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Abstract. The study of nonplanar drawings of graphs with restricted crossing
configurations is a well-established topic in graph drawing, often referred to as beyond-
planar graph drawing. One of the most studied types of drawings in this area are the
k-planar drawings (k > 1), where each edge cannot cross more than k times. We
generalize k-planar drawings, by introducing the new family of min-k-planar drawings.
In a min-k-planar drawing edges can cross an arbitrary number of times, but for any
two crossing edges, one of the two must have no more than k crossings. We prove a
general upper bound on the number of edges of min-k-planar drawings, a finer upper
bound for £ = 3, and tight upper bounds for £ = 1,2. Also, we study the inclusion
relations between min-k-planar graphs (i.e., graphs admitting min-k-planar drawings)
and k-planar graphs. In our setting, we only allow simple drawings, that is, any two
edges cross at most once, no two adjacent edges cross, and no three edges intersect at
a common point.
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1 Introduction

Beyond planarity [20, 26] is a recent area of focus in graph drawing and topological graph theory,
having its foundations established in the 1970s and 1980s. It comprises works on graphs that go
beyond planar graphs in the sense that several, mostly local, crossing configurations are forbidden.
The simplest are I-planar graphs, where at most one crossing per edge is allowed [28, 32], and
their generalization k-planar graphs, where at most k > 1 crossings per edge are tolerated [13, 20,
24, 30, 31]. Other prominent examples of graph classes are fan-planar graphs [11, 12, 15, 16, 27],
where several edges might cross the same edge but they should be adjacent to the same vertex,
and k-gap-planar graphs (k > 1) [8, 9, 10], where for each pair of crossing edges one of the two
edges contains a small gap through which the other edge can pass, and at most k gaps per edge
are allowed. Another popular family is the one of k-quasiplanar graphs, which forbids & mutually
crossing edges [2, 3, 4, 5, 23]. Mostly, edge density and inclusion relations of different beyond-planar
graph classes have been studied [5, 20, 26].

In this paper we introduce a new graph family that generalizes k-planar graphs by permitting
certain edges to have more than k crossings. Namely, for each two crossing edges we require that
at least one of them contains at most k crossings. Formally, this graph family is defined as follows:

Definition 1 A graph G is min-k-planar (k > 1) if it admits a drawing on the plane, called min-
k-planar drawing, such that for any two crossing edges e and €’ it holds min{cr(e),cr(e’)} < k |
where cr(e) and cr(e’) are the number of crossings of e and €', respectively.

Clearly, every k-planar drawing I' is also min-k-planar, but not vice versa. An edge of the
graph that crosses in I' is a heavy edge if it crosses more than k times, otherwise it is a light edge.
There are two main motivations behind the study of min-k-planar graphs:

(i) From a theoretical perspective, when a graph is not k-planar we may want to draw it by

allowing some heavy edges, whose removal yields a k-planar drawing. To this regard, if m is the

total number of edges in the graph, we will prove that the number of heavy edges in a min-k-planar
k

drawing is at most 5% - m, whose value varies in the interval (%, %) for k> 1.

(#4) From a practical perspective, even if a graph is k-planar, allowing (few) pairwise-independent
heavy edges may reduce the visual complexity of the layout, even when the total number of crossings
grows. For example, Figure 1 shows two drawings of the same portion of a graph. Despite the
drawing in Figure 1(a) being 2-planar and having fewer crossings in total, the one in Figure 1(b)
appears more readable; it is not 2-planar, but it is min-2-planar.

Min-k-planar graphs are also implicitly studied in [33, 34], proving that the underlying graph
of a convex min-k-planar drawing has treewidth 3k + 11.

Contribution. We study the edge density of min-k-planar graphs (Section 3) and their inclusion
relations with k-planar graphs (Section 4). In our setting, we only allow simple drawings, that
is, any two edges cross at most once, no two adjacent edges cross, and no three edges intersect
at a common point. After giving general bounds on edge and crossing numbers, we focus on
ke {1,2,3}:

— We provide tight upper bounds on the maximum number of edges of min-1-planar and min-2-
planar graphs. Namely, we prove that n-vertex min-1-planar graphs and min-2-planar graphs have
at most 4n — 8 edges and at most 5n — 10 edges, respectively, as for 1-planar and 2-planar graphs.
For min-3-planar graphs we give an upper bound of 6n — 12 and show min-3-planar graphs with
5.6n — O(1) edges, hence having density higher than the one of every 3-planar graph.
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(a) 2-planar drawing (b) min-2-planar drawing

Figure 1: Two drawings of the same portion of a graph: (a) is 2-planar and has 10 crossings; (b)
is min-2-planar, is not 2-planar, and has 12 crossings; it contains two “heavy” edges incident to
vertex 6, each with several crossings.

— Despite the maximum density of min-k-planar graphs for £ = 1,2 equals the one of k-planar
graphs, we show that 1-planar and 2-planar graphs are proper sub-classes of min-1-planar and min-
2-planar graphs (as for k = 3). However, the min-1-planar graphs that can reach the maximum
density of 4n — 8 are also 1-planar (i.e., the two classes coincide), while this is not true for k = 2, 3.

Section 2 introduces notation and terminology; final remarks and open problems are in Section 5.

2 Basic Definitions

We only deal with connected graphs. A graph is simple if it does not contain multiple edges and
self-loops. A graph with multiple edges but not self-loops is also called a multi-graph. Let G be
any (not necessarily simple) graph. We denote by V(G) and E(G) the set of vertices and the set
of edges of G, respectively. A drawing T' of G maps each vertex v € V(G) to a distinct point in
the plane and each edge uv € F(G) to a simple Jordan arc between the points corresponding to u
and v. We always assume that I is a simple drawing, that is: (i) two adjacent edges (i.e., edges
that share a vertex) do not intersect, except at their common endpoint (in particular, no edge
is self-crossing); (i) two independent (i.e. non-adjacent) edges intersect at most in one of their
interior points, called a crossing point; (iii) no three edges intersect at a common crossing point.

Let I be a drawing of G. A wertex of I is either a point corresponding to a vertex of G, called
a real-vertex, or a point corresponding to a crossing point, called a crossing-vertex or simply a
crossing. We remark that in the literature a plane graph obtained by replacing crossing points
with dummy vertices is often referred to as a planarization [19]. We denote by V(T') the set of
vertices of I'. An edge of T' is a curve connecting two vertices of I'. We denote by E(T") the set of
edges of I'. An edge e € E(I') is a portion of an edge in E(G), which we denote by €; if both the
endpoints of e are real-vertices, then e and € coincide.

Drawing I" subdivides the plane into topologically connected regions, called faces. The boundary
of a face consists of a cyclical sequence of vertices (real- or crossing-vertices) and edges of I'. We
denote by F(T") the set of faces of T'. Exactly one face in F(T") corresponds to an infinite region of



4 C. Binucci et al. Min-k-planar Drawings of Graphs

the plane, called the external face of I'; the other faces are the internal faces of I'. If the boundary
of a face f of T' contains a vertex v (or an edge €), we say that f contains v (or e).

In the following, if not specified, we denote by n = |V(G)| and m = |E(G)| the number of
vertices and the number of edges of GG, respectively.

Degree of vertices and faces. For a vertex v € V(G), denote by degs(v) the degree of v in G,
i.e., the number of edges incident to v. Analogously, for a vertex v € V(I'), denote by degp(v) the
degree of v in I'. Note that, if v € V(G) then degp(v) = degq(v), while if v is a crossing-vertex
then degp(v) = 4. For a face f € F(I'), denote by degp(f) the degree of f, i.e., the number of
times we traverse vertices (either real- or crossing-vertices) while walking on the boundary of f
clockwise. Each vertex contributes to degp(f) the number of times we traverse it (possibly more
than once if the boundary of f is not a simple cycle). Also, denote by degp(f) the real-vertex
degree of f, i.e., the number of times we traverse a real-vertex of I while walking on the boundary
of f clockwise. Again, each real-vertex contributes to degl-(f) the number of times we traverse it.
Finally, degl.(f) denotes the number of times we traverse a crossing-vertex of I' while walking on
the boundary of f clockwise. Clearly, degp(f) = degl-(f) + deg(f).

We say that a face f € F(T) is an h-real face, for h > 0, if degl-(f) = h. An h-real face of degree
d is called an h-real d-gon. For k = 2,3,4,5,6, a face that is an h-real k-gon, is also called an
h-real bigon (k = 2), an h-real triangle (k = 3), an h-real quadrilateral (k = 4), an h-real pentagon
(k =5), and an h-real hexagon (k = 6), respectively. An edge e = uwv € E(I') is an h-real edge
(h €{0,1,2}) if [{u,v} NV (G)| = h, i.e., e contains h real-vertices.

Beyond-planar graphs. A family F of beyond-planar graphs is a set of (nonplanar) graphs that
admit drawings with desired or forbidden edge-crossing configurations [20]. The edge density of a
graph G € F is the ratio between its number m of edges and its number n of vertices. Graph G is
maximally dense if it has the maximum edge density over all graphs of F with n vertices. Graph
G is optimal if it has the maximum edge density over all graphs in F. Note that F might not
contain optimal graphs for all values of n (see, e.g., [20]).

3 Edge Density of Min-k-planar Graphs

We start by proving some general bounds on the number of crossings in a min-k-planar drawing
and on the number of edges of min-k-planar graphs.

Property 1 Any min-k-planar drawing T' of a graph G (with k > 1) has at most k - £ crossings,
where £ is the number of light edges of G in T'.

Proof: Two heavy edges cannot cross, thus each crossing in I" belongs to at least one light edge.
Since each light edge has at most k crossings, the bound follows. (|

Property 2 Let T be a min-k-planar drawing of an m-edge graph G (with k > 1). The number of

heavy edges of G in I' is at most T]:—l -m.

Proof: Let h and ¢ be the number of heavy edges and the number of light edges of G in T,
respectively. Observe that m > h + ¢. By definition, each heavy edge contains at least (k + 1)
crossings, and two heavy edges do not cross. Hence, the number of crossings in I' is at least

h-(k+1). By Property 1, we have h-(k+1) < k-¢ < k-m — k- h, which implies h < ﬁ-m. O

We now give a general bound on the edge density of min-k-planar simple graphs, for any k > 2.
Finer bounds for £ = 1,2, 3 are given in the next sections.
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Theorem 1 For any min-k-planar simple graph G with n vertices and m edges it holds m <
min{5.39Vk - n, (3.81vk + 3) - n} when k > 2.

Proof: Let u = min{5.39\/%-n, (3.81\/E+3) -n}. Note that p = 5.39vk-n when 2 < k < 3, while
= (3.81\/E+ 3) - n when k > 4. Hence, we prove that for 2 < k < 3 we have m < 5.39vVk - n,
while for £ > 4 we have m < (3.81\/%—1— 3) - n.

Suppose first that 2 < k < 3. If m < 6.95n, the relation m < 5.39Vk - n trivially holds, as
5.39vk - n > 7.63n. If m > 6.95n, let cr(G) be the minimum number of crossings required by any
min-k-planar drawing I' of G. The improved version by Ackerman of the popular Crossing Lemma
(Theorem 6 in [1]) implies that cr(G) > %%; If ¢ is the number of light edges of G in I', by
Property 1 we have cr(G) < k- ¢ < k-m. Hence 2%:’:—; < k - m, which yields m < 5.39vVk - n.

Suppose now that £ > 4 and let I' be any min-k-planar drawing of G with ¢ light edges. Since
no two heavy edges cross, the subgraph of G consisting of all heavy and crossing-free edges in I' has
at most 3n — 6 edges, hence m < £+ 3n — 6. Let G’ be the subgraph of G consisting of the £ light
edges of G only, and let I be the restriction of G’ in I'. We show that ¢ < 3.81v/k-n. The relation
trivially holds when ¢ < 6.95n, as k > 4. If £ > 6.95n, using Ackerman’s version of the Crossing
Lemma applied to G’, we have cr(G’) > Qigf;—z. Also, T” has at most % crossings, because each
light edge has at most k crossings and each crossing is shared by two edges of G’. It follows that

L L < EL which still implies £ < 3.81v/k-n. Therefore, m < £+3n—6 < £+3n < (3.81vVk+3) n.
0

3.1 Density of Min-1-planar Graphs

Let " be a min-1-planar drawing of a graph G. We color each edge of F(G) either red or green
with the following rule: (i) edges that are crossing-free in I are colored red; (i) if {e1,ex} € E(G)
is a pair of edges that cross in I', with cr(e;) > cr(es), we color e; as green and es as red (if
cr(e;) = cr(ea) = 1, the red edge is chosen arbitrarily). Note that, since I' is a min-1-planar
drawing, each red edge is crossed at most once, hence the above coloring rule is well-defined. In
particular, heavy edges are always colored green, while if two light edges cross, one is colored green
and the other is colored red. Hence, the subgraph induced by the red edges is a plane graph, called
the red subgraph of G defined by T', or simply the red subgraph of T'.

Lemma 1 Let G be a simple graph and let T' be a min-1-planar drawing of G. We can always
augment I' with edges in such a way that the new drawing is still min-1-planar and all faces of its
red subgraph have degree three.

Proof: Let I, be the red subgraph of I'. Since G is simple, every face of I' has degree greater than

two. Suppose that I', has at least one face f such that degp (f) > 4. We augment I' with new red

edges in two steps, described below. The augmentation may introduce multiple edges, but it will

guarantee that all faces of the new red subgraph have degree three.

Step 1. Suppose that there exists a face f of I', with degp (f) > 4 and containing two vertices u
and v that can be connected by an edge uv that splits f without crossing other edges of T'.
We add edge uv and color it as red (as it is crossing-free); we also say that this operation
augments f. We repeat this procedure until no such a face f exists. The obtained drawing
is still min-1-planar, since we added only crossing-free edges.

Step 2. Suppose that I', still contains a face f with degp (f) > 4. Observe that:
(1) Face f is traversed by a green edge in I', otherwise it would have been augmented in Step
1; see Figure 2(a).
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(a) (b) (c) (d)

Figure 2: Augmentation of I' as described in Step 2 of the proof of Lemma 1. Edges that can be
added to I" are represented as dashed red segments.

(7i) Every green edge e that traverses f is not incident to any vertex u of f. Namely, suppose
for contradiction that e is incident to a vertex w of f, and let e, = vw be the red edge of
f crossed by e. Since degr (f) > 4, at least one among v and w, say for example v, is not
adjacent to u. However this implies that either f can be augmented by adding a red edge
uv, which contradicts that we completed Step 1, or there is another green edge that crosses
er, which contradicts that e, is crossed at most once; see Figure 2(b).
(#i1) Face f cannot be traversed by two distinct green edges e; and ey (refer to Figure 2(c)).
More precisely, if this is the case, these edges cannot cross each other and, by property (i),
each of e; and ey crosses two distinct red edges of f. Also, since each red edge is crossed at
most once, e; and eg cross two disjoint pairs of red edges of f. Denote by ¢; and ¢ (resp.
co and ¢) the two crossing points of e; (resp. es) with the boundary of f. Assume that
¢1,C2,Ch, ¢} occur in this clockwise order on the boundary of f. This implies that, while
moving clockwise on the boundary of f, there is at least one vertex uw of f between c¢; and
o, and at least one vertex v of f between ¢}, and ¢}|. Hence, we can augment f with a red
edge uv, which contradicts that we completed Step 1.
By properties (2), (i7), and (iii), f is traversed by exactly one green edge e; however this edge
cannot leave on the same side two vertices of f that are not consecutive on its boundary, as
otherwise they would have been connected in Step 1. Hence f is a quadrilateral and e splits
f into two equal parts (see Figure 2(d)). We can then augment f by adding a diagonal red
edge in the quadrilateral face. We repeat this procedure until I', contains no face f such
that degp (f) > 4.

|

We now prove a tight bound on the edge density of min-1-planar graphs.

Theorem 2 Any n-vertex min-1-planar simple graph has at most 4n — 8 edges, and this bound is
tight.

Proof: Let I be a min-1-planar drawing of a simple graph G with n vertices. By Lemma 1, we
can augment I' (and hence G) with new edges, in such a way that the new drawing I (and the
corresponding graph G’) is min-1-planar and its red subgraph I'. is a triangulated planar graph.
Hence, I/ has exactly 3n — 6 edges and 2n — 4 faces. Every green edge of G’ (which is also a green
edge of G) traverses at least two faces of I'/.. Also, since I"” is a min-1-planar drawing and the red
subgraph has only triangular faces, each face of the red subgraph is crossed by at most one green
edge. Hence the number of green edges is at most 2”2—’4 = n — 2, and therefore G’ has at most
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Figure 3: Construction for the lower bound of Theorem 3.

(3n —6) + (n — 2) = 4n — 8 edges in total. Since G is a subgraph of G/, also G has at most 4n — 8
edges.

About the tightness of the bound, we recall that optimal 1-planar graphs with n vertices (which
are also min-1-planar) have 4n — 8 edges [17, 31, 32]. O

Plugging the bound of Theorem 2 into the bound of Property 2, we immediately get that a
min-1-planar simple graph has at most %n — % heavy edges in any of its min-1-planar drawings.
We considerably improve this bound in the next theorem.

Theorem 3 Let G be an n-vertex min-1-planar simple graph and let I' be a min-1-planar drawing
of G. There are at most %n — 1 heavy edges of G in T'. Further, there exist min-1-planar drawings
that contain 2n — O(1) heavy edges.

Proof: Let I' be a min-1-planar drawing of a simple graph G with n vertices. As in the proof
of Theorem 2, by Lemma 1 we can augment I' with new red edges, in such a way that the new
drawing I is min-1-planar and its red subgraph I". has all faces of degree three. Hence, I", has
exactly 3n — 6 edges and 2n — 4 faces. Clearly, the number of heavy edges of G in I" is not smaller
than the number of heavy edges of G in I'. By definition, every heavy edge of G in I is crossed at
least twice, hence it traverses at least three faces of I',. As before, each face of the red subgraph is
crossed by at most one heavy edge. Hence the number of heavy edges is at most % < %n - 1.
For the lower bound, consider a min-1-planar drawing constructed as follows. Start from a
pentangulation P on n vertices, that is, an n-vertex planar drawing with all faces of degree five.
Then, in each face of P, add two light edges incident to the same vertex and one heavy edge that
2

crosses these two edges. Refer to Figure 3. By Euler’s formula, P contains §n — % faces, and

therefore %n — % heavy edges. O

3.2 Density of Min-2-planar Graphs

Proving a tight bound on the edge density of min-2-planar graphs is more challenging than for min-
1-planar graphs. Observe that there are min-2-planar simple graphs with 5n — 10 edges, namely
the optimal 2-planar graphs [13]. Each optimal 2-planar drawing consists of a subset of planar
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edges forming faces of size five (i.e., pentagons), and each face is filled up with five more edges
that cross each other twice. In the following we prove that 5n — 10 is also an upper bound to
the number of edges of min-2-planar graphs. To this aim, for any & > 1, we introduce a class of
multi-graphs that generalize min-k-planar simple graphs.

Let G be a (multi-)graph (without self-loops) and let I be a (simple) drawing of G. A set of
parallel edges of G between the same pair of vertices is called a bundle of G. We say that T is
bundle-proper if for every bundle in G: (i) at most one of the edges of the bundle is involved in a
crossing; and (¢4) I' has no face bounded only by two edges of the bundle (i.e., no face of I' is a
2-real bigon). We remark that, in the literature, two parallel edges that form a face of degree two
are called homotopic. Hence, property (ii) is equivalent to saying that a bundle-proper drawing
does not contain homotopic parallel edges.

Graph G is bundle-proper min-k-planar if it admits a (simple) drawing I" that is both min-k-
planar and bundle-proper. If G has n vertices and has the maximum number of edges over all
bundle-proper min-k-planar n-vertex graphs, then we say that G is a maximally-dense bundle-
proper min-k-planar graph. Consider a pair (G,T'), where G is an n-vertex bundle-proper min-
k-planar graph and T' is a bundle-proper min-k-planar drawing of G. We say that (G,T) is a
mazximally-dense crossing-minimal bundle-proper min-k-planar pair if G is maximally-dense and T’
has the minimum number of crossings over all bundle-proper min-k-planar drawings of maximally-
dense bundle-proper min-k-planar n-vertex graphs.

Lemma 2 Let (G,T') be a mazimally-dense crossing-minimal bundle-proper min-k-planar pair.
These properties hold: (a) If a face f of T contains two distinct real-vertices u and v, then f
contains an edge uv. (b) For each face f of T, degp(f) > 3. (¢) A face f of T with deg-(f) > 3 is
a 3-real triangle.

Proof: We prove the three properties separately.

(a) Suppose for contradiction that f does not contain an edge uv. Then we can add (another copy
of) edge uv to ' (and therefore to GG) in the interior of f, without introducing any additional
crossings or creating a 2-real bigon. Since the resulting drawing is bundle-proper min-k-planar,
this contradicts the hypothesis that G is maximally-dense.

(b) Let f be a face of T'. Since G has no self-loops and T' is a simple drawing, degp(f) > 1.
Also, since I' is simple, f is neither a 0-real bigon nor a 1-real bigon. Finally, since I' is also
bundle-proper, f cannot be a 2-real bigon. It follows that degp(f) > 2.

(¢) Suppose degr(f) > 3. If degp(f) > 4 then there would be two non-consecutive real vertices
on the boundary of f that are not connected by an edge, which is impossible by (a). Then f
is necessarily a 3-real triangle.

a

To prove the upper bound we use discharging techniques. See [1, 2, 14, 21] for previous works
that use this tool. Define a charging function ch : F(T') — R such that, for each f € F(T):

ch(f) = degr(f) + degr(f) — 4 = 2degr(f) + degr(f) — 4 (1)

The value ch(f) is called the initial charge of f. Using Euler’s formula, it is not difficult to see
that the following equality holds (refer to [2] for details):

> ch(f)=4n-38 (2)

feF ()
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The goal of a discharging technique is to derive from the initial charging function ch(-) a new
function ch’(-) that satisfies two properties: (C1) ch’(f) > a degf-(f), for some real number a > 0;

and (C2) 3 repmy ch’(f) < > rer(r) h(f)-

If @« > 0 is a number for which a function ch’(-) satisfies (C1) and (C2), by Eq. (2) we get:
dn —8 = ZfeF(F) ch(f) > ZfeF(F) ch'(f) > a ZfeF(F) degp(f). Also, since ZfeF(F) degr(f) =
> vev(c) degg(v) = 2m, we get the following:

2
< =(n-2 3
m<=(n-2) 3)
Thus, Eq. (3) can be exploited to prove upper bounds on the edge density of a graph for specific
values of a, whenever we find a charging function ch’(-) that fulfills (C1) and (C2). We prove the
following.

Theorem 4 Any n-vertex min-2-planar simple graph has at most 5n — 10 edges, and this bound
is tight.

Proof: We already observed at the beginning of this section that there exist min-2-planar simple
graphs with 5n—10 edges (e.g., the optimal 2-planar). It remains to prove that min-2-planar simple
graphs cannot have more than 5n— 10 edges. Since any simple graph is also a bundle-proper graph,
we can show that the upper bound holds more in general for multi-graphs that are bundle-proper
min-2-planar. Also, since we want to find an upper bound on the number of edges, we can restrict
our attention to maximally-dense bundle-proper min-2-planar graphs, and in particular to those
having the minimum number of crossings. Let (G,I') be any maximally-dense crossing-minimal
bundle-proper min-2-planar pair, with |V (G)| = n. We show the existence of a charging function
ch’(-) that satisfies (C1) and (C2) for a = 2, so the result will follow from Eq. (3).

Consider the initial charging function ch(-) defined in Eq. (1). For each type of triangle ¢ we
analyze the value of ch(t) and the deficit/excess w.r.t. Z degf ().

o If t is a O-real triangle, ch(t) = —1 < 0 = 2 deg[-(¢), thus ¢ has a deficit of 1.

o If t is a l-real triangle, ch(t) =0 < 2 = 2 degp(¢), thus ¢ has a deficit of 2.
o If t is a 2-real triangle, ch(t) =1 > 2 = 2 deg(¢), thus ¢ has an excess of 1.
o If t is a 3-real triangle, ch(t) =2 > $ = Z degf.(¢), thus ¢ has an excess of 2.

Also, if f is any face of T with degp(f)
4+ deg} () > deg} () > 2 degh(f).

Therefore ch(-) only fails to satisfy (C1) at O-real and 1l-real triangles. We begin by setting
ch’(f) = ch(f) for each face f of T' and we explain how to modify ch’(-) in such a way that
ch’(f) > 2 deg-(f) for each face f € F(I'), thus satisfying (C1), and the total charge remains the
same, thus satisfying (C2).

Y

4, then ch(f) = 2degp(f) + degr(f) — 4 = degp(f) —

Fixing O-real triangles. Let ¢ be a 0O-real triangle in I' with edges €1, es, and e3. Refer to
Figure 4. The edges €1, é2 and €3 are three pairwise crossing edges of G. Since I' is a simple
drawing, €1, e; and €3 are independent edges of G (i.e., their six end-vertices are all distinct).
Also, since I' is min-2-planar, at least two of these three edges, say €3 and €3, do not cross other
edges of GG in I'. This implies that each of the two end-vertices of €, shares a face with an end-
vertex of e3. Hence, by Lemma 2(a), the four vertices of €2 and €3 form a 4-cycle e'exe’’es in G
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(a) (b) (c) (d)

Figure 4: (a) A O-real triangle ¢. (b) A 2-real quadrilateral f; and a 2-real triangle fo neighboring
t. (c) The initial charges. (d) The charges after a redistribution.

and I' contains a 2-real quadrilateral f; bounded by portions of €, €1, €5, €3, and a 2-real triangle
f2 bounded by portions of €, €3, €.

/ The chargg of f is ch’(f1) = 2, wit}; an excess ofﬁ w.r.t. %deg}(/fl) = %.4The charge/of fais
(ih (f2) = 1, with an excess of ¢ wr.t. £degp(f2) = %. We reduce ch’(f1) by z, reduce ch’(fz) by
£, and increase ch'(t) by 1. After that, the total charge is unchanged and all the three faces t, fi,
and f, satisfy (C1). Namely, ch’(¢) = 0 (it has no deficit/excess), ch’(f1) = £ (it has an excess of
2), and ch’(f2) = # (it has no deficit/excess). In the remainder of the proof, since we need a way
to keep track of the 2-real triangles and 2-real quadrilaterals whose charge has been modified as
described above, we call each of the faces f; and fs a 0-real triangle-neighboring face. Each 0O-real
triangle-neighboring face that is a 2-real triangle (as f2) shares its unique crossing-vertex with a
O-real triangle; each O-real triangle-neighboring face that is a 2-real quadrilateral (as f1) shares its
unique O-real edge with a O-real triangle.

Fixing 1-real triangles. Let ¢t be a 1l-real triangle, with real-vertex v; and crossing-vertices
vg and v3. Refer to Figure 5 for an illustration. Let ey = vyvs be the 0-real edge of ¢, and let
f1 be the face of ' that shares eq with ¢. If f; is a O-real quadrilateral, denote by e; the O-real
edge of fi not adjacent to ey, and by fo the face of I' that shares e; with f;. If f5 is a O-real
quadrilateral, denote by e the 0-real edge of fo not adjacent to ey, and by f3 the face of T' that
shares e with fo. We continue in this way until we encounter a face f, (p > 1) that is not a O-real
quadrilateral. This procedure determines a sequence of faces fo, f1, f2,... fp, and a sequence of
O-real edges eq, e1,...,e,—1 such that fo =t, f; is a O-real quadrilateral for each ¢ € {1,...,p—1},
fp is not a O-real quadrilateral, and the faces f; and f;,_; share edge e;_1 (i € {1,...,p}).

Note that degp(f,) > 4. Namely, let e = vivy and €’ = vyvs, and let € = viu and €/ = viw
be the edges of G that contain e and e’. Since f, has at least two crossing-vertices, if f, were a
triangle then it would be either a O-real triangle or a l-real triangle. If f, were a O-real triangle
then € and e’ would cross in I', which is impossible as & and e’ are adjacent edges and I is a simple
drawing. If f, were a 1-real triangle then u = w, i.e., € and ¢’ would be parallel edges both involved
in a crossing, which is impossible as I' is bundle-proper.

Therefore, degr(f,) > 4 and, as already observed at the beginning of this proof, ch’(f,) >
%deg?( fp). Also, the charge excess of f, is larger than % Namely, the charge excess of f, is
x = 2degp(f,) +degr(fp) —4 — 2 degp(f,) = degr(fp) + 2 degr(f,) —4. If f, has no real-vertices,
then it must have at least five crossing-vertices (because f, is not a O-real quadrilateral), which
implies x > 1 > % If f, has at least one real-vertex then x > g > %
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Figure 5: The demand path for a 1-real triangle ¢, ending at a face fp.

Hence, since the charge excess of f, is larger than %, the idea is to fill the % charge deficit
of ¢ by moving an equivalent amount of charge from f, to t. We say that ¢t demands from f,
through edge ep—1 a charge amount of % We call fy,..., fp (which is a path in the dual of I")
the demand path for t. Therefore, for each 1-real triangle ¢ of I' whose demand path ends at a
face f = f,, we decrease ch’(f) by % and increase ch’(t) from 0 to % Note that f cannot be a
0O-real triangle-neighboring face. Indeed, f is not a triangle, and if f is a 2-real quadrilateral then
its O-real edge is shared either with a 0-real quadrilateral or directly with the 1-real triangle ¢. It
follows that the set of faces whose charge is affected by fixing 1-real triangles does not intersect
with the set of faces whose charge is affected by fixing O-real triangles.

Due to the considerations above, after we have fixed all 1-real triangles, we may have problems
only if multiple 1-real triangles demanded from the same face f. In this case, f might no longer
satisfy (C1). In the remainder of the proof, we analyze which types of faces may be in this situation

and, if so, we prove how to fix their charge.

Fixing faces that received multiple demands from 1-real triangles. Let f be a face of T’
of degree larger than three that received multiple demands from 1-real triangles. This is possible
only if f has more than one 0-real edge, hence we can exclude that f is a 2-real quadrilateral.
Note that, by Lemma 2(c), each face of I" contains at most three real-vertices. If degp(f) > 7 then
f still satisfies (C1) even if it received a demand through each of its degp(f) edges when fixing
l-real triangles. Indeed, in the worst case, the new charge of f is ch’(f) = degp(f) + degp-(f) —
4 — 2degp(f) = 2 degp(f) + degl-(f) — 4 > 2 degi-(f) (because degp(f) > 7). The same happens
if degp(f) > 5 and degp(f) > 1 (i.e., f has at least one real-vertex). Indeed, in this case, the
number of O-real edges of f is at most degl.(f) — 1 = degp(f) — degl- —1, so f received at most
this number of demands from 1-real triangles. Hence, in the worst case, the new charge of f is
ch'(f) = degr(f) + degr(f) —4 ~ 2(degr(f) — degr(f) — 1) > 2degp(f) + fdegr(f) — % >
Ldegp(f)—2 > 2degp(f) +degr(f) — 2 > 2 degh(f). It follows that the only faces that may have
received multiple demands from 1-real triangles and that (after we have fixed all 1-real triangles)
no longer satisfy (C1) are the 1-real quadrilaterals, the 0-real pentagons, and the 0-real hexagons.
Each face f of one of these types has at least two adjacent 0-real edges. If f no longer satisfies
(C1), we show how to find extra charges that can be moved from some suitable faces with charge
excess towards f, so to compensate the charge deficit of f. To this aim, we first prove the following
claim; refer to Figure 6.

Claim 1 Let f be a face of T’ and let ey, eq,e3,e4 be consecutive edges on the boundary of f for
which a demand is made through both es and e3. Let t1 be the 1-real triangle that demanded from
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Figure 6: A supporting face f* for a face f that receives charge demands through two consecutive
O-real edges of its boundary (es and e3 in the figure).

f through eo and let v1 = €1 Nes be the real-vertex of t1. Analogously, let to be the 1-real triangle
that demanded from f through ez and let vo = € Ney be the real-vertex of to. Then there is a
curve C' that begins in f, leaves f through the crossing-vertex common to es and ez, passes through
a sequence of zero or more 1-real triangles and 1-real edges, and ends in a face f* that is either a
2-real triangle containing v1 and vy or a 2-real quadrilateral containing only one of v1 and vs.

Proof: Observe that the closed region Aj23 bounded by €, €2, €3 does not contain any vertex of G
other than v; since if it did, ¢; would be making a demand from some face other than f. Similarly,
the closed region As34 bounded by és, €3, €4 contains no vertices of G.

We can construct a curve C' that begins in f, passes through the crossing-vertex z of I' common
to es and e3, and then enters the face f’ opposite f at z. From the interior of f’ the curve C' then
crosses a sequence of zero or more 1l-real edges incident to vy and passes through zero or more
1-real triangles that contain v, until reaching some face f* that contains vy and is not a 1-real
triangle. One of the following must occur:

1. The face f* contains v; (see Figure 6(c)). In this case Lemma 2(a) implies that f* also

contains the 2-real edge v;v2. The crossing-minimality of I" implies that f* is a 2-real triangle
that contains v; and ve. (Otherwise €3 has more than one crossing on the boundary of f*
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Figure 7: A supporting face f* supports at most one face f.

and could be rerouted to avoid all but one of these crossings.)

2. The face f* has degree larger than three (see Figure 6(d)). Then f* contains an edge e of T’
that is not incident to v, and € crosses €3. No endpoint of € is in Aqs3, € does not cross es,
and since I' is simple, € has only one crossing with €3, so € must cross ;. Since e already
crosses eo and ey, this implies that € has no additional crossings. Therefore one end-vertex
v of € belongs to f*. By Lemma 2(a), the edge vov is on f*. The crossing minimality of T
then implies that f* is a 2-real quadrilateral that contains vs.

This completes the proof of the claim. |

Let f be a l-real quadrilateral, a 0-real pentagon, or O-real hexagon with edges e, e, e3, ey
that satisfy the conditions of the claim and let f* be the face whose existence is established by the
claim. In each such case, we move a charge of % from f* to f. Based on the claim, there are two
cases to consider:

1. The face f* is a 2-real triangle that contains v; and vy (see Figure 6(c)). Let z be the

crossing-vertex of f*. Then the face g that shares x with f* but has no edge in common with
f* is either a O-real quadrilateral or it coincides with f (because g is one of the faces of the
demand path for ¢; ending at f). In particular, g is not a O-real triangle, which implies that
ch’(f*) was not modified when fixing O-real triangles. Therefore ch’'(f*) = 1 immediately
after fixing O-real triangles. The charge on 2-real triangles is never modified when fixing 1-
real triangles, hence ch’(f*) = 1 even after fixing all 1-triangles. Since we reduce the charge
of f* by % and increase the charge of f by %, we can think of this charge travelling along the
suffix of the demand path t; ~» f that begins at g; we also say that the charge leaks out of
f* through x.

We show that charge leaks out of f* through = at most once. This is obviously the case if
f* and f share the vertex @ = z (i.e., g = f). The only other possibility is that the charge
leaks out of f* into the O-real quadrilateral g that is part of another demand path ¢ ~ f”,
with ¢ # t1; refer to Figure 7. Let e and €’ be the two edges of g other than e; and es.
Then t is the 1-real triangle that contains vo and whose 1-real edges are portions of € and
€. Each of € and € crosses e; and e3. Possibly es € {e, e’} but we can assume without loss
of generality that e # e;. Therefore the edge €3 crosses €s, €4, and €, for a total of at least
3 crossings. Hence, neither e nor €’ is involved in any additional crossings, which implies
that the face next to g on the demand path ¢t ~ f” contains end-vertices of € and €, i.e.,
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this face coincides with f”. Hence, since T is simple (which excludes that € and € cross),
degr.(f") > 2. Tt follows that f” is neither a 1-real quadrilateral, nor a 0-real pentagon, nor
a O-real hexagon. Since the charge that leaks out of f* through x is always left at a 1-real
quadrilateral, or at a 0-real pentagon, or at a 0O-real hexagon, we conclude that charge leaks
out of f* at x at most once.

2. The face f* is a 2-real quadrilateral (see Figure 6(d)). In this case, f* has only one O-real edge,
shared with a O-real quadrilateral. Again, this implies that ch’(f*) was not modified when
fixing O-real triangles. Hence, immediately after fixing 0-real triangles we have ch’(f*) = 2.
Since we reduce ch’(f*) by % and increase ch’(f) by %, we can again think of this as a charge
of % leaking from f* through a crossing-vertex x of f* and then travelling down a suffix of
the demand path t; ~» f. With the same reasoning as above, this can happen at most once
for each of the two crossing-vertices of f*. Therefore, the total charge that leaves through

these two vertices of f* is at most %

To summarize the discussion above, each face f* can give a charge of % for each of its crossing-
vertices, and after that it still satisfies (C1). In the following we call f* a supporting face. To
complete the proof, we have to show that if f is either a 1-real quadrilateral, or a 0-real pentagon,
or a O-real hexagon, and if f received multiple demands from 1-real triangles, then f always finds
a suitable number of supporting faces to satisfy (C1). We analyze separately the three different
types of categories for f, and assume that f received more than one demand from some 1-real
triangles.

o If f is a l-real quadrilateral, then it received exactly two demands of %, through its two
consecutive O-real edges. In this case, a charge of % leaks into f from one supporting face.
Hence we have ch/(f) > 1+ 1 —2-2 = 2 = 2deg[.(f), that is f satisfies (C1).

e If f is a O-real pentagon, the following cases are possible:

— f received exactly two demands. We have ch'(f) =1—2-2 =1 > 0= 2 degp(f), thus
f satisfies (C1) without needing supporting faces.

— f received exactly three demands. Two of these demands necessarily occur through two
consecutive edges of f, so a charge of at least % leaks into f from a supporting face.

Therefore ch'(f) =1+ { —3-2 =0 = 2degp(f), that is f satisfies (C1).

— f received exactly four demands. There are three pairs of consecutive edges of f at
which the demands occur, so a total charge of 2 leaks into f from three supporting

5
faces. Therefore ch'(f) =1+ 2 —4-2 =0 = 2degp(f), that is f satisfies (C1).

— f received exactly five demands. There are five pairs of consecutive edges at which
the demands occur, so a total charge of % = 1 leaks into f from five supporting faces.
Therefore ch'(f) =1+1—5-2 =0 = 2degp(f), that is f satisfies (C1).

o If f is a O-real hexagon, we have two cases. If f received at most five demands, then
ch'(f) >2—-5-2=0= 2degp(f). Otherwise, a total charge of at least ¢ leaks into f from
six supporting faces, thus we have ch'(f) =2+ 2 —6-2 =2 > 0 = Zdegp(f). Hence, in

both cases f satisfies (C1).

In conclusion, at the end of the discharging process, the new function ch’(-) satisfies (C1) for
all faces of I', and the total charge is the same as the initial total charge, that is, ch(-) satisfies
(C2). This completes the proof. O
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Figure 8: Illustration for the proof of Claim 2. Green edges are heavy edges, solid red edges are
light edges of I/, and dashed edges are light edges that can be added to I to get I'T.

Combining Theorem 4 with Property 2 we immediately get that any min-2-planar drawing has
at most 2n — 4 heavy edges. The next theorem considerably improves this bound by exploiting
discharging techniques.

Theorem 5 Let G be an n-vertex min-2-planar simple graph and let T' be any min-2-planar draw-
ing of G. There are at most g(n — 2) heavy edges of G in I'. Also, for infinitely many integers
n > 2, there exist min-2-planar drawings on n-vertex simple graphs with at least n —4 heavy edges.

Proof: By definition, all heavy edges of G in I" have at least three crossings with light edges. From
I', we derive a graph G~ and a corresponding drawing I'~ by removing all the heavy edges of G
in I". Then we remove all light edges that have two crossings in I'™ and we call I the resulting
drawing. Note that the light edges that originally crossed the heavy edges are not removed in this
phase. Drawing I is 1-planar. All the faces of IV describe cyclic sequences of real-vertices and
crossing-vertices, and in each sequence we do not have two subsequent crossing-vertices, as this
would mean two crossings on a light edge.

Claim 2 I can be augmented by adding light edges to get a 1-planar drawing I't whose faces
are all triangles. Also, the drawing T* consisting of ' plus the heavy edges of G in T is still
min-2-planar.

Proof: The augmentation of I with the new light edges is done by considering the heavy edges
of I'. If uw and v are vertices of two distinct 1-real edges with a crossing ¢, then we can add an
edge between u and v that will have at most two crossings with heavy edges e and ¢’ in I'*; see
Figure 8(a). In this way, we can guarantee that the remaining faces that are not triangles have
only real vertices. We now iteratively show how to split each non-triangular face f to complete
the construction of I't'. If f is not traversed by a heavy edge, we can triangulate it instantly. If
f is traversed by a heavy edge e that is incident to a vertex uw of f and crosses the boundary of f
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N

(a) (b)

Figure 9: Heavy edges crossing 2-real and 3-real triangles. (a) f; and f5 are start faces for the
heavy edge e. (b) If f is traversed by two heavy edges, then f’ is traversed by no heavy edges.

through the edge vv’, we can add an edge uv that has at most one crossing with a heavy edge €’
in T'*; see Figure 8(b). Note that instead of uv we can choose uv’, if u and v are already adjacent.
Assume now that no heavy edge e traversing f is incident to any vertex of f. Let u,u’,v,v" be
vertices of f and wu’,vv’ the edges that are crossed by e. Observe that uu’ and vv’ might have a
common vertex (e.g., v’ = v’). Then we can add the edge uv as it has at most two crossings with
heavy edges ¢/, e” in T'*; see Figure 8(c). Note again that instead of uv we may choose u'v’, if u
and v are already adjacent. If v/ and v’ are also adjacent or they coincide, then degp+(f) = 4.
In this case, since I' is min-2-planar, there are at most four heavy edges traversing f and every
possible configuration of these heavy edges allow adding a light edge between two vertices of f
traversing at most two of these heavy edges in I'*; see Figures 8(d) to 8(f).

Finally, observe that the edges added in I to achieve I'" can only cross heavy edges of G in
I, hence I'" is 1-planar. [ |

Since I'" is 1-planar, it contains neither 0-real triangles nor 1-real triangles. On the other hand
it may contain 2-real and 3-real triangles. Also, observe that a heavy edge in I'* can cross several
light edges in 't (see for example Figure 9(a)). The next two claims show some properties of
2-real and 3-real triangles of I't with respect to the heavy edges reinserted in I'*.

Claim 3 Let f be a 2-real triangle in T'". The following properties hold: (i) If f is a start face
for a heavy edge e (i.e., e is incident to a real-vertex of f), then e is the only heavy edge traversing
fan T*. (id) At most two heavy edges traverse f in I'*. (iii) If two heavy edges traverse f, then
the face f' that shares only the crossing-vertexr with f is not traversed by a heavy edge in I'*.

Proof: (i) This is clear as one edge of f has already two crossings and a heavy edge through the
other edges of f would imply two crossing heavy edges. (ii) Because of (i), we know that this is true
if a heavy edge starts at f. Otherwise, three or more traversing heavy edges would imply at least six
extra crossings with the border of f and this contradicts that T'* is min-2-planar. (i4i) Both 1-real
edges of f belong to edges of the graph that also contain 1-real edges of f’. Because of (i), both
heavy edges do not start at f and therefore the border of f is crossed four times. So the 1-real edges
of f already have each two crossings and no heavy edge can traverse f’ (see Figure 9(b)). |

Claim 4 Let f be a 3-real triangle in T. The following properties hold: (i) If f is a start face
for a heavy edge e, then there is al most one other heavy edge traversing f in T'*. (ii) At most
three heavy edges traverse f in I'*.

Proof: (i) Let ¢’ be the edge of f that is crossed by e. Since no two heavy edges can cross, each
other heavy edge traversing f must cross e’. It follows that, since I'* is min-2-planar and since €’ is
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Figure 10: Tllustration for the proof of Theorem 5: Different faces of I'*. Light edges are red and
heavy edges are green. Each face is labeled with its initial charge.

a light edge, there can be at most one heavy edge other than e that traverses f. (ii) The previous
case implies that at most two heavy edges can traverse f if one of them has f as a starting face.
On the other hand, if a heavy edge traverses f and does not have f as a starting face, it causes
two crossings along the boundary of f. Hence, since I'* is min-2-planar, there can be at most three
heavy edges of this type. |

Thanks to the claims above, each 2-real triangle of I'" that is traversed by some heavy edges
in I'* is partitioned into either two or three faces of I'*. Also each 3-real triangle of I'" that is
traversed by some heavy edges in I'* is partitioned into two, three, or four faces of I'*. Refer to
Figure 10 for an illustration of all the cases. To count the maximum number of heavy edges in I'*
(and therefore in T'), we apply a variant of the discharging technique given in Theorem 4. This
variant is based on assigning some of the initial charge of the faces of I'*| as defined in Eq. (1), to
the edges of I'*, without changing the overall charge, which is equal to 4n — 8 based on Eq. (2).
Recall that a heavy edge of G in I'* is partitioned into several portions (which correspond to edges
of T*). In particular, since a heavy edge e has at least three crossings, it is formed by at least
four portions: two of these portions are 1-real edges of ['*, which we call end-segments of e, and
the others are O-real edges of I'*, which we call intermediate-segments of e. For example, the
heavy edge in Figure 9(a) has two end-segments (those splitting the faces f; and f5) and three
intermediate-segments (those splitting the faces f, f3, and f4). For each heavy edge e, we assign
charge 1 to each of its end-segments, by subtracting the same amount of charge from one of the
faces of I'* incident to the end-segment. Note that for each end-segment, there always exists a
face of I'* incident to it that has an initial charge equal to 1 (see Figures 10(a), 10(c) and 10(d));
hence, this subtraction of charge does not cause a negative charge in a face of I'*. Also, for each
intermediate-segment of e, we assign to this segment a charge of %, by subtracting the same amount
of charge from one of the faces of I'* incident to the intermediate-segment. Note that in all cases
except for the case of 2-real triangles crossed by two heavy edges (see Figure 10(b)) each face of
I'* has always a sufficient amount of initial charge to support all the intermediate-segments of a
heavy edge that are incident to it (see Figures 10(e) to 10(g)). In the last unsolved case of a 2-real
triangle f that is crossed by two heavy edges, we apply Claim 3 (i) to the face f and therefore
use the 1 charge of the face f’ which uniquely corresponds to f (see Figure 9(b)). Hence, again,
this subtraction of charge does not cause a negative charge in a face of I'*. At the end of this
assignment process, each heavy edge is assigned a charge of at least 1 4+ 1 + % + % = 13—0 and no
faces of I'* have a negative charge. Hence, denoted by h the number of heavy edges in I'*, we have
hi < 4n — 8, which implies h < &(n — 2).

n—2

For the lower bound, consider a planar drawing consisting of *5= hexagons as shown in Fig-
ure 11(a). Without creating multiple edges, seven edges including two heavy edges can be added in
each hexagon except the middle and the external face (see Figures 11(b) and 11(c)). For these two
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(a) (b) (c)

Figure 11: (a) Construction for the lower bound of Theorem 5. (b) Addition of edges in the middle
and the external face and (c) in all other faces of the drawing of Figure 11(a).

hexagons we can have four edges, including one heavy edge each. Therefore the resulting drawing
contains "7_2 -2 —2 =mn — 4 heavy edges. O

3.3 Density of Min-3-planar Graphs

For the family of min-3-planar graphs we consider graphs that can contain non-homotopic parallel
edges. Indeed, it is known that n-vertex 3-planar graphs that are simple have at most 5.5n — 15
edges [31], but this bound is not tight. On the other hand, a tight upper bound is known for
3-planar graphs that can contain non-homotopic multiple edges, namely 5.5n — 11 [29]. Note that
later we will present a class of min-3-planar graphs with 1%(n — 2) edges, cf. Theorem 10, which
exceeds the upper bound for 3-planar graphs. Here, we give corresponding upper bounds on the
edge density and on the density of the heavy edges in min-3-planar graphs. The proofs still exploit
discharging techniques.

Theorem 6 Any min-3-planar graph with n vertices has at most 6n — 12 edges.

Proof: As in the proof of Theorem 4 we can assume a restriction to maximally-dense crossings-
minimal bundle-proper min-3-planar pairs (G,I") with |[V(G)| = n vertices, and we will use a
discharging technique to prove the statement. Our discharging function ch’(-) is similar to that
in [1], where the same bound for 4-planar graphs was proven, but the details differ, as here edges
with more than four crossings can exist. We can assume that I' is 2-connected and hence that the
boundary of each face f of ' is a simple cycle. Indeed, Ackerman proved that if I is not 2-connected
it always has no more than 6n — 12 edges [1, Proposition 2.1]. Although Ackerman concentrates
on 4-planar graphs, he does not use this hypothesis to show this fact, thus his argument works
also in our case.

We introduce the discharging steps of ch’(-) and show that all faces satisfy (C1) and (C2) for
a = %, which implies with Eq. (3) the desired bound on the edge density. This is relatively
difficult to see for O-real pentagons, so the major part of the proof is reserved for these. For that
we distinguish different cases depending on the structure of the graph near a 0-real pentagon.

Before we can write down the discharging function, we introduce some definitions. Let x be a
crossing-vertex in a drawing I'. We call the faces f and f’ vertez-neighbors, if both their boundaries
contain x but not a common edge e € E(T'). Recall the definition of demand path in the proof of
Theorem 4 for 1-real triangles. We naturally extend the definition of demand path for arbitrary



JGAA, 28(2) 1-35 (2024) 19

faces fy through each of their O-real edges. If f is the end of a demand path for fy, then we say
that f and fy are demand-path-neighbors (even if no demand is made). Note that in Section 3.2
degr(f) > 4 was already shown for the case that fy is a 1-real triangle and this holds also for
0-real triangles, still using the fact that I' is a simple drawing and two edges cannot cross more
than once.

We assign to every face f € F(T) the initial charge chy(f) = ch(f) as defined in Eq. (1)
and modify the charges by the following steps i € {1,2,3,4} to get ch(f). The final charge is
ch’(f) = ch)(f). The idea is as in Section 3.2 to fix first the charge of the O-real and then the
1-real triangles. The last step fixes O-real pentagons, which contribute to multiple triangles in the
first step.

Step 1. Every O-real triangle receives % from each of its demand-path-neighbors.

Step 2. If f is a face with positive charge that is not a 1-real quadrilateral, then f gives % to each
1-real triangle that shares a 1-real edge with f. However, if f is a 2-real triangle that shares
only one of its two 1-real edges with a 1-real triangle ¢, then f gives % to t.

Step 3. Let t be a 1-real triangle with chy(t) < % charge. Then ¢ receives % — ch)(t) from its
demand-path-neighbor.

Step 4. Every face f distributes its (positive) excess chj(f) — 1 degf(f) equally over all O-real
pentagons that are vertex-neighbors of f.

Since charge is only moved, (C2) holds for ch’(f). For the four steps we have:

Proposition 1 In any mazimally-dense crossing-minimal bundle-proper min-3-planar pair (G,T")
the following holds for the above charging function ch’(f):

(a) In Step 1 and Step 3 charge gets only moved through 0-real edges.
(b) In Step 2 charge gets only moved through 1-real edges.

(c) Charge gets never moved through 2-real edges.

(d) In Step 3 each 1-real triangle receives most % charge.

(e) Let f be a 1-real triangle and e a 1-real edge of the boundary of f. If € has more than three
crossings, then f receives at least % charge in Step 2.

Proof: (a) follows by the definition of a demand-path-neighbor and (b) directly by the definition
of Step 2 of ch’(:). Because of (a) and (b) charge gets never moved through 2-real edges in Step
1-3. Since in Step 4 charge is distributed only over O-real pentagons, no 2-real edge is involved.
Claim (c) holds also for that step. Each 1-real triangle f has chy(f) = 0 and contributes no charge
in Step 1-2. Thus § — chy(f) < 1 and so (d) is true. For (e) we consider the O-real edge ¢’ of
the boundary of the 1-real triangle f. Since & has more than three crossings, ¢/ has at most three
crossings. Therefore there is a 2-real triangle f’ adjacent to f with two real-vertices. One of them
is an end-point of ¢’ and the other one is the common vertex with f. Note that by maximal edge-
density the edge between the two real-vertices does exist. 2-real triangles have no O-real edges and
therefore by applying (a) we have ch}(f) = chi(f) = 3 > 0. So f’ contributes at least ¢ in Step 2
to f. |

We analyze the final charges ch’(f) for all faces f € F(I'). By Lemma 2(c) we have to consider
only h-real faces for h < 2 and 3-real triangles, since there are no other faces under the assumption
of maximal density. Note that a face contributes in Step 1-3 through each edge at most once.
Also a face can not get a deficit in Step 4, so it is enough to show chj(f) > & degl(f). We use
Proposition 1(a)-(d) to receive the following results:
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e Each O-real triangle f has chj(f) = —1, receives 3 - & in Step 1 and does not contribute or

1
3
receive charge in Step 2-3. So chy(f) = 0 = 3 degp(f).

e Each 1-real triangle f has either already chy(f) > % and then does not contribute any charge
in Step 3 or otherwise, by Step 3, we have chi(f) = chy(f) 4+ (3 — chy(f)) = & = & degp(f).

e Each 2-real triangle f has chy(f) = 1 and contributes through one or two edges in total at
most % in Step 2. So chi(f) > 2 =  degp(f).

e Each 3-real triangle f has chy(f) = 2 and contributes or receives no charge, so chs(f) =2 >
1 = 3 degp(f).

e Each 0-real quadrilateral f has chy(f) = 0 and contributes or receives no charge, so chj(f) =
0 = 3 degr(f).

e Each 1-real quadrilateral f has ch((f) = 1 and contributes through each 0-real edge at most
once and never through a 1-real edge, so it loses in Step 1-3 in total at most % Therefore

ch(f) > L = L degl(f).

e Each 2-real quadrilateral f has chg(f) = 2 and contributes at most % through its only 0-real
edge and 2 - % through the 1-real edges, so it loses in Step 1-3 in total at most % Therefore

chy(f) > 2 > 2 = Ldegl.(f).

e Each 1-real pentagon f has chg(f) = 2 and contributes through its three 0-real edges at most
3- % and through its two 1-real edges at most 2 - £, so ch(f) > 2 > 1 = 1 degp(f).

e Each 2-real pentagon f has chj(f) = 3 and contributes through its two O-real edges at most
2- % and through its two 1-real edges at most 2 - %, so chy(f) > 2> % = %deg?(f).

e Each face f with degp(f) > 6 has chy(f) = degp(f) — 4 + degl-(f) and contributes at
most § degp(f) charge through its degp(f) edges. So chy(f) > 2 degp(f) — 4 + degp(f) >

degr(f) > 3 degp(f).

It only remains to show ch)y(f) > 0 for all O-real pentagons f. For this we denote for i € {0,1,2,3,4}
by e; the edges of the boundary of f in clockwise order and by ¢; (even if not a triangle) the demand-
path-neighbor of f at e;. Further we denote by f; the vertex-neighbors of f at the crossing-vertex
of e; and e(;11) mod 5. We consider different cases for the demand-path-neighbors of f. Because of
rotation- and mirror-symmetry we can shift or negate all indices modulo 5 without loss of generality
and to ease notation we will always use fixed indices. We consider three main cases: The number of
demand-path-neighbors of f that are 0-real triangles is more than one (cases 1 and 2), exactly one
(cases 3 and 4), or zero (cases 5 and 6). Note that chy(f) =1, so if f receives 2 or loses not more
than 1 charge then ch/(f) > 0. This is for example the case if three or less demand-path-neighbors
of f are O-real or 1-real triangles, so we can assume always the opposite. We use this argument
repeatedly in the proof.

Case 1. The demand-path-neighbors t; and ;1 1) mod 5 are O-real triangles. Fixi=1.
Assume that €y and €3 have exactly three crossings. Then €; and €3 both have an end-point
adjacent to f1. If these end-points are the same, then f; is a 1-real quadrilateral. Otherwise, by
Lemma 2(c), these end-points are connected by an edge and f; is a 2-real pentagon. Note that
this argument will be used at various places in the proof.
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(b)

Figure 12: Case 1: If €y and €3 have exactly three crossings, then f; is a (a) 1-real quadrilateral
or (b) a 2-real pentagon. (c) If €y has more than three crossings, then f receives charge from fj
and fo. (Here and in the following figures, edges that exist in some subcases are dotted and edges
with more than three crossings are bold.)

e If f, is a 1-real quadrilateral, then t4 is a 2-real quadrilateral and therefore ch)(f) > 0, in
case one of t3 and t5 is not a triangle. If both are triangles, one of them — say without loss
of generality t3 — is a 1-real triangle as otherwise €; and e; would have more than three
crossings (see Figure 12(a)). This implies that t3 receives 1 from the 2-real triangle f3 in
Step 2 and so ch)y(f) > 0.

e If fi is a 2-real pentagon, then fy and f> can both not be 0-real pentagons, because then e;
and €z would have more than three crossings (see Figure 12(b)). So f; contributes its excess
of at least % in Step 4 only to f and therefore chy(f) > 0.

Assume now that without loss of generality €y has four or more crossings (see Figure 12(c)). Then
€1 and € have exactly three crossings and fy and fo are 2-real quadrilaterals, which contribute
each their excess of at least % to at most two faces in Step 4. So f receives 2 - % and therefore
chy(f) > 0.

Case 2. The demand-path-neighbors ¢; and (;;2) moq 5 are O-real triangles. Fixi=1.
Then e; has four or more crossings and so €y and €4 have exactly three crossings. So f, is a 2-real
triangle and contributes in Step 2 and Step 4 in total % to f and its demand-path-neighbors. If f
has four or less demand-path-neighbors that are O-triangles or 1-triangles, then already ch/y(f) > 0.
Assume that f has five such demand-path-neighbors and tg, 2, t4 are 1-real triangles (see Figure 13)
as otherwise we can refer to case 1.

If f, is a 2-real quadrilateral, then it contributes its excess of at least % to f in Step 4 and
so ch)(f) > 0. If f is a l-real quadrilateral, then it has an excess of %, because it contributes
no charge in Step 1 to fo. This excess is contributed in Step 4 to only f, so ch)(f) > 0. For
degr(f1) > 5 the excess of f1 after Step 3 is at least

8
> dEgF(fl) - §7

Wl =
W N

degr(f1) — 4+ 2 degh(f1) — »

3 3degp(f1)+2~
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Figure 13: Case 2: If t; and t3 are O-real triangles, then f; is a 2-real triangle. f receives also
charge from f7.

because fi contributes through the 1-real edges in total at most %, it contributes no charge to fo

and degp-(f1) > 1. This is distributed over at most deg(f1) — 3 faces as f; has at most degp(f1)—1
vertex-neighbors and does not contribute charge to fy and to. For degp(f1) > 5 the equation

%degr(fl) - %

degr(f1) -3 =

1
3
holds. This implies ch)(f) > 0.

Case 3. The demand-path-neighbor ¢; is a 0O-real triangle and the demand-path-
neighbor t;,j € {(¢+1) mod 5, (i — 1) mod 5} is a 1-real triangle with no 0-real quadri-
laterals in its demand path. Fixi=1 and j = 2.

e Assume €; has more than three crossings. So €; has exactly three crossings. Then fs5 is a
2-real triangle contributing % to f and its demand-path-neighbors (see Figure 14(a)).

So we can assume that all demand-path-neighbors of f are O-real or 1-real triangles (otherwise
ch(f) > 0) and tg,t2,t3,t4 are l-real triangles (otherwise we can refer to case 1-2). Note
that if the demand path of ¢4, contains no O-real quadrilateral, then f3 is a 2-real triangle
and therefore ch)(f) > 0. If it contains one or more O-real quadrilaterals, then t4 receives
at least % by Proposition 1(e). Also f receives at least % from fy, as we can see with the
following argument: If fy is a 1-real quadrilateral, then ¢y receives % charge from a 2-real
triangle in Step 2. If fy is a 2-real quadrilateral, then f receives the excess of fy in Step
4, which is at least % If fo has more than four vertices, then it distributes not less than

degr(fo) —3 — degr(fo) 2 degp(fo) — 3 over at most degp(fy) — 3 vertex-neighbors and so
[ receives at least ¢ charge in Step 4. So in total ch)(f) > 0.

e Assume € has exactly three crossings. Then f; is a 2-real quadrilateral, which contributes %
in Step 2 to t5 and has an excess of at least % after Step 3, which is distributed over at most
two faces in Step 4 (see Figure 14(b)). If there is a demand-path-neighbor of f, which is not
a O-real or l-real triangle, then ch)(f) > 0. So we assume that tg,t3,t, are 1-real triangles
(otherwise we can refer to case 1 or 2).
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(b)

Figure 14: Case 3: (a) If €y has more than three crossings, then fs contributes charge to ty and
t3. Also charge is moved to t4 and from fy to f. (b) If €y has exactly three crossings, then f;
contributes charge to f and t5. If this is not %, then charge is moved to t3 or from f5 to f.

If now fy is not a O-real pentagon, then f; contributes its excess in Step 4 only to f and
chy(f) > 0 follows. If fj is a O-real pentagon, then @ has more than three crossings. So if the
demand path of ¢3 contains one or more 0-real quadrilaterals, then t3 receives at least % in by
Proposition 1(e) and ch)(f) > 0. If the demand path of ¢3 contains no O-real quadrilaterals,
then fy is a 2-real triangle that contributes % both to t, and t3 and so chy(f) > 0.
Case 4. The demand-path-neighbor ¢; is a 0O-real triangle and the demand-path-
neighbor ¢;,j € {(: + 1) mod 5,(: — 1) mod 5} is a 1l-real triangle with one or more
O-real quadrilaterals in its demand path. Fix:=1and j = 2.

e Assume ¢y has more than three crossings. So €; and €, have exactly three crossings. It follows

that fy is a 2-real quadrilateral with an excess of at least % after Step 3, so it contributes at
least 1 to f in Step 4 (see Figure 15(a)).
So if four or less demand-path-neighbors of f are O-real or 1-real triangles, then ch)(f) > 0.
Otherwise we assume that all demand-path-neighbors except t; are 1-real triangles as with
another O-real triangle we can refer to case 1 or 2. But then tj is a 1-real triangle without a
0-real quadrilateral in its demand path and we can refer to case 3.

e Assume ¢y has exactly three crossings and ¢y is a 1-real triangle. If the demand path of
to has no O-real quadrilaterals, then we refer to case 3. Otherwise €; has more than three
crossings and so by applying Proposition 1(e) both ¢y and t5 receive each % charge in Step
2 (see Figure 15(b)). So if not all demand-path-neighbors of f are 0-real or 1-real triangles,
then ch)(f) > 0. So assume now the opposite and that ¢3 and t, are 1-triangles (otherwise
we can refer to case 1-2). Because €yp and € already have three crossings, t3 and ¢4 have no
0-real quadrilaterals in their demand paths. So f3 is a 2-real triangle contributing % to each
t3 and t4. Therefore chy(f) > 0.

e Assume €y has exactly three crossings and tg is not a 1-real triangle. Then we can assume
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Figure 15: Case 4: (a) If €y has more than three crossings, then f; contributes charge to f and we
can refer to case 1-3. (b) The situation for the subcase that €, has exactly three crossings and tg
is a 1-real triangle. (c) Situation that €, has exactly three crossings and t( is not a 1-triangle.

that o is also not a O-real triangle (otherwise we can refer to case 1) and that ¢35 and t4 are
1-real triangles (otherwise we can refer to case 2). If then the demand path of ¢3 contains
no O-real quadrilateral, it follows that f3 is a 2-real triangle contributing % each to t3 and t4
and so ch)(f) > 0.

If otherwise the demand path of ¢3 contains a 0-real quadrilateral, by Proposition 1(e) t3
receives ¢ charge in Step 2 (see Figure 15(c)). We now consider different cases for fi. If fy is
a l-real quadrilateral, then t5 receives % from a 2-real triangle in Step 2 and so chy(f) > 0. If

otherwise degp(f1) > 5, then the excess of f; after Step 3 is at least degp(f) —3 — de%(f) =
2 degp(f) — 3 and this is distributed in Step 4 over at most degp(f) — 3 vertex-neighbors. So
f receives at least é from f; and so ch)(fo) > 0.

Case 5. Exactly four demand-path-neighbors of f are 1-real triangles and no demand-
path-neighbor is a 0-real triangle. Fix the indices so that ¢;,i € {1, 2, 3,4} are 1-real triangles.
If the demand paths of ¢5 and ¢3 contain no 0O-real quadrilaterals, then fy is a 2-real triangle
contributing % each to to and t3 and this implies ch)(f) > 0. So assume without loss of generality
that the demand path of t5 contains a O-real quadrilateral. If the demand path of t4 contains at least
one O-real quadrilateral, then €3 has more than three crossings and it follows by Proposition 1(e)
that ¢ and t4 both receive § in Step 2 and therefore chy(f) > 0.

If otherwise the demand path of t4 contains no O-real quadrilaterals, then we can assume that the
demand path of 3 does so, because otherwise f3 is a 2-real triangle, what implies ch)(f) > 0. If
now the demand path of ¢; contains a 0-real quadrilateral we know by Proposition 1(e) that ¢; and
t3 both receive & in Step 2 and therefore ch)y(f) > 0.

So assume that the demand paths of ¢; and ¢4 contain no 0-real quadrilaterals (see Figure 16). If g;
has exactly three crossings, then fy is 2-real triangle, which contributes % to t; and so chy(f) > 0.
If &4 has exactly three crossings, then with the same argument f, contributes % to t4 and so
chy(f) > 0. If both & and &, have more than three crossings, ¢, and t3 receive by applying
Proposition 1(e) each i charge in Step 3 and so chj(f) > 0.
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Figure 16: Case 5: The situation if only t; and t3 have a 0-real quadrilateral in their demand
paths.

Figure 17: Case 6: (a) The situation if only ¢1,¢3 and ¢4 have a O-real quadrilateral in their demand
paths. (b) Focus on f3 and its renamed neighbors with the further assumption that fy and f; are
1-real triangles. Here we show the example that f3 is a 0-real pentagon.

Case 6. All demand-path-neighbors of f are 1-real triangles. If the demand paths of only
one demand-path-neighbor ¢; or two demand-path-neighbors #;,£(j11) mod 5 contain O-real quadri-
laterals, then f(;12) mod 5 and f(;4+3) mod 5 are 2-real triangles and so ch(f) > 0. So we assume
without loss of generality that the demand paths of ¢; and 3 contain 0-real quadrilaterals.

Then €; has more than three crossings and both ¢; and t3 receive % in Step 2 by applying Propo-
sition 1(e). So if the demand paths of ¢y and ¢4 contain no O-real quadrilaterals and therefore f4
is a 2-real triangle, it follows ch)(f) > 0. Thus assume without loss of generality that the demand
path of t4 contains a 0-real quadrilateral (see Figure 17(a)). Then €y has more than three crossings
and t4 receives at least % in Step 2 by applying Proposition 1(e).

Note that the demand paths of 3 and t4 can not contain more than one 0-real quadrilateral and
if one of f5 and fy is a 2-real quadrilateral, it contributes its excess of at least % to f in Step 4 and
so ch)(f) > 0. So we can assume the opposite. We consider different cases for f3 (see Figure 17(b)
for the example f3 is a 0-real pentagon):
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e f3is a O-real quadrilateral: Then f; and f; are 1-real triangles and therefore ¢3 and ¢4 receive
both % from a 2-real triangle in Step 2. Further they receive also % from a 2-real quadrilateral
in Step 2 and so ch(f) > 0.

e f3 is a l-real quadrilateral: Then ¢35 and t4 receive both % charge in Step 2 from a 2-real
triangle and so ch)y(f) > 0.

e degp(f3) > 5: We rename for this purpose the faces in the neighborhood of f = f3 so that
we denote for i € {0,1,...,degp(f)} by & the edges of the boundary of f in clockwise order
and we introduce further é, so that &, = €3, t; := f4 and so on. The demand-path-neighbors
t; and Iy are 1-real triangles, which receive both & from a 2-real triangle. If further Z3 is a
1-real triangle, then it receives (toget~her with #y, if 4 is a l-real triangle) % charge from a
2-real triangle. The same is true for ¢y (together with t4eg.(£,)—1). So the excess of f3 is at
least

1

2
3 > 3 degr(f3) — 3

2., 1 1
degr(f3) —4+ 3 degp(f3) — 3 degp(fs3) +2- g T2
and this is distributed over at at most degp(f3) — 4 faces. So for degp(f3) > 5 the face f3
contributes at least % to each of its vertex-neighbors and this implies with the other charges
chi(f) = 0.

Summary Since we have shown for all O-real pentagons f that we have ch’(f) > 0 in all cases,
we know that (C1) holds for all faces w.r.t. a = 4. Together with Eq. (3) and the observation that
(C2) is true, Theorem 6 follows. O

Theorem 7 Let G be an n-vertex min-3-planar graph and let T’ be a min-3-planar drawing of G.

There are at most 2(n — 2) heavy edges of G in T'. Further, there exist min-3-planar drawings that
6 12

contain =n — = heavy edges.

Proof: Denote by h the number of heavy edges of G in I and by ¢ the number of light edges of

G in I'. To prove the upper bound, we first prove the following claim.
Claim 5 h < %.

Proof: The proof uses a discharging technique. Namely, assume that each light edge is initially
assigned charge 1, so that the total charge equals . We show how to move some charge from light
edges to heavy edges, in such a way that: (i) each light edge keeps a non-negative charge; (ii) each
heavy edge receives at least 2 charge. If we are able to do that, then the claim holds, as we have
2h <l ie,h <L

In the first step, we observe that since light edges have at most three crossings, and heavy edges
have at least four crossings (with light edges), each heavy edge may receive at least 4 x % charge,
namely % from each crossing with the corresponding light edge.

In a second step, we assign at least % charge to each of the two end segments of each heavy
edge: Let e be a heavy edge (a,b) with end segments (a,x) and (y,b) where z and y denote the
first and last crossings of e. We consider only the first segment, the other can be done analogously.
Let ¢/ = (¢, d) be the light edge that crosses e at the first crossing x. Clearly, ¢/ might be crossed
by at most two other (potentially heavy) edges. We consider the edge (a, ¢) that starts at a, closely
follows along the heavy edge e until the crossing x and then it follows the other edge €’ to the
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(a)

Figure 18: The situation at the end segments of heavy edges in the proof of Theorem 7. (a) In
total, at most two edges cross (a,c) and (a,d). (b) If three heavy edges start at a and cross €,
then (a,c) and (a,d) are planar.

vertex ¢. The edge (a,d) has an analogous route. Note that these two edges (a,c) and (a,d) can
be crossed by at most two edges in total (see Figure 18(a)), and by the assumption of maximality
they do exist.

The edges (a,c) and (a,d) will transfer half of their remaining charge to the (at most three)
heavy edges that start at a, that pass through the sector defined by the two edges and that cross
e’. The other half of their charge might be used for a potential sector at the other side of the edges.
We will distinguish three cases, depending on the number of heavy edges that start at a and will
receive charges from (a,c¢) and (a,d) in this step.

If there is only one such heavy edge, i.e. e, we know that there is at least % charge left at the
light edges (a, ¢) and (a,d) and half of that amount can be moved to the heavy edge e. This fulfills
properties (i) and (ii).

In the case, that there are two heavy edges that start at a and have their first crossing with
edge €/, we have at most one other heavy edge that might cross (a,c) or (a,d). Hence those two
light edges still have % charge left and half of it can be assigned to the two heavy edges with the
start segments between a and edge ¢’. In this case, both such heavy edges receive 1—52 > % charge,
still fulfilling (i) and (ii).

In the last case, where we have three such heavy edges, we conclude that the edges (a,c) and
(a,d) are not crossed at all (see Figure 18(b)). Hence we can assign half of their charge to those
three heavy edges that start at a. They all receive % charge from the edges (a,c) and (a,d), as
required by (i) and (ii). [ |

By the claim above we have 2h < /¢, and hence 2h + h < £ + h. By Theorem 6 we have that
h+ ¢ < 6n —12. Therefore, 3h < 6n — 12, i.e., h < 2n — 4 = 2(n — 2). This concludes the proof of
the upper bound.

For the lower bound, consider the graph H in Figure 19(a), which is a min-3-planar with 7
vertices and 6 heavy edges (in green). Construct a graph G obtained by composing in parallel a
number p of subgraphs isomorphic to H, with poles u and v, as shown in Figure 19(b). The graph

G consists of n = 5p + 2 vertices and h = 6p heavy edges. Hence h = %n - % |

4 Relationships with k-planar Graphs

The next theorem shows that while the family of min-1-planar graphs properly contains the family
of 1-planar graphs, the two classes coincide when we restrict to optimal graphs, i.e., those with
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Figure 19: Construction for the lower bound of Theorem 7.

Figure 20: A min-2-planar drawing of the complete bipartite graph K5 5.

exactly 4n — 8 edges.

Theorem 8 I-planar graphs are a proper subset of min-1-planar graphs, while optimal min-1-
planar graphs are optimal 1-planar.

Proof: Any 1-planar graph is min-1-planar. By the NP-hardness of testing whether a given planar
graph plus a single edge is 1-planar [18], we know that there are such graphs that are not 1-planar,
while any planar graph that is extended by a single edge can be drawn min-1-planar. Hence,
1-planar graphs are a proper subset of min-1-planar graphs. Finally, as in the proof of Theorem 2,
in every optimal min-1-planar drawing the red subgraph is maximal planar and each green edge
traverses exactly two faces of the red subgraph. Hence, each green edge crosses exactly once, i.e.,
the drawing is also (optimal) 1-planar. O

Unlike min-1-planar graphs, we show that min-2-planar graphs are a proper superset of the
2-planar graphs even when we restrict to optimal graphs.

Theorem 9 2-planar graphs are a proper subset of min-2-planar graphs, and there are optimal
min-2-planar graphs that are not optimal 2-planar.

Proof: We first observe that there exist non-optimal min-2-planar graphs that are not 2-planar.
For example, K5 5 is not 2-planar [6], while Figure 20 illustrates a min-2-planar drawing of Kj 5,
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Figure 21: (a) A planar drawing T' of the truncated icosahedral graph G. (b) A min-2-planar
drawing IV of the graph G’, obtained by adding 5 edges to each pentagonal face and 7 edges to
each hexagonal face of T'.

where black edges have no crossings, orange edges have 1 crossing, blue edges have 2 crossings,
green edges have 3 crossings, and the red edge has 4 crossings. In the following, we show how
to construct optimal n-vertex min-2-planar graphs that are not 2-planar. Let G be the truncated
icosahedral graph and let I" be a planar drawing of G, as depicted in Figure 21(a). This drawing has
12 pentagonal faces, 20 hexagonal faces, 60 vertices and 90 edges. We enrich I" by adding 5 edges
inside each pentagonal face and 7 edges inside each hexagonal face. Denote the obtained graph
and the obtained drawing as G’ and I, respectively. I is depicted in Figure 21(b), where the
edges inside pentagonal faces are colored orange and the edges inside hexagonal faces are colored
blue. More precisely, for each pentagonal face we add an edge between each pair of vertices of
the face that are not connected. For each hexagonal face f, we add 7 edges as follows; refer to
Figure 21(b) for an illustration, where the vertices of f are denoted as u, v, w, x, y, and z . We
add an edge between each pair of vertices having distance two on the boundary of f. Additionally,
we arbitrarily choose two vertices having the maximum distance on the boundary of f (w and z in
Figure 21(b)) and we add an edge between them, which we call the diagonal of f. Note that the
end-vertices of the diagonal of f have degree 5 in f. All the diagonals are dashed in Figure 21(b).

Observe that: (i) G’ has n = 60 vertices and m = 90 + 12 -5 4 20 - 7 = 290 edges, thus
m = 5n — 10; (¢i) each edge of G’ added inside a pentagonal face of I' has two crossings in I';
(#i7) for each hexagonal face f of I', the two edges that cross the diagonal (bold in Figure 21(b))
have three crossings each, while the other edges added inside f have two crossings each; (iv) no
two edges with three crossings cross each other. This implies that G’ is optimal min-2-planar and
T’ is a min-2-planar drawing of G’.

To show that I is not optimal 2-planar, we exploit a property on the degree distribution of
optimal 2-planar graphs from [22], which states that the degree of each vertex of an optimal 2-
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Figure 22: Illustration of the construction of Theorem 10. If in the graph of figure (a) we replace
each shaded chain with a copy of the graph of figure (b), we get a min-3-planar graph that is not
3-planar. The bold edges are heavy edges.

planar graph is a multiple of three. In what follows, we show that G’ contains vertices whose
degree is not a multiple of three.

Each vertex of G belongs to the boundary of two hexagonal faces and one pentagonal face, and
it has degree 3. We now show that each vertex of G’ has degree 9, or 10, or 11, and that not all of
them have degree 9. Let u be a vertex of G’ whose degree is 9 (see, e.g., vertex u in Figure 21(b)).
Since u belongs to the boundary of two hexagonal faces and one pentagonal face in G, and it has
degree 9, it cannot be incident to any diagonals (otherwise it would have degree larger than 9).
This implies that at least one of the vertices that are adjacent to u in G, call it v, is the end-vertex
of at least one diagonal in G'. Two cases are possible: (a) v is the end-vertex of one diagonal; (b) v
is the end-vertex of two diagonals. In case (a), v has degree 10 (see, e.g., vertex v in Figure 21(b));
in case (b), v has degree 11 (see, e.g., vertex z in Figure 21(b)). O

In contrast to 1-planar and 2-planar graphs, the maximum densities of 3-planar and min-3-
planar graphs differ.

Theorem 10 There are min-3-planar (non-simple) graphs denser than optimal 3-planar (non-
simple) graphs.

Proof: First, consider a planar graph G, and a corresponding drawing I', consisting of i parallel
chains (h > 1), each with 8 vertices, sharing the two end-vertices v and v, and interleaved by h
copies of edge uv; refer to Figure 22(a). Then, construct a new graph G’, and a corresponding
drawing IV, obtained from G, and from T', by replacing each parallel chain with a copy of the graph
G" depicted in Figure 22(b). In the drawing I, each copy of G” has the same edge crossings as
the drawing illustrated in Figure 22(b). Graph G has 8 vertices and 33 edges, and it is min-3-
planar. Indeed, only four edges in the drawing of G” shown in the figure have more than three
crossings and they do not cross each other (see the bold edges in Figure 22(b)). It follows that G’

n—2

is min-3-planar; also it has n = 6h + 2 vertices and m = 33h + h = 34h edges. Since h = *5=, we

have m = %711 — 3—; = 5.6n — 11.3. Therefore, m > 5.5n — 11 for every n > 1. Since a 3-planar

graph has at most 5.5n — 11 edges [29], G’ is not 3-planar. O



JGAA, 28(2) 1-35 (2024) 31

5 Final Remarks and Open Problems

In this paper, we focused on simple drawings. A natural open research direction is to study min-
k-planar graphs of non-simple drawings. We remark that some considerations for this setting have
recently been presented by P. Hlinény [25].

About edge density, one can ask whether the bound of Theorem 6 for min-3-planar graphs is
tight or if it can be further lowered. Providing finer bounds for k > 4 is also interesting. Another
classical research direction is to establish inclusion or incomparability relations between min-k-
planar graphs and classes of beyond-planar graphs other than k-planar graphs. In the following,
we state two lemmas providing initial results in this direction.

Lemma 3 leaves open to establish the relationship between min-2-planar graphs and 1-gap-
planar graphs (which have the same maximum edge density). We recall that in a k-gap-planar
drawing (k > 1) it is possible to assign each crossing to one of the two edges that form it, in
such a way that no more than k crossings are assigned to the same edge; see, e.g., [8, 9, 10].
Also, in a k-quasiplanar drawing (k > 3) there is no k& mutually (pairwise) crossing edges; see,
e.g., [2, 3,4, 5, 23].

Lemma 3 Min-k-planar graphs are a subset of k-gap-planar graphs and of (k + 2)-quasiplanar
graphs, for every k > 1.

Proof: Let I' be a min-k-planar drawing, for any given k > 1. Each crossing in I involves at least
one light edge, hence the set of light edges covers all crossings in I'. Consider any light edge e
and assign each crossing of e to e. Then, consider a second light edge ¢’ and assign all unassigned
crossings of ¢’ to ¢’. Iterate this procedure until all crossings have been assigned to some light
edge; refer to Figure 23(a) for an example. Since each light edge has at most k crossings, no more
than k crossings are assigned to a single edge. Hence T is k-gap-planar.

We now prove that T is also (k + 2)-quasi planar. Suppose by contradiction that this is not the
case. This means that I' contains k + 2 mutually crossing edges. Since no two heavy edges cross, at
least k41 > 2 of these edges are light edges. But each of them cross k+ 1 times, a contradiction.[]

Lemma 4 implies that min-2-planar graphs and fan-planar graphs are incomparable classes,
even if they have the same maximum edge density. We recall that in a fan-planar drawing there
cannot be two independent edges that cross a third one; see, e.g., [11, 12, 15, 16, 27].

Lemma 4 For any given k > 2, fan-planar and min-k-planar graphs are incomparable, i.e., each
of the two classes contains graphs that are not in the other.

Proof: The existence of min-k-planar graphs that are not fan-planar is an immediate consequence
of the fact that there exist 2-planar graphs that are not fan-planar [15]. To show the existence
of fan-planar graphs that are not min-k-planar, consider the graph K; 3, for any h > 1, and let
n = 4+ h be its number of vertices. It is easy to see that this graph is fan-planar (see, e.g., [15] and
Figure 23(b)). Also, it is known that any drawing of K7 35, has Q(h?) = Q(n?) crossings [7]. On
the other hand, by Theorem 1, any min-k-planar drawing with n vertices has at most ¢v/k-n edges
(for a constant c) and therefore, by Property 1, it has at most ck'®n crossings. Hence, Kizpis
not min-k-planar for sufficiently large values of n. O
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Figure 23: (a) A 2-gap-planar drawing of the min-2-planar drawing of K5 5 shown in Figure 20;
heavy edges are colored green; each crossing is assigned to a light edge (red edge), and it is
represented as a small gap. (b) A fan-planar drawing of K3 3, which is not min-k-planar as
shown in the proof of Lemma 4.
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