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Abstract. Link streams offer a good model for representing interactions over time.
They consist of links (b, e, u, v), where u and v are vertices interacting during the whole
time interval [b, e]. In this paper, we deal with the problem of enumerating maximal
cliques in link streams. A clique is a pair (C, [t0, t1]), where C is a set of vertices that
all interact pairwise during the full interval [t0, t1]. It is maximal when neither its set of
vertices nor its time interval can be increased. Some main works solving this problem
are based on the famous Bron-Kerbosch algorithm for enumerating maximal cliques
in graphs. We take this idea as a starting point to propose a new algorithm which
matches the cliques of the instantaneous graphs formed by links existing at a given
time t to the maximal cliques of the link stream. We prove its correctness and compute
its complexity, which is better than the state-of-the art ones in many cases of interest.
We also study the output-sensitive complexity, which is close to the output size, thereby
showing that our algorithm is efficient. To confirm this, we perform experiments on
link streams used in the state of the art, and on massive link streams, up to 100 million
links. In all cases our algorithm is faster, mostly by a factor of at least 10 and up
to a factor of 104. Moreover, it scales to massive link streams for which the existing
algorithms are not able to provide the solution.

1 Introduction

The analysis of real-world interaction networks has recently made significant progress as the field
evolved from static to dynamic representations. Indeed, the availability of temporal data, as well
as the development of tools to describe and analyze them, have revealed the importance of the
events’ temporality. They allow understanding the structure and functioning of complex interact-
ing systems such as computer networks [30], online social networks [46], human communication
networks [38], or mobility networks [1, 21].
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Static representations of interacting systems are usually based on graphs. Concerning dynami-
cal networks, several formalisms have been developed at the same time. Some choose to represent
a dynamical network as a sequence of static images of equal duration – see for instance [28]. This
allows to use standard graph tools, but also raises issues about the existence of an adequate time
window of analysis [19, 25]. In the same vein, time varying graphs [9] represent a dynamical net-
work as a graph where links have attributes corresponding to the time-stamps at which they exist
in the network. Some use a representation – often simply called temporal network [18] – which
aims at gathering the different existing models of dynamical interacting systems, without making
a strict choice of formalism. In this paper, we use link streams [24], which associate a time interval
to each interaction. It proposes a rigorous formalism and allows accounting for the temporal aspect
of the data without any parameter or restricting choice of timescale. Yet, it is simple to go from
one mode of representation to another.

Listing all maximal cliques in a graph is known to be NP-hard. However, this problem is of
utmost importance to analyze real-world graphs because it reveals high-density subgraphs and
is thus a keystone to understand their structure. For instance, clique mining is used to detect
relevant dense subgraphs [16, 14], define communities [35, 3] or compress graphs [8]. Efficient
listing algorithms have been designed for large graphs representing real-world interaction networks.
In particular, the Bron-Kerbosch algorithm [7] is used on large and sparse instances, especially by
using the pivot improvement, which allows to considerably reduce the search space. Currently,
one of the most efficient versions of this algorithm is the pivot proposed by Tomita et al. [41] and
its implementation by Eppstein et al. [12], which uses an adequate node ordering method and an
efficient implementation for large sparse real-world graphs.

In link streams, cliques are sets of vertices interacting with all others during a time interval,
and maximal cliques are maximal both in number of nodes and in duration. Their listing has
attracted interest in the last few years because it brings a powerful analysis tool to the field.
To the best of our knowledge, the first algorithm to achieve this task was proposed by Viard et
al. [43] and later improved in [44]. In the meantime, Himmel et al. proposed a new version based
on the adaptation of the Bron-Kerbosch algorithm to a dynamical context [17], which was later
generalized to the notion of k-plex by Bentert et al. [5]. Depending on the experimental settings,
one or the other method can be faster. However, these methods are still limited to relatively small
dynamical networks, not allowing the enumeration on very large datasets. Therefore, there is a
need for more efficient algorithms to list maximal cliques in link streams.

The contributions of this paper are the following:

- We propose a new algorithm for listing maximal cliques in link streams, which scales to
massive real-world datasets,

- We analyze the complexity of this algorithm and provide two complexities: one that depends
on the input and an output-sensitive complexity that is close to the output size, thereby
showing that our algorithm is efficient. We also show that the memory requirements are
close to optimal.

- We show experimentally that it significantly outperforms the state of the art and allows
enumerating cliques in networks that are two orders of magnitude larger than what was
previously feasible in the time and memory limits of the protocol, which allows us to step
up from link streams with less than half a million links to link streams with more than 100
million links.

- Finally, we provide two implementations of the algorithm: one in Python, used for comparison



JGAA, 28(1) 149–178 (2024) 151

to the state of the art and another in C++, which is the most efficient one currently available
and also allows a parallel enumeration. The code is publicly available 1.

The rest of this paper is organized as follows. Section 2 gives the basic definitions and notations
that we use throughout the paper. Section 3 presents work in the literature related to maximal
clique enumeration in link streams. Then, our new algorithm is presented in Section 4. In Section 5,
we analyze this algorithm, giving a proof of correctness as well as two theoretical complexities: one
as a function of input parameters and one as a function of output parameters of the enumeration.
Finally, in Section 6, we make an extensive experimental assessment of the performances of this
algorithm, and briefly show the results of the parallel implementation.

2 Basic definitions and notations

2.1 Cliques in a graph

We briefly remind a few classic definitions in the context of graphs that are useful for this work.
We only consider simple undirected graphs. Such a graph is defined as a pair G = (V,EG), where
V is a set of vertices, and EG a set of edges; the edges of EG are of the form {x, y}, where x, y ∈ V
and x ̸= y. For a given vertex u ∈ V , the neighborhood of u, denoted ΓG(u), is the set of vertices
adjacent to u in G, that is to say ΓG(u) = {v ∈ V | {u, v} ∈ EG}.

A clique C of a graph G = (V,EG) is a set of vertices of V which are all connected to each
other, or more formally

∀u, v ∈ C with u ̸= v, {u, v} ∈ EG.

A clique is maximal if it is not included in any other. If C is a clique of a graph G, then the
neighborhood of C in G, denoted NC , is the set of vertices which are neighbors of all vertices of C
in G: NC =

⋂
v∈C

ΓG(v).

2.2 Cliques in a link stream

We recall here a few definitions on link streams which are needed for the rest of this paper.

Definition 1 (Link stream) A link stream is a triplet L = (T, V,E) where T = [α, ω] ⊂ R is
a time interval, V a set of nodes and E ⊆ T × T × V × V a set of links such that for all links
(b, e, u, v) in E, the beginning and ending times of the link b and e are such that e ≥ b. We call
e− b the duration of the link.

In the rest of this article, the link streams that we use are undirected, i.e. there is no distinction
between (b, e, u, v) ∈ E and (b, e, v, u) ∈ E. They are also simple, i.e. for all (b, e, u, v) in E, u ̸= v
and for all (b, e, u, v) and (b′, e′, u, v) in E, [b, e] ∩ [b′, e′] = ∅.

A clique of a link stream L = (T, V,E) is defined as follows:

Definition 2 (Clique of a link stream) A clique is a pair (C, [t0, t1]) where t0, t1 ∈ T are re-
spectively called the start and end times of the clique, and C ⊆ V is the set of vertices in the
clique, with |C| ≥ 2. Each pair of vertices of C is connected by a link existing during the whole
interval [t0, t1].

1https://gitlab.lip6.fr/baudin/maxcliques-linkstream

https://gitlab.lip6.fr/baudin/maxcliques-linkstream
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Formally, (C, [t0, t1]) is such that:

∀u, v ∈ C with u ̸= v, ∃(b, e, u, v) ∈ E s.t. [t0, t1] ⊆ [b, e].

Note that for the sake of simplicity, we use the term clique both to designate a clique C in a
graph and a clique (C, [t0, t1]) in a link stream, while these objects are different in nature. This is
because in general the context allows removing the ambiguity on the kind of object considered. As
for a clique in a graph, a clique in a link stream can contain other cliques. During the exhaustive
enumeration, we are only interested in those that are maximal. In a link stream, the notion of
maximality applies both to time and to vertices. The following definitions formalize this maximal-
ity. In this paper, we are interested in cliques that are maximal both in terms of time and vertices.
We start by defining these two notions that will be used in the description of our algorithm before
defining maximal cliques formally.

Definition 3 (Time-maximal clique) A time-maximal clique (C, [t0, t1]) is a clique which can-
not be extended in time: there is no clique (C, [t′0, t

′
1]) with [t0, t1] ⊊ [t′0, t

′
1].

Definition 4 (Vertex-maximal clique) A vertex-maximal clique (C, [t0, t1]) is a clique which
cannot be extended in vertices: there is no clique (C ′, [t0, t1]) with C ⊊ C ′.

Definition 5 (Maximal Clique) A maximal clique (C, [t0, t1]) in a link stream is a clique which
is time-maximal and vertex-maximal.

To illustrate these definitions, the left panel of Figure 1 shows a link stream with its maximal
cliques.

a
b
c
d

2 4 6 8 10 time0
G3 (t = 3)

a

b c d

Figure 1: Left: a link stream with interaction time on the abscissa and vertices on the ordinate.
For example, there is a link between b and c during the time interval [1, 5]. The maximal cliques
are represented in color, e.g., on the interval [2, 4], the three vertices a, b, c are linked together, and
form a maximal clique ({a, b, c}, [2, 4]). Right: the instantaneous graph G3 of this link stream
at t = 3.

2.3 Instantaneous graph of a link stream

We now give a few definitions that characterize a link stream L = (T, V,E) at a given time t ∈ T .
The edges existing at t can be seen as the edges of a graph that we call the instantaneous graph of L
at time t. This graph contains the vertices in V and the edges existing at time t, or more formally:

Definition 6 (Instantaneous graph Gt associated to a link stream at time t) Given a ti-
me t ∈ T , the instantaneous graph Gt at time t associated to the link stream L is the graph
Gt = (V,EGt) such that

EGt = {{u, v} | ∃(b, e, u, v) ∈ E, t ∈ [b, e]}.
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To avoid any confusion, we use the term edge for the elements of EG in a graph G = (V,EG)
and link for the elements of E in a link stream L = (T, V,E). The edges of Gt are induced by the
links of L, the corresponding link thus has an end time in T . We formalize below the notion of
end time associated with an edge of Gt and the final time of a clique of Gt that follows.

Definition 7 (End time Et(u, v) of an edge {u, v} of Gt) Let {u, v} be an edge of Gt. By def-
inition of Gt, there is a unique link (b, e, u, v) ∈ E such that t ∈ [b, e]. We call e the end time of
the edge {u, v} in Gt and denote it Et(u, v).

Definition 8 (Final time Et(C) of a clique C of Gt) Let C be a clique of Gt. The final time
Et(C) of clique C is the minimum of the end times of the edges of C in Gt. Formally:

Et(C) = min
u,v∈C

{Et(u, v)}.

For instance, on the right panel of Figure 1, the instantaneous graph at time t = 3 is the
graph G3 = ({a, b, c, d}, E3), with E3 = {{a, b}, {a, c}, {b, c}, {c, d}}. The end times of its edges
are E3(a, b) = E3(a, c) = 4, E3(b, c) = 5 and E3(c, d) = 11. G3 contains the clique {a, b, c}, which
also exists in G2 and in G4, and whose final time is 4, corresponding to the minimum of the end
times of the three edges.

3 Related work

3.1 Maximal cliques in graphs

We first describe the Bron-Kerbosch algorithm [7], denoted BK, which is widely used to detect
maximal cliques in graphs representing real-world networks, and serves as a basis for the design of
the algorithm that we propose in this work. It is formally described in Algorithm 1.

Algorithm 1: Bron-Kerbosch algorithm (without pivot) on a graph G

Input: Graph G = (V,E)
Output: All maximal cliques of G without duplicates

1 BK(∅, V , ∅)
2 Function BK(R, P , X):
3 if P ∪X = ∅ then
4 output R maximal clique

5 for u ∈ P do
6 BK(R ∪ {u}, P ∩ ΓG(u), X ∩ ΓG(u))
7 P ← P \ {u}
8 X ← X ∪ {u}

Broadly speaking, it is a recursive backtracking algorithm. The central idea is that each call
maintains a clique R and the neighbors of all the vertices of R, which are distributed in two sets: P
and X. Each vertex of P ∪X can potentially expand the clique R. P corresponds to the candidate
nodes that are actually used to expand R, while X corresponds to the vertices that are forbidden
for expanding R to avoid the enumeration of duplicate cliques. Note that a clique R is maximal
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if and only if there is no vertex which is a neighbor of all its vertices, that is to say if and only
if P ∪X = ∅.

In terms of complexity, this version of the BK algorithm makes exactly one recursive call per
clique of the graph, maximal or not. Note that there can be many such cliques, as a given maximal
clique of size q contains 2q sub-cliques. To reduce this search complexity, Bron and Kerbosch
have introduced the idea of selecting a pivoting vertex to prune the recursive call tree. Indeed,
by choosing a vertex p ∈ P ∪X, we do not need to make recursive calls for the vertices in ΓG(p)
because any maximal clique must include either p or a node which is not in ΓG(p). So we do not
miss any maximal clique by cutting these branches of the tree. The corresponding modification is:

Replace Line 5 of Algorithm 1 by:
Choose pivot p ∈ P ∪X
for u ∈ P \ ΓG(p) do

The strategies to select the pivot and achieve an efficient pruning have been discussed in various
works, e.g. [22]. In particular, the one proposed by Tomita et al. [41] maximizes |P ∩ ΓG(p)| over
all p ∈ P ∪X and this guarantees that the worst-case time complexity is in O

(
3n/3

)
with n = |V |.

Eppstein et al. [12] use this strategy and also propose to make the first call of the BK function on
each vertex according to the degeneracy ordering. The underlying idea is that when the vertices
are processed in a random order, |P | can be as large as the maximum degree, while when using
the degeneracy ordering, |P | cannot be larger than the graph degeneracy δ, which is smaller than
the maximum degree and usually low in graphs representing real-world networks. They prove that
their method ensures a time complexity in O

(
δn3δ/3

)
. Combined with adequate data structures,

their implementation is currently considered to be one of the most efficient versions available of
the BK algorithm.

3.2 Maximal cliques in link streams

The question of listing maximal cliques in dynamical networks has emerged relatively recently
as an important research question to describe the structure of interaction data with temporal
information. This problem has been considered in different ways: some see a dynamical network
as a sequence of graph snapshots, which leads to tackle the problem as the evolution of cliques in
graphs through time. This is for instance the point of view adopted in [40, 11]. Other works model
the dynamical network as a link stream, thus acknowledging the intrinsically temporal aspect
of the clique itself and thus look at it as an object which should be redefined in the dynamical
context [43, 17, 44, 5]. We focus on this second point of view.

In this paper, we consider works that define cliques in link streams. This issue has been
addressed with slightly different formalisms: some consider the link streams formalism [43, 44] and
others use the temporal networks one [17, 5]. All these works nonetheless consider cliques as a set of
vertices interacting during a given time interval, as discussed in Section 2.2. Both representations
contain the same information, and it is simple to go from one representation to the other, making
it possible to compare the efficiency of the different methods.

Viard et al. [43] proposed the first algorithm to list maximal cliques in link streams. In that
work, links do not have duration, but the cliques are themselves parameterized with a value ∆,
and thus called ∆-cliques. In this work ∆-cliques are defined such that all pairs of nodes in the
∆-clique interact at least once during each sub-interval of duration ∆. Their algorithm has since
then been both simplified and extended to the more general formalism of link streams that allow
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link duration [44]. The idea underlying this algorithm is to extend either in terms of time or nodes
a clique in a link stream, starting from a specific link of the stream. While this method indeed
allows finding all maximal cliques in the link stream, it relies on memoization in order to decide
whether a given clique has already been processed and this induces a high memory usage, which
is prohibitive in many cases.

In parallel, Himmel et al. [17] proposed another algorithm to enumerate ∆-cliques in link
streams (named temporal graphs in these papers). It adapts the BK algorithm to this dynami-
cal setting, and implements different pivoting strategies. This version regularly outperforms the
algorithm in [43], especially on larger ∆ values. The results are more contrasted when compared
to the algorithm in [44]: depending on the experimental settings and the data under study, one
or the other method may be more efficient. More recently, Bentert et al. [5] have developed a
generalization of this algorithm to list all maximal ∆-k-plexes in link streams. A ∆-k-plex in a
link stream is defined by analogy with k-plexes in a graph, which is a maximal subgraph of size
s such that any vertex in the k-plex is adjacent to at least s − k vertices in the subgraph. So
a ∆-k-plex in a link stream is a subset of s nodes and a time interval ∆ in which each vertex
interacts with at least s− k vertices of the ∆-k-plex during each sub-interval of duration ∆. Note
that a ∆-1-plex (k = 1) is equivalent to a ∆-clique, which allows comparing this algorithm to the
others described above. Here also, the algorithm is based on the structure of the BK algorithm,
but it contains a few implementation improvements on [17], which makes it more efficient in terms
of practical computation times. These two methods obtain running time bounds depending on a
temporal variant of the degeneracy of the input graph, similarly to Eppstein et al. [12] in the static
case.

Banerjee and Pal have proposed the notion of maximal (∆, γ)-cliques [2], which is a generaliza-
tion of maximal ∆-clique: a (∆, γ)-clique is defined in the same way as a ∆-clique, but each link
must appear at least γ times in each sub-interval of size ∆. Note that for γ = 1, their definition is
equivalent to maximal ∆-cliques. Molter et al. also proposed a generalization of maximal clique
enumeration in link streams [33], by enumerating isolated maximal cliques, that are cliques with
few edges connected to the rest of the temporal network. The isolation is quantified by a factor
c that is the maximal number of links between the clique and the rest of the network. We can
recover the definition of maximal clique with an isolation condition that makes all cliques isolated
(e.g. take c = n2).

Finally, some methods which were originally designed to update cliques in graphs that evolve
with time may be exploited in the context of clique enumeration in link streams. In particular,
Das et al. [11] apply the Tomita et al. [41] clique enumeration method in this context. This is done
by enumerating the cliques that contain at least one edge that is new at the current time. While
the formal problem is different from ours, this method can be directly adapted to our problem, as
we will see in Section 4.1.

4 Algorithm

The algorithm that we propose is based on an adaptation of the BK algorithm to a dynamical
setting, following the same logic as the one proposed in Himmel et al. [17]. We use the BK procedure
to enumerate exactly once all sets of vertices C that form a time-maximal clique (C, I), and
then filter these time-maximal cliques by keeping only those that are vertex-maximal. The main
difference of our approach is that we work on neighborhoods which are limited to the interactions
actually occurring at time t and not to the complete link stream.

In what follows, we consider a simple link stream L = (T, V,E). We describe the general
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structure of our algorithm, then we detail the two main points: first, enumerating the time-
maximal cliques via the enumeration of cliques of instantaneous graphs Gt, second, testing their
vertex-maximality to filter out those which are not. Finally, we improve the computation times by
pruning the search tree with a pivot that is similar to the one used in [17].

4.1 General structure of the algorithm

The algorithm that we propose first enumerates exactly once each time-maximal clique and then
filters the ones which are vertex-maximal. For the first step, we use the equivalence given by
Lemma 1.

Lemma 1 (Time-maximality of a clique) (C, [t0, t1]) is a time-maximal clique if and only if:

(i) C is a clique of Gt0 ;

(ii) There is an edge {u, v} in Gt0 with u, v ∈ C that originates from a link (t0, e, u, v) ∈ E that
begins at t0;

(iii) t1 = Et0(C).

Proof: We suppose that (C, [t0, t1]) is a time-maximal clique. Then C is trivially a clique of Gt0 as
all pairs of nodes of C are connected at time t0. Moreover, Viard et al. [44] proved in their Lemma 3
that there must exist an edge {u, v} with u, v ∈ C that originates from a link (t0, e, u, v) ∈ E that
begins at t0. Indeed, if all the links in the clique begin before t0, its time interval can be extended to
the left, and it is therefore not time-maximal. Finally, as the clique (C, [t0, t1]) cannot be extended
in time, it implies that the final time associated with the clique must be the maximum time when
all links are present in the link stream, in other words Et0(C) = t1.

Reciprocally, if C is a clique of Gt0 and t1 = Et0(C), it means that all edges in C originates
from links of the link stream that are present over the whole interval [t0, t1], so (C, [t0, t1]) is a
clique of L. Moreover, the time interval of this clique is maximal, as (1) at least one link is no
longer present after t1; (2) if there is an edge {u, v} with u, v ∈ C that originates from a link
(t0, e, u, v) ∈ E beginning at t0, it means that at least one edge is not present before t0. So the
clique (C, [t0, t1]) is time-maximal. □

a
b
c

2 4 6 8 time0 G3 (t = 3)

a

b c

Figure 2: A link stream with the two maximal cliques that start at t = 3 in color, and its
instantaneous graph G3 with the edges that start at t = 3 in blue. There are three time-maximal
cliques that start at this instant, and each contains a new edge (in blue): ({a, b}, [3, 7]), ({b, c}, [3, 5])
and ({a, b, c}, [3, 5]). The clique ({b, c}, [3, 5]) is not vertex-maximal, while the two others are.

We deduce from Lemma 1 that we can enumerate the time-maximal cliques by going through
T : for each instant t ∈ T , we enumerate the time-maximal cliques that start at time t. To do so, we
enumerate each (graph) clique C of Gt that contains an edge {u, v} of a link (t, e, u, v) ∈ E starting
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at t. Each of these graph cliques is then associated to the time-maximal clique (C, [t, Et(C)]) of the
link stream. The lemma ensures that we list all time-maximal cliques in this way. Then, we only
have to find those that are also vertex-maximal. Figure 2 gives an illustration of this procedure
at time t = 3: the time-maximal cliques that begin at t = 3 are ({a, b}, [3, 7]), ({b, c}, [3, 5]) and
({a, b, c}, [3, 5]), and they all contain at least one new link and their end time corresponds to
the minimum of the end times of their links. Then, only ({a, b}, [3, 7]) and ({a, b, c}, [3, 5]) are
output, since ({b, c}, [3, 5]) is not vertex-maximal. This framework is summarized in Figure 3, and
is implemented in Algorithm 2.

Instantaneous
graph Gt

Cliques C of Gt

that contain a link
that starts at t

Time-maximal
cliques (C, [t, Et(C)])

that start at t

Maximal cliques
that start at t

⇐⇒Lemma 1

GraphCliqueEnum
Filter of

Lemma 2

Figure 3: General structure of Algorithm 2: for each time t ∈ T , it enumerates the maximal cliques
that start at t.

Algorithm 2: Algorithm of maximal clique enumeration in link streams.

Input: A link stream L = (T, V,E)
Output: All maximal cliques of L without duplicates

1 for t ∈ T do
2 Cliques← ∅
3 ForbidEdges← ∅
4 for (t, , u, v) ∈ E do // Loop on links starting at time t

// Enumerating cliques in Gt containing {u, v}:
5 Cliques← Cliques ∪ GraphCliqueEnum({u, v}, ΓGt

(u) ∩ ΓGt
(v), ∅, ForbidEdges,

t)
6 ForbidEdges← ForbidEdges ∪ {{u, v}}
7 for (C,NC) ∈ Cliques do // NC = neighborhood of C
8 if ∀u ∈ NC , Et(C ∪ {u}) < Et(C) then // Vertex maximality test

9 output (C, [t, Et(C)])

10 Function GraphCliqueEnum(R, P , X, ForbidEdges, t):
11 output (R,P ∪X) // P ∪X = neighborhood of R
12 Q← {u ∈ P | ∃{u, v} ∈ ForbidEdges, v ∈ R}
13 for u ∈ P \Q do
14 GraphCliqueEnum(R ∪ {u}, P ∩ ΓGt

(u), X ∩ ΓGt
(u), ForbidEdges, t)

15 P ← P \ {u}
16 X ← X ∪ {u}
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We first describe the high-level features of Algorithm 2. The details will be discussed in the
rest of this section. For each time t ∈ T (Line 1), the algorithm follows two steps:

- Lines 2 to 6 enumerate exactly once each time-maximal clique beginning at t. To do this,
the cliques of Gt that contain an edge from a link starting at t are enumerated by processing
every link (t, , u, v) ∈ E that starts at t (Line 4). This enumeration is made by a call to
the function GraphCliqueEnum (Line 5). Note the use of the set of edges ForbidEdges that
allows to avoid listing a same clique several times, which will be discussed in further details
in Section 4.2.

- Lines 7 to 9 test whether the time-maximal cliques enumerated above are vertex-maximal or
not. To do so, we use the neighborhood NC of C for each time-maximal clique (C, [t0, t1]).
The maximality test (Line 8) will be discussed in Section 4.3.

Note also that the iterations of the loop at Line 1 of the algorithm are independent of each
other and can therefore be computed in parallel. We describe this parallelization process and its
results in Section 6.

4.2 Clique enumeration in graphs Gt

In this section, we discuss the procedure GraphCliqueEnum(R,P,X, ForbidEdges, t) which enu-
merates all graph cliques C of Gt satisfying R ⊆ C ⊆ R∪P and containing no edge of ForbidEdges.
It is called on Line 5 of Algorithm 2 and detailed from Line 10 to 16. This procedure is a variant of
the BK algorithm, described in Section 3.1: it is a backtracking recursive function which explores
the neighborhood of the clique under construction to extend it. Here, the clique under construction
is R, its neighborhood is P ∪X, and the candidates for increasing R without enumerating dupli-
cates are the vertices of P . The fact that P ∪X is the neighborhood of clique R is formally proved
in Section 5.1 by Lemma 3. There are three major differences with the BK procedure described in
Algorithm 1 that should be noted:

- each clique R is output with its neighborhood P ∪ X (Line 11) because it is necessary for
the vertex-maximality test of Line 8, as discussed in Section 4.3;

- a clique is output whether it is maximal in Gt or not (Line 11): there is no test equivalent
to Line 3 of Algorithm 1;

- the output cliques must not contain any edge of ForbidEdges; this is ensured by Line 12 which
prevents to add a vertex u to R if it implies the addition of an edge {u, v} of ForbidEdges
to the resulting clique R ∪ {u}.

Using the set ForbidEdges guarantees to list each clique at most once, as will be proved in
Section 5. Indeed, if a clique C contains two edges {u1, v1} and {u2, v2}, then it is in the set of
cliques of Gt which contain {u1, v1}, but also in the set of cliques which contain {u2, v2}. Thus,
if GraphCliqueEnum is called at t on {u1, v1} and {u2, v2} without ForbidEdges, C would be
enumerated twice. This idea is illustrated by the example in Figure 4: GraphCliqueEnum is called
first on {a, c} and output cliques {a, c}, {a, b, c} {a, c, d} and {a, b, c, d}. Then {a, c} is added
to ForbidEdges and GraphCliqueEnum is called on {b, d}, outputting cliques {b, d}, {a, b, d} and
{b, c, d} but not {a, b, c, d} because it contains the edge {a, c} which is in ForbidEdges. Thus, all
cliques containing at least one red edge are listed exactly once.
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a

b

c

d

e

Gt, t ∈ T

Figure 4: Example of a clique enumeration using ForbidEdges. An instantaneous graph Gt of
a link stream L at time t is represented. The thick red edges correspond to a link that begins at
t, while the others correspond to links that have begun earlier. The clique {a, b, c, d} contains the
two new edges {a, c} and {b, d}, which is why there is a need for the set ForbidEdges to avoid
enumerating it twice.

4.3 Vertex maximality test of time-maximal cliques

In this section, we explain the vertex maximality test used in Line 8 of Algorithm 2. The following
lemma allows filtering the vertex-maximal cliques among the time-maximal cliques.

Lemma 2 (Vertex-maximality of a time-maximal clique) Let (C, [t, Et]) be a time-maximal
clique and NC the neighborhood of clique C in Gt ( i.e. NC =

⋂
v∈C ΓGt

(v)). Then

(C, [t, Et(C)]) is vertex-maximal ⇔ ∀u ∈ NC , Et(C ∪ {u}) < Et(C).

In other words, a time-maximal clique (C, [t, Et(C)]) is vertex-maximal (and thus maximal)
if and only if we cannot add any node to C without reducing its final time. Note that if the
neighborhood of C is empty, i.e. NC = ∅, then (C, [t, Et(C)]) is always vertex-maximal.

Proof: Let (C, [t, Et(C)]) be a maximal clique and suppose that there exists some u ∈ ⋂
v∈C

ΓGt(v)

such that Et(C ∪ {u}) ≥ Et(C). Then, by definition of Et(C ∪ {u}), for any pair of nodes
x, y ∈ C ∪ {u}, x ̸= y, there must be a link (b, e, x, y) ∈ E such that [t, Et(C)] ⊆ [b, e]. In conse-
quence, (C ∪ {u}, [t, Et(C)]) is a clique of L, which contradicts our hypothesis that (C, [t, Et(C)])
is maximal. This proves that a time-maximal clique (C, [t, Et(C)]) is vertex-maximal implies that
∀u ∈ ⋂

v∈C

ΓGt
(v), Et(C ∪ {u}) < Et(C).

Reciprocally, suppose that (C, [t, Et(C)]) is not vertex-maximal, then by definition there must
be a vertex u ∈ ⋂

v∈C

ΓGt
(v) such that (C ∪ {u}, [t, Et(C)]) is a clique of L. This implies in turn

that Et(C) ≤ Et(C ∪ {u}). So, if ∀u ∈ ⋂
v∈C

ΓGt
(v), Et(C ∪ {u}) < Et(C) then (C, [t, Et(C)]) is

vertex-maximal. □

Therefore, the filtering test performed at Line 8 does correspond to the maximality test of
the above lemma. For example, in Figure 2, the time-maximal clique ({b, c}, [3, 5]) is not vertex-
maximal, because we can add vertex a to it without reducing its final time. This is not the
case for ({a, b}, [3, 7]) and ({a, b, c}, [3, 5]) which are both time-maximal and vertex-maximal, and
thus maximal.
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4.4 Pivoting strategy to improve clique enumeration in Gt graphs

As reported in Section 3.1, the BK algorithm in graphs is usually implemented with a pivot to prune
the recursion tree. A similar process can be implemented in the dynamical context to eliminate
some recursive calls when enumerating time-maximal cliques, as proposed in [17]. We adapt this
improvement to the function GraphCliqueEnum, which corresponds to the following modification
of Algorithm 2:

Replace Line 13 of Algorithm 2 by:
Choose pivot p ∈ P ∪X
Del← {u ∈ P ∩ ΓGt(p) | Et(R ∪ {u}) = Et(R ∪ {u, p})}
for u ∈ (P \Del) \Q do

According to this procedure, vertices in the set Del are not considered in the recursive calls.
Indeed, not making recursive calls for these vertices does not remove any maximal clique from the
enumeration. This statement is formally proved by Theorem 2, in Section 5.1. This is justified by
the observation that at a given time t, for any maximal clique (C, [t, Et(C)]) such that R ⊆ C ⊆
R ∪ P , and given a pivot p ∈ P ∪X, there is always a vertex u ∈ P \Del which allows extending
R towards C. To observe that, there are two cases:

- if there exists a vertex u ∈ C that is not a neighbor of p, then u /∈ Del since Del ⊆ ΓGt
(p),

and u ∈ P since R ⊆ ΓGt
(p). Then, a recursive call with u extends R towards C – note that

if p ∈ C then u = p as p /∈ ΓGt
(p),

- else, all the vertices in C are neighbors of p, which means on the one hand that p /∈ C,
and on the other hand that C ∪ {p} is a clique of Gt. Since (C, [t, Et(C)]) is maximal, this
implies that Et(C ∪ {p}) < Et(C). Therefore there must exist a vertex u ∈ P ∩ C such
that Et(R ∪ {u}) > Et(R ∪ {u, p})}, i.e. u does not belong to Del and allows extending R
towards C.

Besides, we mentioned in Section 3.1 that the Tomita et al. pivoting strategy for clique enu-
meration in graphs [41] chooses a pivot that maximizes the set of vertices to be removed from
the candidates. Similarly, we select a pivot that allows to cut as many calls as possible: for each
potential p ∈ P ∪X, we choose the one that maximizes |Del|. It has been shown experimentally
in [17] that this choice does indeed achieve the most efficient pruning. We evaluate in Section 6.4
the pruning efficiency by comparing the calculations made with and without a pivot.

5 Analysis

In this section, we show that Algorithm 2 is correct: it allows enumerating once and only once
each maximal clique of a link stream. Then, we study its complexity, first as a function of the
global parameters of the link stream, then as a function of the output of the algorithm.

5.1 Correctness

To show that Algorithm 2 is correct, we need the following preliminary lemmas: Lemma 3 which
characterizes the output of the calls to GraphCliqueEnum in the algorithm, and Lemma 4 which
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shows that all the maximal cliques starting at time t are enumerated by the procedure from Lines 2
to 6. Finally, the correctness of the algorithm is proved in Theorem 1.

Lemma 3 In Algorithm 2, each call to GraphCliqueEnum(R,P,X,ForbidEdges,t) satisfies:

- R is a clique of Gt;

- P ∪X =
⋂

v∈R

ΓGt(v).

Proof: GraphCliqueEnum being a recursive function, we prove this lemma by induction on the
tree of the recursive calls made by Algorithm 2.

Initialization. The first call of a series of recursive calls is made at Line 5 of Algorithm 2, and is
of the form GraphCliqueEnum({u, v},ΓGt

(u)∩ΓGt
(v), ∅, ForbidEdges, t), for some u, v ∈ V .

At this point, R = {u, v}, and u and v are connected in Gt because they come from the link
(t, , u, v) of E (Line 4). So R is indeed a clique of Gt. Besides, P = ΓGt(u) ∩ ΓGt(v) and
X = ∅, so P ∪X =

⋂
v∈R

ΓGt(v).

Induction. Suppose GraphCliqueEnum(R,P,X, ForbidEdges, t) satisfies that R is a clique of Gt

and P ∪X =
⋂

v∈R

ΓGt
(v). Let us show that the recursive calls made at Line 14 induced by

this call maintain these properties. On the one hand, P ∪X =
⋂

v∈R

ΓGt
(v) is an invariant of

the loop starting at Line 13: indeed, after the operations of Lines 15 and 16, P ← P \ {u}
and X ← X ∪ {u}, so P ∪X is not modified. On the other hand, at a given loop iteration
associated with vertex u, the recursive call is made on R′ = R ∪ {u}, P ′ = P ∩ ΓGt

(u) and
X ′ = X∩ΓGt

(u). First, u ∈ P , so by the induction hypothesis, u is neighbor of all vertices in
R, thus R′ is a clique of Gt. Second,

⋂
v∈R′

ΓGt(v) =
⋂

v∈R

ΓGt(v)∩ΓGt(u) = (P ∪X)∩ΓGt(u) =

(P ∩ ΓGt
(u)) ∪ (X ∩ ΓGt

(u)), so
⋂

v∈R′
ΓGt

(v) = P ′ ∪X ′. Thus, the properties are indeed true

at each recursive call.

□

Lemma 4 For t ∈ T , the set Cliques at Line 7 of Algorithm 2 contains exactly one pair (C,NC)
per time-maximal clique (C, [t, Et(C)]) of L that begins at t.

Proof: Let (C, [t, Et(C)]) be a time-maximal clique of L, that begins at t. We show by induction on
2 ≤ k ≤ |C| the following property P(k): “There is a call GraphCliqueEnum(R,P,X,ForbidEdges,t)
within Algorithm 2 such that R satisfies |R| = k, R ⊆ C ⊆ R ∪ P and ForbidEdges contains no
edge of C”.

Initialization. From Lemma 1 (ii), there exists at least one link (t, e, u, v) in the link stream
that begins at t with u, v ∈ C. Consider the first such link processed by the loop starting
at Line 4. Let us then consider the call to GraphCliqueEnum of this iteration, at Line 5.
In this call, ForbidEdges does not yet contain any edge of C. Moreover, R = {u, v} and
P = ΓGt(u) ∩ ΓGt(v), and as all the elements of C must be neighbors of u and v, we have
R ⊆ C ⊆ R ∪ P . Thus, P(2) is true.
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Induction. Let k be such that 2 ≤ k ≤ |C| − 1, we assume P(k) to be true, and show P(k + 1).
Let GraphCliqueEnum(R,P,X,ForbidEdges,t) be a call of Algorithm 2 corresponding to P(k).
From P(k), we know that ForbidEdges contains no edge of C, therefore C ∩Q = ∅ (Line 12)
and the vertices of C\R (which is not empty) that may extend R are in P \Q. Without loss of
generality, we consider the first such vertex u ∈ C\R processed by the loop starting at Line 13.
In the recursive call GraphCliqueEnum(R ∪ {u}, P ∩ ΓGt

(u), X ∩ ΓGt
(u), ForbidEdges, t),

ForbidEdges is unchanged, so it contains no edge of C; moreover, by construction we have
R ∪ {u} ⊆ C ⊆ P ∩ ΓGt

(u), and |R ∪ {u}| = k + 1. Therefore, P(k + 1) is true.

When k = |C|, we have shown that there is a call in Algorithm 2 that outputs (C,NC) at time
t. We prove now that there cannot exist another call that outputs (C,NC) at time t. At Line 6,
{u, v} is added to ForbidEdges after the first call involving (t, e, u, v) with u, v ∈ C. Then, as
Q (Line 12) prevents the clique under construction from containing an edge of ForbidEdges, no
call can enumerate C in the following iterations. Finally, if we consider this iteration, the call to
GraphCliqueEnum cannot enumerate (C,NC) twice, because each recursive call in the loop starting
at Line 13 enumerates different cliques, as u is deleted from P at Line 15. □

Theorem 1 (Correctness) Algorithm 2 lists once and only once each maximal clique of the input
link stream L and nothing else.

Proof: We prove that for any t ∈ T , the related iteration of the loop starting at Line 1 enumerates
all the maximal cliques that start at t, without duplication. Indeed, according to Lemma 4, the loop
starting at Line 7 iterates over all pairs (C,NC) such that (C, [t, Et(C)]) is a time-maximal clique
starting at t without duplication. Moreover, according to Lemma 3, NC = P ∪X =

⋂
v∈C ΓGt

(v)
so, according to the vertex-maximality test of Lemma 2, the time-maximal cliques output after
the test at Line 8 are all of those which are vertex-maximal. Thus, at iteration t, the algorithm
outputs once all maximal cliques that start at t and nothing else. □

We proposed in Section 4.4 to introduce a pivot in order to prune the recursive call tree of
GraphCliqueEnum. By cutting off branches corresponding to redundant computations, it improves
the practical running times without changing the output of the algorithm. We now prove that the
algorithm with a pivot is correct.

Theorem 2 (Correct pivoting) Algorithm 2 with pivoting is correct: adding a pivot as described
in Section 4.4 does not change the output of the algorithm.

Proof: It is clear that adding a pivot to GraphCliqueEnum as described in Section 4.4 reduces the
set of candidate nodes to add to the clique R under construction. Thus, the pivot can only reduce
the set Cliques on Line 7. So we can assert that all cliques output by the algorithm with a pivot
are still maximal cliques of L and that they are all distinct.

It remains to show that each maximal clique is effectively output by the algorithm with a pivot.
Let (C, [t, Et(C)]) be a maximal clique. Following the same scheme as the one that we used for
the proof of Lemma 4, we show by induction on 2 ≤ k ≤ |C| the property P(k): “There is a call
GraphCliqueEnum(R,P,X,ForbidEdges,t) within Algorithm 2 with a pivot, such that R satisfies
|R| = k with R ⊆ C ⊆ R∪P and ForbidEdges contains no edge of C.” Then, the call correspond-
ing to k = |C| would demonstrate the result. The initialization step is the same as in the proof of
Lemma 4. Now assuming P(k) is true, given k < |C| and GraphCliqueEnum(R,P,X,ForbidEdges,t)
the corresponding call, we only need to show that there is a vertex of C \ R to extend R into C
which is in (P \ Del) \ Q. Let us suppose that it is not the case, then ((P \ Del) \ Q) ∩ C = ∅
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and since ForbidEdges does not have any edge in C, C ∩Q = ∅, so we must have C ⊆ R ∪Del.
Now, by definition of Del, we have R ∪ Del ⊆ ΓGt

(p), so C ⊆ ΓGt
(p). This implies two things:

p /∈ C, and C ∪ {p} is a clique of Gt. Moreover, C ⊆ R ∪ Del implies that Et(C) = Et(C ∪ {p})
which contradicts the fact that (C, [t, Et(C)]) is a maximal clique. Hence, P(k+1) is true, and we
deduce the expected result. □

5.2 Complexity

We compute here the complexity as a function of the input link stream parameters, and then
as a function of the features of the output. Throughout this section, we refer to the following
characteristics of the link stream:

- |T |: number of different time instants at which links begin or end, i.e.:

|T | = |{t ∈ T | ∃(b, e, u, v) ∈ E, t = b or t = e}|

- m = |E|: the number of links; note that each link (b, e, u, v) in the link stream corresponds
to two times b, e ∈ T , therefore |T | ≤ 2m;

- d: the maximal degree of a vertex in any static graph Gt;

- αT : the number of time-maximal cliques in L; notice that not all time-maximal cliques are
maximal and that each link induces a time-maximal clique, therefore m ≤ αT ;

- α: the number of maximal cliques (i.e. both time-maximal and vertex-maximal) in L; note
that α ≤ αT ;

- q: the maximal number of vertices in a clique.

5.2.1 Complexity as a function of the input link stream parameters

To compute the time complexity of Algorithm 2, we need the preliminary Lemma 5, which expresses
it as a function of the number of time-maximal cliques αT . This complexity implicitly takes into
account the factors |T | and m of the link stream, since 1

2 |T | ≤ m ≤ αT . Then, we will estimate an
upper bound on αT to deduce a general expression of this complexity.

Lemma 5 The time complexity of Algorithm 2 is in O
(
d2 · αT

)
.

Proof: We recall that, by Lemma 4, for each t ∈ T , there is exactly one pair (C,NC) enumerated
in the set Cliques for each time-maximal clique of the link stream that begins at t. Thus, there
are a total of αT couples (C,NC) enumerated by the whole global loop of Line 1.

First, let us analyze the complexity of a recursive call to GraphCliqueEnum. Let us consider
each operation associated to such a recursive call and show that they never exceed O

(
d2
)
:

- computing its arguments (at Line 5 or 14) is done by intersection of sets of size at most d,
so it is in O (d);

- the sets in the couple (R,P ∪ X) output at Line 11 are of size at most d, so the output is
in O (d);
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- computation of Q at Line 12 corresponds, for each element u of P , to the intersection between
R and the neighbors of u in ForbidEdges. Each of the three sets mentioned are of size at
most d, so this calculation is done in O

(
d2
)
;

- each iteration of the loop starting on Line 13 is constituted of the computation of the argu-
ments of another recursive call (Line 14) counted in this one’s complexity, and constant time
operations (Lines 15 and 16).

Finally, each pair (C,NC) is the output of a recursive call to GraphCliqueEnum, and each recursive
call outputs one such pair. Since there are αT recursive calls following the initial remark, the
complexity of the corresponding operations is therefore in O

(
d2 · αt

)
.

Second, the processing of each pair (C,NC) by the maximality test of Lines 8 and 9 is done
in O

(
d2
)
and thus the complexity of all maximality tests done by the entire algorithm is in

O
(
d2 · αT

)
. Indeed, each test requires computing the final times Et(C), and Et(C ∪ {u}) for u

in NC . Notice that the link stream data structure allows direct access to the end time of each
link, so during successive calls to GraphCliqueEnum, it is possible to maintain the end time of the
current clique R in O (d). This is because when we add a vertex u to R at Line 14 of Algorithm 2,
then Et(R ∪ {u}) = min {Et(R),minv∈R{Et(u, v)}}, therefore this operation can be carried out in
O (|R|) ⊆ O (d). Then, access to Et(C) is possible in O (d) operations. Now, Et(C∪{u}) is obtained
by adding one vertex to C, so with the same procedure in O (|C|) ⊆ O (d). Since NC is at most
of size d, it is computed in O (d). Moreover, the output of Line 9 has also a complexity in O (d).
Thus, each pair (C,NC) is processed in O

(
d2
)
, so the total complexity of the maximality tests

made by the entire algorithm is in O
(
d2 · αT

)
.

Finally, the overall complexity, which is the sum of the two above, is in O
(
d2 · αT

)
. □

We can now show the overall time complexity of our algorithm.

Theorem 3 (Time complexity) The time complexity of Algorithm 2 is in O
(
m · 3d/3 · 2q · d2

)
.

Proof: Moon and Moser showed in [34] that the number of maximal cliques in a graph with n
vertices is in O

(
3n/3

)
. Now, a call to GraphCliqueEnum in Line 5 outputs pairs (C,NC) where

each C is a clique (different from the others) of the sub-graph composed of the vertices of ΓGt
(u)∩

ΓGt
(v)∪{u, v}. As there are at most d+2 vertices in this sub-graph, the number of pairs (C,NC)

output by this call such that C is a maximal clique of Gt, is in O
(
3d/3

)
. Now, each of these

maximal cliques is of size at most q by definition, so it contains at most 2q different sub-cliques.
Therefore, the total number of pairs (C,NC) enumerated by such a call is in O

(
2q · 3d/3

)
. Finally,

such a call is made for each link of the link stream, so the total number of pairs (C,NC) enumerated
during Algorithm 2 is in O

(
m · 2q · 3d/3

)
. In other words, αT is in O

(
m · 2q · 3d/3

)
. Finally, from

Lemma 5, the time complexity of the algorithm is in O
(
m · 3d/3 · 2q · d2

)
. □

By contrast, the complexity of the algorithm in Viard et al. [44] is inO
(
2n · n2 ·m2 · (n+ log(m))

)
with n = |V |; in Himmel et al. [17] it is in O

(
m · 3c/3 · 2c · n · |T |

)
with c the maximal degeneracy

of a graph Gt (notice that q − 1 ≤ c ≤ d); in Bentert et al. [5], it is in O
(
2c ·min(m2, |T |2) · n4

)
.

While not directly comparable to ours, these three complexities are all products of at least two of
the parameters n, m and |T | of the link stream, while there is only one single factor m among those
in ours (we recall that |T | ≤ 2m). Note that all these complexities also depend on c, q or d, but
these parameters are known to vary in much smaller ranges than n, m and |T | when considering
real data. Thus, this observation suggests that our algorithm might be more able to scale up to
larger link streams, which we confirm experimentally in Section 6.
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Regarding the complexity of the algorithm with a pivot, notice that in the worst case, each
time-maximal clique is a maximal clique of the link stream. In that case, the pivot cannot prune
any recursive call. Thus, the worst-case complexity is the same as the one of the version without
a pivot. Nevertheless, we will study in more details its impact in Section 5.2.2 in which we study
the output-sensitive complexity.

Finally, we show in Theorem 4 that the memory requirement of our algorithm is close to the
size m of the link stream. It is possible to show that the algorithms proposed in [17] and [5] have
the same memory complexity as ours, while the one in [44] is exponential.

Theorem 4 (Memory complexity) The spatial complexity of Algorithm 2 is in O (m+ q · d).

Proof: In practice, we store the m links of the link stream. We also need to store ForbidEdges
which is at most of size m. Notice that it is possible to perform the maximality test of Line 8
inside the function GraphCliqueEnum, which eliminates the need to store more than one clique at
any given time, it can thus be done using a memory space in O (q) ⊆ O (m). Finally, we have to
compute the memory cost of the calls to GraphCliqueEnum. Each call at Line 5 generates a stack
of recursive calls of size at most q and for each of them, we store R, P , X and Q, each of these sets
being of size at most d. The stack therefore demands a space complexity in O (q · d). All these
data structures add up to a memory complexity in O (m+ q · d). □

5.2.2 Output-sensitive complexity

We formulate here the time complexity as a function of α, the number of maximal cliques output
by the algorithm, and q the maximum number of vertices in a clique. To do this, we consider the
search trees of recursive calls to GraphCliqueEnum. The internal nodes of these trees correspond
to the calls for which the loop on Line 13 is not empty (i.e. which generates other child calls),
while the leaves correspond to the calls that do not generate any subsequent call. Note that all
leaves correspond to time maximal cliques.

Inspired by the work of Conte et al. [10], in what follows, we focus on the leaves of these search
trees, which we separate into two categories: those which output a pair (C,NC) that corresponds
to a maximal clique of the link stream, and those whose output pair does not correspond to a
maximal clique. The latter create unnecessary computations because they do not contribute to
the enumeration. An optimal pivot strategy would cut off the branches of the search forest so that
each leaf always outputs a maximal clique. We denote ℓ the total number of leaves of the search
forest, ℓmax the number of leaves that correspond to maximal cliques, and ℓ¬max the ones which
are not, so that ℓ = ℓmax + ℓ¬max. We are then interested in the ratio of “good” leaves:

r =
ℓmax

ℓ
=

ℓmax

ℓmax + ℓ¬max
.

This ratio can be computed either for the algorithm without a pivot or the one with a pivot. In the
first case, it quantifies the maximal possible efficiency of the pivot: if r is lower than 1 this means
that there are recursive calls which are not necessary and might be pruned by a pivot. Comparing
the ratios obtained by the algorithms with and without the pivot shows to what extent the pivoting
strategy has successfully pruned unnecessary calls.

Using this ratio allows us to describe the time complexity of Algorithm 2 as a function of
the output:

Theorem 5 (Output-sensitive complexity) With the above definition of r, we have 1 ≤ 1
r ≤

2q, and the output-sensitive complexity of Algorithm 2 is in O
(
1
r · d2 · q · α

)
.



166 Baudin et al. Maximal clique enumeration in link streams

Proof: Let us show first that 1 ≤ 1
r ≤ 2q. For this, we introduce cmax: the number of pairs

(C,NC) enumerated by GraphCliqueEnum such that C is a maximal clique of the associated graph
Gt. These pairs can only be enumerated by calls corresponding to search tree leaves, because if C
is a maximal clique of Gt, then it cannot be expanded by a recursive call. Moreover, since it cannot
be expanded, its associated time-maximal clique is always vertex-maximal. Thus, cmax is such that
cmax ≤ ℓmax. Besides, each maximal clique of a graph Gt contains at most 2q sub-cliques, so there
are at most 2q · cmax pairs (C,NC) listed in total. Now, there is at least one pair listed per leaf.
Therefore, ℓ ≤ 2q · cmax, so

1
r ≤ 2q·cmax

ℓmax
≤ 2q.

Let us now prove the expression for the time complexity. By definition of q, we know that the
depth of a search tree is at most q. Then, there are at most q · ℓ nodes in the whole search forest.
We have seen in the proof of Lemma 5 that there is exactly one node per time-maximal clique. So,
there are αT nodes, which implies that αT ≤ q · ℓ. So, using the expression of the time complexity
in Lemma 5, we have that the complexity of Algorithm 2 is in O

(
d2 · q · ℓ

)
. As ℓ = 1

r · ℓmax and

ℓmax ≤ α, the complexity is in O
(
d2 · q · 1r · α

)
. □

Note that the bounds given by Theorem 5 are almost tight. First, 1
r can be equal to 1 for

example when all the time-maximal cliques are also vertex-maximal, as in this way ℓ¬max = 0.
This is the case for instance when all the links end times are distinct. However, 1

r can also be
exponential in q as suggested by its upper bound. To illustrate this, consider the example of a link
stream that is equivalent to a graph because all its links have the same existence interval. Suppose
that this link stream forms a clique. Then, it contains only one maximal clique, so that 1

r = ℓ.
With the BK procedure on graphs (without pivot) described in Section 3.1, it is possible to show
that the call tree has ℓ = 2q−1 − 1 leaves of size ≥ 2. Thus, Algorithm 2 on this link stream can
reach 1

r = 2q−1 − 1.
Nevertheless, we will see in Section 6 that 1

r is experimentally small with a pivot: it is lower than
2 in all experiments except one. This means that it does not have an exponential behavior on the
real world link streams that we study, by contrast with its theoretical upper bound. According to
this observation and the computed complexity, we can state that the running time of our algorithm
with a pivot is close to the best that we can expect. Indeed, since the running time must process
all vertices of all maximal cliques (of which there are α) and the size of the largest ones is q, it is
expected to have a factor q · α in the complexity. Our algorithm only adds a multiplicative factor
1
r · d2 to this, thus explaining its good performances.

6 Experimental evaluation

In this section, we compare the implementations of the algorithm that we have presented in Sec-
tion 4 to the best ones provided in the literature. These are those of Viard et al. [44] 2, Himmel et
al. [17] 3, and Bentert et al. [5] 4. We do not compare our algorithm to the one of Banerjee and
Pal [2] as they study a generalization of the maximal clique enumeration and their implementation
for the special case corresponding to our specific problem is not more efficient than the other al-
gorithms mentioned. We do not compare either with the work of Molter et al. [33], as the authors
explain that their algorithm is slower in all cases than that of Bentert et al.

Then, we show that our algorithm scales to massive real-world link streams of more than 100
million links, we study the impact of the pivot strategy on the computational time, and finally we

2https://bitbucket.org/tiph_viard/cliques
3https://fpt.akt.tu-berlin.de/temporalcliques/
4https://fpt.akt.tu-berlin.de/temporalkplex/

https://bitbucket.org/tiph_viard/cliques
https://fpt.akt.tu-berlin.de/temporalcliques/
https://fpt.akt.tu-berlin.de/temporalkplex/
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present results of a parallel implementation.

6.1 Experimental setup

Hardware. We carried out the experiments on a machine equipped with 2 processors Intel Xeon
Silver 4216 with 32 cores each and 384 GB of RAM.

Implementations. We have made two implementations of Algorithm 2 which are available on-
line 5: one in Python and another in C++. We use the Python implementation for comparison with
the state-of-the-art methods which are coded in Python, and the C++ one to scale up to more mas-
sive link streams. The C++ implementation is inspired by the efficient implementation of the BK
algorithm by Eppstein et al. [12] that enumerates maximal cliques on graphs. Since using a pivot
reduces the running time, we use by default the algorithm with a pivot (as detailed in Section 4.4),
except in Section 6.4, in which we analyze the efficiency of the pivot strategy.

Data and pre-processing. Following the work of Viard et al. in [44], we use datasets corre-
sponding to instantaneous link streams in which all links have a duration equal to 0: we associate
a duration ∆ to each link (t, u, v) by replacing it by (t, t + ∆, u, v). Note that this may create
overlapping links (b, e, u, v) and (b′, e′, u, v) with [b, e] ∩ [b′, e′] ̸= ∅; we resolve this by iteratively
replacing such pairs of links by (min(b, b′),max(e, e′), u, v). Notice that this transformation implies
that the number of links may decrease as ∆ increases. This allows us to study the behavior of our
algorithm with varied input, while still allowing to compare it to the ones that study ∆-cliques in
instantaneous link streams, since Viard et al. [44] showed that both problems are equivalent. This
pre-processing is performed before the main algorithm, and is therefore not taken into account
in the computation times. Nevertheless, its running time is linear in the number of links in the
instantaneous link streams and is negligible in practice when compared to the enumeration time
of maximal cliques.

We use two different families of datasets. The first one, whose main characteristics are detailed
in Table 1, corresponds to the datasets used in Bentert et al. [5] to compare their own algorithm
to the literature. In this case, ∆ values are chosen identical to those used in [5], for comparison
purposes. The second one corresponds to a set of more massive datasets, whose characteristics
are given in Table 2. We use these datasets to show that our algorithm scales to link streams
up to several tens of millions of links. In this family, ∆ values are chosen as functions of Θ, the
total duration of the link stream: either 0 (instantaneous), Θ/10000, or Θ/100. The results of the
corresponding experiments are detailed respectively in Section 6.2 and Section 6.3.

These two tables illustrate the effect of increasing ∆: the number of links m decreases (as
explained above), while the maximum degree d and maximum clique size q increase. Indeed,
increasing link duration naturally makes instantaneous graphs denser overall, which leads to an
increase of d and q. However, the effect on the number of maximal cliques α is not the same
in all cases. In some cases, α increases, probably because the increased density in instantaneous
graphs induces more cliques. In other cases α decreases, possibly because cliques involving the
same vertices at different times are merged.

5https://gitlab.lip6.fr/baudin/maxcliques-linkstream

https://gitlab.lip6.fr/baudin/maxcliques-linkstream
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Dataset ∆ m d α q
0 8,111 72 8,111 2

dnc [23] 125 7,967 99 8,038 4
3125 7,454 108 7,834 4
0 20,818 9 19,037 6

hypertext [20] 125 6,323 14 6,859 7
3125 4,082 48 6,308 7
0 28,539 8 26,384 5

highschool11 [13] 125 6,472 19 7,732 7
3125 3,636 34 7,500 10
0 32,424 7 27,835 5

hospital-ward [42] 125 7,971 12 9,731 6
3125 3,033 25 9,856 9
0 45,047 5 42,105 5

highschool12 [13] 125 11,329 10 12,115 5
3125 5,691 18 7,268 7
0 59,795 31 59,795 2

facebooklike [36] 125 50,056 78 50,080 3
3125 34,116 92 34,342 4
0 110,581 1,458 97,687 10

as-733 [26] 125 32,485 1,568 41,965 12
3125 21,466 1,851 49,293 18

Dataset ∆ m d α q
0 125,773 4 106,879 5

primaryschool [15] 125 49,530 16 67,820 6
3125 19,513 50 194,231 14
0 188,508 4 172,035 5

highschool13 [29] 125 36,277 14 41,534 6
3125 15,764 30 28,357 8
0 312,164 7 294,269 3

london [45] 125 27,595 7 28,683 3
3125 768 7 778 3
0 353,226 8 342,540 3

paris [45] 125 50,248 8 51,084 3
3125 1,080 8 1,093 3
0 415,000 134 229,144 19

flights [45] 125 415,000 134 229,144 19
3125 37,862 139 368,756 19
0 415,912 4 338,815 5

infectious [20] 125 100,329 15 138,670 7
3125 44,767 43 150,883 16
0 468,897 12 442,341 3

ny [45] 125 113,651 12 117,481 3
3125 661 12 674 3

Table 1: Characteristics of the link stream datasets investigated by Bentert et al. [5]. ∆ (in
seconds) corresponds to the duration added to each link of the stream, m is the number of links,
d the maximal degree, α the number of maximal cliques, and q the maximal number of nodes of
a clique.

Dataset ∆ m d α q
0 1,108,715 3 1,108,715 2

stackexchange [37] 23,961 870,128 47 894,317 5
2,396,149 751,974 671 1,030,023 10

0 6,092,321 22 6,092,321 2
wikitalk [37] 20,048 4,123,960 12,205 4,207,362 7

2,004,838 3,078,861 29,543 4,500,754 10
0 12,223,774 28,714 12,253,571 17

youtube [31] 1,944 12,223,774 28,714 12,253,571 17
194,400 10,310,419 28,714 10,656,065 17

0 18,613,039 79 131,251 80
copresence-Thiers [39] 38 3,857,645 100 412,553 80

3,804 147,125 217 5,572,145 102
0 39,949,279 3,463 39,935,611 13

wikipedia [31] 19,318 39,246,821 7,216 40,898,684 28
1,931,869 38,737,308 36,121 45,440,988 28

0 47,902,566 4 47,902,566 2
stackoverflow [37] 23,970 33,948,538 90 35,298,283 6

2,397,055 29,583,489 1,443 43,989,692 13
0 122,378,012 3,769 119,172,078 219

soc-bitcoin [39] 15,653 93,897,987 28,144 787,519,128 237
1,565,366 86,668,193 170,760 - -

Table 2: Characteristics of large link stream datasets used to investigate the scaling properties
of the algorithm. ∆ values (in seconds) are set to 0, Θ/10000 and Θ/100, where Θ is the total
duration of the link stream. A hyphen (“-”) means that none of the implementations available
allows enumerating all maximal cliques.
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6.2 Comparison to the state of the art

In Table 3 we present the computation times (in seconds) for the datasets of Table 1, which are
those studied by Bentert et al. [5]. As the state-of-the-art algorithms are implemented in Python,
we first compare them with our Python implementation to evaluate the improvement brought by
our algorithm. We observe that our algorithm is the fastest in all tested cases. Among the three
state-of-the-art algorithms, HMNS [17] is clearly the least competitive, while BHM+ [5] and
VML [44] algorithms yield comparable results in terms of running times: depending on the link
stream, one or the other is faster, while remaining in the same order of magnitude. Besides, we
also observe that our implementation in C++ is very efficient on these datasets: in most cases, the
computation time is less than 1 second, and never exceeds 3 seconds, even on the flights dataset,
for which it is typically 1,000 times faster than the state of the art, and 30 times faster than our
Python implementation.

To study more precisely the difference of performance, we visualize the computation times of
the different methods on all link streams in Figure 5 (left panel). The different link streams are
ordered on the X-axis by increasing number of links m. Note that the scales are logarithmic. There
is one experiment per value of ∆ for each dataset, and three values are displayed, corresponding
to the running times of the fastest state-of-the-art method, our Python implementation, and our
C++ implementation. The three horizontal lines at the top of the figure correspond to the runs for
which the computation is interrupted, i.e. exceeds 24 hours or 380 GB of RAM. We also placed a
vertical line to show the limit above which the state-of-the-art algorithms fail to provide a result.
We observe three distinct layers of points, which illustrates that the C++ implementation is more
efficient than the Python implementation, itself more efficient than the state of the art. Finally,
we notice a trend to have slightly higher gain with larger link streams.

Then, to better evaluate the gain, we display the speed-up factor achieved by our two imple-
mentations in the right panel of Figure 5, compared to the most efficient algorithm of the state of
the art. We display a point for each dataset where at least one state-of-the-art algorithm is able to
provide a result in less than 24 hours and 380 GB of RAM. The speed-up factor is defined as the
state-of-the-art execution time divided by the time of our Python and C++ implementations. The
position of the line y = 1 at the bottom shows that this factor is always larger than 1. Thus, both
Python and C++ implementations are more efficient than the other implementations available, in
all the experiments performed. In most experiments, the speed-up factor is larger than 10, even
for the Python implementation. Concerning the C++ implementation the speed-up factor is always
larger than 10 except for the 3 smallest link streams, and it can reach up to 104 for larger link
streams.

6.3 Scaling up to massive real-world link streams

In the previous section, we have seen that our algorithm is more efficient than those of the state
of the art. It is thus relevant to see to what extent it can be used on larger datasets. Table 4
presents the running times of the maximal clique enumerations performed on the massive link
streams described in Table 2. In this table, a “-” symbol means that the enumeration does not
finish within 24 hours for the algorithm under examination and a “×” symbol indicates that it
requires more than 380 GB of RAM.

We observe that the state-of-the-art implementations do not allow enumerating the maximal
cliques on these datasets, except for VML [44] on the dataset stackexchange with ∆ = 0s and
∆ = 23, 961s, which is much less efficient than both our implementations. In all other cases, the
experiments are interrupted either for time or for memory consumption reasons. The Python im-
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Dataset ∆ C++ Python BHM+ VML HMNS
0 0.05 0.08 24 1.5 178

dnc 125 0.05 0.08 24 2.6 155
3,125 0.04 0.08 23 2.7 80

0 0.06 0.16 2.6 2.8 65
hypertext 125 0.05 0.08 1.4 1.8 6.9

3,125 0.03 0.09 1.4 2.0 3.6
0 0.08 0.20 2.4 2.6 95

highschool11 125 0.05 0.09 1.2 1.6 5.4
3,125 0.03 0.16 2.0 4.1 3.1

0 0.08 0.25 3.7 4.3 271
hospital-ward 125 0.02 0.12 1.6 2.6 17

3,125 0.04 0.25 3.5 7.8 5.0
0 0.12 0.32 3.6 4.2 183

highschool12 125 0.06 0.12 1.6 2.1 12
3,125 0.03 0.09 1.3 1.5 3.8

0 0.11 0.39 27 10 129
facebooklike 125 0.12 0.34 26 15 96

3,125 0.35 0.25 25 10 59
0 0.31 1.5 569 392 -

as-733 125 0.21 1.5 368 1,581 528
3,125 0.11 5.1 562 × 572

Dataset ∆ C++ Python BHM+ VML HMNS
0 0.53 0.87 22 30 716

primaryschool 125 0.14 0.65 15 37 125
3,125 0.34 10 204 854 117

0 0.30 1.2 19 24 1,420
highschool13 125 0.11 0.37 6.3 11 54

3,125 0.08 0.38 6.3 11 14
0 0.40 1.8 8.6 11 3,712

london 125 0.10 0.20 2.1 1.3 45
3,125 0.01 0.04 1.5 0.06 1.6

0 0.44 2.0 10 13 4,260
paris 125 0.12 0.33 2.8 2.5 101

3,125 0.02 0.04 1.7 0.07 1.8
0 1.1 3.1 665 22 1,206

infectious 125 0.78 1.6 634 20 945
3,125 1.1 8.1 818 534 1,004

0 2.7 93 36,859 × 26,109
flights 125 2.6 93 37,076 × 26,411

3,125 1.4 89 13,420 × 2,555
0 0.56 2.8 13 18 6,084

ny 125 0.18 0.75 5.2 6.9 304
3,125 0.02 0.03 2.3 0.06 2.5

Table 3: Comparison of the computation times (in seconds) of our implementations (C++ and
Python) to the state-of-the-art implementations: BHM+ [5], VML [44] and HMNS [17] on
the link streams listed in [5] described in Table 1. A “-” symbol means that the computation
time exceeds 24 hours, and a “×” symbol means that the memory needed for the computation
exceeds 380 GB.
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Figure 5: Left: Summary of the computation times of maximal clique enumerations as a function
of the number m of links for all link stream datasets in Tables 3 and 4. The three lines at the
top represent enumerations that are interrupted because they exceed 24 hours or 380 GB of RAM.
Right: Speed-up factor of our implementations with respect to the fastest state-of-the-art method,
as a function of the number m of links. There is one point per dataset where at least one state-of-
the-art algorithm finishes in less than 24 hours and using less than 380 GB RAM.

plementation of our algorithm allows enumerating maximal cliques for all experiments except for 3.
The C++ implementation allows scaling the computation further, as it completes the enumeration
for all experiments except for 1: the soc-bitcoin link stream with link duration ∆ = 1, 565, 366s.
We observe a significant gain of the C++ implementation compared to the Python implementation.
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Dataset ∆ C++ Python BHM+ VML HMNS
0 1.8 7.5 - 2,576 -

stackexchange 23,961 1.7 6.4 - 3,747 -
2,396,149 1.9 10 - × -

0 8.8 42 - × -
wikitalk 20,048 8.1 33 - × -

2,004,838 23 53 - × -
0 103 459 - × -

youtube 1,944 104 461 - × -
194,400 109 408 - × -

0 185 19,525 - × -
copresence-Thiers 38 64 16,305 - × -

3,804 1,347 - - × -
0 59 322 - × -

wikipedia 19,318 79 403 - × -
1,931,869 179 547 - × -

0 66 343 - × -
stackoverflow 23,970 57 302 - × -

2,397,055 103 568 - × -
0 249 6,505 - × -

soc-bitcoin 15,653 27,660 - - × -
1,565,366 - - - × -

Table 4: Comparison of the computation times (in seconds) of our implementations (C++ and
Python) to the state-of-the-art implementations: BHM+ [5], VML [44] and HMNS [17] on the
massive link streams described in Table 2. A “-” symbol means that the computation time exceeds
24 hours, and a “×” symbol means that the memory needed for the computation exceeds 380 GB.

6.4 Efficiency of the pivot

In this section, we analyze and comment on the gain of computation time achieved by using a
pivot, which was presented in Section 4.4. We recall that the complexity of Algorithm 2, as given
by Theorem 5, is in O

(
1
r · d2 · q · α

)
, where d is the maximal degree in an instantaneous graph Gt,

q is the maximal size of a clique, α is the number of maximal cliques and r is the ratio of leaves that
corresponds to maximal cliques in the tree of calls of GraphCliqueEnum. r can be computed for
the enumeration performed without or with the pivot. In the first case, r quantifies the potential
gain that the pivot can bring; in the second case, it quantifies how efficient the pivot actually is:
the closer r gets to 1, the fewer useless branches remain in the tree.

In Table 5 we give the computation times of the C++ implementation with and without a pivot
for the massive link streams of Table 2. In both cases we report the enumeration times t, the ratio
r mentioned above and the factor 1/r, as it appears in the complexity expression of Theorem 5.

We first observe that the pivot allows to achieve the enumeration of maximal cliques faster.
The speed-up factor may vary a lot from a dataset to another and in 5 cases, the pivot version
terminates within our time limit while the version without pivot does not. The ratio r is larger
than 0.9 in 18 experiments out of 21 with the pivot, while it is lower in most experiments without
it. This indicates that the pivot allows to cut off almost all unnecessary branches of recursive calls,
except for the copresence-Thiers dataset. Notice that this dataset with a link duration ∆ = 0s
clearly stands out, as there are only 8.7% of the leaves of the call trees of GraphCliqueEnum which
correspond to maximal cliques for the enumeration with the pivot.

We can also see that the factor 1/r, which can be very large in theory since it is in O (2q)
according to Theorem 5, remains relatively small in the experiments. This factor never exceeds
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2 with the pivot, except in the case of copresence-Thiers with ∆ = 0s mentioned above. Thus,
from this observation, the complexity with the pivot can often be considered in practice as in
O
(
d2 · q · α

)
, which is within a d2 factor of the output size (in O (q · α)).

Finally, even with a pivot, the computation does not succeed for the largest value of ∆ on the
soc-bitcoin dataset within the boundaries of the experimental procedure. There are other larger
datasets on which no method is able to produce a result, as for instance the link stream flickr [32]
which has very dense instantaneous graphs. Based on observations not reported here, we suggest
that this is not due to the size of the output, but rather to the fact that the pivot does not succeed
in pruning a sufficient number of branches.

Link stream With pivot Without pivot
Dataset ∆ t r 1/r t r 1/r

0 1.8 1.000 1 1.8 1.000 1
stackexchange 23,961 1.7 1.000 1 1.7 1.000 1

2,396,149 1.9 0.997 1.003 1.7 0.928 1.078
0 8.8 1.000 1 7.7 1.000 1

wikitalk 20,048 8.1 1.000 1 7.7 1.000 1
2,004,838 23 0.995 1.005 23 0.891 1.122

0 103 0.907 1.103 135 0.332 3.012
youtube 1,944 104 0.907 1.103 135 0.332 3.012

194,400 109 0.900 1.111 137 0.298 3.356
0 185 0.087 11.49 - - -

copresence-Thiers 38 64 0.757 1.321 - - -
3,804 1,347 0.854 1.171 - - -

0 59 1.000 1 78 0.987 1.013
wikipedia 19,318 79 1.000 1 1,143 0.043 23.26

1,931,869 179 0.999 1.001 1,618 0.034 29.41
0 66 1.000 1 90 1.000 1

stackoverflow 23,970 57 1.000 1 73 1.000 1
2,397,055 103 0.996 1.004 122 0.881 1.135

0 249 0.972 1.029 - - -
soc-bitcoin 15,653 27,660 0.911 1.098 - - -

15,653,366 - - - - - -

Table 5: Comparison of the computation times, in seconds, of the C++ implementation using a
pivot to the one without a pivot. The factor r, defined in Section 5.2.2, is equal to the ratio of
leaves in the call trees of GraphCliqueEnum that correspond to a maximal clique of the link stream.

6.5 Parallel experiments

In this section, we study a parallel version of the code to evaluate the speed-up that it brings.
Algorithm 2 is indeed easily parallelizable, as the iterations of the loop on T at Line 1 are inde-
pendent of each other. Our procedure consists in splitting the total time interval of duration Θ of
the link stream into nth sub-intervals, where nth is the number of threads on which we perform the
parallelization. For each sub-interval in parallel, the corresponding thread enumerates all maximal
cliques that start during this interval, following the loop of Line 1. We choose to split the total
time interval of the link stream in such a way that approximately the same number of links starts
within each sub-interval. Thus, each thread processes approximately m

nth
links. According to the

expression established by Theorem 3, the sequential complexity is in O
(
m · 3d/3 · 2q · d2

)
, so by

dividing the number of links by nth, the theoretical complexity is now in O
(

1
nth
·m · 3d/3 · 2q · d2

)
per thread.
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Figure 6 illustrates the results of the parallelization process on the massive link stream datasets
detailed in Table 2. It reports the execution time for the enumeration of maximal cliques as a
function of the number of threads used. On the left are the link streams for which parallelization
offers an interesting reduction in computation times, while we show on the right the link streams for
which parallelization does not yield any significant improvement. We observe different behaviors
depending on the link stream under study: for example, the parallelization of wikipedia with
∆ = Θ / 100 leads to a division by up to three of the enumeration time and even more for
copresence-Thiers with ∆ = 0s, while the same process on link streams on the right brings very
little gains. Also, we observe that for almost all datasets, the computation times do not decrease
significantly when using more than 4 threads, by contrast with the theoretical expression of the
complexity established above. This low speed-up can be explained by the distribution of the link
stream density through time. Indeed, the density of the link stream is the maximal density of Gt

at each instant t, which is not affected by the parallelization process. Even a short sub-interval of
time can be associated to a dense link stream and thus generate many maximal cliques. As the
overall computation time is set by the sub-interval that takes the longest time to compute, a dense
sub-stream creates a bottleneck and entails a low speed-up.
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Figure 6: Computation times (in seconds) as a function of the number of threads for the parallel
version of the C++ implementation on the massive link stream datasets detailed in Table 2. The
duration ∆ of the links is expressed as a function of Θ, the total duration of the link stream. Left:
Link streams for which parallelization offers an interesting reduction in computation time. Right:
Link streams for which parallelization does not work.

7 Conclusion

In this paper, we have addressed the problem of maximal clique enumeration in link streams. We
propose a new algorithm to solve this problem that scales to massive real-world link streams. We
analyze its complexity as a function of the characteristics of the input and as a function of the
characteristics of the output of the algorithm We provide two implementations (in Python and in
C++) and perform an experimental protocol on various datasets from real interactions over time.
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It shows that our algorithm allows a performance gain of several orders of magnitude with respect
to the state of the art.

The work done in this paper can be pursued along several directions. One is to investigate the
reasons why the enumeration takes so long on some link streams, especially in the cases where
the time limit of our protocol is reached. For instance, as the cliques are output on the fly, we
could compute the 1

r factor appearing in the output-sensitive complexity on the fly and find out
whether the computation stalls because it explores many unnecessary branches, or if it comes from
the sheer number of maximal cliques. Another direction would be to improve the parallelization
process by refining the partitioning of the link stream based on its structural properties and balance
the computation more fairly on the different threads. For instance, we can study the structure
of the link stream to anticipate the instants t ∈ T where there are more or less maximal cliques,
which would allow the construction of more suitable sub-intervals and thus a better speedup. Also,
it would be interesting to study the impact of the link duration on the enumeration of maximal
cliques, both in terms of computation times and number and size of cliques output.

More broadly, listing other kinds of dense sub-streams in link streams is a relevant problem.
In this direction, we proposed in another work [4] an algorithm to extend to the context of links
streams the well-known clique percolation method which defines communities in graphs [35]. It
demands to list k-cliques in link streams, which is a different problem from the one of listing
maximal cliques (and computationally more tractable for small values of k). We showed that
using fast k-clique enumeration processes allows obtaining communities more efficiently than the
other extension to the dynamical context of the clique percolation method [6]. As other types of
dense sub-streams have been recently proposed [5, 33, 2], it would be interesting to generalize our
enumeration method to these cases.
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