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Abstract. A thrackle is a drawing of a graph in which any two vertex-disjoint edges
cross exactly once and incident edges do not cross. A graph that has a thrackle drawing
is thracklable. In the past three decades, mathematicians investigated a number of
variations of thrackles by relaxing or changing the required number of crossings on edges
or restricting the placement of vertices on the surface (e.g., restricting to outerdrawings,
in which vertices are restricted to a boundary curve of the surface).

A graph is superthracklable if it can be drawn so that any two edges cross exactly
once. We provide a simple proof for the following: a graph can be drawn on the plane so
that every two edges cross an odd number of times if and only if it is superthracklable
on the plane.

A graph is outersuperthracklable if it has a drawing on a disc in which every vertex
is on the boundary of the disc and every pair of edges cross exactly once. We introduce
some natural generalisations of outersuperthracklable graphs and we show that these
classes of graphs are equivalent.

Lastly, using the Hanani-Tutte characterisation of planar graphs we show that for
any surface Σ, there is a relationship between the class of graphs that are not embed-
dable on Σ and the class of graphs that are not superthracklable with respect to Σ.
More specifically, we show how to construct, from any forbidden minor G for embed-
dability in Σ, two infinite families of graphs that are not superthracklable with respect
to Σ. This sheds further light on the relationship between some of Archdeacon and
Stor’s forbidden configurations for superthrackles and Kuratowski’s forbidden minors
for planarity.

1 Introduction

When trying to study and understand graphs, it is often useful to construct drawings of them, in
which vertices are represented by distinct points and edges by curves that do not intersect except
possibly at their endpoints and proper edge crossings.1

A simple drawing of a graph is a drawing in which:
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� an edge does not cross itself.

� incident edges do not cross.

� two edges do not cross more than once.

Now, a thrackle is a drawing of a graph in which any two edges have exactly one point in
common [31]. In other words, in a thrackle, any two vertex-disjoint edges cross exactly once and
incident edges do not cross (see for example, Figure 1a). Note that by definition a thrackle is a
simple drawing.

Having the constraints of simple drawings in mind, a drawing with no crossings (e.g., a planar
drawing) is a best drawing that we can hope to construct for a graph and a thrackle is a worst
drawing that we may be able to construct for a graph such that it meets all of the above constraints.

Thus, thrackles serve as extremities of the class of simple drawings of a graph. So studying
thrackles should contribute to understanding that class.

1.1 Definitions

A surface or a two-dimensional manifold Σ is a connected compact topological space that is locally
homeomorphic to an open disk in the plane and for any two distinct points x, y ∈ Σ, there exist
open neighbourhoods Nx of x and Ny of y such that Nx ∩Ny = ∅ [23].

A drawing of a graph G in a topological space (usually a surface or a disc) Σ is a mapping η
that assigns:

� to each vertex u of G, a distinct point η(u) in Σ, and

� to each edge (v1, v2) of G, a simple continuous curve ζ = η((v1, v2)) in Σ connecting η(v1) to
η(v2) such that ζ does not pass through the image under η of any vertex.

In this paper, we sometimes refer to a point η(u) in a drawing η (of a graph G) that represents
a vertex u in G as vertex u of η and similarly, we may refer to a curve ζ in η that represents an
edge (u, v) in G as edge (u, v) of η. Moreover, we sometimes use η to denote the set of all points
in the drawing η.

In this paper we assume that a drawing η satisfies the following conditions:

� An edge does not contain a vertex other than its endpoints.

� Edges must either properly cross (a transversal intersection) or not cross at all (for example,
they must not meet tangentially). More precisely, for a crossing point p on two edges e1 and
e2, the cyclic order of the edges around p is e1, e2, e1, e2.

� Any two edges cross a finite number of times and the intersection of the arcs representing
them must be a finite set of points.

� No point represents more than one crossing. (It follows that a single edge cannot pass through
the same crossing twice.)

We denote the cyclic order around vertex v of the edges incident at a vertex v of a drawing η
by πη(v) and we put Πη := (πη(v) : v ∈ V (G)). Moreover for any disk d we denote the boundary
of d by ∂(d).

We defined thrackles earlier in this paper. Now we define thracklable graphs. Any graph that
has a thrackle drawing on a surface Σ is thracklable with respect to Σ.
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# crossings when two edges are:
vertex-disjoint incident

thrackle 1 0
superthrackle 1 1
weak thrackle 1 any

generalised thrackle odd even
generalised superthrackle odd odd
weak generalised thrackle odd any

Table 1: Variations of thrackles and the number of crossings on vertex-disjoint and incident edges

A drawing η of a graph G on a surface Σ is a superthrackle if any two edges in η cross each
other exactly once (see for example, Figure 1b) [3]. Note that in superthrackles any two edges
cross once as opposed to thrackles in which only vertex-disjoint edges cross. Any graph that has
a superthrackle drawing on a surface Σ is superthracklable with respect to Σ.

A drawing η of a graph G on a surface Σ is a weak thrackle if any two vertex-disjoint edges in
η cross each other exactly once (see for example, Figure 1c). In a weak thrackle, two edges that
are incident to one vertex may or may not cross, with no restriction on the number of crossings
if they do cross. This compares with a thrackle, in which incident edges do not cross. Any graph
that has a weak thrackle drawing on a surface Σ is weak thracklable with respect to Σ.

A drawing η of a graph G on a surface Σ is a generalised thrackle if any two edges in η have an
odd number of points in common (i.e., crossings or shared vertices) (see for example, Figure 1d)
[8]. Any graph with a generalised thrackle drawing on a surface Σ is a generalised thracklable graph
with respect to Σ.

A drawing η of a graph G on a surface Σ is a generalised superthrackle if any two edges in η
cross each other an odd number of times (see for example, Figure 1e). Any graph with a generalised
superthrackle drawing on a surface Σ is a generalised superthracklable graph with respect to Σ.

A drawing η of a graph G on a surface Σ is a weak generalised thrackle if any two vertex-disjoint
edges in η cross each other an odd number of times. (There are no restrictions on the number of
crossings of incident edges in weak generalised thrackles. See for example, Figure 1f.) Any graph
that can be drawn as a weak generalised thrackle on a surface Σ is a weak generalised thracklable
graph with respect to Σ.

In summary: the adjective super means that the number of times two incident edges cross
changes from 0 to 1 or from even to odd, with the result that the number of crossings between
two incident edges follows the same rule as the number of crossings between two vertex-disjoint
edges; the adjective generalised means that the number of times two edges cross is relaxed from
zero or one (as the case may be) to even or odd, respectively; and the adjective weak means that
the number of times two incident edges cross is unrestricted. Table 1 provides a quick reference to
the definitions of variations of thrackles.

From the above definitions we can immediately deduce that:

� any thrackle is both a generalised thrackle and a weak thrackle,

� any superthrackle is a generalised superthrackle, and

� any generalised superthrackle is a weak generalised thrackle.
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(a) thrackle (b) superthrackle (c) weak thrackle

(d) generalised thrackle (e) generalised superthrackle (f) weak generalised thrackle

Figure 1: Examples of different variations of thrackles

The relationships among these classes are shown by Venn diagrams in Figure 2. All the regions
shown in these diagrams are nonempty. We will see in Theorem 3 that every generalised su-
perthracklable graph is superthracklable, but nonetheless there are generalised superthrackles that
are not superthrackles.

thrackles
weak
thrackles

generalised
thrackles

weak generalised thrackles

(a)

generalised
superthrackles

superthrackles

weak generalised thrackles

(b)

Figure 2: Relationship between different variations of thrackles and superthrackles

In this paper, drawings are on the plane unless otherwise stated.
An outerdrawing of a graph G is a drawing of G on a disc such that all the edges are drawn on

the disk and all the vertices of the drawing are on the boundary of the disc.
A graph that has a thrackle outerdrawing is outerthracklable. For each adjectiveX ∈ {super, generalised,weak},

a graph that has anX-thrackle outerdrawing is said to beX-outerthracklable or outer-X-thracklable.
An appropriate pair of these adjectives can also be used together (weak generalised; generalised
super), with the natural meaning.

An edge e = (u, v) in a graph G is subdivided by replacing it with two edges (u,w), (w, v) where
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w is not a vertex of G. A graph G or any other graph that can be obtained from G by a sequence
of subdivisions is a subdivision of G.

Any graph G′ that can be obtained from a graph G by a series of edge deletions, vertex deletions
and edge contractions is a minor of G.

A caterpillar is a tree for which removal of all vertices of degree 1 gives a path graph.
An odd wreath is a graph containing an odd cycle C such that every edge not in C joins a

vertex of C to a vertex of degree 1.
Lastly, we denote the set of all the neighbours of a vertex v by N(v).

1.2 Our Results

In this paper we first characterise weak generalised outerthracklable graphs. More specifically we
prove the following theorem:

Theorem 1 Any graph G is weak generalised outerthracklable if and only if G does not contain
any of:

1. 2-claw graph as a minor (see Figure 3a),

2. K2 ∪K3 as a minor (see Figure 3b),

3. any cycle of even length with four or more vertices.

(a) the 2-claw graph (b) K2 ∪K3

Figure 3: Two forbidden minors for outersuperthracklable graphs.

We then use Theorem 1 to prove the following.

Corollary 1 G is weak generalised outerthracklable if and only if it is a subgraph of an odd wreath.

We also show that all the variants of outerthracklability defined above are equivalent. In other
words:

Theorem 2 For any graph G, the following are equivalent:

1. G is outerthracklable,

2. G is outersuperthracklable,

3. G is weak outerthracklable,

4. G is generalised outersuperthracklable,

5. G is weak generalised outerthracklable.
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We then provide a simple and direct proof, for the plane, for equivalence of generalised su-
perthracklable graphs and superthracklable graphs. This theorem was originally proved by Archdea-
con and Stor [3].

Theorem 3 Any generalised superthracklable graph is superthracklable.

A planar drawing or a planar embedding is a drawing in which no two edges cross. Planar
graphs are the graphs that have a planar drawing.

The Hanani-Tutte Theorem is a famous result in graph theory which can be thought of as a
characterisation of planar graphs.

Theorem 4 (Strong Hanani-Tutte Theorem, [33]) A graph is planar if it has a drawing η
on the plane such that any two vertex-disjoint edges in η cross each other an even number of times.

The Hanani-Tutte Theorem is usually used in a weaker form.

Theorem 5 (Weak Hanani-Tutte Theorem, [33]) A graph is planar if it has a drawing η on
the plane such that any two edges in η cross an even number of times.

For any graph G = (V,E) and any subset E′ of E, let G(G,E′) be the family of all the graphs
that are obtained from G as follows:

� Replace any edge e = (u, v) ∈ E′ with a (u, v)-path P of even length,

� Replace any edge e = (u, v) ̸∈ E′ with any (u, v)-path P ,

such that the edges and internal vertices of these paths are new, with all paths so introduced being
internally disjoint from each other.

We investigate the relationship between the Weak Hanani-Tutte Theorem and superthrackles.
We use the weak Hanani-Tutte Theorem to prove Theorem 6.

Theorem 6 Let Σ be a surface. Let G be a graph such that in any drawing of G on Σ there are
two edges that cross each other an odd number of times. Let x be any edge of G and let G′ be a
graph in G(G,E \ {x}). Then in any drawing of G′ on Σ, there are two edges that cross each other
an even number of times.

This Theorem provides us with a connection between the Hanani-Tutte Theorem and Theorem 3
which we shall discuss in more detail later in this paper.

The rest of this paper is organised as follows. Section 2 provides the reader with the background
for this research. Section 3 is dedicated to characterisation of weak generalised outerthracklable
graphs. Section 4 investigates the relationship between outerthracklable graphs, outersuperthrack-
lable graphs, weak outerthracklable graphs, generalised thracklable graphs and weak generalised
thracklable graphs. Then in Section 5 we prove equivalence of generalised superthracklable graphs
and superthracklable graphs on the plane. Section 6 is dedicated to the relationship between the
Hanani-Tutte Theorem and thrackles. Lastly, Section 7 summarises our results and points out
future directions for research.
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2 Related Work

Kuratowski’s Theorem is a well-known characterisation of planar graphs in terms of two forbidden
subdivisions.

Theorem 7 (Kuratowski’s Theorem, [19]) A graph is planar if and only if it contains neither
a subdivision of K5 nor a subdivision of K3,3 as a subgraph.

Hanani proved the following in 1934.

Theorem 8 (Hanani [10]) 2 Any drawing of K5 or K3,3 on the plane contains two vertex-disjoint
edges that cross each other an odd number of times.

By Kuratowski’s Theorem and Hanani’s Theorem, it is straightforward to see that in any
drawing of a non-planar graph there are two vertex-disjoint paths that cross an odd number of
times and hence there are two vertex-disjoint edges that cross an odd number of times. This is
known as the Strong Hanani-Tutte Theorem (which we stated earlier). The Hanani-Tutte Theorem
though is usually used in its weaker form (as was stated above as well).

The Hanani-Tutte Theorem in its weak form has been generalised to all 2-manifolds [28]. This
is especially interesting as we do not yet have forbidden minor characterisations for the graphs
that can be drawn without crossings on surfaces other than the sphere and the projective plane
[2, 19, 34].

Theorem 9 ([28]) A graph G has a drawing on the surface Σ with no crossings if it has a drawing
η on Σ such that any two edges cross an even number of times in η.

However, the Strong Hanani-Tutte Theorem has only been generalised for the projective plane.

Theorem 10 ([26]) A graph G has a drawing on the projective plane with no crossings if it has
a drawing η on the projective plane such that any two vertex-disjoint edges cross an even number
of times in η.

In fact, Fulek and Kynčl [12] proved that the Strong Hanani-Tutte Theorem cannot be gener-
alised to the orientable surface of genus four.

There are numerous other versions of the Hanani-Tutte Theorem (see for example, [13, 20, 28]).
The notion of thrackle was defined by John Conway as he conjectured the following:

Conjecture 1 (Conway’s Thrackle Conjecture, [4, 31]) For a thracklable graph G = (V,E),
|E| ≤ |V |.

Despite considerable effort, Conway’s thrackle conjecture is still open.
Lovasz, Pach and Szegedy proved that every bipartite thracklable graph is planar [21] and hence

the number of edges of a bipartite thrackle with n vertices is at most 2n−4 (assuming n ≥ 3). This
bound later was improved to (3n−3)/2 by Cairns and Nikolayevsky [7] and then to 167

117n ≈ 1.428n
by Fulek and Pach [14].

Fulek and Pach proved an upper bound of 1.3984n edges for a thrackle with n vertices [15].
There are numerous other papers trying to tighten the upper bound on the number of edges of
thrackles with the tightest one given in [36] (see, for example, [6, 16, 18, 29, 30]).

Assuming that Conway’s Thrackle Conjecture is true, Woodall proved that the bound stated
in the conjecture is tight since any cycle other than C4 is a thrackle [35]. Moreover, with the same
assumption Woodall characterised all thrackles as follows [35]: a graph is a thrackle if and only if

2This paper was written by Hanani before he changed his name.
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� it has at most one cycle of odd length, and

� it does not contain C4, and

� each of its connected components contains at most one cycle.

With this theorem in mind, to prove Conway’s Thrackle Conjecture it is enough to verify that
a graph that consists of two even cycles with one vertex in common is not a thrackle [35, 30].

Misereh and Nikolayevsky define annular and pants thrackles as two types of outerthrackles
and characterise them in [22]. Other variations of thrackles include: tangles, tangled thrackles, and
spherical thrackles. For definitions of and results about these types of thrackles see [5, 24, 25, 32].
For applications of thrackles see [1, 17].

Cairns and Nikolayevsky characterised outerthracklable graphs as follows.

Theorem 11 ([9]) Let G be an outerthracklable graph such that deg(v) ≥ 2 for any vertex v in
G. Then G is an odd cycle.

Moreover, they proved that the number of edges of an outerthracklable graph does not exceed
the number of vertices of the graph [9].

A simple cycle on the projective plane is 2-sided if it has a neighbourhood homeomorphic to a
cylinder, and 1-sided if it has a neighbourhood homeomorphic to a Möbius strip (see for example,
Figure 4). A parity embedding is an embedding of a graph in the projective plane in which a simple
cycle C is 1-sided if and only if C is of odd length [8, 3].

(a) A 1-sided cycle (b) A 2-sided cycle

Figure 4: Examples of 1-sided and 2-sided cycles on the projective plane

Cairns and Nikolayevsky characterised generalised thracklable graphs with respect to the plane
as follows.

Theorem 12 ([8]) A graph is generalised thracklable on the plane if and only if it has a parity
embedding in the projective plane.

An even edge-subdivision of an edge e in a graph replaces edge e with a path of an odd length.
A vertex subdivision at u in a graph G subdivides every edge that is incident to u once. Two
graphs G and G′ are parity homeomorphic if there is a graph H that can be obtained from G and
from G′ by the operations of even edge-subdivision or vertex subdivision [3].

Superthrackles are defined by Archdeacon and Stor and are characterised as follows.

Theorem 13 ([3]) A graph is superthracklable if and only if it has a parity embedding in the
projective plane.
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A drawing of a graph on a surface Σ is a 1-point superthrackle if it can be drawn as a su-
perthrackle on Σ such that all the edge crossings occur at a common point3. Any graph that can
be drawn as a 1-point superthrackle on surface Σ is 1-point superthracklable with respect to Σ.

Archdeacon and Stor also proved the following.

Theorem 14 ([3]) The following classes of graphs are equivalent:

� superthracklable graphs,

� 1-point superthracklable graphs,

� graphs that have a parity embedding on the projective plane,

� graphs without a subgraph that is parity homeomorphic to any graph in Figure 5.

Cairns and Nikolayevsky characterised generalised thracklable graphs [8] and Archdeacon and
Stor characterised superthracklable graphs [3] and the two characterisations are the same (see
Theorem 12 and Theorem 13). That is, any generalised thracklable graph is a superthracklable
graph.

Theorem 15 ([3]) A graph is superthracklable if and only if it is generalised superthracklable.

There are similarities between Theorem 15 and the Weak Hanani-Tutte Theorem since:

� the Weak Hanani-Tutte Theorem can be rephrased as: every graph G with a drawing in
which every two edges cross an even number of times has a drawing in which every two edges
cross zero times, and

� Theorem 15 can be rephrased as: every graph G with a drawing in which every two edges
cross an odd number of times has a drawing in which every two edges cross once.

We provide a simple and direct proof for Theorem 15 (see Theorem 3).
Moreover, given that the Strong Hanani-Tutte Theorem holds for planar graphs one might

think that the analogous statement holds for superthrackles, that is, that any weak generalised
superthracklable graph is superthracklable. However, we show that the latter statement is false.

3 Weak Generalised Outerthracklable Graphs

In this section we characterise weak generalised outerthracklable graphs. We start by proving that
weak generalised outerthracklable graphs cannot contain the 2-claw graph as a forbidden minor.

Lemma 1 None of the graphs C4, K2 ∪ K3 and the 2-claw graph have a weak generalised out-
erthrackle drawing.

Proof: Let G be any of the graphs C4, K2 ∪K3 or the 2-claw graph. By just placing vertices of G
in different cyclic orders around a disk, it is routine to observe that in any given outerdrawing of
G there are two edges (u, u′) and (v, v′) such that vertices u, u′, v, v′ appear in that order around
the boundary of the disc and therefore (u, u′) crosses (v, v′) an even number of times. Therefore,
none of C4, K2 ∪K3 or the 2-claw graph has a weak generalised outerthrackle drawing. □

3For this specific definition we relax the definition of a drawing so that three or more edges can all cross at a
common point.
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(a) V2 (b) W−
4 (c) K∗

5 (K5 with all of its edges
subdivided once)

u v
(d) K∗

5 (e) (K5 with all of its
edges except for one of them
subdivided once)

(e) K∗
3,3 (K3,3 with all of its

edges subdivided once)

u v
(f) K∗

3,3(e) (K3,3 with all of its
edges except for one of them sub-
divided once)

(g) Ψ4

(h) Φ4

Figure 5: The obstruction set for superthrackles
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Lemma 2 Any graph G that contains the 2-claw graph as a minor is not a weak generalised
outerthracklable graph.

Proof: Any graph that contains the 2-claw graph as a minor has the 2-claw graph as a subgraph.
So by Lemma 1 any graph G that contains the 2-claw graph as a minor does not have a weak
generalised outerthrackle drawing and hence is not a weak generalised outerthracklable graph. □

Let e = (u, v) be an edge of a graph G. Let G′ be the graph that is obtained from G by replacing
(u, v) with three edges (u,w), (w, x) and (x, v), where w, x ̸∈ V (G). Define the double topological
contraction operation (or double contraction for short) to be the operation that is performed on
G′ to obtain G (see Figure 6).

u
w x

v

(a) before double contraction (G′)

u v

(b) after double contraction (G)

Figure 6: Double topological contraction operation

Define a graph G− to be a double minor of a graph G if we can obtain G− from G by some
sequence of vertex deletions, edge deletions and double contractions.

Throughout the rest of this paper, we borrow a set of local moves from [11] to manipulate any
drawing η of a graph G and obtain any other drawing η′ of G.

Proposition 1 ([11]) Let η and η′ be two drawings of a graph G in the plane. Then η and η′ are
related by a finite sequence of the local moves given in Table 2.

For a vertex v in a drawing η, a local disk Σv at v is a sufficiently small neighbourhood
homeomorphic to an open disk centred on v such that:

� Σv does not contain any vertex other than v,

� Σv does not contain any crossings,

� for any edge e incident with v, the intersection of the drawing of e with Σv is a curve
homeomorphic to (0, 1],

� every edge that is not incident with v is disjoint from Σv (see, for example, Figure 7).

Similarly, for a non-self-intersecting edge e = (u, v) in a drawing η, let a local disk Σe of the
edge e be a sufficiently small region homeomorphic to an open disk that contains e in its interior
such that:

� Σe does not contain any vertex other than u or v,

� Σe does not contain any crossings other than the crossings on e,

� any continuous segment of an edge f that intersects with Σe is either a curve homeomorphic
to (0, 1) that crosses e once or a curve homeomorphic to [0, 1) that has u or v as one of its
endpoints (see, for example, Figure 8).
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Rp
I

↔
Rp

II

↔
Rp

III

↔
Rp

IV

...
...

↔
...
...

Rp
V

..

.

↔

..

.

Table 2: Reidemeister moves for plane graphs
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u

d
(a) disk d contains a
crossing

u

d
(b) disk d contains
an edge segment that
does not have u as its
endpoint

u

d
(c) disk d contains a seg-
ment of an edge that is
not adjacent to u

u

d
(d) disk d is a local disk
for u

Figure 7: (a)–(c) depicts three examples of disks that are not local disks of u. (d) depicts a local
disk of u.

u
d

v

(a) disk d does not
contain the edge
(u, v)

ud

v

(b) disk d contains
an edge segment that
does not have u or
v as its endpoint and
does not cross (u, v)

ud

v

(c) disk d contains a
crossing that is not
on (u, v) and a vertex
other than u and v

u
d

v

(d) disk d is a local
disk for (u, v)

Figure 8: (a)–(c) depicts three examples of disks that are not local disks of (u, v). (d) depicts a
local disk of (u, v).

Next we show that weak generalised outerthracklable graphs are closed under the double con-
traction operation (see Figure 6).

Lemma 3 Weak generalised outerthracklable graphs are closed under the double contraction oper-
ation.

Proof: Let η be a weak generalised outerthrackle drawing of G. Let (v1, v2), (v2, v3), (v3, v4) be
three edges of G such that v2 and v3 have degree 2. Let G− be the graph that is obtained from G
by double contracting (v1, v2), (v2, v3), (v3, v4) to (v1, v4). Obtain a drawing η− of G− from η as
follows:

1. remove (v1, v4) from η if (v1, v4) is an edge in G.

2. add (v1, v4) to η such that it follows the path of (v1, v2)∪ (v2, v3)∪ (v3, v4) sufficiently closely
so that (v1, v4) is drawn within the union of the local disks of (v1, v2), (v2, v3) and (v3, v4)
and for every crossing between an edge f and (v1, v2) ∪ (v2, v3) ∪ (v3, v4) there is only one
crossing between f and (v1, v4) (see Figure 9a).

3. remove vertices v2, v3 and edges (v1, v2), (v2, v3), (v3, v4).



108 Dehkordi and Farr Thrackles, Superthrackles and the Hanani-Tutte Theorem

4. remove the self crossings of (v1, v4) by the Rp
I move that is shown in Table 2 (see Figure 9b).

v1

v2

v3

v4

(a)

v1

v4

(b)

Figure 9: Constructing η− from η. (For simplicity, the rest of the edges of η or η′ are not shown
in this Figure.)

Since any two vertex-disjoint edges cross each other an odd number of times in η, any edge
that is not incident with v1, v2, v3, v4 crosses (v1, v2) ∪ (v2, v3) ∪ (v3, v4) an odd number of times
in η. Therefore, any edge in η− that is not incident with v1 or v4 crosses (v1, v4) an odd number
of times and hence η− is a drawing of G− in which any two vertex-disjoint edges cross an odd
number of times. □

We use Lemma 3 to show that there cannot be a cycle C of odd size and an edge that is
vertex-disjoint from C in any weak generalised outerthrackle.

Lemma 4 Let G either be a cycle C with an even number of vertices or consist of a cycle C with
an odd number of vertices and an edge e that is vertex-disjoint from C. Then G is not a weak
generalised outerthracklable graph.

Proof: We prove this lemma by contradiction. Let us assume that such a G is a weak generalised
outerthracklable graph. IfG is a cycle C with an even number of vertices then by double contracting
C (multiple times if necessary), we obtain a graph G′ that is C4. If G is a cycle C with an odd
number of vertices and an edge e that is vertex-disjoint from C then by double contracting C
(multiple times if necessary) we obtain a cycle with 3 vertices and an edge that is vertex disjoint
from it or in other words a K2 ∪K3. Now if G is a weak generalised outerthracklable graph then,
by Lemma 3, G′ is a weak generalised outerthracklable graph. But this is a contradiction by
Lemma 1. □

For any vertex u in a graph G, we denote the set of neighbours of u by N(u).
Now we prove Theorem 1.

Proof: [Proof of Theorem 1] It is easy to see that any graph that is obtained by adding an isolated
vertex to a weak generalised outerthracklable graph is also a weak generalised outerthracklable
graph. So in this proof we assume that graph G does not contain an isolated vertex.

By Lemma 2 and Lemma 4, weak generalised outerthracklable graphs do not have the 2-claw
graph as minor or C4 as a double minor. Moreover since K2 ∪K3 contains an edge and a cycle of
odd length that are vertex-disjoint, by Lemma 4 weak generalised outerthracklable graphs do not
contain K2 ∪K3 as a double minor either. Therefore we only need to show that if a graph G does
not have the 2-claw graph as minor, K2 ∪K3 as a double minor or C4 as a double minor, then G
is a weak generalised outerthracklable graph.
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We prove this by induction on the number of vertices. In the base case G has one or two or
three vertices and the lemma holds trivially. We proceed to the inductive case. We have two cases:

Case 1. There is a vertex v in G, with deg(v) ≥ 3. Since G does not contain C4 or the
2-claw graph or K3 ∪K2 as a minor, for any vertex v in G with deg(v) ≥ 3, there is a vertex v′

adjacent to v in G such that deg(v′) = 1. Let v1 and v2 be two vertices (other than v′) that are
adjacent to v. Let G− be the graph that is obtained from G by deleting v′ and (v, v′) from G.

By induction G− has a weak generalised outerthrackle drawing η−. Let d be the disc on which
η− is drawn. To obtain a drawing η of G from η−, choose the location of v′ on ∂(d) such that the
order of v, v′, v1, v2 (clockwise or anticlockwise) on ∂(d) is v, v1, v

′, v2 and let (v, v′) be represented
by an arbitrary curve from v to v′ (see, for example, Figure 10a).

v v1

v2

v′

(a) (v, v1), (v, v
′) and

(v, v2) in η

v v1

v2

w

w′ v′

(b) (w,w′) crosses (v, v′)
an odd number of times

v v1=w

v′

v2
w′

(c) (w,w′) crosses (v, v′) an odd
number of times

Figure 10: vertex-disjoint edges cross each other an odd number of times in η.

We need to show that (v, v′) crosses any other vertex-disjoint edge an odd number of times.

Let (w,w′) be an arbitrary edge of G that is vertex-disjoint from (v, v′), if such an edge exists.

If (w,w′) is vertex-disjoint from both (v, v1) and (v, v2), then since any two vertex-disjoint edges
in η− cross an odd number of times, (w,w′) crosses both (v, v1) and (v, v2) an odd number of times.
Therefore the order of v, v′, v1, v2, w, w

′ on ∂(d) is either v, w, v1, v
′, v2, w

′ or v, w′, v1, v
′, v2, w (see

Figure 10b). In both of these cases, by the order of the vertices on ∂(d), (w,w′) crosses (v, v′) an
odd number of times.

Now let (w,w′) be vertex-disjoint from either (v, v1) or (v, v2) (say (v, v2)). That is, either
w = v1 or w′ = v1. Without loss of generality let w = v1. The edge (v1, w

′) (i.e., (w,w′)) crosses
(v, v2) an odd number of times and therefore the order of v, v′, v1 = w, v2, w

′ on ∂(d) (clockwise
or anticlockwise) is v, v1 = w, v′, v2, w

′ (see Figure 10c). In this case, (w,w′) crosses (v, v′) an odd
number of times as well.

Therefore any edge that is vertex-disjoint from (v, v′) crosses (v, v′) an odd number of times
and hence any two vertex-disjoint edges in η cross an odd number of times. That is, η is a weak
generalised outerthrackle.

Case 2. There is no vertex v in G with deg(v) ≥ 3. Since the degree of any vertex in G
is less than 3, G consists of a number of isolated vertices or paths and cycles. By condition 2 of
the theorem, there is no edge in G that is vertex-disjoint from a cycle in G. Therefore G either
consists of a cycle and a number of isolated vertices or a number of paths and a number of isolated
vertices.

Since we can easily add or remove isolated vertices to weak generalised outerthrackles and
obtain another weak generalised outerthrackle, we assume that there are no isolated vertices in G.
So let G be a cycle. By condition 3 of the theorem, G cannot contain any cycle of even length.
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Therefore G is a cycle of odd length. Let G = C2n+1, where n ≥ 2 (if n = 1, double contraction
operation is not applicable). Let v1, v2, v3, v4 be four consecutive vertices of G. Let G− be the
graph that is obtained from G by double-contracting (v1, v2) ∪ (v2, v3) ∪ (v3, v4) to (v1, v4).

By induction, G− has a weak generalised outerthrackle drawing η−. Let d be the disc on which
η− is drawn. Let v0 be the vertex of G− that is in N(v1) \ v4 and let v5 be the vertex of G− that
is in N(v4) \ v1 (v0 may be equal to v5).

The cyclic order in which vertices v0, v1, v4, v5 appear on ∂(d) (clockwise or anticlockwise) is
v1, v4, v0, v5 (see for example Figure 11a), else (v0, v1) crosses (v4, v5) an even number of times.
Obtain a drawing η of G from η− as follows:

1. Let Σv1 and Σv4 be local disks of v1 and v4, respectively, in η−. Insert v2 and v3 on ∂(d) such
that the order of v0, v1, v2, v3, v4, v5 (clockwise or anticlockwise) on ∂(d) is v0, v5, v3, v1, v4, v2
and v2 is located in Σv4 and v3 is located in Σv1 .

2. Represent (v1, v2), (v2, v3) and (v3, v4) by three arbitrary curves (subject to the restrictions
of curves used in drawings) between the corresponding vertices.

3. Delete (v1, v4) (compare η− and η in Figures 11a and 11b).

v5

v1 v4

v0

(a) (v0, v1), (v1, v4) and
(v4, v5) in η−

v5

v1 v4

v0

v2v3

Σv1
Σv4

(b) η is obtained by adding the
red vertices and red edges (i.e.,
v2, v3, and their incident edges)
to η− and removing (v1, v4)
from it. Notice that Σv1 and
Σv4 are the local disks of v1 and
v4 in η− (before we add v3 and
v2 to the drawing).

v1 v4
v2

w

w′

Σv4
(c) order of w,w′, v1, v2 and v4
on ∂(d). The dashed black line
represents the path of (v1, v4) in
η−.

Figure 11: vertex-disjoint edges cross each other an odd number of times in η.

We claim that any two vertex-disjoint edges in η cross each other an odd number of times.
Since any two vertex-disjoint edges in η− cross each other an odd number of times, we only need
to show that (v1, v2), (v2, v3) and (v3, v4) each cross any other edge that is vertex-disjoint edge an
odd number of times.

Let E′ be the set of edges in G− that are vertex-disjoint from (v1, v4). The set of edges that
are vertex-disjoint from (v1, v2) in η is E′ ∪ (v3, v4). Let (w,w

′) be an arbitrary edge in E′. Since
(w,w′) crosses (v1, v4) in η− an odd number of times, the order of w,w′, v1, v4 on ∂(d) (clockwise
or anticlockwise) is either v1, w, v4, w

′ or v1, w
′, v4, w. Since we insert v2 in Σv4 in η, it follows

that the order of w,w′, v1, v2 on ∂(d) is either v1, w, v2, w
′ or v1, w

′, v2, w (see Figure 11c). Hence
(w,w′) crosses (v1, v2) an odd number of times. Moreover, as the order of v1, v2, v3, v4 (clockwise
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or anticlockwise) on ∂(d) is v3, v1, v4, v2 (v1 and v2 are separated by v3 and v4 on the boundary),
(v1, v2) crosses (v3, v4) an odd number of times. That is, any edge that is vertex-disjoint from
(v1, v2) crosses (v1, v2) an odd number of times.

By a similar argument, any edge that is vertex-disjoint from (v3, v4) crosses (v3, v4) an odd
number of times.

The set of edges that are vertex-disjoint from (v2, v3) in η is E′. Any edge in E′ crosses (v1, v4)
an odd number of times. Therefore, after we insert v2 in Σv4 and v3 in Σv1 , any edge in E′ also
crosses (v2, v3) an odd number of times. That is, η is a weak generalised outerthrackle.

If G is the union of a number of paths then we obtain a graph G+ by repeatedly adding pairs
of edges (and maybe a vertex) to G to link all these paths up into a cycle of odd length (so that
we do not violate condition 3 in the theorem). We construct a weak generalised outerthrackle
drawing of G+ and then we delete the extra edges and vertices of G+ to obtain a weak generalised
outerthrackle drawing of G. □

Corollary 2 G is weak generalised outerthracklable if and only if it is either

1. a disjoint union of caterpillars, or

2. an odd wreath together with a number (possibly zero) of isolated vertices.

Proof: If G is either a union of caterpillars or an odd wreath with some isolated vertices, then it
is clear that it does not contain any of the three types of minors or subgraphs forbidden by the
conditions of Theorem 1, which then implies that it is weak generalised outerthracklable.

Now suppose G is weak generalised outerthracklable. By Theorem 1, it has no 2-claw minor,
no K2 ∪ K3 minor, and no even cycle with at least four vertices. Consider any component H of
G that contains no cycle, so must be a tree. Let v be any vertex of H of degree at least three.
All but at most two edges incident with v must be leaves, else H has a 2-claw minor. It follows
that H consists of a path together with some leaves incident with vertices of the path. So H is a
caterpillar.

Now consider any component H of G that contains a cycle C. By the third condition of the
Theorem 1, C must have odd length. Furthermore, no edge of H can be disjoint from C, else G
has a K2 ∪K3-minor. Therefore every edge of H that is not in C is incident with some vertex of
C.

Let e be any such edge. If e is incident with two vertices of C (i.e., it is a chord of C), then
C must have at least five edges (since its length is not even, and a triangle can have no chords).
But then the chord enables construction of a K2 ∪K3-minor, or indeed of an even cycle since the
length of C is odd. So e can only be incident with one vertex of C. Suppose the other vertex w
of e has degree ≥ 2. Let f be any other edge incident with w. Its other vertex x must be on C,
as we have already seen. There are two paths from v to x in C, and one of them must have even
length, since C has odd length. But taking this even path, together with edges e and f , gives an
even cycle in H, violating the third condition of Theorem 1. Therefore the vertex of e that is not
in C must have degree 1, so that e is a leaf. Since this holds for any edge e of H that is not in C,
we have established that H is an odd wreath.

In this case, G can have no edges in any other components of H, since such an edge, together
with C, realises K2 ∪K3 as a minor of G. So all the other components of H must just be isolated
vertices. □

Now we are ready to prove Corollary 1.
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Proof: [Proof of Corollary 1] This follows easily from Corollary 2, since both of the graph types
used there are subgraphs of odd wreaths, and every subgraph of an odd wreath is of one of those
two forms. □

Figures 12a and 12b depict the thrackled outerdrawings of C7 and C9 respectively according
to the algorithm embedded in the proof of Theorem 1. Figure 12c depicts an outerdrawing of a
graph G that has four edges more than a cycle drawn using the same algorithm.

(a) C7 (b) C9 (c) C5 with four extra
edges.

Figure 12: Three weak generalised outerthrackles

4 Relationship between different types of superthrackles

Let (v, v1) and (v, v2) be two edges of a graph G and let G′ be the graph that is obtained from G
by identifying v1 and v2 and then deleting any loops formed. Define the folding operation to be
the operation that is performed on G to obtain G′. More specifically, we say that we obtain G′

from G by folding (v, v1) onto (v, v2).

Lemma 5 Let e = (v, v1) and e′ = (v, v2) be two incident edges that appear consecutively in πη(v)
where η is a generalised superthrackle drawing of a graph. Then there is a non-self-intersecting
curve ζ from v1 to v2 that crosses each edge of η an even number of times.

Proof: Let ζ ′ be a curve from v1 to v2 such that:

1. ζ ′ and (v, v1) are located consecutively in the circular order of the edges and ζ ′ around v1 in
η.

2. ζ ′ and (v, v2) are located consecutively in the circular order of the edges and ζ ′ around v1 in
η.

3. ζ ′ follows the paths of (v, v1) and (v, v2) sufficiently closely so that it is drawn within local
disks of (v, v1) and (v, v2) and for any crossing between an edge e and (v, v1), there is only
one crossing between e and ζ ′ and for any crossing between an edge e and (v, v2), there is
only one crossing between e and ζ ′ (see Figure 13).

Since η is a generalised superthrackle, any two edges cross an odd number of times in η and
therefore ζ ′ crosses all the edges other than (v, v1) and (v, v2) an even number of times in η. Now
obtain ζ from ζ ′ by:
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v

v2

v1

(a) Local area of (v, v1) and
(v, v2) in η before adding ζ′

v

v2

v1

(b) Local area of (v, v1) and
(v, v2) in η after adding ζ′

Figure 13: Adding ζ ′ to η

1. removing the self-crossings on ζ ′ using Rp
I .

2. using Rp
V , if necessary, to make sure that ζ crosses both (v, v1) and (v, v2) an even number

of times.

The curve ζ crosses each edge of η an even number of times. □

Next we show that generalised superthracklable graphs are closed under the folding operation
under certain circumstances.

Theorem 16 Generalised superthracklable graphs are closed under folding of any two edges e =
(v, v1) and e′ = (v, v2) that appear consecutively at v in some generalised superthrackle drawing of
the graph.

Proof: Let η be a generalised superthrackle drawing of a graph G. Let (v, v1) and (v, v2) be two
edges that appear consecutively in πη(v). By Lemma 5 there is a curve ζ from v1 to v2 that crosses
each edge of η an even number of times.

Let G+ be the graph that is obtained by adding (v1, v2) to G (if it is not already in G). Let
η+ be a drawing of G+ that is obtained from η by deleting the edge (v1, v2) from η (if (v1, v2) is
already in η) and adding (v1, v2) back to η such that it is routed along ζ.

Remove all the crossings on (v1, v2) by pushing the crossings over v2 using Rp
IV . Let η̃ be the

drawing of G+ so formed.
Let G− be the graph that is obtained from G+ by contracting (v1, v2) to a vertex x. Then

obtain a drawing η− from η̃ by identifying all the points of (v1, v2) (i.e., all points on ζ) such that
the rotational order of the edges around the vertices is preserved. (This is just contraction of edge
(v1, v2), as a surface minor operation.)

By definition, G− is obtained from G by topological folding of (v, v1) onto (v, v2). Now, any
edge in η+ crosses (v1, v2) an even number of times, and Rp

IV does not change the parity of the
number of crossings between any pair of edges. So the parity of the number of crossings between
any pair of edges is the same in η− as in η. Therefore η− is a generalised superthrackle drawing
of G−. The theorem follows. □

Now we are ready to prove that any weak generalised outerthracklable graph is an outersu-
perthracklable graph. In an outerdrawing η, we denote the rotational order of the vertices around
the boundary of the disk by ρ(η′).

Theorem 17 Let η be a weak generalised outerthrackle drawing of a graph G. Then there is an
outersuperthrackle drawing η̃ of G with ρ(η̃) = ρ(η).
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v1 v2

v3 v4
(a) before

v1 v2

v3 v4
(b) after

Figure 14: Removing two crossings on two edges that cross each other an even number of times.

Proof:

Since Rp
I does not change the parity of the number of crossings between vertex-disjoint edges,

we use Rp
I to remove self-crossings. So, throughout this proof we assume that no edge crosses itself.

We prove this theorem in two steps. As the first step, we construct an outerthrackle drawing
ηtemp of G. Then, as the second step, we use ηtemp to construct an outersuperthrackle drawing η̃
of G.

Step 1.

Let η be a weak generalised outerthrackle drawing of a graph G.

Claim: There is an outerthrackle drawing ηtemp of G with ρ(ηtemp) = ρ(η).

We prove the claim by induction on the number of crossings in the drawing.

In the base case, any two vertex-disjoint edges cross once and there are no crossings between
any two edges that are incident at the same vertex. That is, η is already an outerthrackle drawing
of G and we are done.

We proceed to the inductive stage. Assume that η is a weak generalised outerthrackle drawing
of G with k crossings, and that the claim is true for any weak generalised outerthrackle drawing
of G with < k crossings. We may assume that either there are two edges (which may be vertex-
disjoint or not) that cross more than once or some pair of incident edges cross exactly once, else
we are in the base case.

Case 1, there are two edges e = (v1, v2) and e′ = (v3, v4) in η that cross more than
once. Let x1 and x2 be two crossings on e and e′ that are consecutive on e.

Crossings x1 and x2 divide e into three segments: the part from v1 to either x1 or x2 (whichever
crossing that we reach first as we move along the curve of (v1, v2) from v1 to v2), say x1, the part
from x1 to x2, and the part from v2 to either x1 or x2 (whichever crossing that we reach first as
we move along the curve of (v1, v2) from v2 to v1), say x2. Similarly x1 and x2 divide e′ into three
segments: the part from v3 to x1, the part from x1 to x2 and the part from x2 to v4 (without loss
of generality).

We reroute e or e′ in η to obtain a weak generalised outerthrackle drawing of G with a smaller
number of crossings as follows. Let l denote the part of e that goes from x1 to x2 and let l′ denote
the part of e′ that goes from x1 to x2. Let C denote the simple cycle (a closed curve that does not
cross itself) formed by l and l′.

Since η is an outerdrawing, all the vertices of G are located outside C and therefore the parity
of the number of crossings of any arbitrary edge e′′ and l is equal to the parity of the number of
crossings of e′′ and l′. Therefore if we remove x1 and x2 as is shown in Figure 14, we obtain a
drawing η− of G with a smaller number of crossings than η such that the parities of the numbers of
times any two independent edges cross are all the same in η and ρ(η) = ρ(η−). Therefore, η− is a
weak generalised outerthrackle drawing with a smaller number of crossings than η. Hence, by the
inductive hypothesis, G has an outerthrackle drawing ηtemp in which the edges that are incident
with a vertex do not cross and ρ(ηtemp) = ρ(η−) = ρ(η).
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v1

v2

v3
(a) before

v1

v2

v3
(b) after

Figure 15: Removing crossings on two adjacent edges.

Case 2, there are two incident edges e and e′ in η that cross exactly once. Obtain
an outerdrawing η2 of G from η by removing any crossings between two edges that are incident at
the same vertex using the move that is shown in Figure 15.

By the same argument as in Case 1, this move does not change the parity of the number
of crossings between vertex-disjoint edges in outerdrawings. Therefore, η2 is an outerthrackle
drawing of G with fewer crossings than η and ρ(η2) = ρ(η). So by the inductive hypothesis, G has
an outerthrackle drawing ηtemp in which incident edges do not cross and ρ(ηtemp) = ρ(η2) = ρ(η).

Therefore, by induction, the claim is true for every possible number k of crossings in η.
We now show that our outerthrackle drawing ηtemp, provided by the claim, can be converted

to an outersuperthrackle drawing η̃ such that ρ(ηtemp) = ρ(η̃).
Step 2.
In this step we use Rp

V to reverse the order of the edges adjacent to any vertex v of ηtemp

to obtain another drawing η̃ of G. That is, if π(v) in ηtemp is e1, e2, . . . , ei then change π(v) to
ei, ei−1, . . . , e1 in η̃ through the following series of steps:

1. π1(v) = e2, e3, . . . , ei, e1 (see, for example, Figure 16b).

2. π2(v) = ei, ei−1, e1, e2, . . . , ei−2 (see, for example, Figure 16c).

...

i− 1. πη̃(v) = πi−1(v) = ei, ei−1, . . . , e1 (see, for example, Figure 16d).

v e1

e2
e3
e4

e5

πv

(a)

v e1

e2
e3
e4

e5

πv

(b)

v e1

e2
e3
e4

e5

πv

(c)

v e1

e2
e3
e4

e5

πv

(d)

Figure 16: Constructing η̃ from ηtemp by reversing the order of the edges around the vertices.

Rp
V does not change the parity of the number of crossings between vertex-disjoint edges. How-

ever, it changes the parity of the number of crossings between the edges that are incident with v.
Since ηtemp is an outerthrackle, any pair of edges that are incident to one vertex did not cross each
other in ηtemp. Therefore, any pair of edges that are incident to one vertex cross each other once
in η̃ and η̃ is a drawing of G in which any two edges cross once. The theorem follows. □
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We conclude this section by establishing the relationship between these different types of out-
erthracklable graphs.

Theorem 18 The following four classes of graphs are equivalent:

1. outersuperthracklable graphs

2. weak outerthracklable graphs

3. generalised outersuperthracklable graphs

4. weak generalised outerthracklable graphs.

Proof: By definition, any outersuperthrackle is both a weak outerthrackle and a generalised out-
ersuperthrackle. Moreover any weak outerthrackle or generalised outersuperthrackle is a weak
generalised outerthrackle. Therefore, by definition, the class of weak generalised outerthracklable
graphs includes all the weak outerthracklable graphs and all generalised outersuperthracklable
graphs, and both of the classes of weak outerthracklable graphs and the generalised outersu-
perthracklable graphs include outersuperthracklable graphs (see Figure 17).

weak generalised outerthrackles

outersuperthrackles
generalised
outersuperthrackles

weak
outerthrackles

Figure 17: Relationship between different types of outerthracklable graphs

Therefore, to prove that all the aforementioned classes of graphs are equal, we only need to
show that any weak generalised outerthracklable graph is an outersuperthracklable graph. So, the
theorem follows by Theorem 17. □

5 Generalised Superthrackles and Superthrackles

A drawing η of a graph G in R2 partitions all the points of R2 \ η (where η also denotes the set of
all points in the drawing η) into a set of regions, denoted by regions(η), such that any two points
p and q are in the same region r ∈ regions(η) if there is a curve from p to q that does not cross
any vertex or edge of η.

For any drawing η of a cycle, define a black-and-white colouring of the plane with respect to
η to be a colouring of each region of regions(η) either black or white such that no two adjacent
regions are coloured in the same colour (see, for example, Figure 18). The existence of such a
2-colouring is well-known, however to make the paper self-contained we give a short proof.
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(a) A drawing η of cycle C (b) Colouring regions of the plane black and
white based on η

Figure 18

Lemma 6 Let η be a drawing of a cycle on the plane. Then there is a black-and-white colouring
for η.

Proof: Let G be a graph with a vertex for each region of η and an edge (u, v) for any two adjacent
regions r1 and r2 of η where r1 is represented by vertex u of G and r2 is represented by vertex v
of G.

The graph G is a dual of an Eulerian planar graph and therefore it is bipartite. □

Let η be a drawing of a graph G and let G− = G[S], where S ⊆ V (G). Then η[G−] is the
drawing of G− obtained from η as follows:

� for each vertex v in G−, let v be represented by the same point that represents v in η, and

� for each edge e in G−, let e be represented by the same curve that represents e in η.

Lemma 7 Let η be a generalised superthrackle drawing of a multigraph with only two vertices u
and v and no loops. Then πη(u) = πη(v).

Proof: We prove this lemma by induction on the number m of edges in the drawing. In the base
case η does not have any edges and the lemma holds trivially. We proceed to the inductive case.

Let e1, e2, . . . , em be the edges in η, named so that π(u) = e1, e2, . . . , em. Let η− be the drawing
obtained by deleting em from η. Any two edges in η− cross each other an odd number of times
and therefore η− is a generalised superthrackle as well. Hence, by induction, πη−(u) = πη−(v) =
e1, e2, . . . , em−1.

Now to reach a contradiction suppose that πη(u) ̸= πη(v). Since πη−(u) = πη−(v), this means
that em is not located between em−1 and e1 in πη(v).

Without loss of generality, let us assume that πη(v) = e1, e2, . . . , ei, em, ei+1, ei+2, . . . , em−1,
where 1 ≤ i ≤ m− 2, as shown in Figure 19. Let C be the cycle that is defined by the two edges
em−1 and e1.

By Lemma 6, we can colour all the regions of the plane with respect to η[C] either black or
white, such that any curve that is routed from a point p1 to a point p2 crosses C

� an even number of times, if p1 and p2 are located in regions with the same colour, or
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v
e1

ei

ei+1

em−1

e2

em

ei+2

Figure 19: πη(v)

� an odd number of times, otherwise.

Now, let us consider the colouring of the regions in the neighbourhoods of vertices u and v.
Such a colouring can be in the form of one of the four cases shown in Figure 20.

v
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ei

ei+1

em−1

e2

em

ei+2

u
e1 ei

em

e2
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em−1

(a)
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ei+1

em−1

e2
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ei+2

u
e1 ei
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e2

ei+1

em−1

(b)

v
e1

ei

ei+1

em−1

e2
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ei+2

u
e1 ei
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e2

ei+1

em−1

(c)

v
e1

ei

ei+1

em−1

e2

em

ei+2

u
e1 ei

em

e2

ei+1

em−1

(d)

Figure 20: Four different forms of black-and-white colouring of neighbourhood of u and v in η
based on C

Since η is a generalised superthrackle, any edge of η other than e1 and em−1 crosses C an even
number of times. Consider e2. The colouring of the regions of the plane in the neighbourhoods
of u and v cannot be as in Figure 20b or Figure 20c. (The edge e2 should start and end in two
isochromatic regions.) However, this would lead to a contradiction, since then the initial and final
portions of em, which crosses C an even number of times, lie in two regions that are not coloured
the same. □

Now we deal with the case of a graph with two vertices with loops.

Lemma 8 Let η be a generalised superthrackle drawing of a multigraph G with two vertices. There
is a superthrackle drawing η′ of G such that Π(η′) = Π(η).

Proof: Let u and v be the vertices of G. Then the following three cases are forbidden in a
generalised superthrackle drawing η of G:

1. Let e1 and e2 be two loops in G where e1 is incident with u and e2 is incident with v. In this
case, in any drawing of G, e1 and e2 cross each other an even number of times and therefore
G is not a generalised superthracklable graph. (See, for example, Figure 21a.)
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2. Let e1 and e2 be two loops that are both incident with the same vertex, say u, then the
restriction of πη(u) to e1 and e2 cannot be e1, e1, e2, e2 since in that case e1 and e2 cross each
other an even number of times. (See, for example, Figure 21b.)

3. Let e1 and e2 be two parallel edges between u and v, let e3 be a loop that is incident with u,
and let the two occurrences of e3 in πη(u) be separated from each other by e1 and e2. (See,
for example, Figure 21c.) In this case, e3 crosses the cycle defined by the two edges e1 and
e2 an odd number of times since it starts and ends on opposite sides of the cycle. Therefore
e3 crosses either e1 or e2 an even number of times.

vu

(a)

u

(b)

vu
(c)

Figure 21: Three forbidden cases in a superthrackle drawing of a multigraph with two vertices.

Using forbidden case 1, from this point on, we assume that if there is any loop in G it is incident
with u and not with v.

We prove this lemma by induction on the number of edges of G. Let u and v be the two vertices
of G. In the base case, there is at most one loop and one edge (u, v) in G and it is easy to see that
there is a superthrackle drawing of G. We proceed to the inductive case.

We have the following two cases:
Case 1. There are at least two parallel edges between u and v in G. By forbidden

case 3, we know that all the endpoints of the edges that are not loops in G appear consecutively in
πη(u). Therefore, by Lemma 7, there are two parallel edges e1 = (u, v) and e2 = (u, v) in G such
that both of their endpoints appear consecutively and in the same order in both πη(u) and πη(v).
(See, for example, Figure 22a.)

Let G− be the graph obtained by deleting e2 from G and let η− be the drawing obtained by
deleting e2 from η. By the inductive hypothesis, G− has a superthrackle drawing η−1 such that
Π(η−1 ) = Π(η−).

Now we obtain a drawing η1 of G such that Π(η1) = Π(η) by adding the edge e2 back to η−1
using the following two steps:

1. add e2 to the drawing such that e2 follows e1 sufficiently closely so that it is drawn in a
local disk of e1 and does not meet e1 and πη1(u) is the same as πη(u). (See, for example,
Figure 22b.)

2. use the Rp
I move to switch the rotational order of e1 and e2 around v. (See, for example,

Figure 22c.)

Since η−1 is a superthrackle, any pair of edges in η1 that does not contain e2 cross each other
once. Moreover since e2 follows e1 sufficiently closely, e2 also crosses any edge other than e1 in η1
once. Lastly, with the Rp

I move in step 2, we guarantee that e2 crosses e1 once as well. Hence any
two edges in η1 cross each other once and therefore η1 is a superthrackle.

Case 2. There are at least two loops in G and there is at most one edge incident
with both u and v. By forbidden case 1, all the loops in G are incident with one vertex. Let
e1, e2, . . . , ei be the loops that are incident with u and let e′ be the edge that is incident with both
u and v.
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vu e1
e2 e1

e2

(a) order of e1 and e2 in
πη(u) and πη(v)

vu e1

e2
(b) e2 closely follows e1

vu e1

e2
(c) using R1 to ensure that e2
crosses e1

Figure 22: Obtaining η1 by adding the edge e2 to η−1 in case 1.

By forbidden cases 2 and 3, it is easy to see that the loops can be named so that πη(u) =
e1, e2, . . . , ei, e1, e2, . . . , ei, e

′ (see Figure 23a). Let G− be the graph obtained by deleting e2 from
G and let η− be the drawing that is obtained by deleting e2 from η. By the inductive hypothesis,
G− has a superthrackle drawing η−1 such that Π(η−1 ) = Π(η−).

Now we obtain a drawing η1 of G such that Π(η1) = Π(η) by adding e2 back to G as in the
following two steps:

1. add e2 to the drawing such that e2 follows e1 sufficiently closely and does not cross it (see
for example Figure 23b).

2. use the Rp
I move to switch the rotational order of e1 and e2 around u such that Π(η1) = Π(η)

(see for example Figure 23c).

ue1
e2 ei

e1
e2ei

e′

(a) π(u)

u

e1 e2

(b) e2 closely follows
e1

u

e1 e2

(c) using R1 to en-
sure that e2 crosses
e1

Figure 23: Obtaining η1 by adding the edge e2 to η−1 in case 2.

By similar reasoning to case 1, any two edges in η1 cross each other once and therefore η1 is a
superthrackle. □

We use the above lemma as the base case of the proof of Theorem 19. Note that by proving
Theorem 19 we have proved Theorem 3.

Theorem 19 Let η be a generalised superthrackle drawing of a connected multigraph G. Then
there is a superthrackle drawing η′ of G such that Π(η′) = Π(η).

Proof: It is easy to prove the lemma if G has only one vertex. So let us assume that G is connected
and has at least two vertices.

We prove this theorem by induction on the number of vertices in G. In the base case, G has
two vertices and by Lemma 8, we know that the theorem holds. We proceed to the inductive case
where there are at least three vertices in G.
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Let u and v be two distinct vertices of G such that there are two edges (u,w) and (v, w) in G
where (u,w) and (v, w) appear consecutively in πη(w) and w ̸= u, v. Since G is connected and G
has at least three vertices, such u and v exist.

By Lemma 5, there is a curve c from u to v that crosses each edge of G an even number of
times. Let G+ be the graph obtained by adding an edge e = (u, v) to G (we add an extra (u, v)
edge to G if such an edge already exists in G) and let η+ be a drawing of G+ obtained by adding
e to η such that e is routed along the curve c.

Let G− be the graph that is obtained by contracting e in G+. G− has one vertex fewer than
G. Obtain a drawing η− of G− by contracting e in η+ such that:

� u remains in the same position, and v is identified with it;

� any edge e′ incident with v in G+ follows the route of e sufficiently closely until it reaches u
without crossing any other edge incident with v;

� for any new crossing introduced between e′ and another edge e′′ in η− there is a crossing
between e and e′′ on η+ (see for example Figure 24).

v

u

e

w
(a) Edge e crosses all the
other edges in η+ an even
number of times.

u

w
(b) Contracting e such that
all the edges incident with v
follow e sufficiently closely.

Figure 24: Obtaining η by contracting e in η+

The edge e crosses all other edges of η+ an even number of times and since η is a generalised
thrackle, all the edges in η+ except e cross each other an odd number of times. Therefore, any two
edges in η− cross each other an odd number of times. In other words, η− is a generalised thrackle
as well.

Since G− has one vertex fewer than G, by the inductive hypothesis, there is a superthrackle
drawing η−1 of G− such that Π(η−1 ) = Π(η−).

All the edges that were incident with v in η+ appear consecutively in πη−(u). Therefore, since
Π(η−1 ) = Π(η−), those edges appear consecutively in πη−

1
(u) as well (see for example Figure 25a).

Hence it is easy to decontract e to obtain a drawing η+1 of G+ such that all the edges of η+1 except
for e cross each other once and e does not cross any other edges (see for example Figure 25b).

Now we can delete e from η+1 to obtain a superthrackle drawing η′ of G (see for example
Figure 25c). □
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u

(a) πη−(u). Edges that
were incident to v in η+

are depicted in red.

u
v

(b) Obtaining η+
1 from η−

by decontracting e

u
v

(c) Obtaining η′ from η+
1

by deleting e

Figure 25: Obtaining η′

6 The Hanani-Tutte Theorem and Superthrackles

In this section we examine the relationship between the Hanani-Tutte Theorem and superthrackles.
The two subsections are about the connections between superthrackles and the weak and the strong
Hananni-Tutte Theorems respectively.

6.1 The Weak Hanani-Tutte Theorem and Superthrackles

Archdeacon and Stor characterised superthrackles in terms of eight forbidden configurations [3] (see
Figure 5). Four of these configurations are closely related to K3,3 and K5 which are the forbidden
graphs in Kuratowski’s Theorem. Next we will explain why there is such a close relationship
between these two theorems.

Now we are ready to prove Theorem 6.

Proof: [Proof of Theorem 6]
Any edge e in G is replaced by a path in G′. Let us denote that path by P (e) and the length

of that path by l(e). Denote the edges of P (e) by e′1, e
′
2, . . . , e

′
l(e).

Let η′ be a drawing of G′. Obtain a drawing η of G from η′ as follows. For each edge e in G,
replace edges e′1, e

′
2, . . . , e

′
l(e) in η′ by a curve, so that e is routed exactly on the curve along which

the edges e′1, e
′
2, . . . , e

′
l(e) are routed in Σ (see for example, Figure 26).

e′1

e′2
(a) Edges e′1 and e′2 of path P (e)
in drawing η′ of graph G′

e

(b) Edge e in drawing η of graph
G

Figure 26: Replacing e∗1 and e∗2 with e, where i(e) is 2

By the theorem’s assumption, in any drawing η of G there are two edges that cross each other
an odd number of times. Let e and f be two edges that cross an odd number of times in η. For
any edge (u, v) in G with the exception of one of the edges, say e, there is a (u, v) path with even
length in G′. Therefore, f is replaced by a path of even length to obtain G′ from G.

Let us denote the number of crossings between two paths P1 and P2 with χ(P1, P2). Since
χ(e, f) is odd in η, χ(P (e), P (f)) is odd in η′. But χ(P (e), P (f)) is obtained by summing up
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χ(e1, e2) for all the pairs e1, e2 of edges where e1 is an edge of P (e) and e2 is an edge of P (f).
Since l(f) is even, there is an even number of such pairs of edges. To reach a contradiction, assume
that all such pairs of edges cross an odd number of times. Then we have an even number of odd
integers that sum up to an odd integer, which is a contradiction. Hence there is an edge e1 in
P (e) and an edge f2 in P (f) such that e1 crosses f2 an even number of times (see for example,
Figure 27).

□

e1

e2

f1
f2

Figure 27: πη(v)

An implication of the Weak Hanani-Tutte Theorem together with Kuratowski’s Theorem is
that, in any drawing of K3,3 or K5 or any subdivision of them, there are two edges that cross each
other an odd number of times. This fact, along with Theorem 6, proves that K∗

5 , K
∗
5 (e), K

∗
3,3 and

K∗
3,3(e) (depicted in Figure 5) have the property that, in any drawing of them in the plane, there

are two edges that cross an even number of times. Therefore, by definition, these graphs are not
generalised superthracklable and therefore not superthracklable either.

The Weak Hanani-Tutte Theorem can be generalised to all surfaces [26, 27]. That is, if a graph
G does not have a drawing that can be drawn on a surface Σ without crossings, then there are
two edges that cross each other an odd number of times in any drawing of G on Σ and hence, by
Theorem 6, any graph in G(G,E \ {e}) is not superthracklable on Σ.

Theorem 20 Let G be a graph that is in the set of forbidden minors for graphs embeddable on
a surface Σ. Let H = (V,E) be a subdivision of G. Then any graph that contains a graph in
G(H,E \ {e}), where e ∈ E, is neither a generalised superthracklable graph nor a superthracklable
graph with respect to Σ.

Proof: Since H is a subdivision of G, it is not embeddable on Σ. Therefore, by the Weak Hanani-
Tutte Theorem for all surfaces [26, 27], in any drawing of H on Σ there are two edges that cross
each other an odd number of times.

Therefore, by Theorem 6, in any drawing of a graph H ′ ∈ G(H,E \ {e}) on Σ, there are two
edges that cross each other an even number of times. Hence if a graph H ′′ contains H ′ it cannot be
drawn on Σ such that any two edges of H ′′ cross an odd number of times. Hence, by Theorem 19,
H ′′ is neither a generalised superthracklable graph nor a superthracklable graph. □

This theorem explains why there are four forbidden configurations in the Archdeacon and
Stor characterisation of superthrackles ([3], see Figure 5) that are closely related to K3,3 and K5

(forbidden graphs in Kuratowski’s Theorem).
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6.2 The Strong Hanani-Tutte Theorem and Superthrackles

In Section 5, we proved that any generalised superthracklable graph is a superthracklable graph.
In other words, if there is a drawing of a graph G in which any two edges cross each other an
odd number of times, then there is a drawing of G in which any two edges cross once. Notice the
similarities between this theorem and the Weak Hanani-Tutte Theorem which states that if there
is a drawing of a graph G in which any two edges cross each other an even number of times, then
there is a drawing of G in which any two edges cross zero times.

A natural question that arises the above observation is whether we can prove a theorem similar
to the Strong Hanani-Tutte Theorem for superthrackles. Recall that the Strong Hanani-Tutte
Theorem states that, if there is a drawing of a graph G in which any two vertex-disjoint edges
cross an even number of times, then there is a drawing for G such that any two edges cross zero
times. We can ask a similar question for superthrackles as follows. Let G be any graph that has
a drawing in which any two vertex-disjoint edges cross an odd number of times. Does G always
have a drawing in which any two edges cross once?

The answer to the above question is no. Figure 28a depicts a planar embedding of a graph G
that is not superthracklable [3]. Figure 28b depicts a drawing of G in which any two vertex-disjoint
edges cross each other an odd number of times.

a

c

b

d

e

(a) A planar embedding of a
non-superthracklable graph G

a

c

b d

e

(b) A drawing of G in which any two vertex-
disjoint edges cross an odd number of times.

Figure 28: A non-superthracklable graph G and a drawing of G in which any two vertex-disjoint
edges cross an odd number of times.

7 Conclusion

This paper studied variations of outersuperthrackles. We also proved that any generalised su-
perthrackle is a superthrackle and we examined the relationship between the Hanani-Tutte Theo-
rem, generalised superthrackles and superthrackles.

Archdeacon and Stor proved that a graph is superthracklable if and only if it does not contain
a subgraph that is parity hemeomorphic to any graph in Figure 5 (see Theorem 14). Although su-
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perthracklable graphs are very well studied, we still do not know if we can characterise superthrack-
lable graphs for all surfaces in terms of graphs without a subgraph that is parity homeomorphic
to a finite set of graphs.

Moreover, we do not know about characterisations of superthrackles on surfaces other than the
plane. For example, what are the superthracklable graphs with respect to the projective plane or
any surface other than the plane?

Lastly, in Section 6, we have shown that if we have the set of forbidden minors for the graphs
that are embeddable on a surface Σ then we can find families of graphs that are not superthracklable
with respect to Σ. This suggests the following question. Assuming that we have a characterisation
of graphs that are superthracklable with respect to a surface Σ, can we determine forbidden minors
for graphs that are embeddable on Σ?
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Combinatorial Theory, Series B, 97(4):489 – 500, 2007. doi:10.1016/J.JCTB.2006.08.001.
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