
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 28, no. 1, pp. 179–224 (2024)
DOI: 10.7155/jgaa.v28i1.2933

Distance-Preserving Graph Compression Techniques

Amirali Madani 1 Anil Maheshwari 1

1School of Computer Science,
Carleton University, Ottawa, Ontario, Canada

Submitted: June 2023 Accepted: February 2024 Published: May 2024

Article type: Regular paper Communicated by: M. Kaufmann

Abstract. We study the problem of distance-preserving graph compression for
weighted paths and trees. The problem entails a weighted graph G = (V,E) with non-
negative weights and a subset of edges E′ ⊂ E, which needs to be removed from G
(with their endpoints merged as a supernode). The goal is to redistribute the weights
of the deleted edges in a way that minimizes the error. The error is defined as the sum
of the absolute differences of the shortest path lengths between different pairs of nodes
before and after contracting E′. Based on this error function, we propose optimal
approaches for merging any subset of edges in a path and a single edge in a tree.
Previous works on graph compression techniques aimed at preserving different graph
properties (such as the chromatic number) or solely focused on identifying the optimal
set of edges to contract. However, our focus in this paper is on achieving optimal edge
contraction (when the contracted edges are provided as input), specifically for weighted
trees and paths.

1 Introduction and Related Work

Graphs have become increasingly relevant for solving real-world problems, leveraging their nu-
merous characteristics [25, 27]. However, many of these graphs are incredibly large, consisting of
trillions of edges and vertices, which poses scalability challenges for modern systems [7, 17, 20].
Consequently, graph compression techniques have garnered significant research interest in recent
years, aiming to obtain a smaller graph while retaining the essential properties of the original
input graph. Different names, such as graph compression [24], graph summarization [21], graph
modification [10], and graph contraction [19], have been used in the literature to describe this
problem, each within its specific context, leading to various proposed approaches. Regardless of
the terminology or context, most of these problems focus on reducing the size of the graph while
preserving a specific property [24], while some approaches aim to modify a graph to satisfy a given

This work is funded by the Natural Sciences and Engineering Research Council of Canada (NSERC).

E-mail addresses: amiralimadani@cmail.carleton.ca (Amirali Madani) anil@scs.carleton.ca (Anil Maheshwari)

This work is licensed under the terms of the CC-BY license.

http://dx.doi.org/10.7155/jgaa.v28i1.2933
mailto:amiralimadani@cmail.carleton.ca
mailto:anil@scs.carleton.ca
https://creativecommons.org/licenses/by/4.0/

180 Madani and Maheshwari Distance-Preserving Graph Compression Techniques

property [15, 28]. Furthermore, graphs can be compressed in different ways, such as vertex dele-
tions, edge deletions, and edge contractions. It is worth noting that many of these resulting graph
modification problems are NP-hard, as indicated in [15].

A relevant problem that is commonly referred to as the blocker problem [19] is defined as
follows. Given a graph G, integers k and d, an invariant π : G −→ R, and some modification
operations (such as edge contractions), a blocker problem asks whether there exists a set of at most
k graph modification operators such that in the resulting graph G

′
, π (G′) ≤ π(G) − d holds. In

recent years, blocker problems have been studied for various graph properties, such as the chromatic
number [3, 9], maximum weight independent set and minimum weight vertex cover [4], maximum
independent set [8, 9], the clique number [9], the total domination number [12], diameter [14], and
maximum weight clique [22]. A lot of these blocker problems are defined as contraction problems,
in which graphs can only be modified via edge contractions. More precisely, given a graph G,
integers k and d, and an invariant π : G −→ R, CONTRACTION(π) asks whether there exists a set
of at most k edge contractions that results in a graph G′ with π (G′) ≤ π(G)− d. Galby et al. [11]
studied the contraction problems in which a specific edge could be provided as input (in addition
to π). As an important contribution, Galby et al. [11] proved that, unless P=NP, there exists
no polynomial-time algorithm that decides whether contracting a given edge reduces the total
domination number. Biedl et al. [6] studied the problem of flow preserving graph simplification,
which is the problem of finding a set of edges whose removal does not change the maximum flow
of the underlying network.

Shortest path queries are crucial to various domains, including search engines [13], networks [1,
16] and transportation [2, 30]. In a more relevant work to this paper, Bernstein et al. [5] studied
a slightly different variant of CONTRACTION. In their work, Bernstein et al. [5] focused on
compressing a given graph as much as possible, while permitting only a limited amount of distance
distortion among any pair of vertices. Given a tolerance function φ(x) = x/α− β, with α ≥ 1 and
β ≥ 0, Bernstein et al. [5] studied the problem of finding the maximum cardinality set of edges
whose contraction results in a graph G′ such that dG′(u, v) ≥ φ (dG(u, v)) for all u, v ∈ G. However,
in their work, they only focused on finding an optimal set instead of optimally redistributing the
weights. More specifically, after finding the optimal set E′, they set the weight of each edge e ∈ E′

to zero.

Unlike the work by Bernstein et al. [5], the work by Sadri et al. [24] focuses on optimally
redistributing the weights. However, they do not provide any bound guarantees on the amount
of error. Precisely, they assess the efficiency of their proposed approach by a set of experimental
studies. Moreover, their weight redistribution approach for trees ignores the size of each subtree
rooted at the endpoints of a given contracted edge. This is a key factor in deciding an optimal
assignment, as we will show in this paper. More recently, Liang et al. [18] studied the problem of
reachability-preserving graph compression techniques. There have also been other works related
to graph compression for unweighted and weighted graphs, as listed in [23, 26]. Zhou et al. [29]
proposed an efficient approach to remove a large portion of the edges in a network without affecting
the overall connectivity by much. Ruan et al. [23] studied the minimum gate-vertex set discovery
(MGS) problem. The MGS problem is concerned with finding the minimum cardinality set of
vertices, designating them as gate vertices, using which every non-local pair of vertices (whose
distance is above some threshold) is able to recover its distance in the original network. However,
the work by Ruan et al. [23] only studies unweighted graphs.

Where our work stands in the literature: To the best of our knowledge, all existing works
have either only focused on finding an optimal set of edges to contract or have not provided any
bounds on the amount of error. We study a different problem: instead of choosing which optimal

JGAA, 28(1) 179–224 (2024) 181

edge to contract, we are interested in finding out how to contract a given edge optimally. Even
though we still study distance-preserving graph compression, our focus is mainly on optimally
modifying the graph after a given edge has been contracted. Our primary modification operation
is changing the edge weights of the graph. It is worth noting that this problem has received
limited attention in the literature, with the closest existing work being the study by Sadri et
al. [24]. Their approach involves solving a system of equations to determine the new edge weights
in the resulting graph. However, their analysis of the problem has certain limitations. Firstly, they
do not offer any optimal guarantees for their weight distribution technique. Furthermore, their
weight redistribution method does not account for the sizes of the individual subgraphs connected
to a given edge. In contrast, as we will demonstrate throughout this paper, the sizes of subtrees
(particularly in the context of paths and trees) play a crucial role in achieving optimal weight
redistribution.
The organization of the paper: The remainder of this paper is organized as follows. In
Section 1.1, we present a summary of our main results along with some comments and details
regarding each contribution. In Section 2.1, we describe the notation used in the paper, using
which we formally define the scope of our paper in Section 2.2. In Section 3, we study the problem
of distance-preserving graph compression for weighted paths, where we prove optimal approaches
to contracting any set of k edges. In Section 4, we study the problem of graph compression for
weighted trees, where we provide an optimal linear-time algorithm for contracting a single edge.
We present the concluding remarks of this paper along with some potential avenues of future work
in Section 5.

1.1 Contributions and Results

In Section 3, we study the problem of distance-preserving graph compression for weighted paths.

� As a warm-up, we prove an optimal bound for merging1 a single edge in a path topology in
Section 3.1, whose main result is stated in Theorem 1.

In Section 3.1, we present a method for transforming any weight redistribution for a given merged
edge e∗ to another redistribution in which only the weights of its neighbouring edges are altered.

� We present Algorithm 1 for merging any set of k ≤ n
2 independent edges (edges that have no

endpoints in common and induce a matching on the path) in a path of size n.

We note that Algorithm 1 produces suboptimal solutions when applied to a contiguous subpath
(a connected subgraph) of the given input path. We relate this suboptimal performance to the dis-
tinction between merging two regular vertices and two supernodes. We thoroughly investigate this
distinction in Lemma 3, where we present an optimal redistribution for merging two supernodes.

� Having the suboptimal performance of Algorithm 1 for merging subpaths in mind, in Sec-
tion 3.3 we study the problem of finding the optimal redistribution for any connected sub-
graph of a given input path. The optimal method for contracting any contiguous subpath of
the input path is presented in Theorem 2.

1As defined in Section 2, we use the terms merging and contracting interchangeably. They both refer to the act
of contracting an edge or a set of edges.

182 Madani and Maheshwari Distance-Preserving Graph Compression Techniques

� After studying the case of contiguous subpaths, we present Theorem 3 as another general-
ization of the case with a single edge (Theorem 1). When the edge set to be compressed
consists of k ≤ n

2 independent edges that induce a matching on the input path, Theorem 3
presents an optimal method for graph compression. Theorem 3 provides a correctness proof
for Algorithm 1.

In Section 4, we study the problem of distance-preserving graph compression for the tree topology,
where we present optimal approaches for merging a single edge in a weighted tree. To this end, we
define a relevant problem, which we refer to as the marking problem. The objective of the marking
problem is to minimize the error, as defined in Section 2, by marking a subset of the neighbouring
edges of the merged edge e∗ (with weight w∗). For merging an edge e∗ with weight w∗, an edge
ei is said to be marked if its new weight w′(ei) = w(ei) + w∗. As a warm-up, in Section 4.3, we
study the marking problem for a tree in which the neighbouring subtrees of e∗ are of equal sizes.
For such edges, we show that the optimal marking is achieved when all edges either to the left or
right (but not both) of e∗ are marked. In Section 4.4, we generalize the findings of Section 4.3 and
present an optimal marking for any merged edge e∗ in a weighted tree.

The definition of the marking problem implies that an edge can either be fully marked or
unmarked. It is non-trivial to see whether fractionally marking the edges produces better results.
Therefore, in Section 4.5, we thoroughly investigate the distinction between the marking problem
(Definition 9) and the fractional marking problem (Definition 14) and conclude that any solution
to the latter can be transformed into another solution to the former without worsening the error
value.

� We present Algorithm 2, an O(|V |)-time algorithm, for finding an optimal marking for e∗ in
a weighted tree.

2 Preliminaries

In this section, we first discuss the common notation (Section 2.1) and then present some additional
definitions (Section 2.2) that help describe the scope of our paper. In Section 2.3, we present a
simple number-theoretic lemma, which is later used in some of the proofs in this paper. Throughout
this section, we use the path in Figure 1 as the running example of the definitions.

2.1 Notation

Let G = (V,E) denote a graph with V and E as its sets of vertices and edges, respectively. With
every edge e ∈ E, we associate a weight w(e) w : E −→ R≥0. We sometimes denote an edge e by
(u, v), where u, v ∈ V are referred to as the endpoints of e. Throughout this paper, we frequently
denote edges and vertices using subscripts (for instance, ei and vi) and superscripts for merged
edges (for instance e∗). When the context is clear, we sometimes abuse the weight notation and
denote the weight of ei and e∗ by wi and w∗, respectively. We denote the number of vertices by
n = |V | and a path of n vertices by Pn. Throughout this paper, we frequently use nL and nR

in different contexts to denote different quantities. However, in most cases, we denote by nL and
nR the number of vertices to the left and right of a given vertex of a path, respectively (including
itself). For instance, in Figure 1-(a), nL and nR denote the number of vertices to the left of (and
including) v′3 and the right of (and including) v′4, respectively. Formally, let G1 be one of the two
connected components of H = G − {e3 = (v′3, u1), e

∗ = (u1, v1), e4 = (v1, v
′
4)} that is adjacent to

JGAA, 28(1) 179–224 (2024) 183

v′1 v′6v′2 v′3 u1 v1 v′4 v′5

w1 w2 w3 w∗ w4 w5 w6

e1 e2 e3 e∗ e4 e5 e6

G1

nL = 3 vertices

G2

nR = 3 vertices

(a)

v′1 v′6v′2 v′3 {u1, v1} v′4 v′5

w1 w2 w3 + w∗ w4 w5 w6

(b)

Figure 1: The path used as the running example in Section 2: (a) A path of 8 vertices, with
regular edges denoted by ei, wi = w(ei), and the contracted edge is highlighted in red and denoted
by e∗ = (u1, v1), w

∗ = w(e∗), and (b) The same path after contracting e∗ and marking e3 by setting
w′(e3) = w3 + w∗. In this example, nL = nR, this is not always the case.

v′3, and let G2 be the connected component of H that is adjacent to v′4. We have

nL = |{v|v ∈ G1}| , nR = |{v|v ∈ G2}|

For instance, in Figure 1-(a), nL = 3 because G1 includes vertices {v′1, v′2, v′3}, and nR = 3 because
G2 includes vertices {v′4, v′5, v′6}. Therefore, in this paper, we assume that the graph is laid out
in the plane and the edge to be merged (e∗ in Figure 1-(a)) is horizontal. This assumption will
simplify the description of our results.

2.2 Additional Definitions

We now provide some additional definitions for defining the scope of our paper.

Definition 1 For a weighted graph G = (V,E), the distance between two vertices u, v ∈ V, denoted
by dG(u, v), is the length of the shortest weighted path between u and v in G.

Definition 2 A merged edge, or a contracted edge, is one whose endpoints are merged, and the
edge itself is removed from the graph.

For instance, e∗ = (u1, v1) in Figure 1-(a) (highlighted in red) is a contracted edge. After contract-
ing e∗, the path of Figure 1-(a) is transformed into the one in Figure 1-(b).

Definition 3 A supernode is a node containing a subset V ′ ⊂ V of the nodes in the original graph,
which is a result of a series of edge contractions. We denote the set of all supernodes by Vs.

Definition 4 For a supernode v ∈ Vs, the cardinality of v, denoted by C, C : Vs → N, is the
number of regular vertices it contains.

In the path of Figure 1-(b), {u1, v1} is a supernode with cardinality 2.

Definition 5 Let G = (V,E) be a graph with weight function w : E → R≥0, and let e∗ ∈ E
be the merged edge. A weight redistribution is a new weight function w′ : E → R≥0 in which
w′(ei) = w(ei) + ϵi, ∀ei ∈ E, ϵi ∈ R.

184 Madani and Maheshwari Distance-Preserving Graph Compression Techniques

In the path of Figure 1-(b), the weight redistribution sets the edge weights of Figure 1-(a) as
w′(e) = w(e) + w(e∗) if e = e3, and w′(e) = w(e) otherwise.

Definition 6 With reference to a given merged edge e∗ in a graph G = (V,E) with the associated
weight function w : E → R≥0 and a new weight redistribution function w′ : E → R≥0, an edge ei
is said to be marked if w′(ei) = w(ei) + w(e∗), unmarked if w′(ei) = w(ei), and altered otherwise.

As shown in Figure 1-(b), e3 is marked and all other edges are unmarked.

Definition 7 With reference to a set of merged edges Em ⊂ E, the set of merged vertices Vm

consists of all vertices with at least one endpoint in Em, or Vm = {v|v, u ∈ V,∃e = (u, v) ∈ Em}.
The set of unmerged vertices is defined as Vm = V − Vm.

In the path of Figure 1, we have Em = {e∗}, Vm = {u1, v1}, and Vm = {v′1, v′2, v′3, v′4, v′5, v′6}. With
reference to a set of merged edges Em ⊂ E and a weight redistribution w′, let G

′
be the resulting

graph after contracting the edges in Em and setting the new edge weights according to w′. The
error associated with w′ with respect to Em is denoted by |∆E| and calculated as:

|∆E| =
∑

u∈Vm,v∈Vm, or u,v∈Vm,u ̸=v

|dG(u, v)− dG′(u, v)| (1)

In other words, the error is equal to the sum of the absolute differences (between G and G′) of all
shortest path lengths between vertices u, v, at least one of which is in Vm.
Returning to our example in Figure 1, the error function of Eq. (1) sums up the absolute values
of the shortest path differences among the vertices of Vm = {v′1, v′2, v′3, v′4, v′5, v′6}, and between the
vertices of Vm and the vertices of Vm = {u1, v1}. As the final example, we now explain how the
distance difference between one of the aforementioned pairs of vertices is calculated. In Figure 1,
the shortest path value difference between v′1 and u1 changes from w1 + w2 + w3 in G (Figure 1-
(a)) to w1 +w2 +w3 +w∗ in G′ (Figure 1-(b)). The error induced by this change is thus equal to
|w1 + w2 + w3 + w∗ − w1 − w2 − w3| = w∗.

We are now ready to present the formal definition of our first studied problem:

Definition 8 Distance-Preserving Graph Compression: Given a graph G, and a set of
contracted edges Em, the problem of distance-preserving graph compression is to find a weight
redistribution w′ for which |∆E| is minimized.

2.3 A Number-Theoretic Lemma

The following lemma is used in some of the proofs.

Lemma 1 For all real numbers A,B,C,D, x, y, let α1 = |x−A|+ |x−A−B| and α2 = |y−C|+
|y − B − C|. We have α1 ≥ B and α2 ≥ B. Furthermore, α1 = B, α2 = B for A ≤ x ≤ A + B
and C ≤ y ≤ B + C.

Proof: Let us prove α1 ≥ B; the other proof will be analogous. For the sake of contradiction,
assume that α1 < B. We have four cases depending on whether the values inside the absolute
value function (x−A and x−A−B) are positive or negative. Note that |a| = a when a ≥ 0, and
|a| = −a otherwise.

JGAA, 28(1) 179–224 (2024) 185

� Case 1: x < A and x < A+B:

α1 = A− x+A+B − x < B −→ A < x

which contradicts the assumption (x < A).

� Case 2: x < A and x ≥ A+B: These two conditions imply that B < 0, we have:

α1 = A− x+ x−A−B < B −→ 0 < 2B

which is a contradiction since B < 0.

� Case 3: x ≥ A and x < A+B:

α1 = x−A+A+B − x < B −→ 0 < 0

which is impossible.

� Case 4: x ≥ A and x ≥ A+B:

x−A+ x−A−B < B −→ x < A+B

which contradicts the assumption.

Since we get a contradiction for every possible case, we have α1 ≥ B and α1 = B for A ≤ x ≤ A+B.
Similarly, we have α2 ≥ B and α2 = B for C ≤ x ≤ B + C. □

We will also use the following corollary.

Corollary 1 Given two real numbers x, z we have |z| − |x| ≤ |z − x|.

Proof: Using Lemma 1, we have the following for two real numbers x and z:

|z| ≤ |x|+ |z − x| −→ |z| − |x| ≤ |z − x|

□

3 Graph Compression for Paths

In this section, we study the problem of distance-preserving graph compression for a weighted path
with non-negative weights. The paths in this section all have n ≥ 3 vertices since the compression
problem for a two-vertex path is trivial.

The remainder of this section is organized as follows. As a warm-up, we provide optimal bounds
for merging a single edge in Section 3.1. In Section 3.2, we study the path compression problem
for an edge connecting two supernodes, each consisting of a subset of nodes from the path. Two
generalizations of the results of Section 3.1 for contracting any subpath (a contiguous subpath of
the original graph) and any set of independent edges (that induce a matching in the original path)
are provided in Section 3.3 and Section 3.4 respectively.

186 Madani and Maheshwari Distance-Preserving Graph Compression Techniques

v2 v3

v1 v4A

B

C

nL

nRG1

vertices

G2

vertices

(a)

{v2, v3}

x yv1 v4

nL

G1

vertices

G2

nR
vertices

(b)

Figure 2: Merging a single edge e∗ = (v2, v3) with weight B in a path of n vertices, with nL ≥ 0,
nR ≥ 0 vertices on the left of v1 and the right of v4 respectively (nL+nR = n−2) (a) The original
graph before merging v2 and v3 into a supernode. The neighbouring edges of e∗ have weights A
and C. (b) The modified path after merging v2 and v3 into a supernode.

3.1 A Tight Lower Bound for Merging One Edge

This section presents a tight lower bound on the optimal error (Eq. (1)) associated with merging
a single edge in a path topology.

As seen in Figure 2, the edge between v2 and v3 is merged, and only the immediate edge weights
are altered to x and y. Later in this section (Lemma 2), we show why it is sufficient to alter only
the immediate edge weights (A and B in Figure 2) to get the minimum amount of error. Note
that, for merging a single edge (Figure 2) we have:

nL + nR = n− 2 =
∣∣Vm

∣∣ (2)

The following theorem is now presented:

Theorem 1 Let |∆E| be the error associated with merging a single edge e∗ = (v2, v3) (with weight
B) in a path Pn, n ≥ 3 (Figure 2). Furthermore, let Vm = {v2, v3} and Vm = V − Vm. We have
|∆E| ≥ (n−2)B = |Vm|B. Moreover, this lower bound is tight and can be achieved by marking the
left neighbour of the merged edge. If the merged edge has no left or right neighbour, the lower bound
can be achieved by simply contracting the edge, and no further modifications (weight changes) are
required.

Proof: Figure 2 depicts the situation in which edge e∗ with weight B is merged. We first assume
that e∗ has a left neighbour, and we handle the no-neighbour exception at the end of the proof.
As seen in Figure 2-(b), let x and y denote the new edge weights of the neighbouring edges of e∗,
and let G1 (with nL vertices) and G2 (with nR vertices) denote the subpaths rooted at v1 and v4
respectively. We denote the error by |∆E| and classify it into different parts (in accordance with
Eq. (1)):

1. The error between two vertices u ∈ G1, v ∈ G2 is |x + y − A − B − C|. The only affected
portion of such a shortest path is the subpath between v1 and v4, the value of which changes
from A + B + C (in Figure 2-(a)) to x + y (in Figure 2-(b)). Summing over all such pairs
u ∈ G1, v ∈ G2, the total amount of error is nLnR|x+ y −A−B − C|.

JGAA, 28(1) 179–224 (2024) 187

2. Between two vertices u, v ∈ G1, there is no error, because the shortest path value between
all such pairs of vertices is unchanged. Similarly, between two vertices u, v ∈ G2, there exists
no error.

3. The error between a vertex u ∈ G1 and the vertices in Vm = {v2, v3} is |x−A|+ |x−A−B|.
In the path from u to v2, the only changed (with reference to edge weights) subpath is the
subpath between v2 and v1 which changes from A (Figure 2-(a)) to x (Figure 2-(b)), inducing
an error of |x − A|. Similarly, the error between some vertex u ∈ G1 and v3 is |x − A − B|
as that is the amount by which the weight of the subpath from v1 to v3 changes. The total
amount of error between all vertices u ∈ G1 and the vertices in Vm = {v2, v3} is therefore
nL(|x−A|+ |x−A−B|).

4. By similar reasoning to the one provided above, the total amount of error between all vertices
u ∈ G2 and the vertices in Vm = {v2, v3} is equal to nR(|y − C|+ |y −B − C|).

Therefore, we can formulate |∆E| as

|∆E| = nL(|x−A|+ |x−A−B|) + nR(|y − C|+ |y −B − C|) + nLnR|x+ y −A−B − C|
= nLα1 + nRα2 + nLnR|x+ y −A−B − C|

where α1 and α2 are the values defined in Lemma 1. Using Lemma 1, we know α1 ≥ B and
α2 ≥ B. Thus,

|∆E| ≥ B(nL + nR) + nLnR|x+ y −A−B − C|

Using Eq. (2), we have

|∆E| ≥ B(n− 2) + nLnR|x+ y −A−B − C| ≥ B(n− 2) = |Vm|B

Which proves the first part of the theorem.
As for the second part, we now show that this lower bound is tight. By marking the left

neighbouring edge of e∗ (effectively setting x = A+B and y = C) we get

|∆E| = nL(|x−A|+ |x−A−B|) + nR(|y − C|+ |y −B − C|) + nLnR|x+ y −A−B − C|
= (nL + nR)B

= (n− 2)B

= |Vm|B

This analysis concludes the proof for the case where e∗ has a left neighbour.
If e∗ has no left neighbour, i.e., nL = 0, and no shortest path crossing e∗ is affected. For each

shortest path starting from v4 (and its right-side vertices) and terminating at v2 and v3, there is
an error of |y − C|+ |y − B − C|. According to Lemma 1, |y − C|+ |y − B − C| is minimized as
long as C ≤ y ≤ B + C, which is the case if all edges are unmarked, i.e., y = C. We can use a
similar argument if e∗ has neither a right nor a left neighbour. □

Observe that marking the left neighbouring edge is not the only way of achieving the lower
bound as it can also be achieved by marking the right neighbouring edge. In fact, any assignment
of values to x and y such that x = A + ϵ1, y = C + ϵ2, ϵ1 + ϵ2 = B will have the same impact.
Therefore, for merging a single edge in a weighted path, the marked neighbour can be chosen
arbitrarily, and the error value is oblivious to the marking direction. However, this observation
(being oblivious to the marking direction) only holds for merging two regular nodes. As we will

188 Madani and Maheshwari Distance-Preserving Graph Compression Techniques

v1 w1

v2 w2

v3

vn1

vn1+1
vn1+2

vn1+3wn1 wn1+1

wn2

wn2−1 vn2+1

vn2

vn2+2

w∗

(a) The original graph, before contracting e∗ = (vn1+1, vn1+2) with weight w∗

v1

w1 + ϵ1 v2

w2 + ϵ2 v3

vn1 vn1+3

wn1
+ ϵn1

wn1+1 + ϵn1+1

wn2
+ ϵn2

wn2−1 + ϵn2−1

vn2+1

vn2

vn2+2

{vn1+1, vn1+2}

(b) An arbitrary weight redistribution which is transformed in the proof of Lemma 2
to the redistribution of Figure 4-(b).

Figure 3: The figure used in the proof of Lemma 2. The vertices of VL and VR are depicted in red
and blue, respectively.

show in Lemma 3, for merging two supernodes the optimal error is obtained by marking the edge
adjacent to the smaller node with respect to cardinality.

Theorem 1 assumes that to achieve the minimum amount of error, we have to alter only the
immediate edges directly connected to the endpoints of the merged edge. We now prove the
correctness of this assumption. We first define some notation. For any edge ei ∈ E, we denote
its new weight as w′(ei) = w(ei) + ϵi where ϵi is a real number (see Figure 3). This definition
allows us to increase or decrease the weight of any given edge ei by ϵi. We call this assignment of
weights a redistribution for e∗. We refer to an edge ei as altered if ϵi ̸= 0, and unaltered otherwise.
Moreover, let VL, VR ⊂ V be the vertices to the left and right of the merged edge respectively as
depicted in Figure 3. Therefore, the problem is now to show that there exists an optimal solution,
with only the immediate edges altered. For simplicity, we slightly abuse the notation and write
w(ei) as wi and w(e∗) as w∗. In the following lemma, we show a construction for transforming
any redistribution into another equivalent redistribution in which only the immediate edges are
altered.

Lemma 2 (See Figure 3 and Figure 4) For a merged edge e∗ (in a weighted path) that has both
left and right neighbouring edges, any weight redistribution can be transformed into another weight
redistribution in which only the left neighbouring edge of e∗ is altered (i.e., ∀i ̸= n1 in Figure 3,
ϵi = 0; see Figure 4). The error associated with this redistribution is no worse than that of the

JGAA, 28(1) 179–224 (2024) 189

v1

w1 + ϵ1 v2

w2 + ϵ2 v3

vn1 vn1+3

wn1 + ϵn1 wn1+1 + ϵn1+1

wn2 + ϵn2

wn2−1 + ϵn2−1

vn2+1

vn2

vn2+2

{vn1+1, vn1+2}

(a) Before applying the construction method of Lemma 2

v1

w1 v2

w2 v3

vn1 vn1+3

wn1 + w∗ wn1+1

wn2

wn2−1

vn2+1

vn2

vn2+2

{vn1+1, vn1+2}

(b) After applying the construction method of Lemma 2

Figure 4: The construction method of Lemma 2.

original one.

Proof: We prove the lemma by presenting a construction method for transforming any arbitrary
weight redistribution to another one in which only the left neighbouring edge is altered. Further-
more, we show this transformation does not worsen the error. The illustration is mainly based
on Figure 3 and Figure 4. Figure 3-(b) depicts an arbitrary weight redistribution for merging
e∗ = (vn1+1, vn1+2), which is transformed into another weight redistribution (depicted in Figure 4-
(b)).

We now present a simple construction as follows. For illustration, see Figure 4.
Set ϵi = 0 ∀i ̸= n1, and ϵn1

= w∗. Note that this new redistribution may cause some parts of the
error to increase. However, we will use Corollary 1 to provide an upper bound on any potential
error increase and show that there will always be enough decrease in error to counterbalance the
increase. In the original redistribution, the error between two vertices vi, vj ∈ VL(i < j) is:∣∣∣∣∣

j−1∑
k=i

(wk + ϵk)−
j−1∑
k=i

wk

∣∣∣∣∣ =
∣∣∣∣∣
j−1∑
k=i

ϵk

∣∣∣∣∣ (3)

The indices i and j used in this proof are based on the ones depicted in Figure 3 and Figure 4.
Assume that the path of Figure 3 has n2 + 1 edges with VL = {vi|1 ≤ i ≤ n1 + 1} and
VR = {vi|n1+2 ≤ i ≤ n2+2}, with n1 = nL and n2 = nR. For instance, v1 and v3 are two vertices

from VL in Figure 3 and the original shortest path length between v1 and v3 is w1+w2 =
∑2

k=1 wk

(Figure 3-(a)). In the original redistribution of Figure 3-(b) (which we transform into Figure 4-(b)),

this length is w1 + ϵ1 +w2 + ϵ2 =
∑2

k=1(wk + ϵk), resulting in Eq. (3). A similar equation can also

190 Madani and Maheshwari Distance-Preserving Graph Compression Techniques

vi wi

vi+1 wi+1

vi+2

vn1

vn1+1 vn1+2

vn1+3
wn1 wn1+1

wn2

wn2−1

vn2+1

vn2

vn2+2

w∗

(a)

vi

wi + ϵi vi+1

wi+1 + ϵi+1 vi+2

vn1 vn1+3

wn1 + ϵn1 wn1+1 + ϵn1+1

wn2 + ϵn2

wn2−1 + ϵn2−1

vn2+1

vn2

vn2+2

{vn1+1, vn1+2}

(b)

vi

wi vi+1

wi+1 vi+2

vn1
vn1+3

wn1
+ w∗ wn1+1

wn2

wn2−1

vn2+1

vn2

vn2+2

{vn1+1, vn1+2}

(c)

Figure 5: Case 2 in the proof of Lemma 2. (a) The original graph (b) The original weight redis-
tribution (c) After applying the construction method of Lemma 2. The affected shortest path of
Case 2 is highlighted in red.

be defined for any two vertices vi, vj ∈ VR. Moreover, the error between a vertex vi ∈ VL and a
vertex vj ∈ VR (i < j) in the original redistribution is equal to:∣∣∣∣∣

j−2∑
k=i

(wk + ϵk)− w∗ −
j−2∑
k=i

wk

∣∣∣∣∣ =
∣∣∣∣∣w∗ −

j−2∑
k=i

ϵk

∣∣∣∣∣ (4)

Transforming the weight redistribution (as shown in Figure 4) changes the error value. We break
this change down into five different cases:

JGAA, 28(1) 179–224 (2024) 191

� Case 1: The error between two vertices vi, vj ∈ VL (i < j, j ̸= n1 + 1) decreases by

−
∣∣∣∑j−1

k=i ϵk

∣∣∣, because after the construction this error is equal to zero (compare Figure 4-(b)

with Figure 3-(a) for v1 and v3) and using Eq. (3), the change is equal to 0−
∣∣∣∑j−1

k=i ϵk

∣∣∣.
� Case 2: The error between some vertex vi ∈ VL, vi ̸= vn1+1, and every vertex vj ∈ VR

decreases. Specifically, the error between vi and vn1+2 decreases by − |w∗ −
∑n1

k=i ϵk| using
Eq. (4) (see Figure 5).

� Case 3: The error between some vertex vi ∈ VL, vi ̸= vn1+1, and vn1+1 changes by
|w∗|−|

∑n1

k=i ϵk|, because in the original redistribution, the error is equal to |
∑n1

k=i ϵk| (Eq. (3))
and in the new redistribution, it is equal to |w∗|. This change might lead to an increase in
error; however, by using Corollary 1 and setting z = w∗ and x =

∑n1

k=i ϵk we have:

|w∗| −

∣∣∣∣∣
n1∑
k=i

ϵk

∣∣∣∣∣ ≤
∣∣∣∣∣w∗ −

n1∑
k=i

ϵk

∣∣∣∣∣
In other words, if the construction causes an increase in error, it is at most equal to
|w∗ −

∑n1

k=i ϵk|. However, from Case 2 we know that each such vertex vi also has an er-
ror decrease of − |w∗ −

∑n1

k=i ϵk|, which will be enough to nullify this increase.

� Case 4: The error between some vertex vj ∈ VR, vj ̸= vn1+2, and vn1+2 decreases by

−
∣∣∣∑j−2

k=n1+1 ϵk

∣∣∣ using Eq. (3).

� Case 5: The error between some vertex vj ∈ VR, vj ̸= vn1+2, and vn1+1 changes by

|w∗| −
∣∣∣w∗ −

∑j−2
k=n1+1 ϵk

∣∣∣. This change may lead to an increase in error; however, we use

Corollary 1 to bound this increase:

|w∗| −

∣∣∣∣∣w∗ −
j−2∑

k=n1+1

ϵk

∣∣∣∣∣ ≤
∣∣∣∣∣

j−2∑
k=n1+1

ϵk

∣∣∣∣∣
Therefore, we have enough decrease from Case 4 to nullify this increase.

□

Corollary 2 For a given merged e∗ with left and right neighbouring edges, there exists an optimal
redistribution in which only the left-neighbouring edge of e∗ is marked and all other edges are
unmarked.

Based on Theorem 1, the algorithm for merging a set S of edges in a path G = Pn is presented in
Algorithm 1. Algorithm 1 continuously applies Theorem 1 and marks the left neighbouring edge
of each edge e∗ ∈ S taken in an arbitrary order.

192 Madani and Maheshwari Distance-Preserving Graph Compression Techniques

w1 w2 w3 w4

w0 w5

P
′

v0

v1 v2 v3 v4 v5

v6

nL

nR

(a)

w0

v0 v6

nL

nR

{v1, v2, v3, v4, v5}

w1 + w2 + w3 + w4 + w5

(b)

v0 v6

nL

nR

{v1, v2, v3, v4, v5}

w0 + w1 + w2 w3 + w4 + w5

(c)

Figure 6: (a) An example of merging an entire subpath P ′ ⊂ P with four edges, (b) A suboptimal
solution generated by Algorithm 1, and (c) The optimal solution.

Algorithm 1 Graph Compression Algorithm for Independent Edges

1: procedure PATH COMPRESSION
2: Input: G = Pn (A path of n vertices) with weight function w : E → R≥0, a set Em of

edges to merge
3: S ←− Em

4: while S is not empty do
5: Pick an arbitrary edge e ∈ S
6: if e has a left neighbouring edge then
7: Let e′ be the left neighbouring edge of e
8: Set w(e′)←− w(e′) + w(e) ▷ Mark e′

9: end if
10: Remove e from G and merge its endpoints
11: Remove e from S
12: end while
13: end procedure

Unfortunately, Algorithm 1 may produce suboptimal results when applied to specific kinds of
inputs. Precisely, it may produce suboptimal results when merging a connected subpath of the
given path. The reason behind this suboptimal performance lies in the difference between merging
two regular nodes and two supernodes. An example of merging a subpath of size four is depicted

JGAA, 28(1) 179–224 (2024) 193

in Figure 6-(a), for which Algorithm 1 may produce the suboptimal solution Figure 6-(b). Later
in Section 3.3, we shall show that the optimal solution for this example is the one depicted in
Figure 6-(c). Furthermore, in Theorem 3, we prove that when the input to Algorithm 1 consists
of independent edges in G (if S induces a matching in G), it produces the optimal results.

3.2 Merging Supernodes

{v1, . . . , vk} {u1, . . . , uk′}

w1 w2A

B

C

nL

nR

v u

(a) Before merging the supernodes

nL

nR

{v1, . . . , vk, u1, . . . , uk′}

x yw1 w2

(b) After merging the supernodes

Figure 7: An example of merging two supernodes with cardinalities k and k′.

As seen in the previous section, Algorithm 1 may find suboptimal solutions when given an
entire subpath of size k. The main reason behind this suboptimal performance lies in the difference
between merging regular nodes and supernodes. Recall from Definition 3 that a supernode contains
more than one node of the original graph. In this section, we show that merging two supernodes
differs from merging two regular vertices, and we provide a generalized version of Theorem 1.
Interestingly, we observe that unlike merging two regular nodes in which the error value was
oblivious to the marking direction, for merging supernodes, this direction is directly affected by
the cardinality (Definition 4) of each endpoint. In the following lemma, we shall see that for
merging an edge e∗ = (u, v) connecting two supernodes u and v, the optimal solution is obtained
by marking the edge adjacent to the lighter vertex (the one with the smaller cardinality) among u
and v.

Lemma 3 Suppose we have supernodes v and u (as shown in Figure 7), with C(v) = k and
C(u) = k′ (where k ≥ k′), connected to vertices w1 and w2, respectively. The error incurred by
merging the edge e∗ = (u, v) (with weight B) is at least B × k′ × (n− (k + k′)). Furthermore, this
lower bound can be achieved by marking the neighbouring edge adjacent to the smaller vertex among
v and u in terms of cardinality (e = (u,w2) in Figure 7). If the smaller vertex, with reference to
cardinality, has no neighbouring edge other than e∗ = (u, v), then the optimal error can be achieved
by contracting e∗ without any further modifications or weight changes.

Proof: The analysis is similar to the case of merging regular vertices. We enumerate all possible
error values and then deduce the optimal assignment. We first assume that u (the smaller vertex)
is adjacent to another edge e′ ̸= e∗, and we handle the other case (only adjacent to e∗) later in
the proof. We denote the error by |∆E|. Note that nL + nR = |Vm| = n − (k + k′). Let x and y

194 Madani and Maheshwari Distance-Preserving Graph Compression Techniques

denote the new weights of the edges adjacent to (v, u), we have:

|∆E| = nL × |x−A| × k︸ ︷︷ ︸
between the subpath of w1 and the vertices in v

+ nL × |x−A−B| × k′︸ ︷︷ ︸
between the subpath of w1 and the vertices in u

+

nR × |y − C| × k′︸ ︷︷ ︸
between the subpath of w2 and the vertices in u

+ nR × |y −B − C| × k︸ ︷︷ ︸
between the subpath of w2 and the vertices in v

+

nL × nR × |x+ y −A−B − C|︸ ︷︷ ︸
between the subpath of w1 and w2

Because k ≥ k′, we further simplify |∆E| as:

|∆E| =(k − k′)× nL × |x−A|+ nL × k′ ×
(
|x−A|+ |x−A−B|

)
+(k − k′)× nR × |y −B − C|+ nR × k′ ×

(
|y − C|+ |y −B − C|

)
+nL × nR × |x+ y −A−B − C| (5)

Using Lemma 1, and the fact that k − k′ ≥ 0, we have:

|∆E| ≥nL × k′ ×
(
|x−A|+ |x−A−B|

)︸ ︷︷ ︸
≥B (Lemma 1)

+nR × k′ ×
(
|y − C|+ |y −B − C|

)︸ ︷︷ ︸
≥B (Lemma 1)

(6)

≥B × k′ × (nL + nR)︸ ︷︷ ︸
=n−(k+k′)

= B × k′ × (n− (k + k′)) (7)

We can observe that this lower bound (Eq. (7)) is tight and can be achieved by setting y = B +C
and x = A in Eq. (5).

Now if u is only adjacent to e∗, the lower bound can be achieved by just contracting e∗ and
leaving the weight function unchanged. To see why, suppose u is only adjacent to e∗. We have
nR = 0 and the error is equal to:

|∆E| =(k − k′)× nL × |x−A|+ nL × k′ ×
(
|x−A|+ |x−A−B|

)
+(k − k′)× nR × |y −B − C|+ nR × k′ ×

(
|y − C|+ |y −B − C|

)
+nL × nR × |x+ y −A−B − C|
=(k − k′)× nL × |x−A|+ nL × k′ ×

(
|x−A|+ |x−A−B|

)
=nL × k′ ×B (by setting x = A, as no edge weights are changed.)

On the other hand, note that nL + nR = n− (k + k′), and nR = 0 implies that nL = n− (k + k′).
We have:

|∆E| = nL × k′ ×B = (n− (k + k′))× k′ ×B

and the lower bound is achieved without any weight changes.
It is worth noting that similar to Theorem 1, we assume that it is sufficient to only alter the

neighbouring edges of the merged edge e∗ = (u, v). This proof for this assumption is almost
identical to that of Lemma 2, where any arbitrary redistribution can be transformed into another
redistribution in which only the edge adjacent to the smaller vertex (e = (u,w2)) is marked. Then,
similar to the proof of Lemma 2, the decrease in error is always sufficient to counterbalance any
potential error increase. The only difference is that in the new claim, the decrease in error and any
potential error increase are weighted by k and k′, respectively. Since k ≥ k′, the proof follows. □

JGAA, 28(1) 179–224 (2024) 195

Remark 1 Lemma 3 is a generalization of Theorem 1. Thinking of each regular vertex as a
supernode with cardinality one, we have k = k′ = 1 and using Lemma 3, the error is equal to
B × k′ × (n− (k + k′)) = B × (n− 2) by arbitrarily marking one of the neighbouring edges (since
the endpoints have equal cardinalities).

Remark 2 Using Lemma 3, we can now explain the suboptimal performance of Algorithm 1 for
edges that are not independent and form a contiguous subpath. For inputs of such kind, Algorithm 1
continuously marks the left neighbouring edges of all edges e∗ ∈ S, potentially marking an edge
adjacent to the heavier endpoint of some e∗ ∈ S along the way and violating the conditions of
Lemma 3.

In the next section, we study the problem of optimally merging an entire contiguous subpath of
the path.

3.3 Merging Contiguous Subpaths

v1

v2 v3 v4 vk+2vk+1vk

vk+3w0

w1 w2

. . .

wk−1 wk. . .

wk+1

nL
vertices

nR
verticesVL VR

P
′

(a)

v1

nL
vertices

nR
verticesVL VR

{v2, v3, . . . , vk+2}

x y vk+3

(b)

Figure 8: The figure used in the proofs of Section 3.3 (a) Before merging an entire subpath P ′ ⊂ P
with k edges, (b) After the merge.

This section presents an optimal way of merging any contiguous subpath (or connected subpath)
of a given path. For convenience, we refer to contiguous subpaths as subpaths. Let P

′ ⊆ P be the
desired subpath consisting of k edges (see Figure 8 for an illustration). Throughout this section,
we assume k is even; otherwise, we can convert P ′ into an equivalent subpath of even length by

196 Madani and Maheshwari Distance-Preserving Graph Compression Techniques

adding a dummy edge of weight zero. As depicted in Figure 8, we assume P ′ partitions the set of
vertices into two subsets, VL and VR, with nL and nR vertices, respectively. We denote the error
associated with contracting P ′ by E and break it down into three components:

� EL, the error between the vertices in VL and the ones inside P ′,

� ER, the error between the vertices in VR and the ones inside P ′, and

� ELR the error between the vertices of VL and VR.

With this in mind, we formulate E as:

E = EL + ER + ELR (8)

such that:

EL = nL ×

 |x− w0|︸ ︷︷ ︸
between vertices of VL & v2

+ |x− w0 − w1|︸ ︷︷ ︸
between vertices of VL & v3

+ · · ·+ |x− w0 − w1 − · · · − wk|︸ ︷︷ ︸
between vertices of VL & vk+2

(9)

ER = nR×

 |y − wk+1|︸ ︷︷ ︸
between vertices of VR & vk+2

+ |y − wk+1 − wk|︸ ︷︷ ︸
between vertices of VR & vk+1

+ · · ·+ |y − wk+1 − wk − · · · − w1|︸ ︷︷ ︸
between vertices of VR & v2

(10)

and
ELR = nL × nR × |x+ y − w0 − w1 − · · · − wk+1| (11)

where x and y are the new weights of the neighbouring edges of P ′ (Figure 8-(b)).
We first prove the optimal solution for EL and derive the optimal solution for ER by symmetry.

Let E(i)L denote the value of EL when x = w0 +w1 + · · ·+wi for 0 ≤ i ≤ k. We prove the following
lemma using induction on i.

Lemma 4 E(i)L = nL ×
(∑i

j=0 j wj +
∑k

j=i+1(k + 1− j) wj

)
Proof: For the base case, E(0)L , assume x = w0. By a simple replacement into Eq. (9) we get:

E(0)L = nL ×
(
w1 + w1 + w2 + w1 + w2 + w3 + · · ·+ w1 + w2 + · · ·+ wk

)
In other words, every wj , 1 ≤ j ≤ k, is repeated k + 1− j times, and:

E(0)L = nL ×

 k∑
j=1

(k + 1− j) wj

Now assume the lemma holds for all j < i+ 1. By the inductive hypothesis, we have

E(i)L = nL ×
(∑i

j=0 j wj +
∑k

j=i+1(k + 1− j) wj

)
.

We break Eq. (9) into k + 1 clauses, such that cj = |x − w0 − w1 − · · · − wj | for 0 ≤ j ≤ k.

Going from x =
∑i

j=0 wj to x =
∑i+1

j=0 wj , E(i)L first increases by nL×
(
(i+1) wi+1

)
because there

are i+ 1 clauses c0, c1, . . . , ci that do not include wi+1, and then decreases by nL ×
(
(k − i) wi+1

)

JGAA, 28(1) 179–224 (2024) 197

because there are k− i clauses ci+1, . . . , ck that include wi+1 and were not covered by the previous
assignment of x (x =

∑i
j=0 wj). Therefore, we have:

E(i+1)
L = E(i)L + nL × ((i+ 1) wi+1 − (k − i) wi+1)

= nL ×

 i∑
j=0

j wj +

k∑
j=i+1

(k + 1− j) wj + (i+ 1) wi+1 − (k − i) wi+1

= nL ×

i+1∑
j=0

j wj +

k∑
j=i+2

(k + 1− j) wj

□

The following lemma states that the optimal value of EL is equal to E(
k
2)

L .

Lemma 5 The optimal value of EL is obtained when x = w0 + w1 + · · ·+ w k
2
.

Proof: It suffices to show the optimal value of EL is equal to E(
k
2)

L . From the proof of Lemma 4,

we know that E(i+1)
L − E(i)L = nL ×

(
(i+ 1) wi+1 − (k − i) wi+1

)
.

Therefore, E(i+1)
L − E(i)L < 0 if:

i+ 1− k + i < 0 −→ 2i < k − 1 −→ i <
k

2
− 1

2
−−−−−−−−−→
since k is even

i ≤ k

2
− 1

In other words, E(
k
2)

L is strictly better than (less than) any E(j)L , j ̸= k
2 . Note that the optimal

solution also cannot happen when x = ϵ+
∑ k

2
j=0 wj for some 0 < ϵ < w k

2+1, because in that case,

the error would be equal to:

E(
k
2)

L +

(
k

2
+ 1

)
ϵ−

(
k

2

)
ϵ > E(

k
2)

L

Using simple replacements, we can deduce that E(
k
2)

L is also smaller than EL when x < w0 or

x > w0 + · · · + wk. Let E(x<w0)
L denote the value of EL for some x < w0. For some x < w0, all

clauses in Eq. (9) have negative values. Recalling that |x| = −x when x < 0, we have:

E(x<w0)
L = nL × (w0 − x+ w0 + w1 − x+ · · ·+ w0 + w1 + · · ·+ wk − x)

= nL ×

 k∑
j=0

(k + 1− j)wj

− (k + 1)× x

≥ nL ×

 k∑
j=1

(k + 1− j)wj

 , as 0 ≤ x < w0

= E(0)L (see the proof of Lemma 4)

> E(
k
2)

L

The other case (x > w0 + · · ·+ wk) can be handled analogously. □

198 Madani and Maheshwari Distance-Preserving Graph Compression Techniques

Lemma 6 The optimal value of ER is obtained when y = w k
2+1 + w k

2+2 + · · ·+ wk+1.

Proof: By symmetry and using Lemma 4 and Lemma 5. □

We now derive the following theorem, which states that the optimal way of contracting an entire
subpath is by distributing the left and right halves of the edges in the subpath to the left and right
neighbours, respectively.

Theorem 2 Let P ′ ⊆ P be a contiguous subpath of P (a weighted path on n vertices) consisting of
k edges {e1, . . . , ek}, and let e0 and ek+1 be the left and right neighbouring edges of P ′ respectively.
Furthermore, let wi = w(ei) ∀i ∈ {0, . . . , k+1}. The optimal error for contracting P ′ is obtained by
setting x = w0+w1+ · · ·+w k

2
and y = w k

2+1+w k
2+2+ · · ·+wk+1, where x and y are the new edge

weights of e0 and ek+1 respectively (see Figure 8). If P ′ has no left neighbour (e0 does not exist),
the optimal error can be achieved by setting y = w k

2+1 + w k
2+2 + · · · + wk+1. If P ′ has no right

neighbour (ek+1 does not exist), the optimal error can be achieved by setting x = w0+w1+· · ·+w k
2
.

Finally, if P ′ has neither a left nor a right neighbour, the optimal error can be achieved by simply
contracting P ′ and no further modifications (weight changes) are required.

Proof: The case with both neighbours existing is immediate from Lemma 5, Lemma 6, Eq. (8),
and the fact that ELR = 0 when x = w0 + w1 + · · ·+ w k

2
and y = w k

2+1 + w k
2+2 + · · ·+ wk+1.

If P ′ has no left neighbour (e0 does not exist), we have nL = 0 and consequently ELR = EL = 0.
It follows that E = ER whose optimal value is obtained by setting y = w k

2+1 + w k
2+2 + · · ·+ wk+1

using Lemma 6. The other cases can be shown analogously.
To prove that it is sufficient to alter only the immediate neighbouring edges of P ′, we only

provide a sketch to avoid repetition. The idea is very similar to the proof of Lemma 2 and
Lemma 3. Suppose we have any arbitrary weight redistribution, which we transform to the one
provided in this theorem. Let u be some vertex in VL (as in Figure 8). In the original redistribution,
let x be the length of the shortest path from u to the super vertex v∗ = {v2, v3, . . . , vk+2} in P ′

(Figure 8-(b)). It is easy to see that in the original distribution, the error between u and all of the
vertices in v∗ is equal to:

E1 = |x− w0|+ · · ·+ |w − w0 − · · · − wk|

For a fixed x, E1 corresponds to EL

nL
(Eq. (9)). It is easy to see that in the new redistribution, the

error between u and all vertices in v∗ is equal to
E
(k
2
)

L

nL
. Therefore, using Lemma 5, we know that

E
(k
2
)

L

nL
− EL

nL
≤ 0 for any x, and this change in the weight redistribution cannot worsen the error

associated with any u ∈ VL. Other cases can be handled analogously. □

3.4 Merging a Set of Independent Edges

We now generalize the results of Section 3.1 by proving the correctness of Algorithm 1 for merging
any set of independent edges. The proof of correctness consists of the following lemma and theorem,
which are similar to Lemma 2 and Theorem 1, respectively.

Lemma 7 For merging a set of independent edges Em from a path on n vertices Pn, there exists
an optimal redistribution in which for each e ∈ Em, only its left neighbouring edge is marked. If
e′ ∈ Em is the leftmost edge on Pn, then this optimal solution is obtained by marking the left
neighbouring edge of all edges in Em except for e′.

JGAA, 28(1) 179–224 (2024) 199

v1 u6u1 u2 v2 u3 u4 u5

w1 w∗
1 w2

v3e1 e∗1 e2 e3 e∗2 e4 e∗3 e5

w3 w∗
2 w4 w∗

3 w5

(a)

v1 {u1, u2} {u3, u4} {u5, u6}

w1 + ϵ1 w2 + ϵ2 w3 + ϵ3 w4 + ϵ4

v2 v3

w5 + ϵ5
(b)

v1 {u1, u2} {u3, u4} {u5, u6}

w1 + w∗
1 w2 w3 + w∗

2 w4 + w∗
3

v2 v3

w5

(c)

Figure 9: The figure used in the proof of Lemma 7. (a) The original graph. The vertices and
edges in Vm and Em are depicted in red and the vertices in Vm are depicted in blue. (b) An
arbitrary weight redistribution which assigns w′(ei) = w(ei) + ϵi to every edge ei ∈ Em = E −Em

(c) Another weight redistribution that only marks the left neighbouring edge of each edge in Em

whose associated error is no worse than the one depicted in (b).

Proof: The proof is similar to the proof of Lemma 2, and we will provide a sketch using Figure 9.
In Figure 9, the edges in Em and the vertices in Vm are highlighted in red, and the vertices in
Vm are depicted in blue. We assign an ordering to the vertices (of Vm and Vm) and the edges
(of Em and Em) from left to right, as illustrated in Figure 9. Let vi and uj be the i-th and the
j-th vertex in Vm and Vm respectively according to this ordering. Similarly, let ei and e∗j be the

i-th and the j-th edge in Em = E − Em and Em respectively. For convenience, we denote w(ei)
and w(e∗i) by wi and w∗

i respectively. Figure 9-(b) depicts some arbitrary weight redistribution in
which the new weight of each edge ei is set to w(ei) + ϵi. We shall show that the error associated
with the weight redistribution of Figure 9-(c) (in which the left neighbours of Em are marked) is
no worse than that of Figure 9-(b). We again assume that all edges in Em have left neighbours.
First, observe how this new weight redistribution removes any error between the vertices in Vm.
For instance, in the path of Figure 9-(c), the shortest path value between v1, v3 ∈ Vm is the same
as the one in the original path (Figure 9-(a)). Therefore, it suffices to study only the error between
all pairs of vertices (u, v), u ∈ Vm, v ∈ Vm. Using our ordering of edges, let e∗k = (uj , uj+1) ∈ Em

and let vi ∈ Vm be a vertex to the left of e∗k (we will explain how the other case can be handled
analogously). Continuing with our example of Figure 9, let e∗k = e∗3 = (u5, u6) and vi = v1.
Observe how between vi (v1 in Figure 9-(a)) and uj+1 (u6 in Figure 9-(c)), there exists no error in
the new redistribution as they have equal shortest path values in the original graph (Figure 9-(a))
and the new distribution (Figure 9-(c)). We show that, going from the distribution of Figure 9-(b)
to the one in Figure 9-(c), any increase in the error between vi and the left endpoint of e∗k (uj) can
be nullified by the decrease in the error between vi and uj+1. The case where vi is located on the
right of e∗k can be handled similarly.
For any E′ ⊆ E we define the following quantities:

W(E′) =
∑

e∈E′∩Em

w(e), W∗(E′) =
∑

e∈E′∩Em

w(e), W ′(E′) =
∑

ei∈Em∩E′

ϵi

200 Madani and Maheshwari Distance-Preserving Graph Compression Techniques

where W ′(E′) denotes the sum of all ϵi’s in the distribution of Figure 9-(b). Let πv,u, π
′
v,u, and

π′′
v,u denote the shortest path values between v and u in the original graph (Figure 9-(a)), the first

redistribution (Figure 9-(b)), and the second redistribution (Figure 9-(c)) respectively. Moreover,
let E(u,v) denote the set of edges on the unique shortest path from u to v. We have:

πvi,uj =W(E(vi,uj)) +W∗(E(vi,uj)) (12)

π′
vi,uj

=W(E(vi,uj)) +W ′(E(vi,uj)) (13)

π′′
vi,uj

=W(E(vi,uj)) +W∗(E(vi,uj)) + w∗
k (14)

We provide some examples of these quantities in Example 1 for better readability. Note that:

πvi,uj+1
= πvi,uj

+ w∗
k, π

′
vi,uj

= π′
vi,uj+1

, and π′′
vi,uj

= π′′
vi,uj+1

(15)

The error between vi and uj+1 in the redistribution of Figure 9-(b) is:

Evi,uj+1

1 =
∣∣∣πvi,uj+1

− π′
vi,uj+1

∣∣∣ = ∣∣∣πvi,uj
+ w∗

k − π′
vi,uj

∣∣∣ = ∣∣∣w∗
k +W∗(E(vi,uj))−W ′(E(vi,uj))

∣∣∣
(16)

As mentioned before, the error between vi and uj+1 in the weight redistribution of Figure 9-(c) is
equal to zero:

Evi,uj+1

2 = 0 (17)

Therefore, transforming Figure 9-(b) into Figure 9-(c) changes the error between vi to uj+1 by:

∆vi,uj+1
= Evi,uj+1

2 − Evi,uj+1

1 = −
∣∣∣w∗

k +W∗(E(vi,uj))−W ′(E(vi,uj))
∣∣∣ (18)

The error between vi and uj in the redistribution of Figure 9-(b) is:

Evi,uj

1 =
∣∣∣πvi,uj

− π′
vi,uj

∣∣∣ = ∣∣∣π′
vi,uj

− πvi,uj

∣∣∣ = ∣∣∣W ′(E(vi,uj))−W∗(E(vi,uj))
∣∣∣ (19)

The error between vi and uj in the weight redistribution of Figure 9-(c) is equal to:

Evi,uj

2 =
∣∣∣π′′

vi,uj
− πvi,uj

∣∣∣ = |w∗
k| (20)

Transforming Figure 9-(b) into Figure 9-(c) changes the error between vi to uj by:

∆vi,uj
= Evi,uj

2 −Evi,uj

1 = |w∗
k|−

∣∣∣W ′(E(vi,uj))−W∗(E(vi,uj))
∣∣∣ ≤ ∣∣∣w∗

k −W ′(E(vi,uj)) +W∗(E(vi,uj))
∣∣∣

(21)
using Corollary 1. Therefore, going from the first redistribution to the second one changes the
error between the endpoints of e∗k = (uj , uj+1) and vi by:

∆vi,uj
+∆vi,uj+1

≤
∣∣∣w∗

k −W ′(E(vi,uj)) +W∗(E(vi,uj))
∣∣∣− ∣∣∣w∗

k +W∗(E(vi,uj))−W ′(E(vi,uj))
∣∣∣ = 0

Since each e∗k edge in Em has exactly two endpoints, this concludes the proof for the first case (vi
is on the left of e∗k). The other case can be handled analogously. □

JGAA, 28(1) 179–224 (2024) 201

Example 1 Returning to our example of Lemma 7 and Figure 9, let e∗k = (uj , uj+1) = e∗3 =
(u5, u6), and vi = v1. Then:

� E(v1,u5) = {e1, e∗1, e2, e3, e∗2, e4}

� W(E(v1,u5)) = w1 + w2 + w3 + w4

� W∗(E(v1,u5)) = w∗
1 + w∗

2

� W ′(E(v1,u5)) = ϵ1 + ϵ2 + ϵ2 + ϵ3 + ϵ4

Theorem 3 Let |∆E| be the optimal error resulting from merging a set of k independent edges
e1, e2, . . . , ek with respective weights w∗

1 , w
∗
2 , . . . , w

∗
k from a path on n vertices Pn. Let (u2i−1, u2i)

be the endpoints of ei ∈ Em, 1 ≤ i ≤ k. Furthermore, let Vm = {u1, . . . , u2k} and Vm = V − Vm.
We have |∆E| = |Vm|(w∗

1+ · · ·+w∗
k) = (n−2k)(w∗

1+ · · ·+w∗
k). This optimal value can be achieved

by marking the left neighbour of each edge in Em after contraction. If the leftmost edge in Em

has no left neighbour, the optimal error can be achieved by marking the left neighbours of all other
edges in Em.

Proof: Let w′ : E → R≥0 be the weight redistribution that marks the left neighbouring edge (if
any) of each edge in Em (Figure 9-(c)). That w′ is optimal follows directly from Lemma 7. We
now prove the error associated with w′.

Since the edges in Em induce a matching on Pn, |Vm| = n − 2|Em| = n − 2k. Recall from
the proof of Lemma 7 that in w′, there exists no error between two vertices v1, v2 ∈ Vm. Let us
fix some e∗k ∈ Em. Using the proof of Lemma 7, we know that each vertex vi ∈ Vm induces an
error of w∗

k with exactly one endpoint of e∗k (and no error with the other endpoint). Summing over
all vertices vi ∈ Vm, we get that each edge e∗k ∈ Em accumulates a total of (n − 2k)w∗

k in error.
Summing again over all edges e∗k ∈ Em yields the desired bound. □

4 Graph Compression for Trees

In this section, we study the problem of distance-preserving graph compression for weighted trees.
Precisely, we study a relevant problem, referred to as the marking problem, for a tree T = (V,E),
|V | = n, and weight function w : E −→ R≥0.

The remainder of this section is organized as follows. In Section 4.1, we formally define the
marking problem. The adaptation of the error function (Eq. (1)) to the marking problem is
thoroughly explained in Section 4.2. As a warm-up, we study a special case of the marking
problem in Section 4.3, after which we generalize the results in Section 4.4 and present a linear-
time algorithm for solving the marking problem in Algorithm 2. As the final component of this
section, we thoroughly study the difference between the marking problem (Definition 9) and the
fractional marking problem (Definition 14) in Section 4.5.

4.1 The Marking Problem for a Single Edge

As seen in Section 3, for merging a single edge in a weighted path, marking one of the neighbouring
edges produces the optimal amount of error. An important question is how to generalize this result
to solve the same problem for weighted trees. We formally state the marking problem as:

202 Madani and Maheshwari Distance-Preserving Graph Compression Techniques

Definition 9 The Marking Problem for Weighted Trees: Given a contracted edge e∗ in a
weighted tree T , what subset of the neighbouring edges of e∗ should we mark such that the error
value of Eq. (1) is minimized over all such possible subsets?

An example of the marking problem is depicted in Figure 10-(a), where edge e∗ with weight
w∗ is contracted. As shown in Figure 10-(b), in the marking problem, the goal is to mark a
subset of the neighbouring edges of e∗, by setting the new weight of each marked edge ei to
w′(ei) = w(ei)+ ϵi, ϵi ∈ {0, w∗}, in a way that minimizes the error function of Eq. (1) over all such
possible subsets. Note that the fractional case (when the weight of each marked edge ei is set to
w′(ei) = w(ei) + ϵi, ϵi ∈ [0, w∗]) is thoroughly studied in Section 4.5.

In the tree of Figure 10-(a), e∗ has four neighbouring edges, namely e1 = (v1, v3), e2 = (v1, v4),
e3 = (v2, v5), and e4 = (v2, v6). Different subsets of these neighbouring edges can be marked, for
instance, in Figure 11-(a), {e1, e2} is marked. In the remainder of this section, we may refer to
each of these marked subsets as a marking for simplicity. For example, in Figure 11-(c), {e1, e3} is
a marking. An optimal marking is one that minimizes the error function of Eq. (1) over all possible
markings.

Since for merging an edge in a weighted path marking one of the neighbouring edges gives
the optimal amount of error, our intuition tells us that in a weighted tree, we have to mark all
neighbouring edges on one side of the contracted edge e∗. As we shall show later, this intuition,
though not completely correct, is optimal for specific kinds of input. To study the marking problem,
we first present some definitions and observations using Figure 10 and Figure 11 as our running
examples. We assume the tree is laid out in the plane and e∗ (the edge to be merged) is horizontal.
This assumption will simplify the description of our results.

L1

L2

R1

R2

v1 v2

v3

v4

v5

v6

w1

w2

w3

w4

w∗

TL
2

TL
1 TR

1

TR
2

(a) Before merging e∗

L1

L2

R1

R2

{v1, v2}

v3

v4

v5

v6

w3 + ϵ3

w4 + ϵ4

w1 + ϵ1

w2 + ϵ2

TL
1

TL
2

TR
1

TR
2

(b) After merging e∗

Figure 10: The figure used in Section 4.1 for defining the marking problem. We denote by TL
i , i ∈

{1, 2}, and TR
j , j ∈ {1, 2} the subtree rooted at the i-th edge to the left and the j-th edge to the

right respectively. Moreover, Li = |{v|v ∈ TL
i }| and Rj = |{v|v ∈ TR

j }| denote the number of
vertices in each subtree.

Definition 10 Let T = (V,E) be a weighted tree with non-negative weights, and let e∗ = (v1, v2)
be the merged edge with weight w∗, Vm = {v1, v2}, and Vm = V −Vm. We denote by L the number

JGAA, 28(1) 179–224 (2024) 203

of subtrees to the left of v1 and by R the number of subtrees to the right of v2. More formally, let
E′ = E − e∗. We have:

VL = {u|(u, v1) ∈ E′},L = |VL|

VR = {w|(v2, w) ∈ E′},R = |VR|

For instance, in the tree of Figure 10, we have VL = {v3, v4} and VR = {v5, v6} and therefore
L = R = 2.
Given e∗ = (v1, v2) in T , T − {v1, v2} is a forest F , the components of which are used in our
analyses and defined as follows:

Definition 11 Let T , e∗ = (v1, v2), VL and VR be as defined in Definition 10. Let F be the
forest T − {v1, v2}. Furthermore, assume that the connected components of F are rooted at the
vertices of VL or VR, and let CL and CR be the sets of components of F rooted at the vertices of
VL and VR respectively. Then, we denote by TL

i , i ∈ {1, . . . ,L} the i-th member of CL, and by
TR
j , j ∈ {1, . . . ,R} the j-th member of CR, given some arbitrary ordering on the members of CL

and CR.

In the tree of Figure 10, L = 2, and CL has two members (the subtrees rooted at v3 and v4). Given
some arbitrary ordering on the members of CL, T

L
1 is the subtree rooted at v3.

We also formally define the cardinality of the subtrees of Definition 11 as follows:

Definition 12 Let TL
i , i ∈ {1, . . . ,L} and TR

j , j ∈ {1, . . . ,R} be as defined in Definition 11. We

have Li = |{v|v ∈ TL
i }| and Rj = |{v|v ∈ TR

j }|. We refer to Li as the cardinality of the i-th edge
on the left and Rj as the cardinality of the j-th edge on the right.

A few examples of marking the edges of Figure 10 are provided in Figure 11-(a) to Figure 11-(c).
In Figure 11-(a) and Figure 11-(b), all edges on one side of e∗ are marked, and in Figure 11-(c), a
subset of edges from both sides are marked. Marking an edge could both increase and decrease the
total amount of error. Before proceeding with the remainder of this section, we note the following
lemma to justify our focus on minimizing the error between all pairs of vertices in Vm.

Lemma 8 (See Figure 10) Let e∗ = (v1, v2) be the single merged edge in a weighted tree T = (V,E),
and let Vm = V − {v1, v2}. Then, as long as every neighbouring edge of e∗ is either marked or
unmarked, the error between some vertex u ∈ Vm and the vertices in {v1, v2} is minimized.

Proof: This lemma is a direct result of Lemma 1 and Theorem 1. Let us fix some vertex u ∈ TL
2

(see Figure 10-(b)), the error between u and the endpoints of e∗, v1 and v2, can be formulated as:

|∆E|′ = |w2 − (w2 + ϵ2)|︸ ︷︷ ︸
between u and v1

+ |w2 + w∗ − (w2 + ϵ2)|︸ ︷︷ ︸
between u and v2

= |ϵ2|+ |w∗ − ϵ2| = |ϵ2|+ |ϵ2 − w∗|

Using Lemma 1, we have |∆E|′ ≥ w∗, and |∆E|′ = w∗ for 0 ≤ ϵ2 ≤ w∗. Therefore, when (v1, v4)
is either marked or unmarked, we have ϵ2 ∈ {0, w∗}, which satisfies the desired conditions. This
analysis applies to all nodes u ∈ Vm, thus the lemma follows. □

In the remainder of this section, we therefore only focus on minimizing the error between all
pairs of vertices u1, u2 ∈ Vm, because by the definition of the marking problem (Definition 9), the
conditions of Lemma 8 are automatically satisfied.

204 Madani and Maheshwari Distance-Preserving Graph Compression Techniques

L1

L2

R1

R2

{v1, v2}

v3

v4

v5

v6

w3

w4

w1 + w∗

w2 + w∗

TL
1

TL
2

TR
1

TR
2

(a) Both edges on the left are marked.

L1

L2

R1

R2

{v1, v2}

v3

v4

v5

v6

w3 + w∗

w4 + w∗

w1

w2

TL
1

TL
2

TR
1

TR
2

(b) Both edges on the right are marked.

L1

L2

R1

R2

{v1, v2}

v3

v4

v5

v6

w3 + w∗

w4

w1 + w∗

w2

TL
1

TL
2

TR
1

TR
2

(c) A subset of edges from both sides is
marked.

Figure 11: The figure used in Section 4.2 for formulating the marking error, the marked edges
are highlighted in red. We denote by TL

i , i ∈ {1, 2}, and TR
j , j ∈ {1, 2} the subtree rooted at the

i-th edge to the left and the j-th edge to the right respectively. Moreover, Li = |{v|v ∈ TL
i }| and

Rj = |{v|v ∈ TR
j }| denote the number of vertices in each subtree.

4.2 Formulating the Error

This section formally explains how marking a set of edges affects the error function. Using Fig-
ure 11, we first present some examples, which we generalize later in Observation 1. Throughout
this section, we may sometimes refer to this error as units of error, where each unit is equal to w∗.

Example 2 The error between v3 and v4 in Figure 11-(a) is equal to |w1+w∗+w2+w∗−w1−w2| =
2w∗. In the original graph (Figure 10-(a)), e∗ does not appear on the unique path between v3 and
v4, while in the modified graph (Figure 11-(a)), the weight of e∗ appears twice. In the marking
of Figure 11-(a), the total amount of error between all pairs of vertices u1 ∈ TL

1 , u2 ∈ TL
2 is

L1 × L2 × 2w∗.

Example 3 The error between v3 and v5 in Figure 11-(c) is |w1+w∗+w3+w∗−w1−w∗−w3| = w∗.

JGAA, 28(1) 179–224 (2024) 205

Because in the original graph (Figure 10-(a)), e∗ appears only once on the unique path from v3 to
v5, while in the modified graph (Figure 11-(c)), the weight of e∗ appears twice. The total amount
of error between all pairs of vertices u1 ∈ TL

1 , u2 ∈ TR
1 is L1 ×R1 × w∗.

Example 4 In Figure 11-(c), the error between v5 and v6 is |w3 +w∗ +w4−w3−w4| = w∗. The
total amount of error between all pairs of vertices u1 ∈ TR

1 and u2 ∈ TR
2 is R1 ×R2 × w∗.

Example 5 In Figure 11-(c), the total amount of error between all pairs of vertices u1 ∈ TL
1 and

u2 ∈ TL
2 is L1 × L2 × w∗.

Example 6 In Figure 11-(a), the error between v3 and v5 is |w1 +w∗ +w3 −w1 −w∗ −w3| = 0.
The length of the unique path between v3 and v5 does not change compared with Figure 10-(a).

Observation 1 Between the vertices of two edges (vertices belonging to the subtree rooted at that
edge) adjacent to the endpoints of e∗, there might exist some error. We classify this observation
into the following cases:

1. Let TL
i and TL

j be the subtrees adjacent to two distinct marked edges on the left. Then, the

total amount of error between all pairs of vertices u1 ∈ TL
i , u2 ∈ TL

j is Li × Lj × 2w∗ (see
Example 2).

2. Let TR
i and TR

j be the subtrees adjacent to two marked edges on the right. Then, the total

amount of error between all pairs of vertices u1 ∈ TR
i and u2 ∈ TR

j is Ri ×Rj × 2w∗.

3. Let TL
i and TR

j be the subtrees adjacent to two marked edges on the left and right, respec-

tively. Then, the total amount of error between all pairs of vertices u1 ∈ TL
i and u2 ∈ TR

j is
Li ×Rj × w∗ (see Example 3).

4. Let TR
i and TR

j be the subtrees adjacent to a marked edge and an unmarked edge on the

right, respectively. Then, the total amount of error between all pairs of vertices u1 ∈ TR
i and

u2 ∈ TR
j is Ri ×Rj × w∗ (see Example 4).

5. Let TL
i and TL

j be the subtrees adjacent to a marked edge and an unmarked edge on the

left, respectively. Then, the total amount of error between all pairs of vertices u1 ∈ TL
i and

u2 ∈ TL
j is Li × Lj × w∗ (see Example 5).

6. Let TL
i be the subtree adjacent to a marked edge on the left, and TR

j be the subtree adjacent
to an unmarked edge on the right. Then, the total amount of error between all pairs of
vertices u1 ∈ TL

i and u2 ∈ TR
j is equal to zero (see Example 6).

7. Let TL
i be the subtree adjacent to an unmarked edge on the left, and TR

j be the subtree
adjacent to a marked edge on the right. Then, the total amount of error between all pairs of
vertices u1 ∈ TL

i and u2 ∈ TR
j is equal to zero.

4.3 Equal-Sized Subtrees

We now investigate a special case where each subtree on the left has nL vertices and each subtree
on the right has nR vertices, i.e., Li = nL, 1 ≤ i ≤ L, and Ri = nR, 1 ≤ i ≤ R. Recall that
every merged edge has two sides, left and right, one of which is designated as the preferable side.

206 Madani and Maheshwari Distance-Preserving Graph Compression Techniques

A given side is preferable if it produces a smaller amount of error when fully marked compared to
its fully marked counterpart. For example, if the left side is preferable, we have:

n2
L × L(L − 1) ≤ n2

R ×R(R− 1) (22)

The above inequality compares the error between the marking with the left side fully marked and
the right side fully unmarked (Figure 11-(a)), and the opposite marking with the right side fully
marked and the left side fully unmarked (Figure 11-(b)). In the first marking, there exists no error
between the left and the right sides (Observation 1, Case 6), but there are

(L
2

)
distinct pairs of

marked edges on the left, each inducing an error of nL×nL×2w∗ (Observation 1, Case 1). Therefore,
the total amount of error for the first marking is equal to

(L
2

)
×nL×nL×2w∗ = n2

L×L(L−1)×w∗.
The other marking can be analyzed analogously. Note that in the remainder of this section, we
drop w∗ from each error term, and each error term counts the error units, where each unit is equal
to w∗. Therefore, all quantities are implicitly multiplied by w∗ in the remainder of this section.

The following lemma states that, for a contracted edge e∗ that has equal-sized subtrees on each
side, the optimal solution is obtained by marking all edges on the preferable side of e∗ and leaving
the other side completely unmarked.

Lemma 9 Given a merged edge e∗ (in a weighted tree) with two sides left and right, such that the
subtrees on each side have equal sizes, the optimal marking is obtained if one side (the preferable
side) is fully marked and the other side is fully unmarked.

Proof: By contradiction. This lemma assumes each subtree on the left and right side has nL and
nR vertices respectively, i.e. Li = nL, 1 ≤ i ≤ L, and Ri = nR, 1 ≤ i ≤ R. Without loss of
generality, we assume the left side is preferable throughout this proof. Therefore, we have:

n2
L × L(L − 1) ≤ n2

R ×R(R− 1)

Let i and j denote the number of marked edges on the left and right, respectively. We define two
functions, MARK LEFT, which marks one of the edges on the left, and UNMARK RIGHT, which
unmarks one edge on the right. We will show that for all values i < L or j > 0, one can achieve
smaller error values by applying a series of MARK LEFT’s and UNMARK RIGHT’s and ending
up at i = L and j = 0, as desired. For a function f ∈ F = {MARK LEFT,UNMARK RIGHT},
we define ∆(f) as the amount of change in the error value after applying f to the tree. Since we
are interested in decreasing the error value using the functions in F , in this proof, we will look for
conditions under which ∆(MARK LEFT) ≤ 0 and ∆(UNMARK RIGHT) ≤ 0.

We begin by investigating MARK LEFT. Note that this function sets i ←− i + 1 and j ←− j.
We observe the following:

1. Because we are marking a new edge, the total amount of error between the marked edges on
the left changes by:

n2
L × 2

((
i+ 1

2

)
−

(
i

2

))
= n2

L × 2i

2. The total amount of error between the unmarked edges and the marked ones on the left
changes by:

n2
L × ((i+ 1)(L − i− 1)− i(L − i)) = n2

L × (L − 2i− 1)

3. The total amount of error between the marked edges on the left and right changes by:

nLnR((i+ 1)j − ij) = nLnR × j

JGAA, 28(1) 179–224 (2024) 207

4. The total amount of error between the unmarked edges on the left and right changes by:

nLnR × ((L − i− 1)(R− j)− (L − i)(R− j)) = nLnR × (j −R)

Therefore, ∆(MARK LEFT) is equal to:

∆(MARK LEFT) = n2
L × (2i+ L − 2i− 1) + nLnR(j + j −R)

= n2
L × (L − 1) + nLnR(2j −R)

Since we are looking for conditions under which ∆(MARK LEFT) ≤ 0, we have:

∆(MARK LEFT) ≤ 0 −→ n2
L × (L − 1) + nLnR(2j −R) ≤ 0

Therefore,
∆(MARK LEFT) ≤ 0 if nL × (L − 1) ≤ nR(R− 2j)

Rearranging the terms, we have

j ≤ R
2

+
nL(1− L)

2nR
(23)

A similar reasoning can be used for UNMARK RIGHT. This function sets i←− i and j ←− j−1.
We have:

1. The total amount of error between the marked edges on the right changes by:

n2
R × 2

((
j − 1

2

)
−
(
j

2

))
= n2

R × (−2(j − 1))

2. The total amount of error between the unmarked edges and the marked ones on the right
changes by:

n2
R × ((j − 1)(R− j + 1)− j(R− j)) = n2

R × (2j −R− 1)

3. The total amount of error between the marked edges on the left and right changes by:

nLnR(i(j − 1)− ij) = nLnR × (−i)

4. The total amount of error between the unmarked edges on the left and right changes by:

nLnR × ((L − i)(R− j + 1)− (L − i)(R− j)) = nLnR × (L − i)

Thus, we have:

∆(UNMARK RIGHT) = n2
R(−2(j − 1) + 2j −R− 1) + nLnR(L − i− i)

= n2
R(1−R) + nLnR(L − 2i)

and
∆(UNMARK RIGHT) ≤ 0 if nL(L − 2i) ≤ nR(R− 1)

Rearranging the terms, we have

i ≥ L
2
+

nR(1−R)
2nL

(24)

208 Madani and Maheshwari Distance-Preserving Graph Compression Techniques

We conclude the proof by stating that whenever i < L or j > 0, one can achieve smaller error
values by applying a series of MARK LEFT’s and UNMARK RIGHT’s and ending up at i = L and

j = 0. When j ≤ R
2 + nL(1−L)

2nR
, Eq. (23) is satisfied. Therefore, we repeatedly apply MARK LEFT

until i = L, at which point Eq. (24) is satisfied, and we repeatedly apply UNMARK RIGHT

until j = 0, as desired. Now suppose j > R
2 + nL(1−L)

2nR
edges are marked on the right side. If

i ≥ L
2 + nR(1−R)

2nL
, Eq. (24) is satisfied, which allows us to repeatedly apply UNMARK RIGHT

until j = 0, at which point Eq. (23) is satisfied and we repeatedly apply MARK LEFT until i = L,
as desired.

Assume i < L
2 + nR(1−R)

2nL
and j > R

2 + nL(1−L)
2nR

, and both Eq. (23) and Eq. (24) are un-

satisfied. We first apply L
2 + nR(1−R)

2nL
− i = LnL+nR(1−R)

2nL
− i MARK LEFT’s, increasing the

error by (LnL+nR(1−R)
2nL

− i)(n2
L × (L − 1) + nLnR(2j − R)), at which point i = LnL+nR(1−R)

2nL

and ∆(UNMARK RIGHT) = 0. Therefore, we set j ←− 0 without changing the error (since

∆(UNMARK RIGHT) = 0), and then we apply L−(LnL+nR(1−R)
2nL

) = LnL−nR(1−R)
2nL

MARK LEFT’s
until i = L, as desired. We now show that this sequence of MARK LEFT’s and UNMARK RIGHT’s
results in an error value no worse than that of the original one:

∆ =

LnL + nR(1−R)
2nL

− i︸ ︷︷ ︸
≤LnL+nR(1−R)

2nL

 (n2
L × (L − 1) + nLnR(2j −R)︸ ︷︷ ︸

≤n2
L×(L−1)+nLnR(R)

) +

j

(
n2
R(1−R) + nLnR

(
L − 2× LnL + nR(1−R)

2nL

))
︸ ︷︷ ︸

=0

+

LnL − nR(1−R)
2nL

(n2
L × (L − 1) + nLnR(−R))

≤
(
LnL + nR(1−R)

2nL

)
(n2

L × (L − 1) + nLnR(R)) +

LnL − nR(1−R)
2nL

(n2
L × (L − 1) + nLnR(−R))

= n2
L × L(L − 1)− n2

R ×R(R− 1)

≤ 0

and we arrive at i = L and j = 0 while obtaining a smaller error value. □

In the next section, we generalize Lemma 9 to the case in which different subtrees can have varying
sizes.

JGAA, 28(1) 179–224 (2024) 209

L1 = 2

L2 = 2

L3 = 3

R1 = 20

R2 = 1

(a) A full marking of the edges on the
left with error count 32.

L1 = 2

L2 = 2

L3 = 3

R1 = 20

R2 = 1

(b) A full marking of the edges on the
right with error count 40.

L1 = 2

L2 = 2

L3 = 3

R1 = 20

R2 = 1

(c) A marking with edges marked on
both sides with error count 75.

L1 = 2

L2 = 2

L3 = 3

R1 = 20

R2 = 1

(d) The optimal solution with error
count 27.

Figure 12: An example of tree compression in which the edges on each side have different-sized
subtrees. The optimal solution does not have a full marking on any side. However, the optimal
solution only has marked edges on one side (this is always the case as shown in Lemma 10).

4.4 Varying-Size Subtrees

As a generalization of Section 4.3, now assume the i-th subtree on the left (1 ≤ i ≤ L) has Li

nodes, and the j-th subtree on the right (1 ≤ j ≤ R) is of size Rj . We observe when each side has
subtrees of different sizes, marking all edges on one side does not necessarily produce the optimal
error. An example is depicted in Figure 12, where marking only one edge on the right produces
the optimal amount of error. Although marking all edges on one side does not necessarily produce
the optimal error, we observe that no optimal solution has markings on both sides, as the following
lemma states. Similar to Section 4.3, we remove w∗ from all calculations and expressions in this
section. Therefore, all calculations in this section are implicitly multiplied by w∗.

Lemma 10 Given a merged edge e∗ (in a weighted tree) with two sides left and right, no optimal
marking has marked edges on both sides.

Proof: By contradiction. We assume there exists such an optimal marking, and we strictly
improve its error by unmarking everything on one of the two sides (thus obtaining a contradiction).

210 Madani and Maheshwari Distance-Preserving Graph Compression Techniques

Expanding the proof of Lemma 9, we define four operations, MARK LEFT, UNMARK LEFT,
MARK RIGHT, and UNMARK RIGHT, for unmarking and marking edges on both ends. For a
function

f ∈ F = {MARK LEFT,UNMARK LEFT,MARK RIGHT,UNMARK RIGHT}

we define ∆(f) as the amount of change in the error value after applying f to the tree. Let

SL =
∑L

i=1 Li and SR =
∑R

i=1 Ri denote the total sum of all edge cardinalities on the left
and right sides respectively. Furthermore, let SLM , SLU , SRM , and SRU denote the sum of the
cardinalities of the marked and unmarked edges on the left and right sides, respectively. Note that
SL = SLU + SLM and SR = SRU + SRM .

First, we calculate ∆(UNMARK RIGHT) and derive ∆(UNMARK LEFT) by symmetry. As-
sume we are unmarking the i-th edge ei on the right with cardinality Ri. We break the change in
the error value down into four parts as follows:

1. The total amount of error between the marked edges on the right changes by:

−2×Ri × (SRM −Ri)

because between two marked edges on the right, there exist two units of error (equal to twice
the weight of the merged edge e∗). Therefore, unmarking ei relieves some of this error.

2. The total amount of error between the unmarked and the marked edges on the right changes
by:

−Ri × (SRU) +Ri × (SRM −Ri)

because between a marked and an unmarked edge on the right, there exists one unit of
error, and unmarking ei relieves some error with other unmarked edges (the first part of the
expression), making ei an unmarked edge itself (the second part of the expression).

3. The total amount of error between ei and the marked edges on the left changes by:

−Ri × SLM

because between two marked edges on the right and the left, there exists one unit of error,
and unmarking ei relieves some of this error.

4. The total amount of error between ei and the unmarked edges on the left changes by:

Ri × SLU

Summing all four parts together, we get:

∆(UNMARK RIGHT) = Ri ×
(
− (SRM −Ri)− SRU − SLM + SLU

)
(25)

By symmetry, we also have:

∆(UNMARK LEFT) = Li ×
(
− (SLM − Li)− SLU − SRM + SRU

)
(26)

Next, we calculate ∆(MARK LEFT) and derive ∆(MARK RIGHT) by symmetry. Assume we are
marking the i-th edge ei on the left with cardinality Li. We break the change in the error value
into four parts:

JGAA, 28(1) 179–224 (2024) 211

1. The total amount of error between the marked edges on the left changes by:

2× Li × (SLM)

because between two marked edges on the left, there exist two units of error (equal to twice
the weight of the merged edge e∗). Therefore, marking ei introduces some error between ei
and all other marked edges on the left.

2. The total amount of error between the unmarked and the marked edges on the left changes
by:

−Li × (SLM) + Li × (SLU − Li)

because between a marked and an unmarked edge on the left, there exists one unit of error,
and marking ei relieves some error with all other marked edges on the left (the first part of
the expression), making ei a marked edge itself (the second part of the expression).

3. The total amount of error between ei and the marked edges on the right changes by:

+Li × SRM

because between two marked edges on the right and the left, there exists one unit of error,
thus marking ei introduces some error between ei and all other marked edges on the right.

4. The total amount of error between ei and the unmarked edges on the right changes by:

−Li × SRU

because between two unmarked edges on the left and the right, there exists one unit of error,
and marking ei relieves some of this error.

Summing all four parts together, we get:

∆(MARK LEFT) = Li ×
(
SLM + (SLU − Li) + SRM − SRU

)
(27)

By symmetry, we also have:

∆(MARK RIGHT) = Ri ×
(
SRM + (SRU −Ri) + SLM − SLU

)
(28)

Now, we can complete the proof. For the sake of contradiction, assume that there exists an optimal
markingM∗ with edges marked on both sides. Therefore, we have SLM > 0 and SRM > 0. Without
loss of generality, assume SRU ≥ SLU (see Figure 13-(a)). Using Eq. (25), we can unmark any
edge on the right, say the i-th one ei connected to Ri vertices, such that the change in the error
value is equal to:

∆ = Ri ×
(
−(SRM −Ri)︸ ︷︷ ︸

<0

−SRU −SLM︸ ︷︷ ︸
<0

+SLU

)
< Ri(−SRU + SLU︸ ︷︷ ︸

≤0

) < 0

and we obtain a strictly better marking by unmarking ei; therefore, the original marking could not
have been optimal. After unmarking ei, we again have SRU > SLU and we can keep unmarking
all edges on the right until the right side is fully unmarked, and we have a strictly better marking
than M∗ (see Figure 13). Note that the other case (SRU < SLU) can be handled symmetrically
by fully unmarking the left side and repeatedly applying Eq. (26). □

212 Madani and Maheshwari Distance-Preserving Graph Compression Techniques

SLM

SLU

SRM

SRU

(a)

SLM

SLU

SRU = SR

(b)

Figure 13: The example tree used in the proof of Lemma 10. (a) An arbitrary marking in which
edges from both sides are marked, and more vertices are connected to the unmarked edges on
the right (SRU ≥ SLU). (b) A strictly better marking than (a) in which the heavier side is fully
unmarked, as described in Lemma 10.

4.4.1 Partial Markings

In Lemma 10, we observed that no optimal marking has edges marked on both sides. In this
section, we introduce the concept of partial markings, used to form optimal marking after merging
a given edge e∗. A partial left (respectively right) marking, denoted by ML (respectively, MR), is
a marking with all edges on the right (respectively, left) unmarked, and a subset of the edges on
the left (respectively, right) marked. We call a partial marking optimal if its error count is less
than any other partial marking for its respective side. Let M∗

L and M∗
R denote the optimal partial

left and right markings, respectively. The following lemma is easy to prove.

Lemma 11 After merging edge e∗ in a weighted tree with non-negative weights, the optimal mark-
ing M∗ is either M∗

L or M∗
R, depending on which one produces a smaller amount of error.

Proof: Immediate from Lemma 10. □

Applying the results of Lemma 11, we can find an optimal marking M∗ by finding the optimal
partial markings M∗

L and M∗
R, comparing their respective error values, and choosing the one with

the smaller error value as the optimal marking. The question is how to find the optimal partial
markings, and it is answered in the following lemma.

Lemma 12 The optimal partial marking M∗
L consists of all edges ei (adjacent to Li vertices) such

that
SL − SR ≤ Li (29)

Similarly, the optimal partial marking M∗
R consists of all edges ei (adjacent to Ri vertices) such

that
SR − SL ≤ Ri (30)

Proof: We first prove Eq. (29) and derive Eq. (30) by symmetry. Suppose we are trying to
construct an optimal partial marking for the left side. We can do so by keeping the right side

JGAA, 28(1) 179–224 (2024) 213

Algorithm 2 Graph Compression Algorithm for Trees

1: procedure TREE COMPRESSION SINGLE EDGE
2: Input: T = (V,E) (A tree with n vertices), an edge e∗ = (u, v) to be merged, the error

function E(.)
3: Output: A marking of edges M∗ with the optimal amount of error
4: Find all edges EL = {(u,w)|(u,w) ∈ E,w ̸= v}
5: L ←− |EL|, such that each edge ei in EL is connected to a subtree of size Li for all i =
{1, . . . ,L}

6: Find all edges ER = {(v, w)|(v, w) ∈ E,w ̸= u}
7: R ←− |ER|, such that each edge ei in ER is connected to a subtree of size Ri for all

i = {1, . . . ,R}
8: SL ←−

∑
∀ei∈EL

Li

9: SR ←−
∑

∀ei∈ER
Ri

10: Remove e∗ from T and merge its endpoints
11: M∗

L ←− ∅, M∗
R ←− ∅

12: for each ei ∈ EL do
13: if SL − SR ≤ Li then
14: M∗

L ←−M∗
L ∪ {ei}

15: end if
16: end for
17: for each ei ∈ ER do
18: if SR − SL ≤ Ri then
19: M∗

R ←−M∗
R ∪ {ei}

20: end if
21: end for
22: M∗ ←− argmin(E(M∗

L), E(M∗
R))

23: Return M∗

24: end procedure

unmarked and marking edges on the left until the error can no longer be improved. Recall Eq. (27)
from the proof of Lemma 10, we have to keep marking all edges ei (with cardinality Li) until the
error can no longer be improved, the change in the error value at each step is equal to:

∆(MARK LEFT) = Li ×
(
SLM + (SLU − Li) + SRM − SRU

)
At each step, to get an improvement, we must have ∆(MARK LEFT) ≤ 0:

(SLM + (SLU − Li) + SRM − SRU) ≤ 0
SLM+SLU=SL−−−−−−−−−−→ SL − Li + SRM − SRU ≤ 0

However, since we are calculating a partial marking for the left side, we know by definition that
the right side has to remain fully unmarked at all times, so we have SRU = SR and SRM = 0.
Inserting these values in the above equation, we get the following inequality for edges that improve
the partial left marking:

SL − Li − SR ≤ 0 −→ SL − SR ≤ Li

Then, we can deduce that if an edge ei on the left satisfies SL − SR ≤ Li, it must be marked in
M∗

L. Conversely, if an edge on the left ei is marked in M∗
L, it must satisfy SL − SR ≤ Li. To see

214 Madani and Maheshwari Distance-Preserving Graph Compression Techniques

why, assume M∗
L includes an edge ei with SL−SR > Li. Then, we can improve M∗

L by unmarking
ei (see Eq. (26)):

∆(UNMARK LEFT) = Li ×
(
− (SLM − Li)− SLU − SRM + SRU

)
= Li ×

(
Li − SL + SR

)
< 0

which contradicts the optimality of M∗
L and proves Eq. (29). The other inequality (Eq. (30)) can

be proven analogously by applying Eq. (28). □

We present our linear-time algorithm for finding the optimal marking after merging an edge e∗ in
Algorithm 2.

Example 7 As an example, let us demonstrate how Algorithm 2 finds the optimal marking for the
tree of Figure 12. The optimal marking M∗

L consists of all edges on the left, because:

� 7− 21 ≤ 2 = L1

� 7− 21 ≤ 2 = L2

� 7− 21 ≤ 3 = L3

On the other hand, the optimal marking M∗
R consists of only one edge on the right, because:

� 21− 7 ≤ 20 = R1

� 21− 7 > 1 = R2

Moreover, because M∗
R has a better error count than M∗

L, Algorithm 2 returns M∗
R as the overall

optimal marking M∗ which is the correct answer as depicted in Figure 12.

Now, we summarize our result in the following theorem.

Theorem 4 Algorithm 2 computes the optimal marking for a merged edge e∗ in O(|V |) time.

Proof: Immediate from Lemma 10, Lemma 11, and Lemma 12. □

4.5 Fractional Markings

In the previous section, we studied the marking problem under the assumption that each edge
could either be fully marked or fully unmarked. In this section, we study a generalized version
of the marking problem, called the fractional marking problem (to be defined momentarily). We
show that Algorithm 2 does not err by assuming that each edge can either be fully marked or fully
unmarked.

Definition 13 With reference to a given merged edge e∗ in a graph G = (V,E) with the associated
weight function w : E → R≥0, and a new weight redistribution function w′ : E → R≥0, an edge ei
is said to be fractionally marked if w′ (ei) = w (ei) + ciw (e∗) for some ci ∈ (0, 1). The edge ei is
fully marked if ci = 1.

Each neighbouring edge ei has thus an assigned ci, which denotes the (possibly fractional) amount
by which it is marked. An edge ei is marked by ϵ if its corresponding ci is set to c′i = ci + ϵ, and
it is unmarked by ϵ if its corresponding ci is set to c′i = ci − ϵ.

JGAA, 28(1) 179–224 (2024) 215

L1

L2

R1

R2

{v1, v2}

v3

v4

v5

v6

w3 + 0.7w∗

w4

w1 + 0.2w∗

w2

TL
1

TL
2

TR
1

TR
2

(a)

L1

L2

R1

R2

{v1, v2}

v3

v4

v5

v6

0.70.2

TL
1

TL
2

TR
1

TR
2

(b)

Figure 14: An extension of Figure 10 and Figure 11 as an example of fractional markings. (a) One
edge from the left side and one from the right are fractionally marked. (b) A succinct representation
of (a) in which each fractionally marked edge ei is shown using its respective ci (Definition 13).

Definition 14 The Fractional Marking Problem for Weighted Trees: Given a contracted
edge e∗ in a weighted tree T with non-negative weights, what subset of the neighbouring edges of e∗

should we fully mark or fractionally mark such that the error value of Eq. (1) is minimized over
all such possible subsets?

Similar to the previous section, we may omit some occurrences of w∗ from our calculation for
convenience. We borrow our previous running example (Figure 10 and Figure 11) and extend it to
present an example of fractional markings in Figure 14. Figure 14-(a) depicts the tree of Figure 10
with two edges fractionally marked. Figure 14-(b) illustrates a succinct representation of Figure 14-
(a), where each fractionally marked edge ei is shown using its respective ci (Definition 13) and the
weights of the unmarked edges are omitted. We use this succinct version often in the remainder
of this section.

As a warm-up, we first present a property of any optimal marking that has at least one frac-
tionally marked edge.

Lemma 13 Let M be an optimal marking for a contracted edge e∗ (in a weighted tree) that has
at least one fractionally marked edge e′. Then, M necessarily has marked edges on both sides.

Proof: By contradiction. Suppose M is an optimal marking with a fractionally marked edge e′,
and suppose M is a partial left or right marking (Section 4.4.1) with marked edges only on the
left or right, respectively. Without loss of generality, assume M is a partial left marking with a
fractionally marked edge e′ = e1. As depicted in Figure 15-(a), assume e1 has cardinality L1 and
marking value c1 (Definition 13). We can obtain another marking M ′ by unmarking e1 (Figure 15-
(b)). Let E be the error function, then E(M) = E(M ′) + ∆1(MARK LEFT) and E(M) < E(M ′)
because M is an optimal marking. Therefore, ∆1(MARK LEFT) < 0 when marking e1 back in
M ′. We now formulate ∆1(MARK LEFT) when marking e1 in M ′ by c1.

∆1(MARK LEFT) = c1 × (X)

216 Madani and Maheshwari Distance-Preserving Graph Compression Techniques

L1

L2

L3

R1

R2

c1

1

M

(a)

L1

L2

L3

R1

R2

1

M ′

(b)

L1

L2

L3

R1

R2

1

1

M ′′

(c)

Figure 15: The example used in the proof of Lemma 13: (a) A hypothetical (for the sake of
contradiction) optimal marking M with a fractionally marked edge e1 with marking value c1. (b)
Another marking M ′ resulting from unmarking e1 in M . (c) A new marking M ′′ strictly better
than M (E(M ′′) < E(M)), yielding a contradiction and proving Lemma 13.

where X = L1 ×
(
SLM + (SLU −L1) + SRM − SRU

)
= L1 ×

(
SLM + (SLU −L1)− SR

)
because

SRM = 0 and SR = SRU . However, because ∆1(MARK LEFT) < 0, we have that X < 0 and we
can fully mark e1 in M ′ to get another marking M ′′ (Figure 15-(c)). The amount of error change
of this mark operation is equal to:

∆2(MARK LEFT) = (c1)×X + (1− c1)×X

Noting that E(M) = E(M ′) + ∆1(MARK LEFT) we have:

E(M ′′) = E(M ′) + ∆2(MARK LEFT) = E(M ′) + (c1)×X︸ ︷︷ ︸
=E(M ′)+∆1(MARK LEFT)=E(M)

+(1− c1)×X < E(M)

JGAA, 28(1) 179–224 (2024) 217

Therefore M ′′ is a strictly better marking than M , contradicting our assumption that M is an
optimal marking. □

Lemma 13 states that an optimal marking with fractionally marked edges cannot be a partial
left or right marking (as defined in Section 4.4.1). We now present the main result of this section.

Lemma 14 Let M be an optimal marking for a contracted edge e∗ (in a weighted tree) that contains
both fractionally and fully marked edges. Then, M can be transformed into another optimal marking
M ′ that contains no fractionally marked edges.

Proof: We assume M is an optimal marking that contains fractionally marked edges. We consider
several possible cases, and for each case, we present a transformation technique that does not
worsen the marking with reference to the error function (Eq. (1)). The repeated application of
these transformations converts M into another marking M ′ with no fractionally marked edges.

Let M be an optimal marking that contains at least one fractionally marked edge. Using
Lemma 13, we may assume M contains marked edges on both sides. Throughout this proof, we
use 0 < ci ≤ 1 to denote the marking value for an edge ei, such that ei is fractionally marked if
0 < ci < 1 (see Definition 13).

� Case 1: M contains two marked edges e1 (with cardinality L1) and e2 (with cardinality R1)
on the left and right respectively such that c1 + c2 > 1 (Figure 16-(a)).

Let c1 + c2 = 1 + ϵ for ϵ > 0. We show that fractionally unmarking either e1 or e2 by ϵ does
not worsen the error, and this change transforms M into another optimal marking M ′ in which
c′1 + c′2 = 1. We generalize the proof of Lemma 10 and define SL =

∑L
i=1 Li and SR =

∑R
i=1 Ri as

the total sum of all edge cardinalities on the left and right sides, respectively. Let S′
L = SL − L1

and S′
R = SR − R1 and without loss of generality, assume S′

R ≥ S′
L. We unmark e2 by ϵ, setting

c′2 = c2− ϵ (Figure 16-(b)). Note that we must necessarily have c2 ≥ ϵ because otherwise c1+ c2 <
1+ϵ = c1+c2, which is a contradiction. We now show this operation does not worsen the marking.
Between the vertices of e2 and the vertices of all other edges on the right side, the error is reduced
by −ϵ×w∗. Now, let ej ̸= e1 be some edge on the left. The error between the vertices of e2 and ej is
increased by at most ϵ×w∗. If ej has marking value cj , then this operation may increase the error
between the vertices of e2 and ej by |w∗−(c2×w∗+cj×w∗−ϵ×w∗)|−|w∗−(c2×w∗+cj×w∗)| ≤ ϵ×w∗

using Corollary 1. Therefore, this unmark operation changes the error by:

∆1(UNMARK RIGHT) ≤ R1 × ϵ× w∗ ×
(
− S′

R−L1︸︷︷︸
<0

+S′
L

)
< R1 × ϵ× w∗ × (−S′

R + S′
L︸ ︷︷ ︸

≤0

) ≤ 0

� Case 2: For all pairs of marked edges e1 and e2 on the left and right respectively, c1+c2 ≤ 1
(Figure 17).

We consider two subcases:

� Case 2-1: There exist two edges ei and ej on one side (left or right) such that ci ̸= cj
(Figure 17-(a)).

Figure 17-(a) is an example of such marking M in which c1 + c2 ≤ 1 for any two edges e1 and
e2 on opposite sides and at least two edges ei and ej on the left with ci ̸= cj . Without loss of
generality, we may assume ci < cj . Then, we can set c′i = cj without increasing the error. Due to

218 Madani and Maheshwari Distance-Preserving Graph Compression Techniques

L1

L2

L3

R1

R2

0.6

0.1

M

0.8e1 e2

S ′
L = L2 + L3

S ′
R = R2

(a)

L1

L2

L3

R1

R2

0.6

0.1

M ′

0.4e1 e2

S ′
L = L2 + L3

S ′
R = R2

(b)

Figure 16: Case 1 in the proof of Lemma 14: (a) There exist two edges e1 and e2 such that
c1 + c2 = 0.6 + 0.8 = 1.4 > 1, S′

R = R2 ≥ S′
L = L2 + L3. (b) Another marking M ′ where e2 is

unmarked by ϵ = 0.4 such that E(M ′) ≤ E(M).

the properties of this subcase, we may get another marking M ′ by unmarking ei (setting c′i = 0)
and then marking it by cj to get a third marking M ′′ with E(M ′′) ≤ E(M). Similar to the proof
of Lemma 13, we have:

E(M ′′) = E(M ′) + ci ×X︸ ︷︷ ︸
=E(M)

+(cj − ci)×X

� Case 2-2: For all marked edges ei (with ci > 0) on the left ci = ϵ1, and for all marked edges
ej (with cj > 0) on the right cj = ϵ2 (ϵ1 + ϵ2 ≤ 1) (Figure 17-(b)).

For this case, we simply show that the error associated with the optimal partial marking (Lemma 12)
is a lower bound on E(M), or min(E(M∗

R), E(M∗
L)) ≤ E(M). Without loss of generality, we assume

JGAA, 28(1) 179–224 (2024) 219

L1

L2

L3

R1

R2

0.4

0.1

M

0.5

0.2
0.3

(a)

L1

L2

L3

R1

R2

0.4

0.4

M

0.5

0.4
0.5

(b)

Figure 17: Case 2 in the proof of Lemma 14: (a) Case 2-1: For all edges e1, e2 on opposite sides
c1 + c2 ≤ 1, and there exist two edges ei, ej on one side with ci ̸= cj (for instance 0.4 and 0.1 on
the left) (b) Case 2-2: For all edges e1, e2 on opposite sides c1 + c2 ≤ 1, for all edges ei on the left
ci = ϵ1 = 0.4, and for all edges ej on the right cj = ϵ2 = 0.5.

that min(E(M∗
R), E(M∗

L)) = E(M∗
L).

Let EL and ER be the set of marked edges in M∗
L and M∗

R, respectively. From Lemma 12, we
know that for each ei ∈ EL, SL−SR ≤ Li and for each ei ∈ ER, SR−SL ≤ Ri. We show that the
set of marked edges in M is precisely equal to EL ∪ ER. Let ei be any marked (with reference to
M) edge on the left, and let ej be any marked edge on the right. Because ci + cj ≤ 1, unmarking
ei by ϵ ≤ ci increases the error between the vertices of ei and ej by ϵ× w∗:

|w∗ − (ci × w∗ + cj × w∗ − ϵ× w∗)|︸ ︷︷ ︸
=w∗−(ci×w∗+cj×w∗−ϵ×w∗) because ci+cj≤1

− |w∗ − (ci × w∗ + cj × w∗)|︸ ︷︷ ︸
=w∗−(ci×w∗+cj×w∗) because ci+cj≤1

= ϵ× w∗

Furthermore, unmarking ei by ϵ decreases the error between the vertices of ei and the vertices
of all other edges on the left by −ϵ× w∗. Therefore, unmarking ei by ϵ changes E(M) by:

∆1(UNMARK LEFT) = Li × ϵ× w∗ × (−(SL − Li) + SR) = Li × ϵ× w∗ × (−SL + Li + SR)

Because M is an optimal marking, ∆1(UNMARK LEFT) ≥ 0 and:

−SL + Li + SR ≥ 0 −→ Li ≥ SL − SR

Conversely, we may assume that any edge ei on the left satisfying Li ≥ SL − SR is marked in M ;
because otherwise, we could improve M by marking ei

2. Similar reasoning can be applied to any
marked edge ei on the right.

2The proof for this claim is almost identical to the one provided in the proof of Lemma 12. Here, we omitted
the details to avoid repetition.

220 Madani and Maheshwari Distance-Preserving Graph Compression Techniques

We now conclude the proof. First, note that:

E(M∗
L) = E(M0)︸ ︷︷ ︸

The error associated with the empty marking

+
∑

ei∈EL

Li × w∗ × (SL − Li − SR)︸ ︷︷ ︸
The sum of all ∆(MARK LEFT)’s that transform M0 into M∗

L

and

E(M∗
R) = E(M0)︸ ︷︷ ︸

The error associated with the empty marking

+
∑

ei∈ER

Ri × w∗ × (SR −Ri − SL)︸ ︷︷ ︸
The sum of all ∆(MARK RIGHT)’s that transform M0 into M∗

R

where M0 is a trivial marking with no marked edges.
On the other hand, M can be constructed by first marking all edges ei in EL by ϵ1 and then

marking all edges in ER by ϵ2.

E(M) = E(M0)︸ ︷︷ ︸
The error associated with the empty marking

+ ϵ1 ×
∑

ei∈EL

Li × w∗ × (SL − Li − SR)︸ ︷︷ ︸
The sum of all ∆(MARK LEFT)’s by ϵ1

+ ϵ2 ×
∑

ei∈ER

Ri × w∗ × (SR −Ri − SL)︸ ︷︷ ︸
The sum of all ∆(MARK RIGHT)’s by ϵ2

From our assumption, E(M∗
L) ≤ E(M∗

R). We have SL − Li − SR ≤ 0 for all ei ∈ EL and
SR −Ri − SL ≤ 0 for all ei ∈ ER. We get:

E(M∗
L) ≤ E(M∗

R) −→
∑

ei∈EL

Li × w∗ × (SL − Li − SR) ≤
∑

ei∈ER

Ri × w∗ × (SR −Ri − SL)

On the other hand:

E(M) = E(M0) + ϵ1 ×
∑

ei∈EL

Li × w∗ × (SL − Li − SR) + ϵ2 ×
∑

ei∈ER

Ri × w∗ × (SR −Ri − SL)

≥ E(M0) + ϵ1 ×
∑

ei∈EL

Li × w∗ × (SL − Li − SR) + ϵ2 ×
∑

ei∈EL

Li × w∗ × (SL − Li − SR)

= E(M0) + (ϵ1 + ϵ2)×
∑

ei∈EL

Li × w∗ × (SL − Li − SR)
ϵ1+ϵ2≤1−−−−−−−−−→

SL−Li−SR≤0

≥ E(M0) +
∑

ei∈EL

Li × w∗ × (SL − Li − SR)

= E(M∗
L) (31)

Thus, min(E(M∗
L), E(M∗

R)) is a lower bound on the error of any such marking.

We now conclude the proof by stating that any optimal marking with fractionally marked edges
can be transformed into another optimal marking with no fractionally marked edges. Let M be
any such marking. If M satisfies the conditions of Case 1, we repeatedly apply the transformation

JGAA, 28(1) 179–224 (2024) 221

method of Case 1 until it satisfies the conditions of Case 2-1. We then repeatedly apply the
construction method of Case 2-1 until M satisfies the conditions of Case 2-2. Finally, if M satisfies
the conditions of Case 2-2, we have already shown that E(M) is lower bounded by the optimal
partial marking of Lemma 12, which has no fractionally marked edges. □

5 Conclusion and Open Problems

In this paper, we studied the problem of distance-preserving graph compression for weighted paths
and trees. We first presented a brief literature review of some related work in this domain, noting
that one particular aspect of the problem is understudied. More specifically, there has been little
attention in the literature to the problem of optimally compressing a given set of edges. To address
this, we presented optimal algorithms for compressing any set of k edges in a weighted path and for
optimally compressing a single edge in a weighted tree. We tackled the problems in an incremental
order of difficulty. For weighted paths, we first solved the problem of optimally compressing a
single edge, then we generalized it to any set of k independent edges. Finally, we provided an
optimal approach to compressing any contiguous subset of edges in a weighted path. We then
generalized our scope to weighted trees, where we studied the problem of optimally compressing
a single edge. To this end, we first studied the easier case in which the subtrees of both sides of
the merged edge had equal sizes. Finally, we generalized our results to the case in which subtrees
were of different sizes.
This research leads to several questions that require further exploration.

Problem 1 How to optimally contract multiple edges in a tree?

This problem includes the cases where the compressed edges form a contiguous subtree, when the
edges form a matching, or when a combination of both cases happens. When multiple edges are to
be contracted in a tree, many cases need to be considered in order to properly formulate the error
function. Therefore, it may be worthwhile to see whether formulating the error when multiple
edges are being contracted in a tree results in any interesting observations from a combinatorial
optimization point of view, like the ones mentioned in Section 3 or Section 4.2.

There are two main reasons why the problem of contracting multiple edges in a tree is not as
straightforward as its counterpart in a path. Firstly, the maximum degree in a tree is unbounded,
whereas, in a path, the maximum degree is two. The second reason (which is a direct result of the
first one) is that a node in an arbitrary tree can have many children. When an edge e∗ with weight
w∗ is contracted in a path, there are only two groups of shortest paths that should not have w∗

added to their values, the ones that lie to the left of e∗ and the ones that lie to its right. However,
as observed in Section 4.2, even for merging a single edge e∗ in a tree, there are significantly more
cases to consider. With no restrictions on the maximum degree of an arbitrary tree, any error
unit enumeration technique (such as the ones employed in Section 3 or Section 4.2) could quickly
become obsolete due to an explosion in the number of cases when many edges are contracted.

Problem 2 Can we solve the distance-preserving graph compression problem for general graphs
in polynomial time?

The above problem would indeed be a natural extension of this paper. The complexity of the weight
redistribution problem for general graphs is still unknown. However, it appears that the related
problem of finding the contracted edges is unlikely to be solved in polynomial time. Bernstein
et al. [5] showed that CONTRACTION (defined in Section 1) is NP-hard even if the underlying

222 Madani and Maheshwari Distance-Preserving Graph Compression Techniques

graph is just a weighted cycle. In a graph with cycles, some vertices are connected via multiple
paths. Therefore, after merging a single edge, several shortest paths that traverse that edge may
need to be rerouted using completely different edges, making the analysis much more difficult.

Problem 3 Recall from Definition 7 that with reference to a set of merged edges Em ⊂ E, the set
of merged vertices Vm consists of all vertices with at least one endpoint in Em, or Vm = {v|v, u ∈
V,∃e = (u, v) ∈ Em}. How could we find an optimal redistribution strategy that also minimizes the
error between all pairs of vertices in Vm?

Note that even if some weight redistribution minimized the error between two nodes in different
supernodes, it would still be non-trivial to do the same for two vertices that are placed in a single
supernode. Obviously, a trivial solution would be to store the shortest path weights between the
vertices in one supernode as separate table entries. However, such an approach would defeat the
whole purpose of graph compression, which is to reduce memory requirements.

Problem 4 For the optimal weight redistribution problem, are there any better cost models (error
functions)?

As stated in Section 2, in this paper, we defined the error function as the sum of the absolute differ-
ences of the shortest path lengths between different pairs of nodes before and after redistributing
the weights. However, exploring alternative cost functions that better capture the distance-based
similarity between a modified graph and its original version can open up exciting research avenues.
Investigating whether there exist other cost functions that provide a more accurate measure of
closeness between graphs can lead to valuable research opportunities.

Acknowledgements

We thank the anonymous reviewers for providing valuable feedback on this paper.

References

[1] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. A hub-based labeling algorithm
for shortest paths in road networks. In Experimental Algorithms: 10th International Sym-
posium, SEA 2011, Kolimpari, Chania, Crete, Greece, May 5-7, 2011. Proceedings 10, pages
230–241. Springer, 2011. doi:10.1007/978-3-642-20662-7_20.

[2] Y. Arfat, S. Suma, R. Mehmood, and A. Albeshri. Parallel shortest path big data graph
computations of US road network using apache spark: survey, architecture, and evaluation.
Smart Infrastructure and Applications: Foundations for Smarter Cities and Societies, pages
185–214, 2020. doi:10.1007/978-3-030-13705-2_8.

[3] C. Bazgan, C. Bentz, C. Picouleau, and B. Ries. Blockers for the stability number
and the chromatic number. Graphs and Combinatorics, 31:73–90, 2015. doi:10.1007/

S00373-013-1380-2.

[4] C. Bazgan, S. Toubaline, and Z. Tuza. The most vital nodes with respect to independent set
and vertex cover. Discrete Applied Mathematics, 159(17):1933–1946, 2011. doi:10.1016/J.

DAM.2011.06.023.

https://doi.org/10.1007/978-3-642-20662-7_20
https://doi.org/10.1007/978-3-030-13705-2_8
https://doi.org/10.1007/S00373-013-1380-2
https://doi.org/10.1007/S00373-013-1380-2
https://doi.org/10.1016/J.DAM.2011.06.023
https://doi.org/10.1016/J.DAM.2011.06.023

JGAA, 28(1) 179–224 (2024) 223

[5] A. Bernstein, K. Däubel, Y. Disser, M. Klimm, T. Mütze, and F. Smolny. Distance-preserving
graph contractions. SIAM Journal on Discrete Mathematics, 33(3):1607–1636, 2019. doi:

10.1137/18M1169382.

[6] T. C. Biedl, B. Brejová, and T. Vinař. Simplifying flow networks. InMathematical Foundations
of Computer Science 2000: 25th International Symposium, MFCS 2000 Bratislava, Slovakia,
August 28–September 1, 2000 Proceedings, pages 192–201. Springer, 2000. doi:10.1007/

3-540-44612-5_15.

[7] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan. One trillion edges:
Graph processing at facebook-scale. Proceedings of the VLDB Endowment, 8(12):1804–1815,
2015. doi:10.14778/2824032.2824077.

[8] M.-C. Costa, D. de Werra, and C. Picouleau. Minimum d-blockers and d-transversals
in graphs. Journal of Combinatorial Optimization, 22:857–872, 2011. doi:10.1007/

S10878-010-9334-6.

[9] Ö. Y. Diner, D. Paulusma, C. Picouleau, and B. Ries. Contraction and deletion blockers
for perfect graphs and h-free graphs. Theoretical computer science, 746:49–72, 2018. doi:

10.1016/J.TCS.2018.06.023.

[10] F. V. Fomin, S. Saurabh, and N. Misra. Graph modification problems: A modern perspective.
In Frontiers in Algorithmics: 9th International Workshop, FAW 2015, Guilin, China, July
3-5, 2015, Proceedings 9, pages 3–6. Springer, 2015. doi:10.1007/978-3-319-19647-3_1.

[11] E. Galby, P. T. Lima, and B. Ries. Reducing the domination number of graphs via edge
contractions and vertex deletions. Discrete Mathematics, 344(1):112169, 2021. doi:10.1016/
J.DISC.2020.112169.

[12] E. Galby, F. Mann, and B. Ries. Blocking total dominating sets via edge contractions. Theo-
retical Computer Science, 877:18–35, 2021. doi:10.1016/J.TCS.2021.03.028.

[13] M. Kargar and A. An. Keyword search in graphs: finding r-cliques. Proceedings of the VLDB
Endowment, 4(10):681–692, 2011. doi:10.14778/2021017.2021025.

[14] E. J. Kim, M. Milanič, J. Monnot, and C. Picouleau. Complexity and algorithms for constant
diameter augmentation problems. Theoretical Computer Science, 904:15–26, 2022. doi:10.

1016/J.TCS.2021.05.020.

[15] J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary properties is NP-
complete. Journal of Computer and System Sciences, 20(2):219–230, 1980. doi:10.1016/

0022-0000(80)90060-4.

[16] J. Li, T. Cai, K. Deng, X. Wang, T. Sellis, and F. Xia. Community-diversified influence
maximization in social networks. Information Systems, 92:101522, 2020. doi:10.1016/J.IS.
2020.101522.

[17] Q. Li, K. Zou, D. Kong, H. Guan, and X. Xie. Gpugraphx: A GPU-aided distributed
graph processing system. In Web Information Systems Engineering–WISE 2021: 22nd In-
ternational Conference on Web Information Systems Engineering, WISE 2021, Melbourne,
VIC, Australia, October 26–29, 2021, Proceedings, Part II 22, pages 501–509. Springer, 2021.
doi:10.1007/978-3-030-91560-5_38.

https://doi.org/10.1137/18M1169382
https://doi.org/10.1137/18M1169382
https://doi.org/10.1007/3-540-44612-5_15
https://doi.org/10.1007/3-540-44612-5_15
https://doi.org/10.14778/2824032.2824077
https://doi.org/10.1007/S10878-010-9334-6
https://doi.org/10.1007/S10878-010-9334-6
https://doi.org/10.1016/J.TCS.2018.06.023
https://doi.org/10.1016/J.TCS.2018.06.023
https://doi.org/10.1007/978-3-319-19647-3_1
https://doi.org/10.1016/J.DISC.2020.112169
https://doi.org/10.1016/J.DISC.2020.112169
https://doi.org/10.1016/J.TCS.2021.03.028
https://doi.org/10.14778/2021017.2021025
https://doi.org/10.1016/J.TCS.2021.05.020
https://doi.org/10.1016/J.TCS.2021.05.020
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/J.IS.2020.101522
https://doi.org/10.1016/J.IS.2020.101522
https://doi.org/10.1007/978-3-030-91560-5_38

224 Madani and Maheshwari Distance-Preserving Graph Compression Techniques

[18] Y. Liang, Y. Wang, K. Lei, M. Yang, Z. Lyu, et al. Reachability preserving compression for
dynamic graph. Information Sciences, 520:232–249, 2020. doi:10.1016/J.INS.2020.02.028.

[19] P. T. Lima, V. F. dos Santos, I. Sau, and U. S. Souza. Reducing graph transversals via edge
contractions. Journal of Computer and System Sciences, 120:62–74, 2021. doi:10.1016/J.

JCSS.2021.03.003.

[20] H. Lin, X. Zhu, B. Yu, X. Tang, W. Xue, W. Chen, L. Zhang, T. Hoefler, X. Ma, X. Liu, et al.
Shentu: processing multi-trillion edge graphs on millions of cores in seconds. In SC18: In-
ternational Conference for High Performance Computing, Networking, Storage and Analysis,
pages 706–716. IEEE, 2018. doi:10.1109/SC.2018.00059.

[21] Y. Liu, T. Safavi, A. Dighe, and D. Koutra. Graph summarization methods and applications:
A survey. ACM computing surveys (CSUR), 51(3):1–34, 2018. doi:10.1145/3186727.

[22] F. Mahdavi Pajouh, V. Boginski, and E. L. Pasiliao. Minimum vertex blocker clique problem.
Networks, 64(1):48–64, 2014. doi:10.1002/NET.21556.

[23] N. Ruan, R. Jin, and Y. Huang. Distance preserving graph simplification. In 2011 IEEE
11th International Conference on Data Mining, pages 1200–1205. IEEE, 2011. doi:10.1109/
ICDM.2011.57.

[24] A. Sadri, F. D. Salim, Y. Ren, M. Zameni, J. Chan, and T. Sellis. Shrink: Distance preserving
graph compression. Information Systems, 69:180–193, 2017. doi:10.1016/J.IS.2017.06.

001.

[25] O. Sporns. Graph theory methods: applications in brain networks. Dialogues in clinical
neuroscience, 2022. doi:10.31887/DCNS.2018.20.2/osporns.

[26] H. Toivonen, F. Zhou, A. Hartikainen, and A. Hinkka. Compression of weighted graphs. In
Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 965–973, 2011. doi:10.1145/2020408.2020566.

[27] N. Trinajstic. Chemical graph theory. CRC press, 2018. doi:10.1201/9781315139111.

[28] T. Watanabe, T. Ae, and A. Nakamura. On the NP-Hardness of edge-deletion and-contraction
problems. Discrete Applied Mathematics, 6(1):63–78, 1983. doi:10.1016/0166-218X(83)

90101-4.

[29] F. Zhou, S. Malher, and H. Toivonen. Network simplification with minimal loss of connectivity.
In 2010 IEEE international conference on data mining, pages 659–668. IEEE, 2010. doi:

10.1109/ICDM.2010.133.

[30] C. J. Zhu, K.-Y. Lam, and S. Han. Approximate path searching for supporting shortest path
queries on road networks. Information Sciences, 325:409–428, 2015. doi:10.1016/J.INS.

2015.06.045.

https://doi.org/10.1016/J.INS.2020.02.028
https://doi.org/10.1016/J.JCSS.2021.03.003
https://doi.org/10.1016/J.JCSS.2021.03.003
https://doi.org/10.1109/SC.2018.00059
https://doi.org/10.1145/3186727
https://doi.org/10.1002/NET.21556
https://doi.org/10.1109/ICDM.2011.57
https://doi.org/10.1109/ICDM.2011.57
https://doi.org/10.1016/J.IS.2017.06.001
https://doi.org/10.1016/J.IS.2017.06.001
https://doi.org/10.31887/DCNS.2018.20.2/osporns
https://doi.org/10.1145/2020408.2020566
https://doi.org/10.1201/9781315139111
https://doi.org/10.1016/0166-218X(83)90101-4
https://doi.org/10.1016/0166-218X(83)90101-4
https://doi.org/10.1109/ICDM.2010.133
https://doi.org/10.1109/ICDM.2010.133
https://doi.org/10.1016/J.INS.2015.06.045
https://doi.org/10.1016/J.INS.2015.06.045

	Introduction and Related Work
	Contributions and Results

	Preliminaries
	Notation
	Additional Definitions
	A Number-Theoretic Lemma

	Graph Compression for Paths
	A Tight Lower Bound for Merging One Edge
	Merging Supernodes
	Merging Contiguous Subpaths
	Merging a Set of Independent Edges

	Graph Compression for Trees
	The Marking Problem for a Single Edge
	Formulating the Error
	Equal-Sized Subtrees
	Varying-Size Subtrees
	Partial Markings

	Fractional Markings

	Conclusion and Open Problems

