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Abstract. The matching book thickness of a graph is the least number of pages
in a book embedding such that each page is a matching. A graph is dispersable if its
matching book thickness equals its maximum degree. Minimum page matching book
embeddings are given for bipartite and for most non-bipartite circulants contained in
the (Harary) cube of a cycle and for various higher-powers.

1 Introduction

Dispersable graphs were introduced in [4], where it was conjectured that all regular bipartite graphs
are dispersable. This was disproved by Alam et al. [1] who showed that the Gray and Folkman
graphs, though regular bipartite, are not dispersable. These counterexamples are edge-transitive
but not vertex-transitive. In [2], Alam et al. gave an infinite family of counterexamples to the
claim and conjectured that bipartite vertex-transitive graphs are dispersable.

In this paper, the target graph families are circulant graphs (hence, vertex-transitive). Circu-
lants (or “Harary graphs” [10]) are used in graph theory, computer science, network engineering,
and dynamical systems (e.g., [5, 9, 12, 14, 26]). Terms are defined in the next section.

Matching book embeddings of bipartite circulants C are given where the page number is equal
to the vertex degree ∆(C), supporting the conjecture [2]. Regular dispersable graphs are bipartite
[21]. A nonbipartite circulant is nearly dispersable if it needs one extra page [21]. So far, all
nonbipartite circulants have been nearly dispersable and we conjecture that nonbipartite, vertex-
transitive graphs are nearly dispersable.

Previous results support both conjectures. For the complete bipartite graph and the hypercube,
see [4]; for complete graphs and other bipartite graphs, see [21]. Cartesian products of even cycles
are dispersable; even times odd cycles are nearly dispersable [17]; and short odd (length at most
5) and arbitrary odd cycles have nearly dispersable product [15]. Other classes of vertex-transitive
graph that are known to be nearly dispersable include the product of two arbitrary cycles and of
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cycles with complete graphs, see [23, 25], and some products of bipartite and nonbipartite graphs
[22]. See also [27] and §8. Some graphs which are not vertex transitive also are dispersable such
as trees [21], Halin trees [24], and cubic planar bipartite graphs [2, 19].

To define good matching book embeddings for an infinite family of graphs, one needs to give
both layout and coloring schemes: algorithms which produce the needed vertex order and edge-
to-page assignment from the various integers that identify each graph in the family. Most of our
families consist of circulants C(n, S) with a fixed jump-length set S and with the number n of
vertices reduced modulo 2 or 4. The coloring algorithms can either be static (as in tables based
on modularity) or dynamic (as in prescriptions for Hamiltonian cycles or paths). See proofs of
Theorems 1 and 3, resp.

It turns out, however, that for nonbipartite circulants, perfectly regular patterns almost never
succeed and irregularity is forced. Irregular features appear in two different ways: local and global.

The local type of exception is involved in the “twist” (see §3) while the global type manifests
as “sparseness” in many examples, where one nearly reaches the lower bound except for a “sparse”
page with a small and structurally defined set of exceptional edges. Computer search [18, p 7]
gives random vertex-order, while our vertex-orders and edge-to-page functions are quite regular.
Nevertheless, the edges of the sparse page are irregularly distributed in a characteristic pattern for
all parameter values with the same modularity.

Any strategy to achieve the minimum number of pages in a matching book embedding of a
graph family, such as C(n, S), based on regular layout and algorithms is a kind of “polymerization
process” since almost all edges are placed in a repeated pattern. A polymer is a molecule composed
of a sequence of many parts such as proteins composed of amino acids or RNA/DNA as a sequence
of nucleotides. The sequence of parts may form a path or a cycle.

Here are four examples of generalized polymerization, a phenomenon that we believe deserves
more thorough investigation. In each of these examples, a finite set of adjustments permits regu-
larity for the arbitrarily large remainder.

(1) The coloring irregularities given in [18] for C(2k+r, {1, k}), r ∈ {0, 1, 2}, with up to 5 edges
on the sparse page, allow a minimum page embedding.

(2) Layouts and page-partition of the Cartesian product of C3 or C5 with another cycle [15]
use a “seed” that is an exceptional copy of a repeated motif.

(3) The twist used in §3 below for the case C(2k, {1, 3}) with a dispersable circulant and in §4
for C(4k + 3, {1, 3}) in the nearly dispersable case.

(4) Most of the matching book embeddings in this paper have a sparse page.
In contrast, strict polymerization is defined below to be an algorithmic procedure which puts

together certain modular units with no adjustments.
The paper is organized as follows: §2 has definitions, §3 shows C(n, {1, 3}) is dispersable for

n even, while §4 shows C(n, {1, 3}) is nearly dispersable (n.d.) for n odd. In §5 and §6, we prove
C(n, {1, 2}) and C(n, {2, 3}) are n.d., and §7 shows C(n, {1, 2, 3}) is n.d. when n is odd or a
multiple of 7 or 12 (so ≥ 64.3% of the C(n, {1, 2, 3}) circulants); §7 also shows that K2k − kK2

and K2k+1 − C2k+1 are n.d. The last section has applications and a discussion.

2 Definitions

Undefined terms are as in [11].
The circulant graph C(n, S) of order n with jump set S = {i1, . . . , ik} is the graph on

[n] := {1, . . . , n}, where j ∈ [n] is adjacent to j + ir (addition mod n), r = 1, . . . , k and 1 ≤
i1 < i2 < · · · < ik ≤ ⌊n/2⌋, k ≥ 1. A graph is vertex-transitive if for any two vertices, there
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is an isomorphism carrying one to the other. The k-th Harary power Ck
n of an order-n cycle

Cn [11, p 14] is the circulant C(n, [k]), and any circulant of order n with maximum jump k is a
vertex-transitive subgraph of Ck

n. The cube of a cycle is the 3rd power.
A drawing of a graph is outerplane (or convex or circular) if its vertices are placed along a

circle (or the boundary of any convex region) and the edges are straight lines.
Two edges in an outerplane drawing cross if they intersect at a non-endpoint. Let (G,ω)

denote the outerplane drawing of a graph G with cyclic order ω on V (G).
A book embedding [4] of a graph G is an outerplane drawing and an edge-partition such

that edges in the same part do not cross. The parts of the partition are the pages of the book
embedding. The book thickness bt(G) of G is the least number of pages in any book embedding
while bt(G,ω) is the least number of pages for the outerplane drawing (G,ω).

A proper edge-coloring c of a graph G is a function c : E(G) → {1, . . . , r} (the set of colors)
such that adjacent edges get different colors. Let χ′(G) be the least number of colors in a proper
edge-coloring. The remarkable theorem of Vizing [11, p 133] states that χ′(G) ∈ {∆(G), 1+∆(G)}
for all graphs G.

A matching book embedding is a book embedding where the pages are matchings (no two
edges are adjacent). The matching book thickness of a graph is the least number of pages in
any matching book embedding; we write mbt(G) or mbt(G,ω) as for book thickness. If c is the
edge-coloring determined by the pages, then the matching book embedding is the triple (G,ω, c).

Clearly, for every graph G, we have ∆(G) ≤ χ′(G) ≤ mbt(G). A matching book embedding
(G,ω, c) is dispersable if the number |c| of colors equals ∆(G) and is nearly dispersable [15] if
|c| = 1+∆(G). A graph is dispersable if it has a dispersable embedding and is nearly dispersable
if it is not dispersable and has a nearly dispersable embedding. If G is regular and dispersable,
then it is bipartite [21]. The sparseness s(G,ω, c) of a nearly dispersable book embedding is the
least number of edges on any page. The sparseness s(G) of a nearly dispersable graph G is the
minimum sparseness over all minimum-page matching book embeddings.

Lemma 1 Let G be a regular nearly dispersable graph of order n. Then the sparseness of G is at
least 1 if n is even and at least ∆/2 if n is odd.

Proof: For n even, this is in Overbay [21], while for n odd, each page has at least one uncovered
vertex, so for any set of ∆ pages, there is a set of ≥ ∆ distinct points which need to be covered by
edges from the remaining page. □

An infinite sequence {(Gn, ωn, cn)}n≥1 of matching book embeddings, such that |E(Gn)| is strictly
increasing, is called sparse (with sparseness s) if there exists k such that, for all n, we have (i)
∆(Gn) = k, (ii) mbt(Gn, ωn) = k+1, (iii) cn : E(Gn) → [k+1] is onto, and (iv) s(Gn, ωn, cn) = s.
For each n, the page with s edges is the sparse or “exceptional” page [18]; cf. [8].

It remains for us to define the m-fold polymerization of a matching book embedding of a
circulant to form a circulant with the same set of jump-lengths but m-fold more vertices with no
increase in the number of pages.

For n ≥ 7 and nonempty S ⊆ {1, 2, . . . , ⌈n−1
2 ⌉}, let (C(n, S), νn, c), νn := (1, . . . , n), be a

matching book embedding. We call an edge e = aiak ∈ E := E(C(n, S)) long if dC(ai, ak) < |k−i|
and short if dC(ai, ak) = |k − i|, where dC(u,w) denotes the Cn-distance between two vertices u
and w, where Cn is the graph induced by the cyclic vertex order. The sets EΛ and EΣ of long
and short edges form a nontrivial partition of E. If 1 ∈ S, then the edges aiai+1 are short for
i = 1, . . . , n − 1 but the edge a1an is long. If n = 8 and 3 ∈ S, then aiai+3 ∈ Es for 1 ≤ i ≤ 5,
while a6a1, a7a2, and a8a3 are long.
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Lemma 2 Let m ≥ 2, n ≥ 7. If S ⊆ {1, 2, . . . , ⌈n−1
2 ⌉}, then

mbt(C(nm,S), νnm) ≤ mbt(C(n, S), νn). (1)

Proof: Place m copies of the vertex set of C(n, S) from left to right, where, for the j-th copy, the
vertices aj1, . . . , a

j
n are placed from left to right. Thus,

(a11, . . . , a
1
n, a

2
1, . . . , a

2
n, a

3
1, . . . , a

m
n )

is a list of the nm vertices in the m copies of C(n, S). Put in all the short edges for all the copies.
For j = 1, . . . ,m − 1, each long edge ajia

j
k with k > i is replaced by ajka

j+1
i and each long edge

ami amk is replaced by amk a1i if k > i. One obtains C(nm,S) with vertex order νnm. Use the same
coloring c for the edges in C(nm,S) as in the matching book embedding for C(n, S). Long and
short edges cross in the j-th copy if and only if their images under the edge-rearrangement cross
correspondingly. Hence, c is a page assignment. □

This process defines the m-fold strict polymerization of the circulant and of its matching
book embedding. Note that equality can fail to hold in (1) - e.g., for an even polymerization of an
odd cycle. If (C(n, S), νn, c) is dispersable, then so is C(nm,S), νnm, c), while if (C(n, S), νn, c) is
nearly dispersable, then C(nm,S), νnm, c) is either dispersable or nearly dispersable. If both are
nearly dispersable, then s(C(nm,S), νnm, c) ≤ m · s(C(n, S), νn, c).

3 The bipartite case of C(n, {1, 3})
In this section we show that the circulants C(n, {1, 3}), n ≥ 6 even, are dispersable. When n = 6,
the corresponding circulant is K3,3, and this graph, as with all complete regular bipartite graphs
Ka,a, is dispersable [4], [21, p. 88].

Figure 1: Common four-coloring c of the twist

Theorem 1 Let n ≥ 8, n even, and put τn := (1, 2, 3, n, n− 1, n− 2, . . . , 6, 5, 4).
Then (C(n, {1, 3}), τn, cn) is a dispersable book embedding (cn defined below).

Proof: Let c be the 4-coloring of the 10 edges in the “twist” shown in Fig. 1:
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Figure 2: Dispersable embeddings of C(8, {1, 3}) and C(10, {1, 3})

� Red: 1−2, 3−4 (i.e., color of edge 1−2 is red, etc.),

� Blue: 2−3, 1−n,

� Green: 3−n, 2−(n−1), 1−(n−2),

� Purple: 1−4, 2−5, 3−6.

Case 1: n = 4k, k ≥ 2. Assign the non-twist edges to four pages as follows:

� Blue: a−(a+3), (a+1)−(a+2), a = 4t, t ∈ [k − 1],

� Red: a−(a+3), (a+1)−(a+2), a = 1 + 4t, t ∈ [k − 1],

� Green: a−(a+3), (a+1)−(a+2), a = 2 + 4t, t ∈ [k − 2], and 4−5,

� Purple: a−(a+3), (a+1)−(a+2), a = 3 + 4t, t ∈ [k − 2], and (n−1)−(n).

All 8k edges of C(n, {1, 3}) appear, 2k in a page. In Fig. 2, left, k = 2, so [k− 2] = ∅; hence, there
is only one green edge not in the twist coloring.

On the Red and Blue pages, one has 2 edges on the common twist and k − 1 edges of types
a−(a + 3) and another k − 1 edges of type (a+1)−(a+2). Similarly, on the Purple and Green
pages, one has 3 edges on the common twist, an additional edge (4−5 or (n−1)−n) and k − 2
each of types a−(a+3) and (a+1)−(a+2). These 8k edges are distinct and exhaust the edges of
C(n, {1, 3}). For n = 8, k = 2 so t = 1 and on the Red page, a = 5. In Fig. 2, after 1−2 and 3−4,
we also have 5−8 and 6−7 on the red page.

By definition, the edges on each of these pages are pairwise-disjoint, while pages are crossing-
free since the edges in a color class can only be (i) non-crossing edges of the common twist, (ii)
isolated edges on the outer cycle of the form 4−5 or (n−1)−n, (iii) nested edges of the form
{a−(a+3), (a+1)−(a+2)}.

Case 2: Let n = 4k + 2, k ≥ 2; put non-twist edges in four pages as follows:

� Green: a−(a+3), (a+1)−(a+2), a = 4t, t ∈ [k − 1],
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Figure 3: Dispersable embeddings of C(16, {1, 3}) and C(18, {1, 3})

� Red: a−(a+3), (a+1)−(a+2), a = 1 + 4t, t ∈ [k − 1], and n−(n−1),

� Blue: a−(a+3), (a+1)−(a+2), a = 2 + 4t, t ∈ [k − 1], and 4−5,

� Purple: a−(a+3), (a+1)−(a+2), where a = 3 + 4t, t ∈ [k − 1].

See Fig. 2, right. Fig. 3 shows both schemes for k = 4. □

4 The nonbipartite case of C(n, {1, 3})
When n is odd, C(n, {1, 3}) is not bipartite. But it is nearly dispersable.

Theorem 2 Let n ≥ 7 be odd. Then C(n, {1, 3}) is nearly dispersable.

Proof: Case 1: n = 4k + 1. Let νn be the natural ordering (1, 2, 3, . . . , n) around the circle. We
show that mbt(C(n, {1, 3}), νn) = 5, which is minimum for a nonbipartite 4-regular graph. The
2n = 8k + 2 edges are of the form u−(u+3) or u−(u+1), u ∈ [n], with addition modulo n.

Assign each of the four colors red, purple, green, and blue to 2k edges and the fifth color, black,
to the two remaining edges as follows:

� Red: a−(a+3), (a+1)−(a+2), a = 1 + 4t, t ∈ [k]− 1,

� Purple: a−(a+3), (a+1)−(a+2), a = 2 + 4t, t ∈ [k]− 1,

� Green: a−(a+3), (a+1)−(a+2), a = 3 + 4t, t ∈ [k]− 1,

� Blue: a−(a+3), (a+1)−(a+2), a = 4 + 4t, t ∈ [k]− 1,

� Black: 1−2, 3−n (sparseness is 2; as ∆ = 4, this is the minimum).

Since the edge pairs of the form {a−(a+3), (a+1)−(a+2)} are nested for each value of a, which
increases in increments of four for a fixed color, it is clear that no two edges of the same color cross.
As a takes on all values from 1 to 4k, these pairs of nested edges cover 8k distinct edges of the
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graph. In the case where a = 4k + 1 = n, the edge pair {a−(a+3), (a+1)−(a+2)} is {n−3, 1−2},
reducing mod n; these two edges fit on the fifth page without crossing.

This process, illustrated with k = 3 for the graph C(13, {1, 3}) in Fig. 4, may be viewed as
taking the red coloring and rotating it three more times, switching colors for each rotation. Now
add a fifth color for the last two edges.

One may also describe this family of colorings, using two Hamiltonian paths, alternatingly
colored Red/Purple and Blue/Green. The Red/Purple path is 1, 4, 3, 2, 5, 8, 7, 6, 9, 12, 11, 10, 13.
See Fig. 4, left. As the reader will observe, there is a simple algorithm for the numbering: up 3,
down 1, down 1, u3, u3, d1, d1, u3, u3, d1, d1, u3, and the resulting values mod 4 are periodic:
1, 0, 3, 2, . . .. The Blue/Green path is similar. The Hamiltonian paths each have n − 1 edges; the
two missing edges in black are the sparse page.

Figure 4: Nearly dispersable embeddings of C(13, {1, 3}) and C(11, {1, 3})

Case 2: n = 4k + 3. We show that mbt(C(n, {1, 3}), τn) = 5, where τn is as in Theorem 1
above. Let c be the same edge-coloring for the 10 twist edges given in the proof of Theorem 1. If
k = 1 (so n = 7), color the non-twist edges 6−7 red, 4−5 blue, and 4−7 and 5−6 black to get a
5-page matching book embedding. If k ≥ 2, then we have a general coloring scheme

� Green: a−(a+3), (a+1)−(a+2), a = 4t, t ∈ [k − 1],

� Red: a−(a+3), (a+1)−(a+2), a = 1 + 4t, t ∈ [k − 1], and n−(n−1),

� Purple: n−(n−3), (n−1)−(n−2) (Sparse; has 5 edges including twist),

� Black: a−(a+3), (a+1)−(a+2), a = 2 + 4t, t ∈ [k − 1],

� Blue: a−(a+3), (a+1)−(a+2), a = 3 + 4t, t ∈ [k − 1], and 4−5.

Non-twist edges of the same color are either nested pairs or or join consecutive vertices in the layout,
so they cannot cross. The red and blue pages each contain 2(k−1)+1 = 2k−1 non-twist edges, the
green and black pages each have 2(k− 1) = 2k− 2 non-twist edges, and the purple page contains 2
non-twist edges. The 5-page matching book embedding covers all 10+ 2(2k− 1)+ 2(2k− 2)+ 2 =
8k+ 6 = 2(4k+ 3) = 2n distinct edges of the graph. Fig. 4 (right) illustrates this coloring scheme
for C(11, {1, 3}) with k = 2. □
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Note that in the above theorem, when n > 7 and n = 4k + 3, the two purple common twist
edges 1−4 and 2−5 could be assigned the color black. This would reduce the number of purple
edges from five to three. As n ≡ 3 (mod 4) increases, the sparse purple page stays at three edges.
Hence, sparseness is 3, one more than the minimum.

5 C(n, {1, 2}) is nearly dispersable

Now we consider the circulant graphs C(n, {1, 2}) for all n ≥ 4. In the case n = 4 the corresponding
graph is K4, which has mbt(G) = ∆(G) + 1 = 4.

Theorem 3 Let n ≥ 5. Then C(n, {1, 2}) is nearly dispersable.

Proof: We color this circulant in three cases using paths and cycles.
For n ≥ 5 odd, draw the circulant using the odd-up, even-down cyclic order

ωn := (1, 3, . . . , n, n−1, n−3, . . . , 2).

Color the edges of the “zig-zag” (Hamiltonian) path 1, 2, 3, . . . , n using the colors red, blue alter-
natingly for the edges (k−1)−k, where k = 2, 3, . . . , n, along the path. Color alternatingly with
purple and green, the “cross path”

3, 5, . . . , n, 1, n−1, n−3, . . . , 2.

This leaves two edges 1−3 and 2−n each of which can be colored black. Thus, mbt(G,ωn) = 5 and
the sparseness is minimum. See Fig. 5, left.

Figure 5: C(7, {1, 2}), C(8, {1, 2}) C(10, {1, 2}) are nearly dispersable.

For n ≥ 6 even, again use the odd-up, even-down cyclic order

ωn := (1, 3, . . . , n−1, n, n−2, . . . , 2).

As above, color the edges of the zig-zag path 1, 2, 3, . . . , n using the colors red, blue alternat-
ingly. If n ≡ 0 (mod 4), color the two disjoint non-self-crossing cycles n−1, n−3, . . . , 1, n−1 and
2, 4, . . . , n, 2 (both of length n/2) alternating purple and green. This accounts for 2n−1 edges and
the remaining edge 1−n is colored black. The sparseness is 1 which is the minimum possible for
an even order, nearly dispersable graph. See Fig. 5, center.
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If n ≡ 2 (mod 4), edge-disjoint from the zig-zag path, there is another Hamiltonian path
n−1, n−3, . . . , 1, n, n−2, . . . , 2 and we color it alternatingly green and purple. The two remaining
edges 1−(n−1) and 2−n are parallel and colored black, see Fig. 5, right; they constitute the sparse
page. □

6 The case C(n, {2, 3})
Let ωn be the odd-up, even-down vertex-order from the proof of Theorem 3.

Theorem 4 If n ≥ 8 is even, then (C(n, {2, 3}), ωn, cn) is nearly dispersable, where cn is the
coloring given below.

Proof: Put n = 2k; consider the Hamiltonian path in C(n, {2, 3}) given by

(n−3, n−5, . . . , 1, n−1, 2, n, n−2, . . . , 4)

which is noncrossing w.r.t. the layout ωn; we color it alternatingly red and black. This colors 2k−1
edges. Color with purple the pairwise-disjoint edges 2−5, 4−7, . . ., (n−4)−(n−1), which accounts
for k−2 edges. Color with blue the pairwise-disjoint edges 1−4, 3−6, . . ., (n−3)−n, accounting for
another k− 1 edges. In the sparse green page, there are four edges: 2−4, (n−3)−(n−1), 3−n, and
1−(n−2). Hence, all 4k edges are used. As same-color edges do not cross or share an endpoint,
ωn is nearly dispersable. See Fig. 6, left. □

Figure 6: C(12, {2, 3}) on left, pages of C(15, {2, 3}) in middle and right.

That C(6, {2, 3}) is nearly dispersable is left to the reader.

Theorem 5 For n ≥ 7 odd, C(n, {2, 3}) is nearly dispersable w.r.t. ωn.

Proof: Let n = 2r+1 ≥ 7. We decompose the edge set into two edge-disjoint Hamiltonian cycles.
These odd-length cycles are 2-colored except for one black edge, placed on the sparse page. The
first of these two cycles, see Fig. 6-middle, is colored orange, aqua, and black according to the
following scheme:

� Orange: a−(a+3), a = 1 + 2t, t ∈ [r − 1]− 1 and n−(n−2),

� Aqua: a−(a+3), a = 2t, t ∈ [r − 1] and 1−3,



234 Joslin, Kainen, Overbay On Dispersability of Some Circulant Graphs

� Black: 2−(n−1).

The second of these cycles, illustrated in Fig. 6-right, is colored red, blue, and black according to
the following scheme:

� Red: 1−(n−1), 3−n, and r−2 additional edges of the form a−(a+2) on the outer cycle
(alternating with the blue edges),

� Blue: 2−n, 1−(n−2), and r−2 additional edges of the form a−(a+2) on the outer cycle
(alternating with the red edges),

� Black: r−(r+2).

The orange and aqua pages each consist of a total of r non-crossing parallel edges. The red and
blue pages also each contain r non-crossing edges with two parallel edges on each page through the
center and the remaining r−2 edges on the outer boundary. The remaining two black edges, which
is the minimum possible number, clearly do not intersect on the sparse page since the r−(r+2)
edge lies on the outer cycle and does not share an endpoint with 2−(n−1). Hence, all 4r+2 = 2n
edges are accounted for. □

Theorem 6 For n ≥ 7 odd, C(n, {1, 2, 3}) is nearly dispersable w.r.t. ωn.

Proof:
Let n = 2r+1 ≥ 7. Use the identical layout and coloring scheme as in Theorem 5. This will cover

all distance 2 and distance 3 edges. Now observe that a purple-green non-crossing Hamiltonian
path 1, 2, 3, . . . , n can be added to cover all of the distance-1 edges, with the exception of edge 1−n.
This last edge can be placed on the black (sparse) page and does not intersect either r−(r+2) or
2−(n−1). We note that this new cycle contributes r purple edges, r green edges, and 1 black edge
as shown in Fig. 7 left. Combining this with C(n, {2, 3}), we have accounted for all 6r + 3 = 3n
edges of C(n, {1, 2, 3}) and have achieved an optimal sparseness of 3 = ∆/2. See Fig. 7 right for
the combined nearly-dispersable coloring of C(n, {1, 2, 3}) for n odd. □

Figure 7: Length-1 edges (left) and 7-coloring of C(15, {1, 2, 3}) (right).
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It is natural to ask if the above scheme for adding distance-1 edges allows even values of n.
This almost works, with the exception of the black edge 1−n, which intersects edges on the sparse
page in the above layout for even values of n, so for even n, mbt(C(n, {1, 2, 3}) − e) = 7, where
e = 1−n.

7 Larger degree and jump-lengths

We now give minimum layouts of C(n, {1, 2, 3}) for some even values of n and for a variety of
circulants with ∆ > 3, using polymerization and periodicity.

Theorem 7 With νn = (1, 2, . . . , n) and r = 2k + 1 ≥ 5, suppose r|n. Then

mbt(C(n, {1, 2, . . . , k}), νn) = 2k + 1.

Proof: Use Lemma 2 on the embedding (Kr, νr, c) in [21]; see Fig 8 and 9. □

Figure 8: Two copies of K5 .

Figure 9: C(10, {1, 2}) obtained by polymerization.

For r = 7, and for all m ≥ 1, one has the consequence (new for m even):

mbt(C(7m, {1, 2, 3})) = 7. (2)

Similarly, mbt(C(9m, {1, 2, 3, 4})) = 9, mbt(C(11m, {1, 2, 3, 4, 5})) = 11, etc.
Note that, for k a positive integer, C(n, [k]) ∼= Kn for n ∈ {2k, 2k + 1}, but the isomorphism

determines which edge-set Ej of Kn corresponds to the length-j jumps in the circulant for j =
1, . . . , k. With n = 2k or 2k + 1, the length-k jumps are longest in the circulant and they induce
a 1-factor or a spanning cycle according to whether n is even or odd.

Corresponding to the n = 2k case, for k ≥ 3, the cocktail party graph Ok := K2k − kK2 is
the complement of a 1-factor. It is also the 1-skeleton of the n-dimensional octahedron and is
regular with ∆Ok = 2k − 2. As it contains triangles, the octahedron is at best nearly dispersable.
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We show that it does have a nearly dispersable embedding, with 2k− 1 pages, but the embedding
does not use the standard vertex ordering and so we don’t have a direct way to polymerize it.
However, the natural vertex order gives a matching book embedding with one additional page and
this can be polymerized. For the n = 2k + 1 case, the same things can be done with Cn, the
complement of Cn.

The folded order ϕ from [18] will be needed for n ∈ {2k, 2k + 1}.

ϕn := (1, 2, . . . , k, n, n− 1, . . . , k + 1).

Theorem 8 For k ≥ 3, Ok and C2k+1 are nearly dispersable with

mbt(Ok, ϕ2k) = 2k − 1 = mbt(C2k+1, ϕ2k+1). (3)

Proof: For n ≥ 6, even or odd, the complete graph Kn is nearly dispersable using the natural
vertex order with pages being the 1-factors produced by maximal families of parallel edges given
in [21, p 87]; see Fig. 10 and Fig. 12.

By our remark above about how the edges can correspond to various jump-lengths in the
isomorphic circulant graph, we note that for n = 2k and the folded order ϕ2k, the set of length-k
edges, Ek, are a parallel matching, one of the 2k pages in the nearly dispersable matching book
embedding of K2k, and the removal of Ek leaves a 2k− 1-page layout of Ok. See right side of Fig.
11.

For n = 2k+1, the length-k edges in the circulant constitute a Hamiltonian cycle Z. The folded
order takes this 2k + 1-cycle into 2 of the 2k + 1 pages of the standard matching book embedding
of K2k+1 given in [21], with one extra edge. Deleting Z gives a 2k − 1-page layout of C2k+1 (Fig.
13, right). □

With one page above the minimum, we have polymerizable embeddings,

mbt(Ok, ν2k) = 2k = mbt(C2k+1, ν2k+1).

Under the natural order, the edges of K2k which are length-k edges in C(2k, [k]) pass through the
center of the circle. Hence, removing them only decreases by 1 the number of edges in each of
the 2k pages. See left side of Fig. 11. Similarly, with the layout ν2k+1, the length-k edges form a
mandala-like figure (Fig 13, left) which can be deleted from the matching book embedding.

Thus, if n is a multiple of 2k or of 2k + 1 for k ≥ 3, then by Lemma 2,

mbt(C(n, {1, . . . , k − 1}), νn) ≤ 2k. (4)

The next theorem allows multiples of 12.

Theorem 9 If n = 12m, m ≥ 1, then C(n, {1, 2, 3}) is nearly dispersable.

Proof: An explicit coloring of the edges with respect to natural order νn using 7 = 1 + ∆ colors
is given as follows: Periodically, 4-color the edges of length 1, and for every edge of length 3, use
the same color as the unique edge of length 1 with which it is nested, thus 4-coloring all edges of
length 1 or 3. Three new colors (periodically) suffice for the remaining edges. See Fig. 14. □

For the bipartite case, if k ≥ 1, by Lemma 2, analogous to (4), we have:

If 4k|n, then mbt(C(n, {1, 3, 5, . . . , 2k − 1}), νn) = 2k; (5)

If (4k + 2)|n, then mbt(C(n, {1, 3, 5, . . . , 2k − 1}), νn) ≤ 2k + 1. (6)
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Figure 10: K8.

Figure 11: A perfect matching in K8.

8 Discussion

Recently, Yu, Shao and Li [27] have shown dispersability (or near dispersability) for circulants of
degree 3 and degree 4 with all jump-lengths according to whether or not they are bipartite. This
extends our results for these degrees. Our methods supply different solutions to the problem of
finding optimal page-number matching book embeddings for such circulants.

We have also considered higher degree circulants and have analyzed some of the structural
features of matching book embeddings of regular graphs.

For C(n, {1, 2, 3}), we show near dispersability when n is odd and when n is even and divisible
by 7 or 12. We also show near dispersability for the circulants resulting by deleting a maximum
matching from an even-order Kn and a spanning cycle from an odd-order Kn. The analogous
results holds in the bipartite case.

Results are constructive, not just existential, and so will remain useful even if the full conjecture
on vertex-transitive graphs is proved (or disproved).

Some condition on the graph is needed as a regular graph can have an arbitrarily large value
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Figure 12: K9.

Figure 13: A Hamiltonian cycle in K9.

for the ratio mbt/∆ according to Alam et al. [2], which uses a counting argument of McKay [20]
to prove that, for any fixed ∆ ≥ 3, there exist ∆-regular bipartite graphs Gn with mbt(Gn) → ∞
as n → ∞.

But vertex-transitive graphs are rather special. Du, Kutnar & Marušič [7] showed that the
Lovasz conjecture (Every vertex transitive graph contains a Hamiltonian cycle, with five exceptional
cases) is correct when the order is a product of two primes and the graph satisfies additional
conditions involving the action of a group. Also, Diestel [6, p 52; Ex 12] notes that every connected,
even-order, vertex-transitive graph has a 1-factor.

In many cases, our proof of near dispersability for a family of matching book embeddings uses
a sparse page with the minimum number of edges. Indeed, the lower bound of 2 is achieved in
the proof of Theorem 2 for C(n, {1, 3}) when n ≡ 1 (mod 4) while we get sparseness s ≤ 3 for
n ≡ 3 (mod 4). The proof of Theorem 3 shows C(n, {1, 2}) = 2 for n odd, while for n ≡ 0 (mod
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Figure 14: C(12, {1, 2, 3}).

4), sparseness = 1 is achieved but for n ≡ 2 (mod 4), we only get sparseness ≤ 2. The proof of
Theorem 4 shows s(C(n, {2, 3})) ≤ 4 if n is even. Sparseness has minimum value (2 and 3, resp.)
for Theorems 5 and 6 when n odd and for degree 6. Our matching book embeddings for Theorems
7, 8 and 9, in contrast, are quite symmetric and so the opposite of sparse embeddings.

For a nearly dispersable embedding, sparseness allows the deletion of a small number of edges
to eliminate an entire page, while symmetry might be preferred for an “online” problem where the
graph being embedded is evolving.

Matching book thickness for regular graphs has a clear lower bound, so a coloring which achieves
the minimum is detectable. We think that finding the matching book thickness of various graphs
could be a good target for genetic algorithms, neural networks, or artificial intelligence. See,
for example, [3]. Application of machine learning techniques to matching book thickness might
improve computational theory and practice; see, e.g., [13]. Indeed, one has an endless supply of
vertex-transitive graphs on which to test procedures.
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