ) + π(T ).

In the case, where c is on the y, z2-path, the same arguments yield distT (u, z2) ≤ k − rad(T ) and
distT (u, z1) ≤ k − rad(T ) + π(T ). □

For an illustration of the lemma above, see Figure 2, where the distance of u0 and the farthest
center vertex z0 of T satisfies distT (u0, z0) = 2 ≤ 11 − 10 + 1 = k − rad(T ) + π(T ) and, in T ′,
distT ′(u0, z0) = 2 ≤ 12− 11 + 1 = k′ − rad(T ′) + π(T ′). Lemma 3 implies upper bounds on radius
and diameter of T .

Corollary 4 If G is a graph with a universal vertex and T is a k-leaf root of G then rad(T ) ≤ k−1
and, in particular, diam(T ) ≤ 2k − 2.

Proof: Recall that k ≥ 2 by definition. Hence, for complete graphs, the statement is obvious. So,
let G be a non-complete graph with universal vertex u. By Lemma 3, 1 ≤ distT (u, z) ≤ k− rad(T )
for any center vertex z of T . Hence, rad(T ) ≤ k − 1. Since diam(T ) ≤ 2 · rad(T ), we have
diam(T ) ≤ 2k − 2. □

As a matter of fact, k-leaf roots tend to contain long paths of vertices with degree two. It is
reasonable to compress such a path P = v0, . . . , vn into a single weighted edge v0(n)vn. Clearly,
weighted edges v0(n)vn add their weight n to distances in T and, so, distT (v0, vn) = n.

3 Optimal Leaf Root Construction for CCGs

The aim of this section is the development of an optimal leaf-root construction approach for ccgs
G. In very simple terms, we describe a divide and conquer method that splits G into smaller ccgs
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G1, G2, . . . , recursively obtains their optimal leaf roots T1, T2, . . . , and then extends them into an
optimal leaf root for G.

We start with introducing two basic leaf root operations and analyze their properties. The first
operation, the extension of trees, is used to level the recursively found leaf roots T1, T2, . . . on the
same k, which is essential for the subsequent composition into one k-leaf root. If T is a tree and
δ ≥ 0 an integer then T ′ = η(T, δ) is the tree obtained from T by subdividing every pendant edge
δ times, that is, replacing the edge with a new path of length δ + 1 (hence, of δ + 1 edges). The
following property of this operation is well-known:

Lemma 4 If T is a k-leaf root of a graph G and δ ≥ 0 an integer then T ′ = η(T, δ) is a (k+ 2δ)-
leaf root of G with same center, same min-max center vertices, and diam(T ′) = diam(T ) + 2δ,
rad(T ′) = rad(T ) + δ, dmin

T ′ = dmin
T + δ.

Proof: Note that T and T ′ have the same set of leaves. For every two leaves u and v, we have
distT ′(u, v) = distT (u, v) + 2δ. Hence, distT ′(u, v) ≤ k + 2δ if and only if distT (u, v) ≤ k. Thus,
T ′ is a k + 2δ-leaf root of G. The other statements are obvious from the respective definitions. □

The second operation merges the individual k-leaf roots for the connected components of a graph
G into one k-leaf root T for the entire G. The goal here is to minimize the diameter of T , which,
in turn, allows making optimizations to the value of k. Assume that G has s ≥ 0 non-trivial
connected components G1, . . . , Gs and t ≥ 0 isolated vertices v1, . . . , vt such that s + t ≥ 2 and
let T1, . . . , Ts be k-leaf roots for G1, . . . , Gs with min-max center vertices z1, . . . , zs. If s > 0, we
define the critical index m as the smallest element of {1, . . . , s} with dmin

Tm
= min{dmin

Ti
| 1 ≤ i ≤ s}

and call Tm the critical root. Then, the merging µ(k, T1, . . . , Ts, v1, . . . , vt) results in the tree T
produced by the following steps:

1. Create a new vertex c.
2. If s > 0 then connect c and the center zm of the critical root by a path of length k+π(k)

2 −dmin
Tm

.

If π(k) = 0 and dmin
Tm

= 1
2k then this means to identify the vertices c and zm.

3. For all i ∈ {1, . . . ,m−1,m+1, . . . , s}, connect c and zi by a path of length k−π(k)
2 +1−dmin

Ti
.

4. For all j ∈ {1, . . . , t}, connect c and vj by a path of length k−π(k)
2 + 1.

Notice that the µ-operation is sensitive with respect to the parity π(k). For one thing, this
is necessary to guarantee that all added paths are of integer length, which is done by in- or
decreasing odd k. As a side note, we point out that the lengths of added paths are also non-
negative by Lemma 2, which makes the µ-operation well-defined. On the other hand, the result is
that merging works slightly different for odd and even k. For odd k, all trees T1, . . . , Ts, including
the critical one, are essentially added in the same way by our construction method. This is because,

for odd k, k+π(k)
2 − dmin

Tm
= k−π(k)

2 + 1− dmin
Tm

. The special treatment of the critical root, thus, has
an effect only if k is even. Specifically in that case, we can sometimes save one in the diameter of T ,
if we put the critical root closer to the center of T than the rest. The reason that this optimization
works is that, usually, the critical root has the largest diameter.

Lemma 5 Let G be a graph and k ≥ 2 an integer. If G is disconnected with s ≥ 0 non-trivial
connected components G1, . . . , Gs and t ≥ 0 isolated vertices v1, . . . , vt such that s + t ≥ 2 and if
T1, . . . , Ts are k-leaf roots for G1, . . . , Gs then T = µ(k, T1, . . . , Ts, v1, . . . , vt) is a k-leaf root of G.

Proof: From the construction, we immediately see for all distinct vertices x and y from the same
component Gi that distT (x, y) = distTi

(x, y). Hence, distT (x, y) ≤ k, if and only if distTi
(x, y) ≤ k,

if and only if xy is an edge in Gi.
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To prove that T is a k-leaf root for G, it is sufficient to show for all vertices x and y stemming
from different components of G that distT (x, y) > k. In case of s > 0, we assume, without loss of
generality, that the critical index is m = 1. For the remainder of the proof, we keep in mind that,
by the definition of a min-max center, distTi(x, zi) − dmin

Ti
≥ 0 for all Ti, 1 ≤ i ≤ s with min-max

center zi and all leaves x of Ti.
For a start, we consider a vertex x in G1 and vj for any j ∈ {1, . . . , t} and see

distT (x, vj) = distT1
(x, z1) +

(k+π(k)
2 − dmin

T1

)
+
(k−π(k)

2 + 1
)
≥ k + 1.

Similarly, for any vertex x in Gi, 1 < i ≤ s, and vj , we get

distT (x, vj) = distTi
(x, zi) +

(k−π(k)
2 + 1− dmin

Ti

)
+
(k−π(k)

2 + 1
)
≥ k + 1.

For any vertex x in G1 and y in Gj with 1 < j ≤ s, it is

distT (x, y) = distT1(x, z1) +
(k+π(k)

2 − dmin
T1

)
+

(k−π(k)
2 + 1− dmin

Tj

)
+ distTj (zj , y)

= (k + 1) +
(
distT1

(x, z1)− dmin
T1

)
+

(
distTj

(zj , y)− dmin
Tj

)
≥ k + 1.

Similarly, for any vertex x in Gi and y in Gj with 1 < i < j ≤ s, we get

distT (x, y) = distTi
(x, zi) +

(k−π(k)
2 + 1− dmin

Ti

)
+

(k−π(k)
2 + 1− dmin

Tj

)
+ distTj

(zj , y)

= (k + 2− π(k)) +
(
distTi

(x, zi)− dmin
Ti

)
+

(
distTj

(zj , y)− dmin
Tj

)
≥ k + 1.

Finally, the distance between vi and vj with 1 ≤ i < j ≤ t is

distT (vi, vj) = 2 ·
(k−π(k)

2 + 1
)
≥ k + 1.

It follows that xy ∈ E(G) if and only if distT (x, y) ≤ k for all x, y ∈ V (G). That is, T is a k-leaf
root of G. □

The two operations above simplify the description of the following leaf root construction algorithm
for ccgs since they hide away many of the technical details. The foundation of the proposed recur-
sive approach is that (i) induced subgraphs of ccgs are ccgs and (ii) every connected ccg without
true twins has a unique universal cut vertex (see Proposition 3). Also, recall from Section 2.3 that
true twins in graphs can be removed in linear time and, thus, be safely ignored. Therefore, we
define for all ccgs G without true twins and a given parity p ∈ {0, 1} the result of the root operation
ρ(G, p) as the tree T and the number k produced by the following (recursive) procedure:

i. If G is a star then let u be the central vertex and v1, . . . , vt the leaves of G (with t ≥ 2
because G does not have true twins)
1. If p = 1 (for odd) then let T ′ = η(G, 1), obtain T by attaching a new leaf to u in T ′,

and return (T, 3).
2. If p = 0 (for even) and t = 2 then return (T, 4) with T obtained from a single vertex

v by attaching the leaves u, v1 and v2 to v with paths of lengths one, two and three,
respectively.

3. If p = 0 and t > 2 then let T ′ = η(G, 2), obtain T by attaching a new leaf to u in T ′,
and return (T, 4).
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ii. else if G is a connected graph then let u be the universal cut vertex of G (by Proposi-
tion 3) and let G1, . . . , Gs be the s ≥ 1 non-trivial connected components and v1, . . . , vt the
t ≥ 0 isolated vertices of G− u.
1. Recursively find (T1, k1) = ρ(G1, p), . . . , (Ts, ks) = ρ(Gs, p).
2. If s = 1 then let k = k1 + 2(1− π(T1)). Otherwise, let

ka = max{k1, . . . , ks},
kb = max{ki | 1 ≤ i ≤ s, i ̸= a} and, if s > 2 let

kc = max{ki | 1 ≤ i ≤ s, i ̸= a, i ̸= b}.

If p = 1 (for odd) then let k = ka + kb − 1− 2 · π(Ta) · π(Tb) and, otherwise,

k =

{
ka + kb − 2 · (π(Ta) + π(Tb)− π(Ta) · π(Tb)), if s = 2 or ka > kc

ka + kb − 2 · π(Ta) · π(Tb), otherwise.

3. Get the extended leaf root T ′
i = η

(
Ti,

k−ki

2

)
for all i ∈ {1, . . . , s} and let T ′ =

µ(k, T ′
1, . . . , T

′
s, v1, . . . , vt).

4. Return (T, k) with T obtained from T ′ by attaching the leaf u to a center vertex of T ′.
iii. else G is a disconnected graph and then letG1, . . . , Gs be the s ≥ 0 non-trivial connected

components and v1, . . . , vt the t ≥ 0 isolated vertices of G.
1. Recursively find (T1, k1) = ρ(G1, p), . . . , (Ts, ks) = ρ(Gs, p).
2. Let k = max{k1, . . . , ks, p+ 2} and let T ′

i = η
(
Ti,

k−ki

2

)
for all i ∈ {1, . . . , s}.

3. Return (T, k) with T = µ(k, T ′
1, . . . , T

′
s, v1, . . . , vt).

Hence, if the input graph G is not a star then the approach is to firstly divide G into smaller
connected subgraphs G1, . . . , Gs (and isolated vertices v1, . . . , vt), secondly find corresponding k-
leaf roots T1, . . . , Ts by recursion and the η-operation, and, last, conquer by merging them into
a single leaf root of G with the µ-operation. The divide step is simple for disconnected G and,
otherwise, is carried out by removing the unique universal cut vertex of G.

The ρ-operation is sensitive to the given parity p for using µ as a subroutine. Observe that p
also decides how the resulting k is determined. There are four cases when G is connected and not
a star. In the first one, when s = 1, the construction is the same for odd and even p and consists of
adding u, v1, . . . , vt at the correct distance to the center of T1 and computing k from k1. Secondly,
if s > 1 and p = 1, the µ-operation has only one way of merging the recursively found leaf roots
T1, . . . , Ts to minimize the diameter of the result T . Then, k widely depends on the two largest
values of k1, . . . , ks. But if p = 0, there is one situation that, on the one hand, allows µ to use a
smaller diameter for T by prioritizing the critical leaf root and, on the other hand, lets ρ return a
slightly better value for k. This happens only when s = 2, or whenever the kc-leaf root, with kc
the third-largest value among k1, . . . , ks, properly fits into the diametral space of T that is already
required for the ka-leaf root and the kb-leaf root.

The third and bottom row of Figure 2 illustrate the results (T, 11) of ρ(G, 1) and (T ′, 12) of
ρ(G, 0) on the example G. By recursion, both are produced bottom-up, and it is difficult to follow
their assembly at the deeper recursion levels. The highest recursion level of ρ(G, 1), however, has
received a 7-leaf root with odd diameter for subgraph G1 and a 5-leaf root with even diameter for
G2 in Step (ii.1.). In Step (ii.2.), the ρ-procedure determines k = k1 + k2 − 1 = 11. The extension
of the trees in Step (ii.3.) produces the 11-leaf roots T1 and T2 for G1 and G2, respectively, as
shown in Figure 2. Their following merging and the attachment of u0 in Step (ii.4.) produces the
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shown 11-leaf root T of G. Similarly, ρ(G, 0) receives an odd-diameter 8-leaf root of G1 and an
even-diameter 6-leaf root of G2. Since s = 2, the critical root can be treated in the special way
and, thus, ρ(G, 0) determines k′ = k′1 + k′2 − 2 = 12. After the extension, we get the 12-leaf roots
T ′
1 for G1 and T ′

2 for G2 as in Figure 2. Their merging and the attachment of u0 yields the 12-leaf
root T ′ of G as also illustrated there.

The following statement regards the correctness of our procedure.

Theorem 5 Let G be a ccg on n vertices and without true twins and let p ∈ {0, 1}. Then (T, k) =
ρ(G, p) provides a k-leaf root T of G that is optimal for parity p (hence, π(k) = p) and with
k ≤ n+ 1. If G is connected then
(T1) rad(T ) = k − 1,
(T2) dmin

T = 1 + π(T ), and
(T3) diam(T ′) ≥ diam(T ) + k′ − k for all k′-leaf roots T ′ of G with π(k′) = p.

The proof of the theorem above stands for the majority of the work behind this paper and it is
fairly long. For readability, it has entirely been moved into the separate section that follows.

Note that, with respect to the optimality of the result, Theorem 5 makes a slightly stronger
statement than our main result in Theorem 1. In fact, the ρ-operation can find a κ-leaf root with
minimum κ for every ccgG simply by choosing the best from (T, k) = ρ(G, 1) and (T ′, k′) = ρ(G, 0).
To prove Theorem 1, Section 5 shows how to implement the ρ-operation in linear time.

4 The Proof of Theorem 5

To make reading the proof of Theorem 5 easier, we break it down into the proofs of several
propositions. In principle, the proof works by induction on the number of vertices and, below, we
begin with the first proposition that serves the base case.

Proposition 6 Let G be a star on n ≥ 3 vertices and let p ∈ {0, 1} be a given parity. Then
(T, k) = ρ(G, p) provides a k-leaf root T of G that is optimal for parity p (hence, π(k) = p) with
k = 4− p ≤ n+ 1 and satisfying (T1), (T2), and (T3).

Proof: We start by observing that G does not have true twins and, thus, ρ(G, p) is well-defined.
Moreover, since G is not complete, every 3-leaf root of G is an optimal (odd) leaf root and every
4-leaf root is an optimal even leaf root of G. By the same reason, any k′-leaf root T ′ of G satisfies
diam(T ′) ≥ k′ + 1.

We first consider the odd case, where k = 3 = 4− π(k), and show that the tree T returned in
Step (i.1.) is a 3-leaf root of G satisfying the claimed conditions. In fact, T is just η(G, 1) with an
additional leaf attached for u. This is obviously a 3-leaf root of G with rad(T ) = 2 = k − 1 < n,
diam(T ) = 4 and, thus, π(T ) = 0 and dmin

T = 1 = 1 + π(T ). Moreover, for any k′-leaf root T ′ of
G, we see that

diam(T ′) ≥ k′ + 1 = 4 + k′ − 3 = diam(T ) + k′ − k,

which settles the odd case.
In the even case, we have k = 4. If G has exactly two leaves v1, v2 attached to the central

vertex u then Step (i.2.) returns the tree T where the leaves u, v1 and v2 are attached to a vertex
v with paths of lengths one, two and three, respectively. Obviously, T is a 4-leaf root of G with
rad(T ) = 3 = k − 1 = n, diam(T ) = 5 and, thus, π(T ) = 1 and dmin

T = 2 = 1 + π(T ). Every even
k′-leaf root T ′ of G fulfills

diam(T ′) ≥ k′ + 1 = 5 + k′ − 4 = diam(T ) + k′ − k,
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which settles this case, too.
Finally, let p = 0 and t ≥ 3, where Step (i.3.) constructs T from η(G, 2) by attaching a new

leaf to u. Similar to the odd case, T is obviously a 4-leaf root of G with rad(T ) = 3 = k − 1 < n,
diam(T ) = 6 and, thus, π(T ) = 0 and dmin

T = 1 = 1 + π(T ). To see (T3), suppose to the contrary
that diam(T ′) < diam(T ) + k′ − k = 6 + k′ − 4 = k′ + 2 for some even k′-leaf root T ′ of G.
Consider the vertex w on the v1, v2-path in T ′ that is closest to v3 and let di = distT ′(vi, w) for all
i ∈ {1, 2, 3}. Because of the diameter bound and since v1, v2 and v3 are pairwise non-adjacent in G,
we have k′+1 ≤ di+dj < k′+2 for all 1 ≤ i < j ≤ 3. This means d1+d2 = d1+d3 = d2+d3 = k′+1.
Hence, 2(d1 + d2 + d3) = 3(k′ + 1), which implies that 3(k′ + 1) is even. This is a contradiction to
the fact that k′ is even and, thus, the last case is settled. Thus, Proposition 6 has been shown. □

With the following proposition, we only care about non-trivial connected input graphs and, for
the moment, refrain from showing the optimality of (T, k) or even Property (T3).

Proposition 7 Let G be a connected ccg on n vertices and without true twins and let p ∈ {0, 1}
be a given parity. Then (T, k) = ρ(G, p) provides a k-leaf root T of G with π(k) = p and k ≤ n+1
and satisfying (T1) and (T2).

Proof: The proof works by induction on the number of vertices in G. The smallest connected ccg
without true twins is the star with two leaves (since we ignore graphs with just one vertex). In
Proposition 6, this base case has already been settled. Moreover, Proposition 6 allows to assume
that G is not a larger star in the following induction step.

Next, let G have more than three vertices. Because G is connected and not a star, we are
in Case ii. of the procedure for ρ. Again because G is connected and without true twins, it has
a unique universal cut vertex by Proposition 3. Hence, H = G − u is disconnected. Since G is
not a star, H has s ≥ 1 non-trivial connected components G1, . . . , Gs and t ≥ 0 isolated vertices
v1, . . . , vt such that s+ t ≥ 2.

Note that, as for G, every Gi is a connected ccg without true twins but with fewer vertices
than G. This means that the induction hypothesis holds and, thus, Step (ii.1.) provides a ki-leaf
root Ti of parity p satisfying (T1) and (T2) for every Gi, 1 ≤ i ≤ s. We observe that ki ≥ 3 for all
i ∈ {1, . . . , s} as none of G1, . . . , Gs is a complete graph (since they are neither isolated vertices
nor contain true twins).

At this point, we assume, without loss of generality, that diam(T1) ≥ diam(T2) ≥ · · · ≥
diam(Ts). In addition to a simplified argumentation below, we get that

k1 ≥ k2 ≥ · · · ≥ ks and also k1 − π(T1) ≥ k2 − π(T2) ≥ · · · ≥ ks − π(Ts).

This is firstly because of Lemma 1, which implies

rad(T1) ≥ rad(T2) ≥ · · · ≥ rad(Ts) and

rad(T1)− π(T1) ≥ rad(T2)− π(T2) ≥ · · · ≥ rad(Ts)− π(Ta),

and secondly because of the induction hypothesis ki = rad(Ti) + 1, 1 ≤ i ≤ s. Hence, if s > 1 then
Step (ii.2.) selects ka = k1, kb = k2 and, if it exists, kc = k3.

Next, let k be the number computed in Step (ii.2.). We observe that π(k) = p. For s = 1, the
values k and k1 differ by an even number, thus, have the same parity p. If s > 1 and p = 1 then
k is the odd sum of the three odd numbers k1, k2 and −1 and one even number. In the last two
cases, where s > 1 and p = 0, the even value of k is the result of adding the even k1, the even
k2 and one more even number. Moreover, it is easy to see that k ≥ ki, 1 ≤ i ≤ s. If s = 1 then
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k is at least k1. Otherwise, k is at least k1 + k2 − 3 with k1 ≥ k2 ≥ · · · ≥ ks ≥ 3. This makes
k ≥ ki, 1 ≤ i ≤ s, even if k1 = k2 = 3.

By Lemma 4 and the induction hypothesis, Step (ii.3.) produces a k-leaf root T ′
i = η

(
Ti,

k−ki

2

)
of Gi for all i ∈ {1, . . . , s} such that

diam(T ′
i ) = diam(Ti) + k − ki by Lemma 4,

rad(T ′
i ) = rad(Ti) +

k−ki

2 = (ki − 1) + k−ki

2 = k+ki

2 − 1 by Lemma 4 and (T1),
k − 1 ≤ |V (Gi)|+ (k − ki) by ki ≤ |V (Gi)|+ 1 and

dmin
T ′
i

= dmin
Ti

+ k−ki

2 = (1 + π(Ti)) +
k−ki

2 by Lemma 4 and (T2).

Then, Lemma 5 tells us that Step (ii.3.) continues by assembling a k-leaf root T ′ ofH with the µ-
operation. Observe that, under the given assumption that diam(T1) ≥ diam(T2) ≥ · · · ≥ diam(Ts),
the µ-operation chooses the critical index m = 1. This happens because µ uses m to select the first
tree in T ′

1, . . . , T
′
s that minimizes dmin

T ′
m

= 1+π(Tm)+ k−km

2 . In fact, if there was i ∈ {2, . . . , s} with
π(Ti) − ki

2 < π(T1) − k1

2 then we would have k1 − ki < 2(π(T1) − π(Ti)). Since k1 ≥ ki and both
are of the same parity and π(T1), π(Ti) ∈ {0, 1}, we could conclude that k1 = ki and π(T1) = 1
and π(Ti) = 0. But that would imply the contradiction

diam(T1) = 2rad(T1)− π(T1) = 2(k1 − 1)− 1 < 2(k1 − 1)− 0

= 2(ki − 1)− π(Ti) = 2rad(Ti)− π(Ti) = diam(Ti).

In the following, we show that rad(T ′) = k − 1 ≤ n and, for that purpose, we firstly determine
the diameter of T ′. A diametral path in T ′ connects two leaves x and y, thus, vertices of H. To
find the length of a diametral path, thus, the diameter of T ′, we subsequently analyze all possible
origins of x, y in H.

For leaves x and y of the same Gi, 1 ≤ i ≤ s, the longest possible connecting path has length

diam(T ′
i ) = 2rad(T ′

i )− π(T ′
i ) = 2

(
k+ki

2 − 1
)
− π(Ti) = k + ki − π(Ti)− 2.

The longest path in T ′ connecting a leaf x in G1 (recall the critical index m = 1) and y = vj , 1 ≤
j ≤ t has length

ℓ1 =
(
rad(T ′

1) +
k+π(k)

2 − dmin
T ′
1

)
+ k−π(k)

2 + 1

= k + rad(T ′
1)− dmin

T ′
1

+ 1

= k +
(
k+k1

2 − 1
)
−

(
1 + π(T1) +

k−k1

2

)
+ 1

= k + k1 − π(T1)− 1.

Similarly, a longest path of T ′ connecting a leaf x in Gi with i ∈ {2, . . . , s} and y = vj , 1 ≤ j ≤ t
has length

ℓi =
(
rad(T ′

i ) +
k−π(k)

2 + 1− dmin
T ′
i

)
+ k−π(k)

2 + 1

= k − π(k) + rad(T ′
i )− dmin

T ′
i

+ 2

= k − π(k) +
(
k+ki

2 − 1)−
(
1 + π(Ti) +

k−ki

2

)
+ 2

= k − π(k) + ki − π(Ti).
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Next, let x be a leaf in G1 (again, recall that the critical index m is 1) and y a leaf in Gi with
i ∈ {2, . . . , s} that are most distant from each other in T ′. The path connecting the leaves x and
y has length

ℓ1,i =
(
rad(T ′

1) +
k+π(k)

2 − dmin
T ′
1

)
+

(k−π(k)
2 + 1− dmin

T ′
i

+ rad(T ′
i )
)

= k + (rad(T ′
1)− dmin

T ′
1
) + (rad(T ′

i )− dmin
T ′
i
) + 1

= k + k+k1

2 − 1−
(
1 + π(T1) +

k−k1

2

)
+ k+ki

2 − 1−
(
1 + π(Ti) +

k−ki

2

)
+ 1

= k + k1 − π(T1) + ki − π(Ti)− 3.

The leaves x in Gi and y in Gj with i, j ∈ {2, . . . , s} and i < j that are farthest from each
other in T ′ have distance

ℓi,j =
(
rad(T ′

i ) +
k−π(k)

2 + 1− dmin
T ′
i

)
+
(k−π(k)

2 + 1− dmin
T ′
j

+ rad(T ′
j)
)

= k − π(k) + (rad(T ′
i )− dmin

T ′
i
) + (rad(T ′

j)− dmin
T ′
j
) + 2

= k − π(k) + k+ki

2 − 1−
(
1 + π(Ti) +

k−ki

2

)
+

k+kj

2 − 1−
(
1 + π(Tj) +

k−ki

2

)
+ 2

= k − π(k) + ki − π(Ti) + kj − π(Tj)− 2.

Finally, any x = vi and y = vj , 1 ≤ i < j ≤ t, have distance

distT ′(vi, vj) = 2
(k−π(k)

2 + 1
)
= k − π(k) + 2.

Before we can determine the diameter of T ′, we need to sort out the longest paths of T ′ from
those given above. If t > 0 then we have that

ℓ1 = k + k1 − π(T1)− 1 > (k + k1 − 2)− π(T1) = 2rad(T ′
1)− π(T ′

1) = diam(T ′
1).

This leads to ℓ1 > diam(T ′
1) ≥ diam(T ′

2) ≥ · · · ≥ diam(T ′
s). Moreover, in case of t ≥ 2, we also find

that

ℓ1 − distT ′(vi, vj) = (k + k1 − π(T1)− 1)− (k − π(k) + 2) = k1 + π(k)− π(T1)− 3

for all 1 ≤ i < j ≤ t. If k1 = 3 then, because π(k) = π(k1) = 1, we get ℓ1 − distT ′(vi, vj) =
1− π(T1) ≥ 0, which means ℓ1 ≥ distT ′(vi, vj). This holds even more so if k1 > 3.

If s ≥ 2 then

ℓ1,2 − ℓ1,i = (k + k1 − π(T1) + k2 − π(T2)− 3)− (k + k1 − π(T1) + ki − π(Ti)− 3)

= ((k2 − 1)− π(T2))− ((ki − 1)− π(Ti))

= (rad(T2)− π(T2))− (rad(Ti)− π(Ti))

≥ 0 for all i ≥ 2 by Lemma 1,

ℓ1,2 − diam(T ′
1) = (k + k1 − π(T1) + k2 − π(T2)− 3)− (k + k1 − π(T1)− 2)

= k2 − π(T2)− 1 > 0 since k2 ≥ 3, and

if t > 0 then ℓ1,2 − ℓ1 = (k + k1 − π(T1) + k2 − π(T2)− 3)− (k + k1 − π(T1)− 1)

= k2 − π(T2)− 2 ≥ 0 because k2 ≥ 3 and, if also

2 ≤ i ≤ s then ℓ1,2 − ℓi = (k + k1 − π(T1) + k2 − π(T2)− 3)− (k − π(k) + ki − π(Ti))

≥ k1 − π(T1)− 3 + π(k) because k2 − π(T2) ≥ ki − π(Ti)
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Moreover, if s > 2 then

ℓ1,2 − ℓ2,3 = (k + k1 − π(T1) + k2 − π(T2)− 3)− (k − π(k) + k2 − π(T2) + k3 − π(T3)− 2)

= ((k1 − 1)− π(T1))− ((k3 − 1)− π(T3)) + π(k)− 1

= (rad(T1)− π(T1))− (rad(T3)− π(T3)) + π(k)− 1

≥ 0 if π(k) = 1 by Lemma 1 and

ℓ2,3 − ℓi,j = (k − π(k) + k2 − π(T2) + k3 − π(T3)− 2)− (k − π(k) + ki − π(Ti) + kj − π(Tj)− 2)

=
(
((k2 − 1)− π(T2))− ((ki − 1)− π(Ti))

)
+

(
((k3 − 1)− π(T3))− ((kj − 1)− π(Tj))

)
=

(
(rad(T2)− π(T2))− (rad(Ti)− π(Ti))

)
+

(
(rad(T3)− π(T3))− (rad(Tj)− π(Tj))

)
≥ 0 if 1 < i < j ≤ s by Lemma 1.

It remains to compare ℓ1,2 and ℓ2,3 in the even case where π(k) = 0:

ℓ1,2 − ℓ2,3 = ((k1 − 1)− π(T1))− ((k3 − 1)− π(T3)) + π(k)− 1

= (k1 − π(T1))− (k3 − π(T3))− 1

{
≥ 0, if k1 − π(T1) > k3 − π(T3),

= −1, otherwise, that is k1 − π(T1) = k3 − π(T3).

We are now ready to estimate the diameter of T ′ and, thus, the radius. If s = 1 (and therefore
t > 0) then

diam(T ′) = max{diam(T ′
1), ℓ1,distT ′(vi, vj) | 1 ≤ i < j ≤ t}.

From the observations above, diam(T ′) = ℓ1. In Step (ii.2.), we see that k = k1+2(1−π(T1)) and
so

ℓ1 = k + k1 − π(T1)− 1 = k + (k − 2 + 2π(T1))− π(T1)− 1 = 2k − 3 + π(T1).

Obviously, π(T ′) = 1 − π(T1), which means that rad(T ′) = k − 1. Note also that, since n ≥
|V (G1)|+ 2 (because {u, v1} ⊆ V (G) \ V (G1))

k − 1 ≤ |V (G1)|+ (k − k1) ≤ (n− 2) + (2− 2π(T1)) ≤ n.

If s ≥ 2 then let

m1 = max{diam(T ′
1), . . . ,diam(T ′

s)},
m2 = max{ℓi,j | 1 ≤ i < j ≤ s},
m3 = max{ℓ1, . . . , ℓt},
m4 = max{distT ′(vi, vj) | 1 ≤ i < j ≤ t}.

Then, apparently, diam(T ′) = max{m1,m2,m3,m4}. By the above arguments, ℓ1,2 ≥ ℓ1 ≥
max{m1,m4}. If p = π(k) = 1 then ℓ1,2 ≥ m2 and, moreover, ℓ1,2 ≥ m3+k1−π(T1)−3+π(k) ≥ m3,
since k1 + π(k) ≥ 4. Thus, in this case, diam(T ′) = ℓ1,2.

Otherwise, if p = π(k) = 0, we first consider the case k1 − π(T1) > k3 − π(T3) ≥ 2. Again,
diam(T ′) = ℓ1,2 since ℓ1,2 ≥ m2 and ℓ1,2 ≥ m3 + k1 − π(T1)− 3 ≥ m3, as k1 − π(T1) ≥ 3.

Finally, if p = π(k) = 0 and k1 − π(T1) = k3 − π(T3), then we know that ℓ2,3 > ℓ1,2. In this
case, diam(T ′) = ℓ2,3, as ℓ2,3 ≥ m2 and ℓ2,3 ≥ ℓ1,2 + 1 ≥ m3 + k1 − π(T1) − 3 + 1 ≥ m3, because
k1 ≥ 3. Thus,

diam(T ′) =

{
ℓ2,3, if p = 0 and s > 2 and k1 − π(T1) = k3 − π(T3),

ℓ1,2, otherwise,
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according to the considerations above. In the first case, where

diam(T ′) = ℓ2,3 = k − π(k) + k2 − π(T2) + k3 − π(T3)− 2,

the value k− π(k) + k2 + k3 − 2 is even because of p = 0, and, therefore, π(T ′) = π(T2) + π(T3)−
2π(T2) · π(T3). Since k1 ≥ k2 ≥ k3 are of the same parity and because

k1 − π(T1) ≥ k2 − π(T2) ≥ k3 − π(T3) = k1 − π(T1),

it must be the case that k1 = k2 = k3 and π(T1) = π(T2) = π(T3). Moreover, Step (ii.2.) sets
k = k1 + k2 − 2 · π(T1) · π(T2) in this case. Because k1 = k3 and π(T1) = π(T3), we get

ℓ2,3 = k − 2 + (k1 + k2 − 2 · π(T1) · π(T2))− (π(T2) + π(T3)− 2π(T2) · π(T3)) = 2k − 2− π(T ′)

and, hence, rad(T ′) = k − 1. Moreover, since n ≥ |V (G1)| + |V (G2)| + 1 (because u ∈ V (G) \
(V (G1) ∪ V (G2))), we have

(k − 1) + (k − 1) ≤ (|V (G1)|+ (k − k1)) + (|V (G2)|+ (k − k2))

= (|V (G1)|+ |V (G2)|) + (k − k1 − k2) + k

≤ (n− 1)− 2 · π(T1) · π(T2) + k

≤ n+ (k − 1),

which means that k − 1 ≤ n.
In the other case, where

diam(T ′) = ℓ1,2 = k + k1 − π(T1) + k2 − π(T2)− 3,

we distinguish between p = 0 and p = 1. If p = 0 then k+k1+k2−3 is odd and π(T ′) = 1−π(T1)−
π(T2)+2 ·π(T1) ·π(T2). Moreover, Step (ii.2.) sets k = k1+k2−2 · (π(T1)+π(T2)−π(T1) ·π(T2)),
and we get

ℓ1,2 = k − 2 + (k1 + k2 − 2(π(T1) + π(T2)− π(T1) · π(T2))− (1− π(T1)− π(T2) + 2π(T1) · π(T2))

= 2k − 2− π(T ′),

which again means, rad(T ′) = k− 1. Otherwise, if p = 1 then k+ k1 + k2 − 3 is even and π(T ′) =
π(T1)+π(T2)−2·π(T1)·π(T2). In this final case, Step (ii.2.) defines k = k1+k2−1−2·π(T1)·π(T2))
and, thus,

ℓ1,2 = k− 2+ (k1 + k2 − 1− 2 · π(T1) · π(T2))− (π(T1) + π(T2)− 2 · π(T1) · π(T2)) = 2k− 2− π(T ′)

and we can conclude that rad(T ′) = k − 1 holds in every case. Similarly to the previous case, we
also get

(k − 1) + (k − 1) ≤ (|V (G1)|+ (k − k1)) + (|V (G2)|+ (k − k2))

= (|V (G1)|+ |V (G2)|) + (k − k1 − k2) + k

≤ (n− 1)− (2 · π(T1) · π(T2) + 1) + k

≤ n+ (k − 1),

and, again, k − 1 ≤ n.
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With T ′, the algorithm has created a k-leaf root of H = G− u with rad(T ′) = k − 1 ≤ n and
π(k) = p. Step (ii.4.) extends T ′ to a tree T by attaching the universal vertex u of G as a leaf
pendent to a center vertex of T ′. Obviously, T is a k-leaf root of G with π(k) = p and Property (T1)
rad(T ) = k − 1 ≤ n because distT (x, y) = distT ′(x, y) for all x, y ∈ V (H) = V (G)− u and

distT (u, x) ≤ rad(T ) + 1 = rad(T ′) + 1 = (k − 1) + 1 = k.

Moreover, T has Property (T2) dmin
T = 1+π(T ). If π(T ) = 0 then the center of T is a single vertex

z, which is also the min-max center. Since z is adjacent to the leaf u, we get dmin
T = 1. Otherwise,

if π(T ) = 1 then T has two center vertices z1 and z2 where, without loss of generality, u is attached
to z1. That makes z2 the min-max center with distance dmin

T = 2 to leaf u. This concludes the
proof of Proposition 7. □

With the following proposition, we summarize what we have so far and also cover the discon-
nected case.

Proposition 8 Let G be a ccg on n vertices and without true twins and let p ∈ {0, 1} be a given
parity. Then (T, k) = ρ(G, p) provides a k-leaf root T of G with π(k) = p and k ≤ n + 1. If G is
connected then (T, k) satisfies (T1) and (T2).

Proof: With the Propositions 6 and 7, we have shown for connected input graphs G that (T, k) =
ρ(G, p) returns a k-leaf root T of G with π(k) = p and that has the properties (T1) and (T2). It
remains to handle disconnected input. In this case, G has s ≥ 0 non-trivial connected components
G1, . . . , Gs and t ≥ 0 isolated vertices v1, . . . , vt such that s+ t ≥ 2.

If s = 0 then G consists of n ≥ 2 isolated vertices and, thus, Step (iii.2.) sets k = 2 for even
parity and k = 3, otherwise. Then, by Lemma 5, Step (iii.3.) returns a k-leaf root T of G.

For s > 0, every Gi is a connected ccg without true twins. By Proposition 7, Step (iii.1.)
provides a ki-leaf root Ti of parity p for every Gi, 1 ≤ i ≤ s. The value assigned to k in Step (iii.2.)
is the maximum km = max{k1, . . . , ks}. Since km ≤ |V (Gm)| + 1 and |V (Gm)| < n, we have
k ≤ n + 1. According to Lemma 4, the same step produces a k-leaf root T ′

i = η
(
Ti,

k−ki

2

)
of Gi

for all i ∈ {1, . . . , s}. Finally, by Lemma 5, Step (iii.3.) returns a k-leaf root T of G.
Notice that, the k-leaf root T returned by ρ(G, p) for disconnected input graphs G does not

need to satisfy (T1) and (T2). □

The following, last proposition finalizes the proof of Theorem 5 because it shows that the k-leaf
root T returned by ρ(G, p) is optimal with respect to both the value of k and the diameter of T .

Proposition 9 Let G be a ccg without true twins and let p ∈ {0, 1} be a given parity. Then
(T, k) = ρ(G, p) provides a k-leaf root T of G that is optimal for parity p (hence, π(k) = p). If G
is connected then (T, k) satisfies (T3).

Proof: That (T, k) = ρ(G, p) provides a k-leaf root T of G with π(k) = p has just been established.
We only need to show that T fulfills (T3) for connected input graphs G and that k is always parity-
optimal.

We begin with the proof of (T3) and, like for Proposition 8, this works by induction on the
number of vertices in G. Again, for the base case, Proposition 6 handles the star with two leaves,
the smallest connected ccg without true twins and more than one vertex. Proposition 6 settles the
theorem for all stars.

Now, let G have more than three vertices. That G is connected and not a star leads us to Case ii.
of ρ, again. Borrowing the argumentation from the proof of Proposition 8, we immediately get
that
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� G has a unique universal cut vertex u and H = G − u has s ≥ 1 non-trivial connected
components G1, . . . , Gs, each a ccg without true twins, and t ≥ 0 isolated vertices v1, . . . , vt
such that s+ t ≥ 2,

� by induction hypothesis, Step (ii.1.) provides ki-leaf roots Ti of parity p for all Gi, 1 ≤ i ≤ s,
which are optimal and satisfy (T3), here,

� k1 ≥ k2 ≥ · · · ≥ ks, if, without loss of generality, we assume

diam(T1) ≥ diam(T2) ≥ · · · ≥ diam(Ts),

� Step (ii.3.) produces k-leaf roots T ′
i = η

(
Ti,

k−ki

2

)
of all Gi, 1 ≤ i ≤ s with

k =


k1 + 2(1− π(T1)), if s = 1,

k1 + k2 − 1− 2 · π(T1) · π(T2) if s ≥ 2, p = 1,

k1 + k2 − 2 · π(T1) · π(T2), if s > 2, p = 0, k1 − π(T1) = k3 − π(T3),

k1 + k2 − 2 · (π(T1) + π(T2)− π(T1) · π(T2)), otherwise, and

diam(T ′
i ) = diam(Ti) + k − ki,

rad(T ′
i ) = rad(Ti) +

k−ki

2 = k+ki

2 − 1,

� Step (ii.3.) produces T ′ = µ(k, T ′
1, . . . , T

′
s, v1, . . . , vt) with

diam(T ′) =


k + k1 − π(T1)− 1, if s = 1,

k + k2 − π(T2) + k3 − π(T3)− 2, if s > 2, p = 0, k1 − π(T1) = k3 − π(T3),

k + k1 − π(T1) + k2 − π(T2)− 3, otherwise, and

� (T, k) = ρ(G, p), as assembled in Step (ii.4.), represents a k-leaf root of G with diam(T ) =
diam(T ′).

Next, consider an arbitrary k′-leaf root R of G and, for all i ∈ {1, . . . , s}, let Ri be the smallest
subtree of R with leaf set V (Gi).

To see that Ri and Rj are vertex-disjoint for all distinct i, j ∈ {1, . . . , s}, assume there is a
vertex c that belongs to both Ri and Rj . Since V (Gi) and V (Gj) are disjoint, c is not a leaf.
Because Gi and Gj are connected, there are adjacent v, w ∈ V (Gi) and adjacent x, y ∈ V (Gj) such
that c is on both, the path in Ri between v and w, which has length at most k′, and the path in
Rj between x and y, which has length at most k′, too. Without loss of generality, distRi

(c, v) ≤ k′

2

and distRj
(c, x) ≤ k′

2 , which implies the contradiction distR(v, x) ≤ k′. Then vx would be an edge
in G while, at the same time, there are no edges between Gi and Gj in G− u.

Clearly, Ri is a k′-leaf root of Gi and, since Ti has (T3), diam(Ri) ≥ diam(Ti) + k′ − ki. Since
diam(T ′

i ) = diam(Ti) + k − ki is in the listing above, we get

diam(Ri) ≥ diam(Ti) + k′ − ki = (diam(T ′
i )− k + ki) + k′ − ki = diam(T ′

i ) + k′ − k.

Now that we have established lower bounds on the diameters of the subtrees R1, . . . , Rs, we want
to use them to obtain a tight lower bound on the diameter of R.
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For this, let ui be the unique universal vertex of Gi by Proposition 3. By Lemma 3, there is
a center vertex zi of Ri with distRi

(ui, zi) ≤ k′ − rad(Ri). Let xi and yi be the two leaves of a
diametral path Di in Ri, thus, a path of length diam(Ri). Then, the center vertex zi of Ti is on
Di and distRi(ui, zi) = distR(ui, zi).

Next, we determine a long path in R and, with the length of this path, imply a lower bound
on diam(R). First, suppose s = 1. Then distR(z1, v1) > rad(R1) for, otherwise,

distR(u1, v1) ≤ distR(u1, z1) + distR(z1, v1) ≤ (k′ − rad(R1)) + rad(R1) = k′,

and u1 and v1 would be adjacent in G. Since R is a tree, the path X between v1 and x1 and the
path Y between v1 and y1 share a common subpath with one endpoint v1 and the other, say c, on
D1. If Y is longer than X then c is on the x1, z1-path and, thus, Y contains z1. Otherwise, if X is
at least as long as Y then c is on the z1, y1-path and z1 is on X. This means, the length ℓ of the
longest path among X and Y fulfills

ℓ ≥ distR(v1, z1) + rad(R1) > 2rad(R1) ≥ diam(R1) ≥ diam(T ′
1) + k′ − k.

By the bound on the length ℓ of one path in R we get diam(R) > diam(T ′
1) + k′ − k, and we

conclude

diam(R) ≥ diam(T ′
1) + k′ − k + 1 = (2rad(T ′

1)− π(T ′
1)) + k′ − k + 1

= (k + k1 − 2)− π(T ′
1) + k′ − k + 1

= (k + k1 − π(T1)− 1) + k′ − k

= diam(T ) + k′ − k,

as claimed.

If s ≥ 2 then distR(zi, zj) ≥ rad(Ri) + rad(Rj)− k′ + 1 for all 1 ≤ i < j ≤ s since, otherwise,

distR(ui, uj) ≤ distR(ui, zi) + distR(zi, zj) + distR(zj , uj)

≤ (k′ − rad(Ri)) + (rad(Ri) + rad(Rj)− k′) + (k′ − rad(Rj)) = k′,

and ui and uj would be adjacent in G.

Similar to the argument for s = 1, we consider certain paths in R and select the longest among
them. Here, we have four paths XX, XY , Y X and Y Y going from a vertex of {xi, yi} to a vertex
of {xj , yj}. Since R is a tree, the four path share a common subpath with one endpoint, say c, on
Di and the other, say c′, on Dj . With a similar argument as above, we get that a longest path
among XX, XY , Y X and Y Y contains zi and zj . For example, if Y Y is at least as long as the
other three paths then c is on the xi, zi-path and c′ is on the zj , xj-path and, thus, Y Y contains
both, zi and zj . The length ℓi,j of the selected long path fulfills

ℓi,j ≥ rad(Ri) + distR(zi, zj) + rad(Rj)

≥ rad(Ri) +
(
rad(Ri) + rad(Rj)− k + 1

)
+ rad(Rj)

= diam(Ri) + π(Ri) + diam(Rj) + π(Rj)− k′ + 1.
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Because diam(R) ≥ ℓ1,2 and π(R1) ≥ 0 and π(R2) ≥ 0, we find that

diam(R) ≥ diam(R1) + diam(R2)− k′ + 1

≥ (diam(T1) + k′ − k1) + (diam(T2) + k′ − k2)− k′ + 1

= (2rad(T1)− π(T1)− k1) + (2rad(T2)− π(T2)− k2) + k′ + 1

= (2k1 − 2− π(T1)− k1) + (2k2 − 2− π(T2)− k2) + k′ + (k − k) + 1

= (k + k1 − π(T1) + k2 − π(T2)− 3) + k′ − k.

Hence, if p = 1 or s = 2 or (s > 2 and) k1 − π(T1) > k3 − π(T3) then (as diam(T ) = k + k1 −
π(T1) + k2 − π(T2)− 3, here) we already get

diam(R) ≥ diam(T ) + k′ − k.

In the remaining case, we have p = 0 and s > 2 and k1 − π(T1) = k3 − π(T3). Like in the
proof of Proposition 7, we can conclude that k1 = k2 = k3 and π(T1) = π(T2) = π(T3), here.
Thus, diam(T1) = diam(T2) = diam(T3) and diam(T ′

1) = diam(T ′
2) = diam(T ′

3), too. If we write
δ = diam(T ′

1) + k′ − k then diam(Ri) ≥ δ for all i ∈ {1, 2, 3}.
Here, we show that at least one of the three length ℓ1,2, ℓ1,3, ℓ2,3 is at least 2δ − k′ + 2. If

diam(Ri) + π(Ri) > δ for some i ∈ {1, 2, 3}, then

ℓi,j ≥ diam(Ri) + π(Ri) + diam(Rj) + π(Rj)− k′ + 1

≥ (δ + 1) + δ − k′ + 1

≥ 2δ − k′ + 2

for all j ∈ {1, 2, 3} \ {i} and we are done, already. Therefore, consider that diam(Ri) + π(Ri) ≤ δ
for all i ∈ {1, 2, 3}. This means, for all i ∈ {1, 2, 3}, that δ ≤ diam(Ri) ≤ δ − π(Ri), which is only
possible if diam(Ri) = δ and π(Ri) = 0. In other words, the diameters of R1, R2 and R3 are equal
to the even number δ. Hence, rad(R1) = rad(R2) = rad(R3) =

δ
2 . If distR(zi, zj) ≥ δ − k′ + 2 for

any distinct i, j ∈ {1, 2, 3}, then

ℓi,j ≥ rad(Ri) + distR(zi, zj) + rad(Rj)

≥ δ
2 + (δ − k′ + 2) + δ

2

= 2δ − k′ + 2

and we are done, again. So, finally, assume that distR(zi, zj) ≤ δ − k′ + 1 for all i, j ∈ {1, 2, 3}.
Then, since we have

distR(zi, zj) ≥ rad(Ri) + rad(Rj)− k′ + 1 = δ
2 + δ

2 − k′ + 1

from before, distR(z1, z2) = distR(z1, z3) = distR(z2, z3) = δ − k′ + 1. Let w be the last vertex
on the z1, z2-path in R that is closest to z3 and let δi be the distances between zi and w for all
i ∈ {1, 2, 3}. Then, for all 1 ≤ i < j ≤ 3, it must be

δi + δj = distR(zi, zj) = δ − k′ + 1.

Solving the system of the three linear equations above yields

δ1 = δ2 = δ3 = 1
2 (δ − k′ + 1),
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which implies that k′ is odd, a contradiction to π(k′) = π(k) = p = 0.
So at least one length, say ℓ1,2, is at least 2δ − k′ + 2. This means that

diam(R) ≥ ℓ1,2 ≥ 2δ − k′ + 2

= (diam(T ′
1) + k′ − k) + (diam(T ′

3) + k′ − k)− k′ + 2

= (diam(T1) + k − k1 + k′ − k) + (diam(T3) + k − k3 + k′ − k)− k′ + 2

= (2rad(T1)− π(T1) + k′ − k1) + (2rad(T3)− π(T3) + k′ − k3)− k′ + 2

= (2rad(T1)− π(T1)− k1) + (2rad(T3)− π(T3)− k3) + k′ + (k − k) + 2

= k + (k1 − 2− π(T1)) + (k3 − 2− π(T3)) + k′ − k + 2

= (k + k1 − π(T1) + k3 − π(T3)− 2) + k′ − k.

Because here, diam(T ) = k + k1 − π(T1) + k3 − π(T3) − 2, we have now shown that diam(R) ≥
diam(T ) + k′ − k.

It remains to prove that the value of k in (T, k) = ρ(G, p) is optimal with respect to leaf
roots of G with parity p. For the connected case, this can be seen as follows. By Corollary 4,
2k′ − 2 ≥ diam(R) holds for every k′-leaf roots R of G. This and Property (T3) of T leads to

2k′ − 2 ≥ diam(R) ≥ diam(T ) + k′ − k.

Since diam(T ) = 2rad(T )− π(T ) and rad(T ) = k − 1 by Property (T1) of T , we get

diam(T ) + k′ − k = (2rad(T )− π(T )) + k′ − k = 2(k − 1)− π(T ) + k′ − k ≥ k + k′ − 3.

Together, this implies 2k′ − 2 ≥ k + k′ − 3, which means that k′ ≥ k − 1. Because both, k and k′,
have the same parity, we get k′ ≥ k. That is, T is an optimal k-leaf root of G with parity p.

Finally, let G be a disconnected graph with s ≥ 0 non-trivial connected components G1, . . . , Gs

and t ≥ 0 isolated vertices v1, . . . , vt such that s+ t ≥ 2. By Proposition 8, (T, k) = ρ(G, k) results
from finding (T1, k1) = ρ(G1, p), . . . , (Ts, ks) = ρ(Gs, p) in Step (iii.1.) and assembling them to a
k-leaf root T for G with k = max{k1, . . . , ks, p+2} in the Steps (iii.2.) and (iii.3.). After handling
the connected case above, we know that Ti is an optimal ki-leaf root of Gi with parity p for all
i ∈ {1, . . . , s}.

Clearly, if s = 0 then a (p + 2)-leaf root is the best possible for parity p, and we are done.
Otherwise, assume, without loss of generality, that k = k1. Moreover, let R be a p-parity k′-leaf
root of G and, for all i ∈ {1, . . . , s}, let Ri be the smallest subtree of R with leaf set V (Gi). Then
R1 is a k′-leaf root of G1. Since k1 is optimal for G1, we have that k′ ≥ k1 = k, thus, T is an
optimal k-leaf root of G with parity p. □

With the four propositions above, Theorem 5 has been proven. □

5 Linear Time Leaf Root Construction for CCGs

The algorithm in this section is an implementation of the ρ-operation from Section 3. Here, the
recursive subdivision of the input ccg G is replaced with a post-order iteration of the cotree of G.
Moreover, the tree representation of the output leaf root T has to necessarily be compressed by the
algorithm. This means that T is encoded with a denser representation, where long paths of degree
two-vertices are compressed into single weighted edges. Otherwise, the size of T alone would be
quadratic in the input length. But before we go into the details, we analyze the used submodules
and show that the operations η and µ run efficiently.



266 V.B. Le and C.Rosenke Computing Optimal Leaf Roots of Chordal Cographs

Lemma 6 Let T be a compressed tree with n leaves and with explicitly given min-max center z,
center Z, diameter diam(T ), and leaf-distance dmin

T . For all integers δ ≥ 0, the compressed tree
T ′ = η(T, δ) with min-max center z′, center Z ′, diameter diam(T ′), and leaf distance dmin

T ′ can be
computed in O(n) time.

Proof: By definition, T ′ is obtained from T by replacing all n pendant edges with new paths of
length δ + 1, each. In the compressed encoding, this takes just n modifications of the weights of
edges. More precisely, if v(ℓ)x is a pendent edge of T representing a path of length ℓ that ends
at leaf x (where we simply take ℓ = 1 for an unweighted edge) then T ′ has the same pendent
edge v(ℓ′)x with the new weight ℓ′ = ℓ + δ. The n constant-time modifications take O(n) time,
altogether.

According to Lemma 4, z′ = z, Z ′ = Z, diam(T ′) = diam(T ) + 2δ and dmin
T ′ = dmin

T + δ, which
takes just constant time to compute. □

Lemma 7 Let s ≥ 0 be an integer and, for all i ∈ {1, . . . , s}, let Ti be a given, compressed tree with
explicitly given min-max center zi, center Zi, diameter diam(Ti), and leaf-distance dmin

Ti
. For all

integers k ≥ 2 and vertices v1, . . . , vt, the merged compressed tree T ′ = µ(k, T1, . . . , Ts, v1, . . . , vt)
with center Z ′ and diameter diam(T ′) can be computed in O(s+ t) time.

Proof: According to definition, the computation of T ′ by µ starts with finding the critical index
m, which is the smallest number in {1, . . . , s} with dmin

Tm
= min{dmin

Ti
| 1 ≤ i ≤ s}. Since dmin

Ti
is

explicitly known for all given trees, m is found after iterating the input once in O(s) time.

Then, every tree Ti, 1 ≤ i ≤ s is attached at zi to a new vertex c by a path of at most
k−π(k)

2 + 1 − dmin
Ti

edges and every vertex vj , 1 ≤ j ≤ t is attached to c with a path of length
k−π(k)

2 + 1. Each of these paths is compressed into one edge of the respective weight and, hence,
this takes O(s+ t) time.

It remains to show that Z ′ and diam(T ′) can be computed alongside T ′ without consuming
essentially more computing time. Both parameters require the identification of a diametral path
in T ′. We recall that every diametral path P connects two leaves of the tree T ′ and, therefore, is
either entirely included in one of the trees T1, . . . , Ts or contains c and connects leaves that stem
from different input trees or vertices v1, . . . , vt. To be able to cover the first case, we search a tree
Ta with diam(Ta) = max{diam(Ti) | 1 ≤ i ≤ s}. This works in O(s) time since the diameters are
given. If, at the end, P turns out to be part of Ta then Z ′ = Za and diam(T ′) = diam(Ta), which
is computed in O(1) time.

For the other possibility, we firstly think of the case where P connects two leaves vi and vj ,
1 ≤ i < j ≤ t. Then, obviously, diam(T ′) = k − π(k) + 2 ≥ diam(Ta) and Z ′ = {c}, which can be
decided and computed in O(1) time.

Secondly, one or both end vertices of P may be leaves of the trees T1, . . . , Ts. To efficiently find
P under this condition, we hook additional computations into the iteration of these trees during
the evaluation of the µ-operation. More precisely, while a tree Ti is attached to c by a path of

length pi (that is, pi = k+π(k)
2 − dmin

Ti
for i = m and, otherwise, pi = k−π(k)

2 + 1 − dmin
Ti

), we
memorize the T ′-distance

di = max{distT ′(c, v) | v is leaf in Ti} = pi + rad(Ti) = pi +
⌈
diam(Ti)

2

⌉
between c and a farthest leaf of Ti. As diam(Ti) is known in advance for all i ∈ {1, . . . , s}, this
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takes just O(1) additional time per iteration and, thus, O(s) time in total. We also define

d0 =

{
distT ′(c, v1) =

k−π(k)
2 + 1, if t > 0,

0, otherwise,

the T ′-distance between c and any present leaf v1, . . . , vt. Observe for later that, if t > 0 then

di − d0 = pi + rad(Ti)− k−π(k)
2 + 1

≥ k+π(k)
2 − dmin

Ti
+ rad(Ti)− k−π(k)

2 + 1

≥ (k+π(k))−(k−π(k))
2 + 1 since dmin

Ti
≤ rad(Ti)

= π(k) + 1 ≥ 1,

hence, di > d0 for all i ∈ {1, . . . , s}.
After the evaluation of µ and the associated completion of T ′, we determine values i1 and i2

such that
di1 = max{di | 0 ≤ i ≤ s} and di2 = max{di | 0 ≤ i ≤ s, i ̸= i1},

which takes O(s) time. If a diametral path P of T ′ runs through c and has at least one end vertex
in one of the trees T1, . . . , Ts then, obviously, the length of this path is d = di1 + di2 . We can
detect this situation in O(1) time by checking d > diam(Ta) and t > 1⇒ d > k−π(k)+ 2. In this
case, we infer that diam(T ′) = d and Z ′ is on P . More precisely, if Z ′ = {z′1, z′2} (with z′1 = z′2 if

π(T ′) = 0) then Z ′ is situated on the longer subpath of P with z′1 at distance δ1 =
⌈
di1

−di2

2

⌉
from

c and z′2 at distance δ2 =
⌊
di1

−di2

2

⌋
.

To conclude the proof, we show that Z ′ is situated on the recently inserted weighted edge
c(pi1)zi1 , or more precisely, pi1 ≥ δ1 ≥ δ2 ≥ 0. That δ2 ≥ 0 holds since, otherwise, di1 < di2 .
Similarly, we note that, if one of the end vertices of P is a leaf of v1, . . . , vt then i2 = 0 since,
otherwise, d0 = di1 < di2 . So, i1 is in {1, . . . , s}, and we further observe that

2rad(Ti1)− π(Ti1) = diam(Ti1) ≤ diam(Ta) < di1 + di2 = pi1 + rad(Ti1) + di2 ,

because Ta has the largest diameter among the given s trees. This means that rad(Ti1) ≤ pi1 +di2 .
Using this for the estimation of δ1, we get

δ1 =
⌈
di1

−di2

2

⌉
≤ pi1

+rad(Ti1
)−di2

2 ≤ pi1
+(pi1

+di2
)−di2

2

= pi1 .

Hence, if δ1 = δ2 = 0 then z′1 = z′2 = c. If δ1 = pi1 then z′1 = zi1 and, if δ1 > δ2 in this case,
then the edge c(pi1)zi1 is split into the weighted edge c(pi1 − 1)z′2 and the edge z′2z

′
1. Otherwise, if

also π(T ′) = 0, then the center z′1 = z′2 is inserted by splitting the edge c(pi1)zi1 into the weighted
edges c(δ1)z

′
1 and z′1(pi1−δ1)zi1 . In the final case, c(pi1)zi1 is replaced by inserting the center edge

z′1z
′
2 between c(δ2)z

′
2 and z′1(pi1 − δ1)zi1 . Altogether, this implies that Z ′ and diam(T ′) are always

found in O(s) time. □

Knowing the computational complexities of η and µ, we can design an efficient implementation of
the main procedure in Algorithm 1. We decided to implement the recursive definition of ρ(G, p)
as an iterative traversal of the cotree T of G. The primary reason for this is that the recursive
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partition of G is almost trivial using T . For instance, connected and disconnected graphs G can
easily be distinguished with the cotree. The former have a root labelled by 1 and the latter by 0 .
Likewise, we can detect small input graphs, stars, with T by checking if the root is labelled with
1 and if the only child that is labelled with 0 has just leaf-children. For that reason, the main
loop of Algorithm 1 is basically divided into three parts, the first two for connected subgraphs of
G and the third one for disconnected input. We like to point out, however, that the third part is
executed at most once in the first loop-iteration, if G is disconnected. All recursively generated
subgraphs of G are connected and, thus, processed by the first or second part.

Recall that, for connected graphs G of sufficient size, the ρ-operation divides G at the unique
universal vertex u, to recurse into the non-trivial connected components G1, . . . , Gs of G− u, and
to conquer by merging the according leaf roots T1, . . . , Ts into a parity-optimal solution for G. This
divide and conquer procedure is translated into a traversal of the cotree T as follows. Since input
consists of ccgs without true twins, we rely on Proposition 2. That means that nodes with the
label 1 , like the root X of T , always have exactly one leaf-child, say u, and one child with label
0 , say Y . The leaf u marks the unique universal vertex in G and Y has children Z1, . . . , Zs with
label 1 and leaf-children v1, . . . vt that represent the non-trivial connected components G1, . . . , Gs

and the isolated vertices v1, . . . , vt of G−u. The chosen post-order traversal of T makes sure that,
before processing X (and Y ), the nodes Z1, . . . , Zs have been visited and finished. Because we use
a stack to pass interim results upwards, we always find leaf roots T1, . . . , Ts for G1, . . . , Gs on the
stack (in reverse order), when we need to compute a leaf root T for the subgraph that corresponds
to TX .

We present the details of our construction in Algorithm 1: OptimalLeafRoot. The following
theorem summarizes our results.

Theorem 10 Given a chordal cograph G on n vertices and m edges and p ∈ {0, 1}, a compressed
κ-leaf root of G with minimum integer κ of parity p can be computed in O(n+m) time.

Proof: Let G be a ccg and p ∈ {0, 1} a parity. We can assume that G is free of true twins as,
otherwise, we can remove x for every pair x, y of true twins in G in linear time and, when (T, k)
has been computed, insert every x pendant to the parent of the corresponding twin leaf y into T .
The cotree T of G is computed in Line 1, which works in linear time O(n + m) as discussed in
Section 2.

According to Lemma 6, there is a constant c1 such that η(T, δ) takes at most c1 · n com-
putation steps for input trees T with n leaves. In the same way, c2 is a constant such that
µ(k, T1, . . . , Ts, v1, . . . , vt) requires not more than c2(s+ t) steps as promised by Lemma 7.

We assume the existence of a constant c3 that can be used as an upper bound on the number
of steps that the algorithm requires for any of the following operational blocks: Firstly, the base
case in Line 7 is, in fact, solved by a loop that adds t + 1 leaves to the leaf root T . Here c3 is
supposed to be an upper bound on the costs for one loop iteration. The computation of Line 7
as a whole then requires at most (t+ 1) · c3 steps. Secondly, the Lines 2 and 22 contain for-loops
where c3 shall be a bound on the number of steps needed to go from one iteration to the next.
This includes, for instance, traversing the tree T to visit the next node X and to push a pointer
to (Ti, ki) onto the stack S. Thirdly, certain lines like Line 10 and Line 13 describe single iterated
operations. Beyond the costs of advancing the loop here, c3 is supposed to additionally bound the
computational expenses for one entire iteration. In Line 10, for example, this means the cost of
popping from the stack and, in Line 13 the necessary steps to update a maximum are included.
Finally, c3 is also meant to cover the costs for decomposing the cotree like in Line 4, checking
certain conditions as in Line 15 and for simple arithmetic computations like for the value of k
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Algorithm 1: OptimalLeafRoot

Input: A ccg G = (V,E) without true twins and a parity p ∈ {0, 1}
Output: A pair (T, k) of a k-leaf root T of G with smallest p-parity integer k.

1 initialize empty stack S and compute the cotree T of G
2 foreach node X visited traversing T in post-order do
3 if X is labelled with 1 then
4 let Y be the 0 -child and u the leaf-child of X
5 let s be the number of 1 -children and v1, . . . , vt the leaf-children of Y
6 if s = 0 then // Case i., base case, input is a star

7 build T like Case i., Section 3 for star on edges uv1, . . . , uvt
8 push (T, 4− p) onto S
9 else // Case ii., input is a connected graph

10 foreach i ∈ {s, s− 1, . . . , 1} do pop (Ti, ki) from S
11 if s = 1 then k ← k1 + 2(1− π(T1))
12 else
13 ka ← max{k1, . . . , ks}
14 kb ← max{ki | 1 ≤ i ≤ s, i ̸= a}
15 if p = 1 then k ← ka + kb − 1− 2 · π(Ta) · π(Tb)
16 else
17 if s > 2 and ka > max{ki | 1 ≤ i ≤ s, i ̸= a, i ̸= b} then
18 k ← ka + kb − 2 · π(Ta) · π(Tb)
19 else k ← ka + kb − 2 · (π(Ta) + π(Tb)− π(Ta) · π(Tb))

20 end

21 end
22 foreach i ∈ {1, . . . , s} do T ′

i ← η(Ti, (k − ki)/2)
23 T ← µ(k, T ′

1, . . . , T
′
s, v1, . . . , vt)

24 attach u as a leaf to a center of T
25 push (T, k) onto S
26 end

27 end
28 if X is a 0 -node with no parent then // Case iii., disconnected input

29 let s be the number of 1 -children and v1, . . . , vt the leaf-children of X
30 foreach i ∈ {s, s− 1, . . . , 1} do pop (Ti, ki) from S
31 k ← max{k1, . . . , ks, p+ 2}
32 foreach i ∈ {1, . . . , s} do T ′

i ← η(Ti, (k − ki)/2)
33 T ← µ(k, T ′

1, . . . , T
′
s, v1, . . . , vt)

34 push (T, k) onto S
35 end

36 end
37 pop (T, k) from S
38 return (T, k)
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starting at Line 15.

We begin the proof with connected input graphs. The idea is to use induction on the height h
of the cotree T to show that, then, there is a constant c such that Algorithm 1 requires c(n+m)
computation steps to put (T, k) = ρ(G, p) on top of the stack S before finishing the last visited
node of T by the post-order-loop in Lines 2 to 27. More precisely, we choose c = c1 + c2 + 9c3.
This would mean that the computation in this case takes O(n+m) steps.

In any case, Algorithm 1 starts with decomposing the cotree below node X by enumerating the
s+ t children of X in (s+ t) · c3 time. Next, checking if s = 0 in c3 time allows deciding between
the base case, which we handle with the induction start, and the general condition, which we prove
with the induction step.

Since G is connected and free of true twins, the induction start is at h = 2 where, according to
Section 2.1, the cotree has a 1 -root X with leaf child u and a 0 -child that has the leaf-children
v1, . . . , vt, only. Then G is the star with center u and leaves v1, . . . , vt, that is, n = t + 1 and
m = t. This means, Algorithm 1 iterates just one 1 -node (the root X), heads directly into Line 7,
and, accordingly, handles this case like Case i. of the ρ-operation. We argue above that this takes
(t + 2) · c3 time for composing the leaf root and for advancing the loop. Afterwards, it pushes
(T, k) = ρ(G, p) on top of the stack S in c3 time before the for-loop finishes X, the last visited
node of T . Since s = 0, t = n− 1, and c > 3c3, the (4− p)-leaf root T is constructed in time

(s+ t) · c3 + c3 + (t+ 2) · c3 = c3(n+m) + 2c3 ≤ 3c3(n+m) < c(n+m).

In the induction step, the height h of T is at least 3 and G is not a star. After decomposing the
cotree and checking the condition s > 0, the algorithm enters Line 10 because G is again connected
and, thus, the cotree T has a 1 -root X. According to Section 2.1, the root has a leaf-child u and a
0 -child Y with, in turn, 1 -children Z1, . . . , Zs, s ≥ 1. Due to post-order traversal, the algorithm
consecutively iterates through the subtrees TZ1 , . . . , TZs in that order before entering Y and then
X. As the cotrees TZ1 , . . . , TZs have height less than h, they fulfill the induction hypothesis. This
means for all i ∈ {1, . . . , s} that the algorithm requires not more than c(ni + mi) + c3 steps to
output (Ti, ki) = ρ(Gi, p) on top of the stack S, where Gi is the connected component of G − u
that corresponds to TZi

with ni = |V (Gi)| vertices and mi = |V (Gi)| edges. As the isolated
vertices v1, . . . , vt and the universal vertex u with its n − 1 adjacent edges are not included in
G1, . . . , Gs and as, thus, n1 + · · · + ns = n − t − 1 and m1 + · · · + ms = m − n + 1, it takes
c((n − t − 1) + (m − n + 1)) + s · c3 = c · (m − t) + s · c3 steps to put the entire sequence
(T1, k1), . . . , (Ts, ks) on top of the stack S. Algorithm 1 pops this list of interim results from the
stack in reverse order in Line 10. Although unmentioned for clarity in the listing of Algorithm 1,
every tree Ti, 1 ≤ i ≤ s is retrieved together with the explicit information on center, min-max
center, diameter, and leaf distance.

After that, it is easy to check that k is computed exactly like in Case ii. in the listing of
the ρ-operation in Section 3. With the up to three max-oparations, three conditionals, and four
arithmetic computations, this is done in at most (3s+ 7) · c3 steps.

Since T1, . . . , Ts have n− t− 1 leaves, altogether, Line 22 computes in c1(n− t− 1)+ s · c3 time
the same extended k-leaf roots T ′

1, . . . , T
′
s as ρ. Notice that the subroutine η includes min-max

center z′i, center Z
′
i, diameter diam(T ′

i ), and leaf distance dmin
T ′
i

for every tree T ′
i , 1 ≤ i ≤ s. Based

on that, the Lines 23 and 24 produce with c2(s+ t) + c3 steps the same merged k-leaf root T as ρ
does. The subroutine µ explicitly returns only the center Z = {z1, z2} and the diameter diam(T )
with T . However, the min-max center z and the leaf distance dmin

T are immediately determined in
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Line 24 due to attaching u. If π(T ) = 0 then z = z1 = z2 and dmin
T = 1 and, otherwise, z is the

center that is not chosen as the parent of u and dmin
T = 2. The costs for these computations are

bounded by c3.
After all that, the result (T, k) = ρ(G, p), including z, Z, diam(T ), and dmin

T , is pushed onto S
in Line 25. This finishes the processing of X, the last visited node of T .

Since n ≥ s+ t and n ≥ 3 and c = c1 + c2 + 9c3, the total computation time is

((s+ t) · c3) + c3 + (c(m− t) + s · c3) + ((3s+ 7) · c3) + (c1(n− t− 1) + s · c3) + (c2(s+ t) + c3)

= c(m− t) + c1(n− t− 1) + c2(s+ t) + c3(6s+ t+ 9)

< cm+ c1n+ c2n+ c3(9n) = (c1 + c2 + 9c3)n+ cm = c(n+m).

This completes the induction.

For a disconnected graph G, we also show that the loop in Lines 2 to 27 puts (T, k) = ρ(G, p)
on top of the stack S. The cotree T of G has a 0 -root X, which has 1 -children Z1, . . . , Zs, s ≥ 0
and leaf-children v1, . . . , vt such that s + t ≥ 2. Notice that X, as the root of T , has no parent.
Then, as argued before, the post-order traversal consecutively iterates through TZ1

, . . . , TZs
before

entering the node X in Line 29. Since the graphs G1, . . . , Gs are connected, we have seen above
that iterating the children of X takes at most c(n1+m1)+· · ·+c(ns+ms) time, where ni = |V (Gi)|
and mi = |E(Gi)|. This time, n− t = n1 + · · ·+ ns and m− t = m1 + · · ·+ms and, thus, at most
c(n+m) time is required to put the sequence (T1, k1) = ρ(G1, p), . . . , (Ts, ks) = ρ(Gs, p) on top of
the stack S. Again unmentioned, every tree Ti, 1 ≤ i ≤ s comes with explicitly designated min-
max center, center, diameter and leaf distance. Altogether, it, thus, takes linear time to prepare
the interim results. Like in Case iii. of the ρ-operation, the value of k is the maximum among
{k1, . . . , ks, p + 2}. So, by Lemmas 6 and 7, (T, k) = ρ(G, p) is correctly computed in Lines 32
and 33. Then Line 34 puts (T, k) on top of S, which finishes X, the last visited node of T . With
a similar argument as for the connected case above, we see that this is all done in linear time.

Thus, the algorithm takes O(n +m) time in each of the above cases to finally reach Line 37,
where (T, k) = ρ(G, p) waits accessible at the top of S. Hence, because G is a ccg without true
twins, Theorem 5 tells us that Algorithm 1 provides an optimal k-leaf root T of G with π(k) = p
at this point. This proves Theorem 10. □

Observe that Theorem 10 restates our main result from Theorem 1 in a slightly generalized form.
By running Algorithm 1: OptimalLeafRoot once for every parity p ∈ {0, 1}, we clearly find an
optimal leaf root of the input graph G in linear time. Hence, the proof of Theorem 10 settles
Theorem 1, too.

6 Conclusion

With Theorem 10, we have shown that the OLR problem is linear-time solvable for chordal
cographs. Our work also provides a linear-time solution for the k-leaf power recognition prob-
lem on chordal cographs. Specifically, for a given ccg G and an integer k, it is sufficient to compute
(T, κ) = ρ(G, π(k)) (in linear time with Algorithm 1) to see by κ ≤ k if G is a k-leaf power.
We conclude the paper by exploring the differences in the construction of odd and even leaf-roots.
As we have seen, merging three or more even leaf roots sometimes requires a slightly stronger
increase in k than for odd leaf roots. This can accumulate to an arbitrary big gap between k and
k′ of an optimal odd k-leaf root and an optimal even k′-leaf root of a given ccg. For example,
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consider the (infinite) series F1, F2, F3, . . . , Fi, . . . of ccgs defined as follows. Let F0 be the path
on three vertices and for all integers i > 0 define

Fi = ti 1 ((xi 1 (Fi−1 0 ui)) 0 (yi 1 (Fi−1 0 vi)) 0 (zi 1 (Fi−1 0 wi)))

with g ∈ {ti, ui, vi, wi, xi, yi, zi} denoting a graph with the single vertex g. By Section 2, F1, F2, . . .
are a family of ccgs and, apparently, all these graphs are connected and without true twins.

Lemma 8 For all integers i ≥ 1, the graph Fi is a (odd) ki-leaf power for ki = 2i+2 − 1 but not a
(ki − 2)-leaf power and a (even) k′i-leaf power for k′i = ki + 2i − 1 but not a (k′i − 2)-leaf power.

Proof: We show by induction on i that (Ti, ki) = ρ(Fi, 1) and (T ′
i , k

′
i) = ρ(Fi, 0) with π(Ti) =

π(T ′
i ) = 0. This proves the lemma because, by Theorem 5, ρ provides an optimal leaf root of the

given parity.
For the induction start at i = 1, we leave it to the reader to check that (T1, k1) = ρ(F1, 1) and

(T ′
1, k

′
1) = ρ(F1, 1) provide a k1-leaf root T1 of F1 with k1 = 7 and diam(T1) = 8 and a k′1-leaf root

T ′
1 with k′1 = 8 and diam(T ′

1) = 10.

For the induction step, let i > 1 and assume that (Ti−1, ki−1) = ρ(Fi−1, 1) with π(Ti−1) = 0
and (T ′

i−1, k
′
i−1) = ρ(Fi−1, 0) with π(T ′

i−1) = 0.
We complete the proof by following the constructions of ρ(Fi, 1) and ρ(Fi, 0) as introduced in

Section 3. First, note that

Fi = ti 1 (Xi 0 Yi 0 Zi)

has the universal cut vertex ti and that Fi− ti consists of the three mutually isomorphic connected
components

Xi = xi 1 (Fi−1 0 ui),

Yi = yi 1 (Fi−1 0 vi),

Zi = zi 1 (Fi−1 0 wi).

Each of them has a universal cut vertex xi, yi or zi and all of Xi − xi, Yi − yi, Zi − zi consist of
the non-trivial connected component Fi−1 and an isolated vertex ui, vi or wi. This means that
the leaf root construction for Xi, Yi, Zi works according to the case s = 1 and, up to isomorphism,
we therefore have

(T, k) = ρ(Xi, 1) = ρ(Yi, 1) = ρ(Zi, 1) with

k = ki−1 + 2(1− π(Ti−1)) = 2i+1 + 1 and

(T ′, k′) = ρ(Xi, 0) = ρ(Yi, 0) = ρ(Zi, 0) with

k′ = k′i−1 + 2(1− π(T ′
i−1)) = 2i+1 + 2i−1.

Like in the proof of Proposition 8, we get that a diametral path has length ℓ1 in both constructions
and, thus,

diam(T ) = 2k − 3 + π(Ti−1) = 2i+2 − 1 and

diam(T ′) = 2k′ − 3 + π(T ′
i−1) = 2i+2 + 2i − 3.

Hence, π(T ) = π(T ′) = 1.
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Now get back to the leaf root construction for Fi. If p = 1 then our procedure handles the only
case with s ≥ 2. We get

(Ti, ki) = ρ(Fi, 1) with

ki = 2k − 1− 2π(T )2 = 2i+2 − 1

as claimed and, like in the proof of Proposition 8, a diametral path is of length ℓ1,2, thus,

diam(Ti) = ki + 2k − 2π(T )− 3

= (2i+2 − 1) + 2(2i+1 + 1)− 5

= 2i+3 − 4,

which means π(Ti) = 0. If p = 0 then the procedure works the case with s > 2 and where k−π(T )
equally stands for all three (isomorphic) k-leaf roots T of the subgraphs Xi, Yi, Zi. This means
that

(T ′
i , k

′
i) = ρ(Fi, 0) with

k′i = 2k′ − 2π(T ′)2 = (2i+2 + 2i)− 2

= (2i+2 − 1) + 2i − 1 = ki + 2i − 1,

as claimed. Moreover, like in the proof of Proposition 8, a diametral path in T ′
i has length ℓ2,3.

Here, we get

diam(T ′
i ) = k′i − π(k′i) + 2k′ − 2π(T ′)− 2

= (2i+2 + 2i − 2) + 2(2i+1 + 2i−1)− 4

= 2i+3 + 2i+1 − 6,

thus, π(Ti) = 0. This completes the proof. □

This means that, although odd and even leaf root construction follows the same approach, there
are k-leaf powers of odd k among the chordal cographs that have optimal even k′-leaf roots with
k′ roughly 1.25k.
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[3] Andreas Brandstädt and Van Bang Le. Structure and linear time recognition of 3-leaf powers.
Information Processing Letters, 98(4):133–138, 2006. doi:10.1016/j.ipl.2006.01.004.
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