
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 28, no. 1, pp. 27–50 (2024)
DOI: 10.7155/jgaa.v28i1.2926

Linear-algebraic implementation of Fibonacci heap

Danila Demin 1 Dmitry Sirotkin 2 Stanislav Moiseev 2

1Coleman Services
2Huawei Technologies Co.

Submitted: 28 Mar 2023 Accepted: April 2024 Published: May 2024

Article type: Regular Paper Communicated by: U. Brandes

Abstract. In the paper, we demonstrate that modern priority queues can be
expressed in terms of linear algebraic operations. Specifically, we showcase one of
the arguably most asymptotically faster known priority queues — the Fibonacci heap.
By employing our approach, we prove that for the Dijkstra, Prim, Brandes, and greedy
maximal independent set algorithms, their theoretical complexity remains the same for
both combinatorial and linear-algebraic cases.

1 Introduction

Graphs are a representation of data, which naturally emerges in many different fields of study,
from data analytics and route planning to bioinformatics and linguistics. Currently, it’s not un-
common for them to consist of millions or even billions of vertices, so we need efficient and scalable
algorithms. One of the approaches, used in industry is to represent and work with graphs in terms
of linear algebra, which is generally handled by modern hardware well.

The central framework for this task is called GraphBLAS [10]. According to C. Yang, A. Buluç,
and J. D. Owens [18], GraphBLAS is a high-performance linear algebra-based graph framework for
the GPU that is aimed at achieving the two following goals. The central one is the performance
portability, i.e. graph algorithms need no modification to have high performance across hardware.
The second one is the concise expression, which means simplicity of graph algorithms expression.
High-performance and scalability is required to achieve state-of-the-art performance for both small-
scale and exascale types of graphs.

GraphBLAS reaches these goals for well-known graph algorithms such as Breadth-first-search [9],
PageRank [8], Connected components [14], and Triangle counting [2]. For a wider list of linear
algebraic algorithms, see the book [7]. The main idea is to express graph algorithms using lin-
ear algebraic operations such as matrix-to-vector or matrix-to-matrix multiplication. For some
algorithms, however, their development requires the usage of structures, which do not intrinsically

E-mail addresses: demin.danila-03@yandex.ru (Danila Demin) dmitriy.v.sirotkin@gmail.com (Dmitry Sirotkin)

stanislav.moiseev@gmail.com (Stanislav Moiseev)

This work is licensed under the terms of the CC-BY license.

http://dx.doi.org/10.7155/jgaa.v28i1.2926
mailto:demin.danila-03@yandex.ru
mailto:dmitriy.v.sirotkin@gmail.com
mailto:stanislav.moiseev@gmail.com
https://creativecommons.org/licenses/by/4.0/

28 Demin, Sirotkin and Moiseev Linear-algebraic implementation of Fibonacci heap

map to linear-algebraic operations. As an example, in [15] authors develop a depth-first search
algorithm emulating a stack data structure with linear-algebraic operations.

In 2008 E. Robinson and J. Kepner [13] expressed the Brandes algorithm (see [3]) for the
unweighted case in linear algebraic operations and achieved the same time complexity as the com-
binatorial version of this algorithm. For the weighted case, A. Tumurbaatar and M. J. Sottile [17]
in 2021 proposed a linear algebraic algorithm, but it requires solving a single source shortest path
(SSSP) problem, and there are no algorithms in GraphBLAS that reach the best-known time
complexity problem. For example, Bellman-Ford [1, 5] or Delta-stepping [11] algorithms can be
used for solving SSSP problem instead of the Dijkstra algorithm, but they require 𝑂(𝑛𝑚) and
𝑂(𝑛+𝑚+ 𝑑 · 𝐿) time respectively under certain assumptions instead of universal 𝑂(𝑚+ 𝑛 log 𝑛)
for Dijkstra. Here 𝑛 is the number of vertices in the graph, 𝑚 is the number of edges in the graph,
𝑑 is the maximal degree of vertices, 𝐿 is the length of the longest of shortest paths from 𝑠 to any
other vertex.

Unfortunately, there are difficulties in the implementation of some algorithms like Dijkstra,
Prim [12], Greedy maximal independent set, and Brandes for the weighted case. All of these
algorithms require a specific priority queue — an additional data structure that can decrease the
value in the array (decreaseKey) and extract the minimal element from it (extractMin). The
naive approach requires 𝑂(𝑛) time to recalculate a minimal element each time we need to extract
it. Up to date, many such structures that reach a better complexity are known. One of them is a
Fibonacci heap which requires 𝑂(1) time amortized for decreaseKey and 𝑂(log 𝑛) for extractMin
(see [4] and [6]).

In this paper, we develop a linear algebraic version of the Fibonacci heap. Our priority queue
allows us to express Dijkstra, Prim, Greedy maximal independent set, and Brandes algorithms for
the weighted case in terms of GraphBLAS, and for each of them allows us to achieve the best-known
time complexity.

Operation Combinatorial version Linear algebraic version

Decrease key 𝑂(1) 𝑂(1)
Extract min 𝑂(log 𝑛) 𝑂(log 𝑛)

Insert 𝑂(1) not supported
Merge 𝑂(1) not supported

Table 1: Amortized time complexity of Fibonacci heap operations

In Section 2, we will give a brief description of the Fibonacci heap. We will not discuss
the dynamic operations in this data structure because for previously mentioned algorithms only
decreaseKey and extractMin are required. In Section 3, we will discuss the linear algebraic
method in general and also the idea of mapping matrices which will be used many times throughout
this paper. The operations of our priority queue will be described in Section 4. For some functions,
complexity will be analyzed in the same section, but the general proof of required time complexity
will be given in the Section 5. In Section 6 we will discuss previously mentioned algorithms for
which our data structure allows us to achieve better time complexity.

2 Combinatorial version of Fibonacci heap

In this section, we give a brief introduction to the Fibonacci heap data structure.

JGAA, 28(1) 27–50 (2024) 29

The Fibonacci heap is a data structure, which contains key-values on the nodes of a family of
rooted trees. Each tree satisfies the min-heap property (i. e. every child has a greater or equal
value with its parent). Each node is structured in a such way as to contain a key-value, pointers
to parent, child, left and right sister nodes, its degree, and a boolean value called marked that
indicates if the node had lost a child node since it became a child of another node. Therefore,
the children of each node are connected as a cycle with the left and right sister node pointers.
Additionally, the roots of these trees are also connected in the cycle by the left and right sister
pointers. In addition, the Fibonacci heap data structure contains the number of nodes and a
pointer to the root with the minimum value.

In the general case, Fibonacci heaps support the following operations — findMin, deleteMin,
insert, decreaseKey and merge. For the purposes of the paper, we do not implement insert and
merge operations for two reasons. The former is that they are not needed for the implementation
of considered algorithms. The latter is that in a linear-algebraic implementation, these operations
require vector concatenation, which is generally not supported.

The decreaseKey operation decreases the value of node 𝑣 to some 𝑥, with the value of 𝑥 being
lower than the current value of 𝑣. After such a decrease, the min-heap property can be violated.
In this case, we start so-called cascading cut from this node. We cut this vertex from its parent
and make it a root. The parent of its node has lost one child as a result. If it had lost any other
child before this operation (i.e. it was marked), we also cut this node from its parent in the same
way. We continue this process until we reach the unmarked vertex.

In Figure 1 there is an example of cascading cut.

Figure 1: Cascading cut visualization. White vertices are roots, light gray vertices are unmarked,
dark gray vertices are marked and black vertices are the ones, which are being cut at the corre-
sponding step.

The extractMin operation identifies the node with the minimal value and deletes it from the list
of nodes. Because of the min-heap property, the node with minimal value should be a root. During
the operation, this root is removed, and therefore all of its children become roots themselves. After
that, a so-called consolidate operation is performed, which merges some of the trees, presented
in the heap together. In particular, we make a list of nodes 𝐴 with the following property — a
node in the position 𝑑 in the array (e.g. in the 𝐴[𝑑]) should be both the root and have a degree 𝑑.
We add roots of the current Fibonacci heap to this list one by one. For each new root 𝑥 with some
degree 𝑑, we check if there exists a root 𝑦 of the same degree (and therefore is the same position)
in the list 𝐴. If there is no such root, we place node 𝑥 in 𝐴[𝑑]. Otherwise, if there exists a root 𝑦
with the same degree as 𝑥 and it is already present in 𝐴, we choose from 𝑥 and 𝑦 a vertex with
a lesser key and make the one with a bigger key its child. This results in the appearance of the
vertex with the degree on one more than 𝑥 had, after which we check if 𝐴[𝑑 + 1] is empty. If it

30 Demin, Sirotkin and Moiseev Linear-algebraic implementation of Fibonacci heap

is so, we place a node in this position in the array. Otherwise, we perform we similar merge and
check the 𝐴[𝑑+ 1]. We repeat this process until we find an empty position for the node. After all
the nodes have been placed in 𝐴, the consolidate operation is finished.

Figure 2: Consolidate operation visualisation. White vertices are roots, light gray vertices are
unmarked, and triangles are subtrees.

Operations decreaseKey and extractMin need 𝑂(1) and 𝑂(log 𝑛) amortized time respectively.
It is proved by defining the following potential:

Φ = 𝑡+ 2𝑚 (1)

Here variable 𝑡 refers to the number of trees in the heap and variable 𝑚 refers to the number
of marked vertices. We assume that a unit of potential can be used to do the operations, requiring
constant time. It can be proved, that both operations decreaseKey and extractMin require the
amount of both time and potential to take 𝑂(1) and 𝑂(log 𝑛) amortized time, respectively. In
Section 5 similar proof for the linear algebraic version of the Fibonacci heap is presented.

An in-detailed description of the Fibonacci heap data structure can be found in the well-known
book [4].

3 Linear algebraic approach

3.1 Sparse vectors and matrices

For real-world graphs, though they can be very different in structure, most of them have one
property in common — they are sparse. By that we mean, that the number of edges is somewhat

JGAA, 28(1) 27–50 (2024) 31

proportional to the number of nodes. In other words, 𝑚 = 𝑛1+𝑜(1), where 𝑛 is the number of nodes
in the graph and 𝑚 is the number of edges.

For each graph 𝐺, there is a matrix 𝐴(𝐺) of dimension |𝑉 | × |𝑉 |, where each element 𝑎𝑖𝑗
equals one if there is an edge between vertices 𝑖 and 𝑗, and zero otherwise. This matrix is called
the adjacency matrix of the graph 𝐺. It allows the expression of some graph operations in linear
algebraic terms. For example, the 𝑖-th component of the vector 𝐴(𝐺)𝑣 (for a vector 𝑣 that consists
of zeros or ones only) corresponds to the number of neighbors of 𝑖 such that 𝑣𝑖 are non-zero.

Let 𝑣 be a vector of dimension |𝑉 | that consists of zeros and ones. In this paper, we say that
vertex 𝑖 is included in 𝑣 if the 𝑖-th component of this vector equals one. Each vector of zeros and
ones can be considered a characteristic function of some subset of vertices. So, the word included
is used in relation to a vertex (or basis vector) and vector means that the vertex included in the
set corresponds to the given vector.

3.1.1 Sparse matrix storage format

In practical implementations, sparse 𝑚 × 𝑛 matrix 𝐴 can be stored in memory in several ways.
In this paper, we are using a so-called CSC (compressed sparse by column) format, which was
first proposed in [16]. This format uses three arrays colstart, row, and value stored in the
memory. Array value of size |𝑀 | contains values of nonzero elements in the matrix in column-first
lexicographic order, i.e. 𝑎𝑖𝑗 is before 𝑎𝑘𝑙 if 𝑗 < 𝑙 or 𝑗 = 𝑙 and 𝑖 < 𝑘. Array row, also of size |𝑀 |,
contains a row for each of the elements in matrix 𝐴 in the same order as in value. Array colstart

has length 𝑛. The 𝑖-th entry in colstart indicates the position of the element in the arrays value
and row that appears to be the first non-zero element in the 𝑖-th column.

3.1.2 Hyper-sparse matrix storage format

A sparse 𝑚×𝑛 matrix 𝑀 is called hyper-sparse if |𝑀 | = 𝑜(𝑛) [7]. For a family of hyper-sparse 𝑚×𝑛
matrices, the CSC format becomes inefficient in the same way as the dense format is inefficient
for matrices with 𝑜(𝑚𝑛) nonzero elements. In this case, we will assume that the matrix is stored
in memory as a list of all nonzero elements with its position in the matrix ordered in column-first
lexicographic order. We will call this format — coordinate format. Coordinate format with |𝑀 |
nonzero elements requires 𝑂(|𝑀 |) memory unlike 𝑂(|𝑀 |+ 𝑛) for CSC format.

In this paper, we use both storage formats discussed above for sparse and hyper-sparse matrices
for purposes of complexity analysis.

3.1.3 Implementation considerations

Assume we have a matrix 𝐴 of size 𝑚 × 𝑛 and a vector 𝑣 of size 𝑛, which are stored as two-
dimensional and one-dimensional arrays, respectively. For the simplest implementation, we will
require 𝑂(𝑚𝑛) time to find the result of their multiplication 𝐴𝑣. However, if both 𝐴 and 𝑣 are
sparse, this method of multiplication isn’t efficient, since it makes many multiplications, which
contain at least one zero. So, for the sparse vectors and matrices, other ways of storing them in
memory are more suitable.

We assume that a sparse vector 𝑣 stored in memory as a sorted array of pairs (𝑖, 𝑣[𝑖]), where 𝑖
is an index and 𝑣[𝑖] is the value of vector in 𝑖-th position, we additionally assume that pairs (𝑖, 𝑣[𝑖])
are sorted in the array by increasing of 𝑖. Values on positions that are not listed in the array are
assumed to be zero. The number of nonzero elements in vector 𝑣 and in the array is referred to as
|𝑣| in this paper. For matrix 𝑀 , a notation |𝑀 | is used. Non-sparse (e.g. dense) are stored as an

32 Demin, Sirotkin and Moiseev Linear-algebraic implementation of Fibonacci heap

array as per normal. As 𝑠𝑢𝑝𝑝(𝑣), we define a sparse vector stored as an array of pairs (𝑖, 1) such
that for each 𝑖, the pair (𝑖, 𝑣[𝑖]) is contained in 𝑣. Thus, the purpose of 𝑠𝑢𝑝𝑝(𝑣) is to denote the set
of indices of non-zero elements of v. In case a vector v contains zeros and ones only, 𝑠𝑢𝑝𝑝(𝑣) = 𝑣.
In this paper, all vectors and matrices are meant to be sparse unless their density is explicitly
stated.

For a sparse 𝑚×𝑛 matrix 𝐴 (stored in the CSC format), a sparse vector 𝑣, and a dense vector
𝑢 the in-place operation 𝑢+ = 𝐴𝑣 can be performed in 𝑂(𝑑 · |𝑣|), where 𝑑 is the biggest number
of nonzero elements in columns of 𝐴 [18]. Additionally, a sparse vector 𝑣 can be added in-place
to a dense vector 𝑢 in 𝑂(|𝑣|) time. The sum of two sparse vectors 𝑣 and 𝑢 can be computed in
𝑂(|𝑣| + |𝑢|) time. Any vector 𝐴𝑇 𝑣 (contained as a sparse vector) with the sparse matrix 𝐴 and
dense vector 𝑣 can be computed in 𝑂(|𝐴| log |𝐴|) time.

In this paper, we will call 𝑑𝑖𝑎𝑔(𝑣) a diagonal matrix 𝑉 , which is a matrix with the elements of 𝑣
on its diagonal. More formally, this is a matrix that satisfies the following condition: 𝑉 [𝑖, 𝑖] = 𝑣[𝑖]
and 𝑉 [𝑖, 𝑗] = 0 for all 𝑖 ̸= 𝑗. It obviously can be produced in coordinate format from a sparse vector
in 𝑂(|𝑣|). In addition, we will use binary operations ≥,≤,=, ̸=,min on vectors of integers. Let 𝑢
and 𝑣 be vectors of the same dimension, in which 𝑖-th components are 𝑢𝑖 and 𝑣𝑖 respectively. We
define an element-wise ≥ operation as follows: the 𝑖-th component of the vector 𝑢 ≥ 𝑣 equals one
if 𝑢𝑖 ≥ 𝑣𝑖, and zero otherwise. Other vector operations are defined similarly as the element-wise
application of corresponding operations.

3.2 Mapping matrices

For the purposes of providing a linear-algebra-based representation of pointers in the Fibonacci
heap, we will need the following definition:

Definition 3.1 We call a mapping matrix the matrix of zeros and ones such that there exists a
single 1 element in every column.

For the mapping matrix 𝐹 and a sparse vector 𝑣, we can compute 𝐹𝑣 as a sparse vector in
𝑂(|𝑣| log |𝑣|) time. We will call a vector 𝑒𝑖 = (0, . . . , 1, . . . , 0) with a single 1 element in 𝑖-th
position a basis vector. It’s easy to spot that a result of multiplication 𝐹 on a sparse basis vector
𝑒𝑖 is a sparse basis vector 𝑒𝑓(𝑖) that can be computed in 𝑂(1) time. Here 𝑓 is a mapping from
[𝑛] = {1, . . . , 𝑛} to [𝑚] defined by a mapping matrix 𝐹 of size 𝑛×𝑚.

We use mapping matrices in correspondence with various pointers in the combinatorial Fi-
bonacci heap. Let us assume, there exists some set of pointers family ℱ that contains for every
node in the graph a single pointer to some node (maybe itself). This way it generates some map-
ping 𝑓 . Every mapping 𝑓 can also be generated by a mapping matrix 𝐹 . Therefore, every such set
of pointers corresponds to a unique mapping matrix.

For the purposes of this paper, all mapping matrices are stored in the CSC format. Since every
column contains a single nonzero element, all elements of the matrix are listed in array values in
accordance with their column number. The addition of the matrix in CSC format in the general
case is a complex operation in general, but it can be completed faster if it converts a mapping
matrix to a mapping matrix. To be more precise, if we add a matrix 𝐴 to the mapping matrix 𝐹
and the resulting matrix 𝐹 +𝐴 is also a mapping matrix, then this addition requires 𝑂(|𝐴|) time.

The change of a pointer for a vertex 𝑣 corresponds to a change of the image 𝑓(𝑣). In terms of
matrix 𝐹 modification, it corresponds to a change of the column which corresponds to the position
of the current pointer of 𝑣. Let vector 𝑒𝑣 be the basis vector that corresponds to the source of the

JGAA, 28(1) 27–50 (2024) 33

Figure 3: An example of mapping matrix transformation. The matrix 𝐹 ′ maps 𝑒2 to 𝑒2 whereas
𝐹 maps 𝑒2 to 𝑒3. The matrix (𝑒2 − 𝐹𝑒2)𝑒

𝑇
2 changes the image of 𝑒2 from 𝑒3 to 𝑒2.

existing pointer from 𝑣 and 𝑒𝑢 be a vector that corresponds to the destination of the new pointer
from 𝑣 to 𝑢. The new matrix 𝐹 ′ can be obtained through the following formula:

𝐹 ′ = 𝐹 + (𝑒𝑢 − 𝐹𝑒𝑣)𝑒
𝑇
𝑣 .

This recomputation changes a single element from arrays row and value and can be computed
in 𝑂(1) time. Let us check that this formula is correct. Matrix 𝐹 ′ is still a mapping matrix because
it hasn’t changed in any column except for 𝑣-th. In 𝑣-th, we remove one by the term −𝐹𝑒𝑣𝑒

𝑇
𝑣 and

a new one by the term 𝑒𝑢𝑒
𝑇
𝑣 . Let 𝑓 ′ be a mapping given by the matrix 𝐹 ′. Since 𝐹 ′ coincides

with 𝐹 on each column except 𝑣-th, 𝑓 ′(𝑤) = 𝑓(𝑤) for all vertices 𝑤 ̸= 𝑣. For vertex 𝑣, we have
𝑓 ′(𝑣) = 𝑢 from the following calculation:

𝐹 ′𝑒𝑣 = (𝐹 + (𝑒𝑢 − 𝐹𝑒𝑣)𝑒
𝑇
𝑣)𝑒𝑣 = 𝐹𝑒𝑣 + (𝑒𝑢 − 𝐹𝑒𝑣)𝑒

𝑇
𝑣 𝑒𝑣 = 𝐹𝑒𝑣 + 𝑒𝑢 − 𝐹𝑒𝑣 = 𝑒𝑢.

Let 𝐹 and 𝐺 be the mapping matrices and 𝑠 be some vector of zeros and ones. Matrices 𝐹
and 𝐺 are interpreted as adjacency matrices of the corresponding graphs and vector 𝑠 — as the
mask. Those entities will be used to construct a joint graph out of two graphs during Fibonacci
heap operations. For the purposes of quick pointer changes, we aim to construct a matrix 𝐹 ′,
which acts like 𝐹 on basis vectors that correspond to zeros in 𝑠 and like 𝐺 on basis vectors that
correspond to ones in 𝑠. Let us paraphrase it in terms of corresponding mappings 𝑓 and 𝑔 defined
by the matrices 𝐹 and 𝐺, respectively. We want to construct a mapping 𝑓 ′ such that 𝑓 ′(𝑣) = 𝑓(𝑣)
if the 𝑣-th position in vector 𝑠 is zero, and 𝑓 ′(𝑣) = 𝑔(𝑣) if the 𝑣-th position in vector 𝑠 is one. This
matrix is defined by the following formula:

𝐹 ′ = 𝐹 (𝐸 − 𝑑𝑖𝑎𝑔(𝑠)) +𝐺 · 𝑑𝑖𝑎𝑔(𝑠) = 𝐹 + (𝐺− 𝐹)𝑑𝑖𝑎𝑔(𝑠),

where 𝐸 is the identity matrix, 𝑑𝑖𝑎𝑔(𝑠) is the diagonal matrix with elements of the vector 𝑠
on its diagonal. The first term in summation corresponds to the positions, where zeros are placed
in 𝑠, while the second one corresponds to the positions with ones. Therefore 𝐹 ′𝑒𝑖 = 𝐹𝑒𝑖 if 𝑒𝑖 is
included in the decomposition of 𝑣 with a zero coefficient and 𝐹 ′𝑒𝑖 = 𝐺𝑒𝑖 otherwise. For the case
when 𝐹 ′ replaces 𝐹 in all of the positions, we need to change 𝑂(|𝑣|) (with |𝑣| being a number of
nonzero elements in vector 𝑣) values in arrays values and row. So, this operation doesn’t need to
copy 𝐹 and can be completed in 𝑂(|𝑣|) time.

34 Demin, Sirotkin and Moiseev Linear-algebraic implementation of Fibonacci heap

For the purposes of matrix 𝐹 ′ computation, we in general case don’t have to know both matrices
𝐹 and 𝐺. Due to the nature of matrix 𝑑𝑖𝑎𝑔(𝑠), only those columns in 𝐹 , which correspond to zeros
in the diagonal of 𝑑𝑖𝑎𝑔(𝑠) are needed. The same principle is true for the matrix 𝐺 (with ones
instead of zeros).

If we need to set up a partial mapping, we can define a corresponding matrix with zeros in
the columns for which the image isn’t defined. Since in mapping matrices, the number of nonzero
elements in each column is constant, we can modify a mapping matrix in place, without using
extra memory for the copying. We can store partial mappings in the same way as mappings by
containing one zero for each column, where the mapping is not defined (unlike classic CSC where
all zeros are omitted). Therefore, one element per column will be allocated in memory as normal
in CSC format. The resulting zero elements are stored in memory and therefore are considered in
complexity analysis.

3.3 Memory model

In this section, we introduce the computational model which we will use for the purposes of
algorithm construction. Types of variables are given in Table 2. For each type, initialization
from corresponding arrays requires time proportional to the used memory. Same stands for object
copying. The notions of vector density, vector sparsity, and CSC matrices were discussed in Section
3.1.

Type Algebraic object Memory usage

scalar 𝑛 integer or real number 𝑂(1)
dense vector dv size 𝑛 vector 𝑂(𝑛)
sparse vector sv size 𝑛 vector 𝑂(|sv|)
CSC matrix csc size 𝑚× 𝑛 matrix 𝑂(|csc|+ 𝑛)

coordinate format cfm size 𝑚× 𝑛 matrix 𝑂(|cfm|)

Table 2: Types of variables.

Linear algebraic operations which we use are given in Table 3. When we say that “the operation
is performed in place”, we mean that the result is assigned to the memory of the first argument,
and the contents of this argument is therefore rewritten. Otherwise, we allocate new memory for
the result of this operation. The time complexity of each operation is provided in Table 3. We
assume, that we use a random access machine (RAM) for this. Also, we require an operation that
creates a sparse vector 𝑒𝑘 with one on 𝑘-th position and zeros on others by the number 𝑘. It
requires 𝑂(1) time. In Table 3 this operation is denoted as 𝑘 ↦→ 𝑒𝑘.

Operation map+ = cfm from Table 3, will be used throughout the paper exclusively in corre-
spondence to cases discussed in Subsection 3.2, i. e. pointer changes. Linear algebraic operations
sv1+ sv2, dvT · sv, dv = sv ⋆ dv, sv1 ⋆ sv2, sv ⋆ dv, k ↦→ ek, cfm1+ cfm2, cfm · dv, dv+ = map · sv
are discussed in [7, 18, 19]. For the rest of the operations — namely operations map · sv, sv1 · sv2T,
map · cfm, cfmT, 𝑎𝑟𝑔𝑚𝑖𝑛 sv, cfm · sv the required estimations can be obtained trivially. As an ex-
ample, operation cfm · sv can be performed in the following way. One should find all compatible
pairs of elements in cfm and sv, order them by the corresponding position in the resulting vector,
and add products of pairs, which has the same order. Please note, that we do not claim this
solution to be the best, but it is sufficient for the purposes of this paper. The reason for this is the
following — this operation will be applied for matrices cfm and for vectors sv of size not more than

JGAA, 28(1) 27–50 (2024) 35

Type Time cost Result Type Time cost Result

map · sv 𝑂(|sv| log |sv|) sv dvT · sv 𝑂(|sv|) number
sv1+ sv2 𝑂(|sv1|+ |sv2|) sv dv⋆ = sv 𝑂(|sv|) in-place
sv1 ⋆ sv2 𝑂(|sv1|+ |sv2|) sv map+ = cfm 𝑂(|cfm|) in-place
sv1 · sv2T 𝑂(|sv1||sv2|) cfm sv ⋆ dv 𝑂(|sv|) sv
map · cfm 𝑂(|cfm| log |cfm|) cfm k ↦→ ek 𝑂(1) sv
cfmT 𝑂(|cfm| log |cfm|) cfm 𝑎𝑟𝑔𝑚𝑖𝑛 sv 𝑂(|sv|) sv

cfm1+ cfm2 𝑂(|cfm1|+ |cfm2|) cfm cfm · dv 𝑂(|cfm|) sv
cfm · sv 𝑂(|cfm||sv| log(|cfm||sv|)) sv dv+ = map · sv 𝑂(|sv|) in-place

Table 3: Time cost for linear algebraic operations, dv stands for dense vector, sv, sv1, sv2 stand for
sparse vectors, cfm, cfm1, cfm2 stands for coordinate format, map stands for mapping matrix and
for map+ = cfm we assume that result is also mapping matrix. Symbol ⋆ stands for an arbitrary
binary operation (assumed to be computed in constant time). We assume that operation dv⋆ = sv

affects only 𝑖-th elements from dv, for all 𝑖 such that (i, sv[i]) is contained in sv.

two due to the nature of the proposed algorithm. The same stays for the rest of the operations.
Under our assumptions about the computational model, the time complexity of each operation

depends exclusively on the number of non-zero elements in sparse vectors and coordinate format
matrices. Therefore, for the sparse vectors and coordinate format matrices of size 𝑂(1), we can
perform all of the operations from Table 3 in 𝑂(1) time.

4 Linear algebraic version of Fibonacci heap

In this section, we will rewrite the description of the Fibonacci heap from the Section 2 in terms
of linear algebra operations.

Linear algebraic Fibonacci heap represents a set of 𝑛 nodes and some pointers. It consists of:

� dense vector values of real numbers that contain a value for each node;

� a dense vector marked of zero and one integers that indicates if a node is marked;

� a dense vector unmarked of zero and one integers that indicates if a node is not a root and
not marked;

� an integer number roots which equals to number of roots in the heap

� a sparse vector minvertex of zero and one integers that indicates if a node has a minimal
value in the heap. In case of more than one nodes in the heap with a minimal value, only
one True value can be stored in the vector;

� a dense vector degree of integer numbers that contains the number of children of each node;

� a sparse mapping matrix Parent corresponding to the mapping of each node to its parent;

� a sparse mapping matrix Children corresponding to the mapping of each node to the one of
its children;

36 Demin, Sirotkin and Moiseev Linear-algebraic implementation of Fibonacci heap

� a sparse mapping matrix Left corresponding to the mapping of each node to its left sister
node;

� a sparse mapping matrix Right corresponding to the mapping of each node to its right sister
node;

� a sparse mapping matrix Successor is a transposed Jordan block 𝐽𝑇
0,𝑑𝑚𝑎𝑥

, where 𝑑𝑚𝑎𝑥 =
⌊2.08(ln𝑛 + 3)⌋. This number is an upper boundary for possible degrees of nodes, we will
prove this fact in the Section 5. This matrix will be used for extractMin operation in
Subsection 4.3;

Figure 4: Example of linear algebraic Fibonacci heap. Vertices numbered from left to right from
top to bottom. White vertices are roots, dark gray vertices are marked, light gray vertices are
unmarked. Numbers in vertices are corresponding values. Edges in each graph correspond to ones
in matrices Parent, Children, Left, Right.

For Parent, Children, Left, and Right in cases when a node doesn’t have a parent, child,
left sister, or right sister node we assume that it is its own parent, child, left sister, or right sister
respectively. For any set of nodes (or a single node), we will use a traditional italic case throughout
this paper, for example, 𝑣. If we need to use a linear algebraic representation of this entity, we will
use the identical designation, but written with a fixed-width font - like this v.

JGAA, 28(1) 27–50 (2024) 37

Let us describe the initialization process of the Fibonacci heap. Creation of the 𝑛-dimensional
vector values requires 𝑂(𝑛) time. We need to initialize vectors marked, unmarked, and degree

as vectors of 𝑛 zeros. Vector min has a single non-zero element for the minimum value in values,
which can be found in 𝑂(𝑛). Matrices Parent, Children, Left, Right are identity matrices, which
can be constructed in 𝑂(𝑛) time. Matrix Successor can be constructed in 𝑂(𝑑𝑚𝑎𝑥) time because
it contains ones on positions (𝑖 + 1, 𝑖) and zeros on all others. Number roots equals 𝑛 at the
moment of initialization.

We will call any child, which is being mapped with the matrix Children, a pointed node. If a
node is the only child of some other node, we consider it both the left sister and the right sister
node of itself.

Note that the time required for the initialization of a CSC matrix or a dense vector is 𝑂(𝑛).
All new objects that we will initialize are the sparse vectors or listed matrices. The only two
exceptions are CSC matrix RootList and dense vector valRootList of size 𝑛 × 𝑑𝑚𝑎𝑥 and 𝑑𝑚𝑎𝑥

respectively. Both of them will require 𝑂(𝑑𝑚𝑎𝑥) = 𝑂(log 𝑛) time for initialization. We will remind
you when these objects appear in the Section 4.3.

So, if we want to reach 𝑂(1) and 𝑂(log 𝑛) amortized time complexity, we can’t initialize a dense
vector of size 𝑛 or a CSC matrix of size 𝑛× 𝑛.

Please note that the memory requirements for all of the above vectors and matrices are 𝑂(𝑛).
In all of the further algorithms, this limit is not exceeded for any of the resulting vectors and
matrices.

4.1 Auxiliary operations

In this subsection, we will describe two auxiliary operations that are commonly used to modify the
Fibonacci heap.

4.1.1 Operation connectVertices

The operation connectVertices(𝑒, 𝑓) requires nodes 𝑒 and 𝑓 to be two root nodes. This operation
makes vertex 𝑓 a child of 𝑒. It uses a vector representation of nodes e and f which are trivial to
get in 𝑂(1) time. Connection of vertices is required for Fibonacci heap only in the consolidation
stage of extractMin operation. At this stage we connect root nodes only, so the restriction that 𝑒
and 𝑓 are roots is admissible.

As we showed in Section 3.2, the addition of matrix (e− f) · f𝑇 to Parent changes the parent
of 𝑓 from 𝑓 to 𝑒. The initial parent of 𝑓 is 𝑓 itself since 𝑓 is a root vertex.

Since 𝑓 has to be non-root vertex after the execution of the connectVertices(𝑒, 𝑓) operation,
we perform two updates of matrices Left and Right in lines 13-14: (1) we connect left and right
sisters of 𝑓 to restore the cycle of roots; (2) we temporarily make 𝑓 its own left and right sister.
Then, for the matrix Children, we made 𝑓 a new child of 𝑒, which is also pointed.

After the check, that the degree (number of children) of 𝑒 wasn’t equal to zero, we modified
vectors Left and Right by connecting children nodes of 𝑒 and 𝑓 in a cycle. To be more precise,
let 𝑐𝑒 be the pointed child of 𝑒, let 𝑟𝑐𝑒 be its right sister. We restore the cycle of children of 𝑒 by
deleting connection between 𝑐𝑒 and 𝑟𝑐𝑒 and adding connections between 𝑐𝑒 and 𝑓 , 𝑓 and 𝑟𝑐𝑒.

In the case of the degree (number of children) of 𝑒 being zero, we don’t need to change the left
and right sister nodes of 𝑓 .

Every operation in the code is performed in 𝑂(1) time, therefore a connectVertices(𝑒, 𝑓)
operation also requires 𝑂(1) time.

38 Demin, Sirotkin and Moiseev Linear-algebraic implementation of Fibonacci heap

Algorithm 1 connectVertices(e, f)

1: unmarked += f ◁ make 𝑓 unmarked
2: degree += e ◁ increase degree of 𝑒 by one
3: Parent += (e - f) · f𝑇 ◁ make 𝑒 a new parent of 𝑓
4: ◁ restore root cycle
5: lf = Left · f
6: rf = Right · f
7: Left += (lf - f) · rf𝑇 + (f - lf) · f𝑇
8: Right += (rf - f) · lf𝑇 + (f - rf) · f𝑇
9: ce = Children · e ◁ 𝑐𝑒 is a child of 𝑒

10: rce = Right · ce ◁ 𝑟𝑐𝑒 is a right sister of 𝑐𝑒
11: Children + = (f - ce) · e𝑇 ◁ connect all children of 𝑒 in a cycle
12: if e𝑇 · degrees > 1 then
13: Left + = (f - ce) · rce𝑇 + (ce - f) · f𝑇
14: Right + = (f - rce) · ce𝑇 + (rce - f) · f𝑇
15: end if
16: roots − = 1

4.1.2 Operation cutVertex

In the operation cutVertex(𝑒) basis vector 𝑒 indicates the vertex that will be cut. This operation
cuts vertex encoded by a vector 𝑒 from its parent and restores the structure of the heap to the
correct state. Operation cutVertex(𝑒) doesn’t process marked vertices that lost a child, it will be
handled by the operation decreaseKeys.

The algorithm starts with updating of the number roots and vectors marked, unmarked, and
degree. Let 𝑝𝑒 be the parent of 𝑒 and 𝑐𝑝𝑒 be the pointed child of 𝑒. Next, the matrix Children is
restored. The term (cpe𝑇 · e) · (le− e) · pe𝑇 in line 9 makes 𝑙𝑒 the pointed child of 𝑝𝑒 if 𝑐𝑝𝑒 = 𝑒.
The term (le𝑇 · 𝑒) · (pe− 𝑒) ·pe𝑇 in line 10 makes 𝑝𝑒 the pointed child of 𝑝𝑒 if 𝑒 is the only child of
𝑝𝑒. Then, the cycle of children of 𝑝𝑒 is restored in lines 11-12 by connecting left and right sisters
of 𝑒. Note that these two lines do not change matrices Left and Right in the case when 𝑒 is the
only child of 𝑝𝑒.

To satisfy all conditions for 𝑒 being a root vertex, we update its parent and connect to the cycle
of roots in lines 13-16.

Similarly, as for the connectVertices(𝑒, 𝑓) operation, the operation cutVertex(𝑒) is performed
in 𝑂(1) time.

4.1.3 Operation cutChildren

Later, we will need to cut all of the children of some vertex 𝑒. Since the matrix Children contains
only one child for each vertex, we need a special operation that cuts the vector of children for a
vertex given by vector e.

Suppose, vertex 𝑒 has exactly 𝑑 children. Every step of the for loop can be done in constant
time and there are 𝑑 steps of the for loop. Therefore, all children of a vertex can be cut in 𝑂(𝑑)
time.

JGAA, 28(1) 27–50 (2024) 39

Algorithm 2 cutVertex(e)

1: roots += 1
2: marked -= e ·𝑒𝑤 marked - unmarked ·𝑒𝑤 (Parent · e)
3: unmarked -= e ·𝑒𝑤 unmarked + unmarked ·𝑒𝑤 (Parent · e) ◁ update roots, marked, and

unmarked vertices
4: degree -= Parent · e ◁ decrease degrees of cut vertices’ parents
5: pe = Parent · e
6: cpe = Children · pe
7: le = Left · e
8: re = Right · e
9: Children += (cpe𝑇 · e) · (le - e) · pe𝑇

10: Children += (le𝑇 · e) · (pe - e) · pe𝑇
11: Left += (le - e) · re𝑇
12: Right += (re - e) · le𝑇 ◁ restore matrices for children and sister nodes
13: Parent + = (e - Parent · e) · e𝑇 ◁ update matrix for parents
14: lmv = Left · minvertex
15: Left += (lmv - le) · e𝑇 + (e - lmv) · minvertex𝑇

16: (minvertex - re) · e𝑇 + (e - minvertex) · lmv𝑇

Algorithm 3 cutChildren(e)

1: child = Children · e
2: for 𝑛 in range degree𝑇 · e do
3: lc = Left · child
4: cutVertex(child)
5: child = lc
6: end for

40 Demin, Sirotkin and Moiseev Linear-algebraic implementation of Fibonacci heap

4.2 Operation decreaseKey

We remind the reader, that the decreaseKey operation decreases the key for one vertex.

Algorithm 4 decreaseKey

1: values min= w · e ◁ decrease values of the node
2: minvertex = 𝑎𝑟𝑔𝑚𝑖𝑛 (min(minvertex ·𝑒𝑤 values, w · e)) ◁ find such a basis vector minvertex,

that the expression // min(minvertex ·𝑒𝑤 values, w · e) is minimal
3: parvalue = (Parent · e)𝑇 · values
4: if parvalue > w then
5: cut = e ◁ find vertices that need to be cut
6: while cut is nonempty do
7: newcut = marked ·𝑒𝑤 (Parent · cut) ◁ find vertex that need to be cut on the next step
8: cutVertex(cut)
9: cut = newcut ◁ update vertices that need to be cut

10: end while
11: end if

Operation decreaseKey gets a basis vector e, a new value 𝑤, and decreases the value contained
by the vertex corresponding to e. This operation can be expressed as a change of each element
from vector values to a minimum of corresponding elements from vectors values and 𝑤 · 𝑒. In
addition, we recalculate the minimum element of the heap by taking less of the current minimum
value and a minimal element from a vector 𝑤 · 𝑒. In the listing, operation 𝑎𝑟𝑔𝑚𝑖𝑛(𝑣) returns a
basis vector 𝑒𝑚𝑖𝑛 for which 𝑒𝑇𝑚𝑖𝑛𝑣 is minimal.

After this decrease, we need to restore Fibonacci heap properties. Firstly, we check if the vertex
encoded by 𝑒 has a value less than its parent. The vector cut corresponds to the vertex which
will be cut on the current step of the while loop in lines 6-10. Vector (Parent · cut) is a vector
of indicators, which vertices have a cut child. This allows obtaining vector newcut that indicates
vertices that will be cut on the next step. This is done by uniting marked vertex that lost a child.

4.3 Operation extractMin

Operation extractMin returns the minimal element and deletes it from the heap.
At the beginning of the algorithm, we cut the children of the minimal node, make them the

roots, and delete this minimal node. After this, we perform the consolidate operation. Matrix
RootList corresponds to the array 𝐴 from Section 2 and represents the list of processed roots.
Suppose vector 𝑒𝑖 has a single nonzero element on 𝑖-th position. Also, let 𝑗 = degree[𝑖]. Then
the left multiplication of matrix RootList on the vector 𝑑𝑗 which has a single nonzero element on
𝑗-th position results in the vector 𝑒𝑖. In other words, matrix RootList maps 𝑑 to the root with
degree 𝑑 in the list. Every iteration of the for loop in lines 7-25 corresponds to the addition of
some root to the array RootList and every step of while loop in lines 11-24 corresponds to one
check if in RootList exists a node with the same degree as the added one. Let us remind that
RootList and valRootList are contained as a CSC matrix of size 𝑛 × 𝑑𝑚𝑎𝑥 and dense vector of
size 𝑑𝑚𝑎𝑥 respectively. Its initialization requires 𝑂(𝑑𝑚𝑎𝑥) = 𝑂(log 𝑛) time.

All the vectors in the algorithm belong to one of two types. One as before is indexed by nodes,
and the other is indexed by degrees (number of children), i. e. each basis vector corresponds to
some vertex and its corresponding degree. These vectors have different dimensions of 𝑛 and 𝑑𝑚𝑎𝑥

respectively. Matrix AddedRoot expresses a single root that is added to the list at the current stage

JGAA, 28(1) 27–50 (2024) 41

Algorithm 5 extractMin

1: lmv = Left · minvertex
2: cutChildren(minvertex) ◁ cut children of the minimum
3: values -= values ·𝑒𝑤 minvertex ◁ delete the minimal value
4: RootList = 0 ◁ initialize the list of roots for consolidation
5: valRootList = ∞
6: e = vector that consists of ones and dimension 𝑑𝑚𝑎𝑥

7: for 𝑛 in range roots do ◁ the consolidate operation
8: dlmv = vector with one on position degree𝑇 · lmv and dimension 𝑑𝑚𝑎𝑥

9: AddedRoot = lmv · dlmv𝑇 ◁ initialize the added root
10: valAddedRoot = AddedRoot𝑇 · values
11: while AddedRoot is nonempty do
12: aRMore = (valRootList < valAddedRoot)
13: aRLess = (valRootList ≥ valAddedRoot) ◁ find coincide degrees and the vertex with

less value
14: less = RootList · aRMore + AddedRoot · aRLess
15: more = RootList · aRLess + AddedRoot · aRMore
16: connectVertices(less, more) ◁ connect vertices of the same degree
17: RootList += AddedRoot
18: RootList -= RootList · 𝑑𝑖𝑎𝑔(aRMore + aRLess)
19: valRootList = min(valAddedRoot, valRootList)
20: valRootList -= (aRMore + aRLess) ·𝑒𝑤 valRootList ◁ update values of the list of the

roots
21: AddedRoot = less · (Successor · (aRLess + aRMore))𝑇 ◁ find a new added root
22: valAddedRoot = AddedRoot𝑇 · values ◁ update value of the added root
23: roots += 1 - 2(aRMore + aRLess) ·𝑒𝑤 e ◁ update the number of roots
24: end while
25: end for
26: minvertex = 𝑎𝑟𝑔𝑚𝑖𝑛 (root ·𝑒𝑤 values) ◁ find a new minimal element

42 Demin, Sirotkin and Moiseev Linear-algebraic implementation of Fibonacci heap

of the algorithm. This matrix consists has a single element 1 on the position (degree[𝑠], 𝑠) and zeros
in all the other positions. It means that for a vector 𝑣 of dimension 𝑑𝑚𝑎𝑥 vector AddedRoot·𝑣 equals
to 𝑣𝑑𝑠

𝑒𝑠, where 𝑒𝑠 is the 𝑠-th basis vector, 𝑑𝑠 is the degree of 𝑠, and 𝑣𝑑𝑠
is the 𝑑𝑠-th component of

𝑣. So, matrices RootList and AddedRoot has sizes 𝑑𝑚𝑎𝑥 × 𝑛 and corresponds to partial mappings
from [𝑑𝑚𝑎𝑥] to [𝑛]. Matrix AddedRoot is stored in CSC as in the general case. For RootList we
use additional zeros as for partial mapping matrix (see Section 3.2).

Let us describe a single step of while loop in lines 11-24 in detail. In pair of vectors aRMore
and aRLess, there is at most one nonzero vector. It has a single nonzero element 1 on the position
which corresponds to the added root. These vectors allow writing the analysis of all cases without
repeating similar steps for these cases. If the considered vector is a zero vector, we are considering
the other case. Vector aRMore is nonzero when the added root has a greater value than the root
with the same degree in RootList. Vector aRLess is nonzero when the added root has a less
or equal value than the root with the same degree in RootList. It can be found by comparison
of corresponding elements in vectors valRootList and valAddedRoot (which contain values of
corresponding roots).

Suppose we have a pair of roots of the same degree, with one of them being attached to another
during the consolidation process. Vectors less and more correspond to such roots with smaller
and larger values respectively. Let us analyze the formula RootList · aRMore+ AddedRoot · aRLess
then. If the term RootList · aRMore is nonzero, then it results in a basis vector, indicating the
root from RootList which has the same degree as the added root. We have the following from
the definition of aRMore — if the term RootList · aRMore is nonzero, then it equals a basis vector
which indicates one of the paired roots with a smaller value. The term AddedRoot · aRLess similarly
corresponds to another case. The sum of two vectors indicates the vertex with a smaller value in
both cases. The same holds for the vector more.

After computing less and more we attach the vertex with the greater value to the one with the
lesser value. Vector aRMore+ aRLess is nonzero if there is a root in the list with the same degree
as the added root. The addition of the matrix AddedRoot− RootList · 𝑑𝑖𝑎𝑔(aRMore+ aRLess)
corresponds to the addition or extraction of the root depending on the case. Values in the list are
updated in a similar way.

The matrix Successor expresses the partial mapping that compares to each degree 𝑑 the
number 𝑑 + 1. The matrix less · (Successor · (aRLess+ aRMore))T corresponds to the partial
mapping, which compares to the number 𝑑, one of the paired roots with a lesser value if 𝑑 − 1
equals the degree of added root. Since we know that the degree of added root increases by one
after attaching a new vertex, this partial mapping correctly expresses the adding root on the next
step of the while loop in lines 11-24. The value of the added root is also updated.

After that, all that is left is to update vectors root and minvertex and this completes the
extractMin operation.

5 Complexity analysis

As discussed in Section 2 the combinatorial version of the Fibonacci heap performs decreaseKey
and extractMin operations in 𝑂(1) and 𝑂(log 𝑛) time amortized respectively. In this section, we
will prove a similar result for the linear algebraic version. We will follow the general structure of
the proof for the combinatorial Fibonacci heap.

Amortized time estimates will be given using the method of potentials. We remind that we
defined potential as Φ = 𝑡 + 2 · 𝑚, where 𝑡 is the number of different trees in the heap, and 𝑚
is the number of marked vertices. For the operation extractMin, we will prove that it requires

JGAA, 28(1) 27–50 (2024) 43

𝑂(∆Φ+log 𝑛) time, where ∆Φ is the decrease of the potential after the operation (if potential was
increased then ∆Φ equals zero). For the decreaseKey(𝑒, 𝑤) operation, we will prove an estimate
𝑂(∆Φ + 1).

Complexity analysis of the Fibonacci heap requires the usage of Fibonacci numbers, i.e. num-
bers 𝐹𝑛 defined recursively by formula 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 for 𝑛 ≥ 3 and 𝐹1 = 𝐹2 = 1. Let us
review some well-established facts about Fibonacci heaps that one can find in [4].

� 𝐹𝑛 = 1 +
∑︀𝑛−2

𝑚=1 𝐹𝑚 for all 𝑛 ≥ 3

� 𝐹𝑛 = 𝜙𝑛−(−𝜙)−𝑛

√
5

, where 𝜙 = 1+
√
5

2

Lemma 1 In the Fibonacci heap, for every vertex 𝑣 of degree 𝑑 for each 𝑘 ∈ [0, 𝑑 − 1], at least
𝑑− 𝑘 − 1 of its children having degrees at least 𝑘.

Lemma 2 In the Fibonacci heap, every tree with the root of degree 𝑑 has at least 𝐹𝑑+2 vertices.

Lemma 3 In the Fibonacci heap, every vertex has a degree less or equal to 𝑑𝑚𝑎𝑥 = ⌊2.08(ln𝑛+3)⌋.

5.1 Operation decreaseKey complexity

We repeat the listing of the decreaseKey operation together with time complexity estimates for
operations on each string.

Algorithm 6 decreaseKey

1: values min= w · e ◁ 𝑂(1)
2: minvertex = 𝑎𝑟𝑔𝑚𝑖𝑛 (min(minvertex ·𝑒𝑤 values, w · e)) ◁ 𝑂(1)
3: parvalue = (Parent · e)𝑇 · values ◁ 𝑂(1)
4: if parvalue > w then
5: cut = e ◁ find vertices that need to be cut ◁ 𝑂(1)
6: while cut is nonempty do
7: newcut = marked ·𝑒𝑤 (Parent · cut) ◁ 𝑂(1)
8: cutVertex(cut) ◁ 𝑂(1)
9: cut = newcut ◁ 𝑂(1)

10: end while
11: end if

In this subsection, we prove that decreaseKey operation requires 𝑂(1) time amortized. So one
decreaseKey operation can be done in 𝑂(1) time amortized, just like for the combinatorial version
of the Fibonacci heap.

The first three lines of the algorithm require 𝑂(1) time. The vector cut after these operations
can have at most one nonzero element. Every line of a step in the while loop in lines 7-10 has a
time complexity 𝑂(1).

We prove that the total decrease of potential equals at least 𝑙 − 2, where 𝑙 is the number of
steps of the while loop in lines 7-10. Also, 𝑙 — is the number of cut vertices in the while loop,
and at least 𝑙−1 of them were marked. Therefore, we get 𝑙 new roots and lose at least 𝑙−1 marked
vertex. So, the decrease of the potential equals at least 2(𝑙 − 1)− 𝑙 = 𝑙 − 2.

Hence, we can complete all steps using current potential and extra 𝑂(1) time and potential.
So, this proves the following theorem:

Theorem 1 Operation decreaseKey(𝑒, 𝑤) requires 𝑂(1) time amortized.

44 Demin, Sirotkin and Moiseev Linear-algebraic implementation of Fibonacci heap

5.2 Operation extractMin

At the beginning of the algorithm, we delete a minimal element and make its children the roots.
Since the degree of each vertex is 𝑂(| log 𝑛|), all these actions require 𝑂(| log 𝑛|) time and increase
potential on at most 𝑂(| log 𝑛|) by making the children of this minimal element roots. Note that
the matrix RootList is a partial mapping matrix and might contain some zeros as values in CSC
format. Since the maximal degree of each vertex is 𝑂(log 𝑛), we need logarithmic time to initialize
this matrix.

Algorithm 7 extractMin

1: lmv = Left · minvertex ◁ 𝑂(1)
2: cutChildren(minvertex) ◁ 𝑂(log 𝑛)
3: values -= values ·𝑒𝑤 minvertex ◁ 𝑂(log 𝑛)
4: RootList = 0 ◁ 𝑂(log 𝑛)
5: valRootList = ∞ ◁ 𝑂(log 𝑛)
6: e = vector that consists of ones and dimension 𝑑𝑚𝑎𝑥 ◁ 𝑂(log 𝑛)
7: for 𝑛 in range roots do ◁ the consolidate operation
8: dlmv = vector with one on position degree𝑇 · lmv and dimension 𝑑𝑚𝑎𝑥

9: AddedRoot = lmv · dlmv𝑇 ◁ 𝑂(1)
10: valAddedRoot = AddedRoot𝑇 · values
11: while AddedRoot is nonempty do
12: aRMore = (valRootList < valAddedRoot) ◁ 𝑂(1)
13: aRLess = (valRootList ≥ valAddedRoot) ◁ 𝑂(1)
14: less = RootList · aRMore + AddedRoot · aRLess ◁ 𝑂(1)
15: more = RootList · aRLess + AddedRoot · aRMore ◁ 𝑂(1)
16: connectVertices(less, more) ◁ 𝑂(1)
17: RootList += AddedRoot ◁ 𝑂(1)
18: RootList -= RootList · 𝑑𝑖𝑎𝑔(aRMore + aRLess) ◁ 𝑂(1)
19: valRootList = min(valAddedRoot, valRootList) ◁ 𝑂(1)
20: valRootList -= (aRMore + aRLess) ·𝑒𝑤 valRootList ◁ 𝑂(1)
21: AddedRoot = less · (Successor · (aRLess + aRMore))𝑇 ◁ 𝑂(1)
22: valAddedRoot = AddedRoot𝑇 · values ◁ 𝑂(1)
23: roots += 1 - 2(aRMore + aRLess) ·𝑒𝑤 e ◁ 𝑂(1)
24: end while
25: end for
26: minvertex = 𝑎𝑟𝑔𝑚𝑖𝑛 (root ·𝑒𝑤 values) ◁ 𝑂(log 𝑛)

All of the matrices RootList, AddedRoot, Successor, and any diagonal matrix have at most
one nonzero element in every row and every column. Vectors aRMore, aRLess, and valAddedRoot

have at most one nonzero element. Then, each matrix on vector multiplications and binary vector
operations in while loop in lines 12-24 requires a constant time. Also, vector AddedRootT · values
can be found in constant time because AddedRoot has only one nonzero element.

For each step of while loop in lines 12-24, we add a new root to the list or extract a root
from the list. For each extraction step, the number of roots decreases by one. So, the potential
decreases by one. This unit of potential can be used for adding and extracting a single root. After
consolidation, the number of roots becomes 𝑂(log 𝑛) because all of the roots have different degrees
which are bound by 𝑂(log 𝑛). Therefore, processing of these roots requires 𝑂(log 𝑛) time. So, we

JGAA, 28(1) 27–50 (2024) 45

have

Theorem 2 Operation extractMin requires 𝑂(log 𝑛) time amortized.

6 Fibonacci heap usage

In many cases, the main bottleneck in the transfer of some combinatorial algorithms to the linear
algebraic language is the need for a priority queue. In this section, we will provide some examples
of such algorithms and prove for them that they have a linear algebraic analog with the same time
complexity.

6.1 Dijkstra algorithm

Let 𝐺 be a weighted graph. The single source shortest path problem is a task of finding the length
of the shortest path from some fixed vertex 𝑠 to all others. Combinatorial Dijkstra algorithm solves
this problem in 𝑂(𝑚+𝑛 log 𝑛) time and uses a priority queue. The linear algebraic version of this
algorithm reaches the same time complexity by using the linear algebraic priority queue, proposed
in this paper while the trivial approach requires 𝑂(𝑛2) time.

In the Dijkstra algorithm, on each step we choose the nearest vertex 𝑢 to 𝑠 that hasn’t been
chosen before, update distances to any other vertex 𝑣 by counting paths from 𝑠 to 𝑣 with 𝑢 as the
penultimate vertex in the path, and mark 𝑢 as chosen. On each step, for any chosen vertex, the
length of the shortest path is already found.

Let us denote the adjacency matrix of graph 𝐺 as G, let s be a vector that indicates source
vertex 𝑠 and dist be a vector to be filled with distances from 𝑠 to other vertices. Then the Dijkstra
algorithm can be written as follows:

Algorithm 8 Dijkstra(G, s)

1: Fibonacci heap FH with values from s
2: while FH is nonempty do
3: dist += values · s
4: for each e in G · s do
5: decreaseKey(e, e𝑇 (G · s) + values𝑇 s)
6: end for
7: s = extractMin(FH)
8: end while

Dijkstra algorithm requires 𝑛 extractMin operations and 𝑚 decreaseKey. So, we have

Corollary 6.1 There exists a linear algebraic Dijkstra algorithm that works in 𝑂(𝑚+𝑛 log 𝑛) time
and 𝑂(𝑛+𝑚) space.

6.2 Prim algorithm

A minimal spanning tree for the connected graph 𝐺 is a tree that is a subgraph of 𝐺, contains all
vertices of 𝐺, and has the least possible sum of edge weights. The problem of finding this tree is
solved by the Prim algorithm [12] in 𝑂(𝑚 + 𝑛 log 𝑛) time. We propose a linear algebraic version
that reaches the same time complexity, while the trivial approach requires 𝑂(𝑛2) time.

46 Demin, Sirotkin and Moiseev Linear-algebraic implementation of Fibonacci heap

Figure 5: Dijkstra algorithm visualization. Weights of edges are written on them. Numbers on
vertices are the minimum found lengths from the source to the corresponding vertex, for white
vertices these numbers are exact minimum lengths, for light gray vertices these numbers can be
decreased in the next steps.

The Prim algorithm starts constructing a tree from some vertex 𝑠 and on each step connects
the nearest vertex to the tree with the edge with the smallest possible weight. An example of the
work of this algorithm is in Figure 6.

Like in the previous subsection G is the adjacency matrix of graph 𝐺, s is a vector that indicates
the source vertex 𝑠. The Nearest is a matrix that corresponds to the mapping of vertices to their
nearest vertex in the tree in the tree for other vertices, and T is the adjacency matrix of the tree.

This algorithm outputs a matrix of an oriented tree T, which, if required, can be made sym-
metrical in linear time. There are 𝑛 uses of extractMin and 𝑚 decreaseKey operations. So, we
have

Corollary 6.2 There exists a linear algebraic Prim algorithm that works in 𝑂(𝑚 + 𝑛 log 𝑛) time
and 𝑂(𝑛+𝑚) space.

6.3 Maximum independent set

The exact polynomial algorithm existence for the problem of searching for the maximal independent
set is unknown since the problem is NP-hard. So we will focus on the heuristic algorithm. The
simplest one is a greedy algorithm that requires 𝑂(𝑚+ 𝑛 log 𝑛) time in the combinatorial version.
As with the previous two algorithms, it includes a priority queue and requires 𝑂(𝑛2) time for the
trivial approach.

We consider this algorithm for an unoriented graph. We find the vertex of the minimal degree

JGAA, 28(1) 27–50 (2024) 47

Figure 6: Prim algorithm visualization. Weights of edges are written on them, solid edges are the
edges of the constructed tree, and white vertices are the vertices of the constructed tree.

𝑣, put it in the independence set, and delete it with its neighbors from the list of vertices. We
repeat this operation until the list of vertices is empty.

Note that to delete vertices that correspond to nonzero elements of vector v we can perform
decreaseKeys(e,−1) for each basis vector e included in v and |v| times use extractMin. It deletes
v in 𝑂(|v| log 𝑛) amortized. Therefore, we have an operation a delete(v) that deletes all elements
that correspond to nonzero elements in vector v.

Let G be the adjacency matrix of graph 𝐺, set be a vector that indicates constructed indepen-
dent set, mindegree be a vector that indicates a vertex of minimal degree, and ones be a vector
that consists of 𝑛 ones.

This algorithm counts degrees of all vertices in 𝑂(𝑚) time, deletes 𝑛 vertices in 𝑂(𝑛 log 𝑛) time,
and does 𝑂(𝑚) operations decreaseKeys. This proves

Corollary 6.3 There exists a linear algebraic greedy algorithm for the maximal independent set
that works in 𝑂(𝑚+ 𝑛 log 𝑛) time and 𝑂(𝑚+ 𝑛) space.

6.4 Brandes algorithm

Betweenness centrality is one of the measures that expresses how central and important the vertex

is. It equals
∑︀

𝑠,𝑡
𝜎𝑠𝑡(𝑣)
𝜎𝑠𝑡

, where 𝜎𝑠𝑡(𝑣) is a number of shortest paths from 𝑠 to 𝑡 through 𝑣 and 𝜎𝑠𝑡

is a total number of shortest paths from 𝑠 to 𝑡. Paper [3] presents an algorithm that calculates the
betweenness centrality for all vertices in a given graph in 𝑂(𝑚𝑛) time for the unweighted case and
𝑂(𝑚𝑛+ 𝑛2 log 𝑛) time for the weighted case. This algorithm uses the breadth-first search for the

48 Demin, Sirotkin and Moiseev Linear-algebraic implementation of Fibonacci heap

Algorithm 9 Prim(G, s)

1: create Fibonacci heap FH with values from s
2: while FH is nonempty do
3: T += Nearest · 𝑑𝑖𝑎𝑔(s)
4: Nearest -= Nearest · 𝑑𝑖𝑎𝑔(values ¿ G · s)
5: Nearest += s · (values > G · s)𝑇
6: for each e in G · s do
7: decreaseKey(e, e𝑇 (G · s))
8: end for
9: s = extractMin(FH)

10: end while

Algorithm 10 GreedyMIS(G)

1: degrees = G · ones
2: create Fibonacci heap FH with values from degrees
3: while FH is nonempty do
4: mindegree = extractMin(FH)
5: set += mindegree
6: delete(G · mindegree)
7: decreaseDegrees = degrees · (G · (G · mindegree) ̸= 0)
8: decreaseDegrees -= (G · (G · mindegree))
9: Nearest += s · (values > G · s)𝑇

10: for each e in G · s do
11: decreaseKey(e, e𝑇 decreaseDegrees)
12: end for
13: end while

JGAA, 28(1) 27–50 (2024) 49

unweighted case and the Dijkstra algorithm for the weighted case correspondingly. The essential
part of this algorithm is 𝑛 runs of the BFS or Dijkstra algorithm. Its complexity equals 𝑂(𝑛𝑓(𝑛)),
where 𝑂(𝑓(𝑛)) is the time required by the BFS or Dijkstra correspondingly. So, it requires 𝑂(𝑛3)
time for a trivial approach.

According to [17], Brandes algorithm can be expressed in linear algebraic terms without in-
creasing time complexity except for this run of the single source search algorithm for the weighted
case. To be more precise, it can be expressed in linear algebraic terms with time complexity
𝑂(𝑛𝑓(𝑛)) if it uses a single source search algorithm that works in 𝑂(𝑓(𝑛)). Since we presented a
linear algebraic version of the Dijkstra algorithm, we have

Corollary 6.4 There exists a linear algebraic Brandes algorithm that works in 𝑂(𝑚𝑛+ 𝑛2 log 𝑛)
time and 𝑂(𝑛+𝑚) space.

7 Conclusion

In this paper, we propose a priority queue implementation in terms of linear algebraic operations.
Namely, we describe one of the more powerful priority queues — a Fibonacci heap. In addition,
we show its application for several well-known algorithms, improving its computational complexity
for the linear algebraic case to the theoretical boundaries. The authors hope, that this result will
lead to the development of faster algorithms, which use a linear algebra representation.

The same approach, which was used by the authors, can be used for the development of other
implementations of the priority queue, which looks like a promising direction for future research.

References

[1] R. Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):87–90, 1958.
doi:10.1090/qam/102435.

[2] M. Bisson and M. Fatica. High performance exact triangle counting on gpus. IEEE Trans-
actions on Parallel and Distributed Systems, 28(12):3501–3510, 2017. doi:10.1109/TPDS.

2017.2735405.

[3] U. Brandes. A faster algorithm for betweenness centrality. Journal of mathematical sociology,
25(2):163–177, 2001. doi:10.1080/0022250X.2001.9990249.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT
press, 2022. doi:10.5555/1614191.

[5] L. R. Ford and D. R. Fulkerson. Flows in networks. In Flows in Networks. Princeton university
press, 2015. doi:10.1515/9781400875184.

[6] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM, 34(3):596–615, jul 1987. doi:10.1145/28869.28874.

[7] J. Kepner and J. Gilbert. Graph algorithms in the language of linear algebra. SIAM, 2011.
doi:10.1137/1.9780898719918.

[8] F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan. Cusha: vertex-centric graph processing
on gpus. In Proceedings of the 23rd international symposium on High-performance parallel
and distributed computing, pages 239–252, 2014. doi:10.1145/2600212.2600227.

https://doi.org/10.1090/qam/102435
https://doi.org/10.1109/TPDS.2017.2735405
https://doi.org/10.1109/TPDS.2017.2735405
https://doi.org/10.1080/0022250X.2001.9990249
https://doi.org/10.5555/1614191
https://doi.org/10.1515/9781400875184
https://doi.org/10.1145/28869.28874
https://doi.org/10.1137/1.9780898719918
https://doi.org/10.1145/2600212.2600227

50 Demin, Sirotkin and Moiseev Linear-algebraic implementation of Fibonacci heap

[9] H. Liu and H. H. Huang. Enterprise: breadth-first graph traversal on gpus. In Proceedings
of the International Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1–12, 2015. doi:10.1145/2807591.2807594.

[10] T. Mattson, D. Bader, J. Berry, A. Buluc, J. Dongarra, C. Faloutsos, J. Feo, J. Gilbert,
J. Gonzalez, B. Hendrickson, J. Kepner, C. Leiserson, A. Lumsdaine, D. Padua, S. Poole,
S. Reinhardt, M. Stonebraker, S. Wallach, and A. Yoo. Standards for graph algorithm primi-
tives. In 2013 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–2,
2013. doi:10.1109/HPEC.2013.6670338.

[11] U. Meyer and P. Sanders. 𝛿-stepping: a parallelizable shortest path algorithm. Journal of
Algorithms, 49(1):114–152, 2003. doi:10.1016/S0196-6774(03)00076-2.

[12] R. C. Prim. Shortest connection networks and some generalizations. The Bell System Technical
Journal, 36(6):1389–1401, 1957. doi:10.1002/j.1538-7305.

[13] E. Robinson and J. Kepner. Array based betweenness centrality. In SIAM Conference on
Parallel Processing for Scientific Computing, 2008.

[14] J. Soman, K. Kishore, and P. Narayanan. A fast gpu algorithm for graph connectivity. In
2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and
Phd Forum (IPDPSW), pages 1–8. IEEE, 2010. doi:10.1109/IPDPSW.2010.5470817.

[15] D. G. Spampinato, U. Sridhar, and T. M. Low. Linear algebraic depth-first search. In
Proceedings of the 6th ACM SIGPLAN International Workshop on Libraries, Languages and
Compilers for Array Programming, ARRAY 2019, page 93–104, New York, NY, USA, 2019.
Association for Computing Machinery. doi:10.1145/3315454.3329962.

[16] W. Tinney and J. Walker. Direct solutions of sparse network equations by optimally ordered
triangular factorization. Nov. 1967. doi:10.1109/PROC.1967.6011.

[17] A. Tumurbaatar and M. J. Sottile. Algebraic algorithms for betweenness and percolation
centrality. Journal of Graph Algorithms and Applications, 25(LLNL-JRNL-818857), 2021.
doi:10.7155/jgaa.00558.

[18] C. Yang, A. Buluç, and J. D. Owens. Graphblast: A high-performance linear algebra-based
graph framework on the gpu. ACM Transactions on Mathematical Software (TOMS), 48(1):1–
51, 2022. doi:10.1145/3466795.

[19] A. Yzelman, D. Di Nardo, J. Nash, and W. Suijlen. A c++ graphblas: specification, imple-
mentation, parallelisation, and evaluation. Preprint, 2020. doi:10.1145/3561652.

https://doi.org/10.1145/2807591.2807594
https://doi.org/10.1109/HPEC.2013.6670338
https://doi.org/10.1016/S0196-6774(03)00076-2
https://doi.org/10.1002/j.1538-7305
https://doi.org/10.1109/IPDPSW.2010.5470817
https://doi.org/10.1145/3315454.3329962
https://doi.org/10.1109/PROC.1967.6011
https://doi.org/10.7155/jgaa.00558
https://doi.org/10.1145/3466795
https://doi.org/10.1145/3561652

	Introduction
	Combinatorial version of Fibonacci heap
	Linear algebraic approach
	Sparse vectors and matrices
	Sparse matrix storage format
	Hyper-sparse matrix storage format
	Implementation considerations

	Mapping matrices
	Memory model

	Linear algebraic version of Fibonacci heap
	Auxiliary operations
	Operation connectVertices
	Operation cutVertex
	Operation cutChildren

	Operation decreaseKey
	Operation extractMin

	Complexity analysis
	Operation decreaseKey complexity
	Operation extractMin

	Fibonacci heap usage
	Dijkstra algorithm
	Prim algorithm
	Maximum independent set
	Brandes algorithm

	Conclusion

