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Abstract. A vertex pair in an undirected graph is called connected if the two
vertices are connected by a path. In the NP-hard Critical Node Problem (CNP),
the input is an undirected graph G with integers k and x, and the question is whether
one can transform G by deleting at most k vertices into a graph whose total number
of connected vertex pairs is at most x. In this work, we introduce and study two NP-
hard variants of CNP where a subset of the vertices is marked as vulnerable, and we
aim to obtain a graph with at most x connected vertex pairs containing at least one
vulnerable vertex. In the first variant, which generalizes CNP, we may delete vulnerable
and non-vulnerable vertices. In the second variant, we may only delete non-vulnerable
vertices.

We perform a parameterized complexity study of both problems. For example, we
show that both problems are FPT with respect to k + x. Furthermore, in the case of
deletable vulnerable nodes, we provide a polynomial kernel for the parameter vc+k,
where vc is the vertex cover number. In the case of non-deletable vulnerable nodes, we
prove NP-hardness even when there is only one vulnerable node.

1 Introduction

Detecting important vertices in graphs is a central task in network analysis. There is an abundance
of different formalizations of this natural task, many of which adopt the view that a vertex set is
important if its removal severely affects the connectivity of the remaining graph [13]. One concrete
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formulation, known as the Critical Node Problem, measures connectivity by the number of
connected pairs of vertices, that is, the number of pairs of vertices that are in the same connected
component. The aim is to look for a set of vertices whose deletion decreases this number as much
as possible.

Critical Node Problem (CNP)
Input: A graph G = (V,E), and two integers k, x ∈ N.
Question: Is there a vertex set C ⊆ V of size at most k such that G−C has at most x
connected pairs of vertices?

One application of this formulation is to model the influence of vertices in the spreading of
viruses in computer networks or social networks [13]. Taking the latter view, the entities repre-
sented by a set C that minimizes the number of connected pairs in G−C would be good candidates
for being vaccinated or removed from the network via other interventions. The number x of con-
nected pairs would be a rough measure for the amount of virus spreading in the remaining network,
as vertices that are connected to many other vertices are more likely to contract the virus. For
some vertices in the network, however, it may be irrelevant whether they contract the virus, for
example, because they are not prone to develop a severe disease in case of infection. Conversely, it
may be critical that some vertices in the network are protected from the virus because they belong
to a high-risk group. One way to model this aspect is to label some vertices as vulnerable and to
consider only the number of connected pairs that contain at least one vulnerable vertex.

Definition 1 Let G = (V,E) be a graph and let A be a set of vulnerable vertices. A vertex
pair {u, v} is a vulnerable connection (with respect to A) in G if {u, v} ∩ A ̸= ∅ and u and v
are in the same connected component of G. The A-vulnerability of G is the number of vulnerable
connections of G.

Note that the A-vulnerability of the subgraph G′ = (V ′, E′) is always defined, even if A ̸⊆
V ′. Replacing the number of connected pairs by A-vulnerability leads to the following problem
definition.

Critical Node Problem with Vulnerable Nodes (CNP-V)
Input: A graph G = (V,E), a vertex set A, and two integers k, x ∈ N.
Question: Is there a vertex set C ⊆ V of size at most k such that the A-vulnerability
of G− C is at most x?

Regarding the motivation of choosing persons who get a vaccine, one might be unable to
vaccinate the vulnerable people themselves for medical reasons. In our graph setting, this means
that vulnerable vertices may not be removed. This is modeled by the following problem.

Critical Node Problem with Non-Deletable Vulnerable Nodes (CNP-NDV)
Input:A graph G = (V,E), a vertex set A, and two integers k, x ∈ N.
Question: Is there a vertex set C ⊆ V \A of size at most k such that the A-vulnerability
of G− C is at most x?

The set C in the problem definition is called a critical node cut. We study the parameterized
complexity of these two problems with respect to several natural parameters.
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Figure 1: Dependencies between the considered parameters after preprocessing (see Section 2). If
two parameters are connected by a solid line, then the parameter above is never smaller than the
parameter below; if they are connected by a dotted line, then this relation holds only for CNP-V.

Related Work. Arulselvan et al. [4] showed that CNP is NP-complete; the NP-hardness follows
also directly from the fact that CNP is a generalization of Vertex Cover (x = 0). As a
consequence, CNP is NP-hard even on subcubic graphs. CNP is also NP-hard on split and
bipartite graphs [1] and on power-law graphs [17]. In contrast, CNP can be solved in polynomial
time on trees [6] and, more generally, on graphs with constant treewidth [1]. The parameterized
complexity of CNP has been studied with respect to the parameters k, x, and the treewidth tw
of G [12]: On the negative side, CNP is W[1]-hard with respect to k [12] or tw [12], and even with
respect to k+tw [2]. On the positive side, the problem is FPT with respect to k+x [12] and with
respect to the parameter y [12] which is defined as ℓ− x, where ℓ is the number of connected pairs
in G. In other words, for CNP, y is the minimum number of connected pairs we want to remove
by deleting k vertices.

Other formulations of graph modifications for limiting disease spreading consider for example
edge deletions and limiting the size of the largest remaining connected component [8]. For an
overview of different formulations of critical vertex detection, refer to the survey of Lalou et al. [13].

Our Results. We study the parameterized complexity of the problems CNP-V and CNP-NDV
with respect to a number of natural parameters. An overview of the parameters in our study and
their relations is shown in Figure 1. Our main findings are as follows (an overview is given in
Table 1).

We transfer the FPT-algorithm for k + x from CNP to the two new problems (Corollary 2,
Theorem 5, Corollary 1). We then show that, while being solvable in polynomial time for constant
values of x (Proposition 2), CNP-NDV is W[1]-hard with respect to x even when |A| = 1 (The-
orem 2). In contrast, CNP-V is solvable in polynomial time for constant |A| (Proposition 3) and
NP-hard already for x = 0 [12]. Thus, the complexity of the two problems differs quite drastically
with respect to very natural parameters.

We also study parameterization by the number y of deleted connected pairs containing at
least one vulnerable vertex. Formally, let ρ be the number of connected pairs containing at least
one vulnerable vertex. Then, ρ = x + y. Note that for CNP-V and CNP-NDV the definition
of y is different than for CNP. The reason for this is that in CNP-V and CNP-NDV we are
only interested in connected pairs containing at least one vulnerable vertex. We also observe
a drastically different behavior for both problems by parameterization with y: CNP-V has a
subexponential FPT-algorithm (Theorem 6) while CNP-NDV is W[1]-hard even with respect
to k + y (Theorem 7). We remark that the algorithm for CNP-V with subexponential running
time for parameter y improves on a previous algorithm for CNP with exponential running time
in y [12].

Finally, we consider parameterizations using the vertex cover number vc of G. This is moti-
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Table 1: Overview of our results.

Parameter CNP-V CNP-NDV

x NP-hard for x = 0 [12]
W[1]-hard (Thm. 2)

XP (Prop. 2)

y
FPT (Thm. 6) W[1]-hard (Thm. 7)

No poly kernel [12] XP (Prop. 3)

k
W[1]-hard [12] W[1]-hard (Thm. 7)

XP (Prop. 1) XP (Prop. 1)

k + x FPT (Cor. 2, Thm. 5) FPT (Cor. 1)

k + y FPT (Thm. 6) W[1]-hard (Thm. 7)

|A| XP (Prop. 3)
NP-hard for |A| = 1 (Thm. 2)

|A|+ x FPT (Cor. 4)

vc FPT (Thm. 8) FPT (Thm. 8)

vc + x
poly kernel (Thm. 9)

FPT (Thm. 8)

vc + k + x poly kernel (Thm 9)

vated by the fact that CNP is W[1]-hard with respect to the treewidth tw [2, 12] and thus larger
structural parameters need to be considered. We show that both problems are FPT with respect
to vc (Theorem 8), and provide polynomial kernels for both problems parameterized by vc+x
(for CNP-V) and vc+k + x (for CNP-NDV), respectively (Theorem 9).

Further FPT results for parameters such as the neighborhood diversity of G or |V \ A| have
been obtained in the first author’s Master thesis [15].

Preliminaries. For two integers p and q, p ≤ q, we denote [p, q] := {p, . . . , q}. We consider
undirected simple graphs G = (V,E) and let V (G) denote the vertex set and E(G) the edge set of
a graph G. We use nG to denote the number of vertices and mG to denote the number of edges
of G, we omit the subscript if G is clear from context. For a vertex set S, we let N(S) = {u |
{u, v} ∈ E(G), v ∈ S} \ S and N [S] := S ∪ N(S) denote the open and closed neighborhood of S,
respectively. For a vertex v, we denote N(v) := N({v}) and N [v] := N [{v}]. For a vertex set S,
we let G[S] := (S, {{u, v} ∈ E(G) | u, v ∈ S}) denote the subgraph induced by S, and G − S :=
G[V (G) \ S] denote the subgraph of G obtained by deleting S and its incident edges.

Two vertices u, v ∈ V are connected, if G contains a path P starting in u and ending in v.
A graph G = (V,E) is connected, if every two vertices u, v ∈ V are connected. A connected
component Z of a graph is a maximal vertex set such that G[Z] is connected.

A vertex cover of a graph G = (V,E) is a subset S ⊆ V such that every edge of G has at least
one endpoint in S. For a graph G, the vertex cover number vc(G) is the size of a smallest vertex
cover of G. If it is clear from the context to which graph we refer, we write vc instead of vc(G).

A branching rule for some problem L is a computable function that maps an instance I of L
to a tuple of instances (I1, . . . , It) of L. A branching rule is called correct if I is a yes-instance
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of L if and only if there is some i ∈ {1, . . . , t} such that Ii is a yes-instance of L. A reduction rule
for some problem L is a computable function that maps an instance I of L to an instance I ′ of L.
In some reduction rules, we write return yes or return no, which formally means that we return a
constant-size yes-instance or no-instance, respectively.

Parameterized Complexity is the analysis of the complexity of problems depending on the input
size |I| and a problem parameter k [5, 7]. A parameterized problem L is in XP if there is an algo-
rithm with running time |I|f(k) that solves L; such an algorithm is called an XP-algorithm. That
is, a problem is in XP if it can be solved in polynomial time whenever the parameter is constant.
A parameterized problem L is fixed-parameter tractable (FPT) if there exists an algorithm with
running time f(k)·|I|O(1) for some computable function f that solves L; such an algorithm is called
an FPT-algorithm. An important tool in the development of parameterized algorithms is problem
kernelization, which is a polynomial-time preprocessing by reduction rules. Formally, a problem L
admits a problem kernel if there exists an algorithm that given any instance (I, k) of L computes
an equivalent instance (I ′, k′) of L in polynomial time such that a) k′ ≤ k and b) |I ′| ≤ g(k).
Here, g is some computable function only depending on k. The function g is called kernel size. A
kernel has polynomial size if g is a polynomial.

A parameterized reduction of a parameterized problem L to a parameterized problem L′ is an
algorithm that maps any instance (I, k) of L in f(k) · |I|O(1) time to an equivalent instance (I ′, k′)
of L′ such that k′ ≤ g(k) for some computable functions f and g. If a parameterized problem
is W[1]-hard, then it is assumed to be not fixed-parameter tractable. If there is a parameterized
reduction from a W[1]-hard problem L to a parameterized problem L′, then the problem L′ is
W[1]-hard as well.

Organization. In Section 2 we provide simple basic observations on the studied problems. Af-
terwards, we consider the parameterized complexity. In Section 3.2 we study parameterization by
the target vulnerability x. In Section 4, we study parameterization by the number of vulnerable
connections y that shall be removed from the graph. Finally, in Section 5, we study structural
parameterization by the vertex cover number of the input graph.

2 Basic Observations

In this section, we provide basic observations which we use throughout this work. We first describe
how to compute the A-vulnerability of a given graph and a set of vulnerable vertices. Afterwards,
we consider simple reduction rules, so that we may use additional assumptions regarding the
input instances. Finally, we establish a technical term of component information and show that
CNP-NDV is NP-hard.

Vulnerability. First, observe that the A-vulnerability of a graph can be computed in linear time
via depth-first search.

Lemma 1 Let G = (V,E) and let A ⊆ V . The A-vulnerability of G can be computed in O(n +
m) time.

Proof: In O(n + m) time all connected components can be computed using depth-first search.
Then, for every connected component K, by iterating over all vertices of the connected component,
the number of vulnerable vertices d and the size c := |K| of the connected component K can be
computed in linear time. The A-vulnerability of the connected component K is
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(
d

2

)
+ d · (c− d).

The A-vulnerability of G is the sum of the A-vulnerability of the connected components. Alto-
gether, we can compute the A-vulnerability of any given graph in O(n+m) time. □

For a constant k, CNP-V and CNP-NDV can thus be solved in polynomial time by trying
all O(nk) possibilities of deleting k vertices (in the case of CNP-NDV only deletions in V \ A are
considered).

Proposition 1 CNP-V and CNP-NDV can be solved in O(nk · (n+m)) time.

Recall that a critical node cut C is the set of removed vertices from the problem. For CNP-NDV at
most x non-vulnerable vertices can be connected to vulnerable vertices in G−C. Thus, one can find
a critical node cut by considering all O(nx) possible sets B for these vertices, deleting all neighbors
of A ∪ B, and checking whether the number of deletions is at most k and the A-vulnerability of
the resulting graph is at most x. definition.

Proposition 2 CNP-NDV can be solved in O(nx · (n+m)) time.

Reduction Rules. We provide a collection of simple reduction rules for CNP-V and CNP-NDV
that establish useful instance properties and parameter relations. The first rule removes trivial
components from the input.

Reduction Rule 1 Let I := (G,A, k, x) be an instance of CNP-V or CNP-NDV and let Z be a
connected component of G. If Z contains no vulnerable vertex or Z is an isolated vulnerable vertex,
then delete Z from G.

Reduction Rule 1 is safe since no vertex of Z is part of a vulnerable connection. For the
remainder of this work, we assume that all instances of CNP-V and CNP-NDV are reduced with
respect to Reduction Rule 1. The next rule identifies instances of CNP-V and CNP-NDV that
are trivial because k is sufficiently large.

Reduction Rule 2 a) Let (G,A, k, x) be an instance of CNP-V. If y ≤ k, then return yes.

b) Let (G,A, k, x) be an instance of CNP-NDV such that y ≤ k. If |V \A| ≥ y, then return yes.
If |V \ A| < y, check if the number of vulnerable connections in G − (V \ A) is at most x. If
this is the case, return yes. Otherwise, return no.

Lemma 2 Reduction Rule 2 is safe and can be exhaustively applied in O(n+m) time.

Proof: Safeness: Since the instance is reduced with respect to Reduction Rule 1, every vertex of
the graph is in at least one vulnerable connection. Next, we show a) and b) separately.

First, we prove a). We iteratively do the following y-times: If there is a vertex v such that at
least one vulnerable connection contains v, then remove v from G. If there is no such vertex or G
is empty, no vulnerable connection remains, and we have a yes-instance. Otherwise, we removed
y < k vertices from G and we thereby removed y vulnerable connections from G. Thus, we have a
yes-instance.

Second, we show b). Suppose that |V \A| ≥ y. Since Reduction Rule 1 is applied exhaustively,
for each vertex in |V \A| we remove from G, we remove at least one vulnerable pair from G. Thus,
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we have a yes-instance. Otherwise, we have |V \A| < y. Since we can only remove vertices in V \A,
we can now check whether G[A] has at most x vulnerable connections.

Running Time: Clearly, this rule can be exhaustively applied in linear time. □

In the remainder of this work, we assume that Reduction Rule 1 has been applied exhaustively.
Thus, we may assume y > k throughout the rest of this work.

In the case of CNP-V, we can identify a further class of yes-instances. An instance of CNP-V
with |A| ≤ k is a trivial yes-instance since adding all vulnerable vertices to a critical node cut
destroys all vulnerable connections.

Reduction Rule 3 Let (G,A, k, x) be an instance of CNP-V. If |A| ≤ k, then return yes.

The final rule deals with the case where one vertex has too many vulnerable neighbors. The idea
behind the rule is that a vertex that causes too many vulnerable connections in its neighborhood
belongs to every possible critical node cut.

Reduction Rule 4 a) If an instance (G,A, k, x) of CNP-V contains a vertex v ∈ V with |N(v)∩
A| > k +

√
2x, then remove v from G and decrease k by 1.

b) If an instance (G,A, k, x) of CNP-NDV contains a vertex v ∈ V \ A with |N(v) ∩ A| >
√
2x,

then remove v from G and decrease k by 1.

Lemma 3 Reduction Rule 4 is safe and can be applied exhaustively in O(m+ n) time.

Proof: Safeness: The safeness of Reduction Rule 4 follows from the observation that, if a ver-
tex v has more than

√
2x vulnerable vertices as neighbors, then there are more than

√
2x vul-

nerable connections {v, w} with w ∈ N(v) and there are
(⌈√2x⌉

2

)
vulnerable connections {w1, w2}

with w1, w2 ∈ N(v). Altogether there are at least

⌈√
2x

⌉
+

(⌈√
2x

⌉
2

)
=

2
⌈√

2x
⌉
+

⌈√
2x

⌉
· (
⌈√

2x
⌉
− 1)

2
≥

2x+
⌈√

2x
⌉

2
> x

vulnerable connections in G. Thus, every critical node cut contains v.
Running time: For every vertex in G, we can compute the number of neighbors in A in O(m+n)

time. For CNP-NDV we then remove all vertices from V \A that have sufficiently many neighbors
in A. This is an exhaustive application of the rule since the vertex removal does not change the
number of neighbors in A and also not the degree threshold for removal. For CNP-V, the procedure
is slightly more complicated: we put all the vertices in a bucket queue, that is, a dynamic data
structure of elements equipped with integral priorities, according to their number of neighbors in A
with values ranging from 0 to |A|. We then consider the entries in this bucket queue by decreasing
values starting with i = |A|. As long as i > k +

√
2x, we choose some vertex v with value i,

remove v from G, update the values for all neighbors of v in O(|N(v)|) time, and decrement k. If
there is no vertex with value i, then we decrement i. Overall, this procedure takes O(m+n) time.

□

Throughout the remainder of this work, we assume that all instances are reduced with regard
to the reduction rules stated above. We will thus make the following assumptions about instances
of CNP-V and CNP-NDV: First, let (G,A, k, x) be an instance of CNP-V. We assume that

� every connected component of G contains a vertex from A (Reduction Rule 1),
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� y > k (Reduction Rule 2),

� |A| > k (Reduction Rule 3), and

� |N(v) ∩A| ≤ k +
√
2x for every vertex v of G (Reduction Rule 4 a)).

Next, let (G,A, k, x) be an instance of CNP-NDV. Then, we assume that

� every connected component of G contains a vertex from A (Reduction Rule 1),

� y > k (Reduction Rule 2), and

� |N(v) ∩A| ≤
√
2x for every vertex v of G (Reduction Rule 4 b)).

Recall that CNP-V and CNP-NDV can be solved in O(nk ·(n+m)) time due to Proposition 1.
By the parameter relations stated above, we obtain the following.

Proposition 3 CNP-V and CNP-NDV can be solved in O(ny · (n +m)) time; CNP-V can be
solved in O(n|A| · (n+m)) time.

Component Information. We next show that CNP-V and CNP-NDV are solvable in poly-
nomial time if we have additional information about the connected components of the input graph.
We apply this fact to obtain efficient algorithms for both problems when the connected components
are small. Let I := (G,A, k, x) be an instance of CNP-V or CNP-NDV, and let Z1, . . . , Zt ⊆ V
be the connected components of the input graph G. Intuitively, a component information T [i, k′]
for some integers i ∈ [1, t] and k′ ∈ [0, k] provides information on how small the number of vulner-
able connections in Zi can be after k′ vertex deletions. Formally, T [i, k′] is defined as the minimal
number of vulnerable connections in G[Zi] − S among all subsets S ⊆ Zi of size exactly k′. If
there is no such subset S containing exactly k′ vertices that may be removed, we set T [i, k′] = ∞.
A table T containing all component information T [i, k′] ̸= ∞ is called a component table of the
instance I. We now show that CNP-V and CNP-NDV can be solved in polynomial time if we
have a component table of the input instance. The algorithm was also described by Hermelin et
al. [12] for CNP.

Lemma 4 Given an instance I := (G,A, k, x) of CNP-V or CNP-NDV and a component table T
of I, we can check in O(n · k2) time whether I is a yes-instance.

Proof: Algorithm: Let Z1, . . . , Zt be the connected components of the input graph G. We show
the lemma by providing a dynamic programming algorithm. In the dynamic programming ta-
ble Q, each entry Q[i, k′] with i ∈ [1, t] and k′ ∈ [0, k] stores the minimum number of vulnerable
connections in G[Z1 ∪ · · · ∪ Zi]− S among all subsets S ⊆ Z1 ∪ · · · ∪ Zi of size exactly k′.

For the value i = 1, we set Q[1, k′] := T [1, k′] for every k′ ∈ [0, k]. The recurrence to compute
an entry for i > 1 is

Q[i, k′] := min
0≤k′′≤k′

Q[i− 1, k′′] + T [i, k′ − k′′].

Here, we check all possibilities of k′′ on how many deletions are done in the i-th connected com-
ponent. If Q[t, k] ≤ x return yes. Otherwise, return no.

Running time: The table has t · (k+1) ∈ O(n ·k) entries. Each entry can be computed in O(k)
time by iterating over all possible values of k′′. Consequently, the algorithm has a running time
of O(n · k2). □
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Observe that, for an instance where the input graph has maximum component size c for some
constant c, a component table can be computed in O(2c · (n + m)) = O(n) time by iterating
over every subset of each connected component. Note that m ∈ O(n) for instances with constant
maximum component size.

Proposition 4 CNP-V and CNP-NDV can be solved in O(2c ·m + n · k2) time, where c is the
size of the largest connected component of the input graph.

Component information will be utilized in Theorem 6 of Section 4 to provide an efficient FPT-
algorithm with respect to y.

NP-Hardness of CNP-NDV. In contrast to CNP-V, the problem CNP-NDV is not an ob-
vious generalization of Vertex Cover. We show the following by a simple reduction.

Theorem 1 CNP-NDV is NP-hard on planar graphs, even if the input graph has maximum
degree 4.

Proof: We reduce from Independent Set where the input is a graph G and an integer κ and the
question is whether there exists a setX of κ vertices which are pairwise nonadjacent. Independent
Set is NP-hard on planar graphs with maximum degree 3 [11].

Construction: Let (G, κ) be an instance of Independent Set where G is a planar graph with
maximum degree 3. We construct an instance (G′, A, k, x) of CNP-NDV as follows: Intuitively,
we add a copy of each vertex in V to A, connecting each copy to its respective original by an
edge. Formally, we set V ′ := V ∪ A, where A := {av | v ∈ V } and E′ := E ∪ {{v, av} | v ∈ V }.
Furthermore, we set k := nG − κ and x := κ. Clearly, (G′ = (V ′, E′), A, k, x) can be computed
in polynomial time. Note that every vertex in G′, that is not in G has degree 1 and G′[V ] is
isomorphic to G. Thus, G′ is planar and has maximum vertex degree 4. It remains to show that
the two instances are equivalent.

Correctness: Let (G, κ) be a yes-instance of Independent Set. Then, there exists an inde-
pendent set I ⊆ V (G) of size κ. We show that the vertex set V \ I is a critical node cut: The size
of V \ I is nG − κ and V ′ \ (V \ I) = A ∪ I. As I is an independent set in G, I is an independent
set in G′ as well. Thus, there are exactly κ edges in the graph G′ − (V \ I). More precisely the
edges remaining in G′ − (V \ I) are {{u, au} | u ∈ I}. Thus, the A-vulnerability of G′ − (V \ I)
is κ. Hence, (G′ = (V ′, E′), A, k, x) is a yes-instance of CNP-NDV.

Conversely, let (G′ = (V ′, E′), A, k, x) be a yes-instance of CNP-NDV. Thus, there exists a
critical node cut C of size nG − κ. The graph G′ − C contains κ vertices that are not vulnerable
and by the construction of G′, each of them is adjacent to a vulnerable vertex. Thus, these are all
vulnerable connections in G′ − C. Therefore, V (G) \ C is an independent set in G′. Thus, (G, κ)
is a yes-instance of Independent Set □

3 Parameterization by the Targeted Vulnerability

3.1 Hardness for Non-Deletable Vulnerable Vertices

First, we consider parameterization by x alone. CNP-V is NP-hard for x = 0 since it is a
generalization of Vertex Cover. Recall that in contrast CNP-NDV can be solved in polynomial
time for constant x due to Proposition 2. We complement this result by showing that CNP-NDV
is W[1]-hard with respect to x, even if G contains only one vulnerable vertex.
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Theorem 2 CNP-NDV is W[1]-hard with respect to the parameter x, even if |A| = 1 and G has
diameter 2.

Proof: We reduce from Cutting at Most k Vertices with Terminal. Here, the input is
a graph G, a vertex s ∈ V (G), and two integers k and t. The question is whether there exists a
vertex set S ⊆ V (G) of size at most k such that s ∈ S and |N(S)| ≤ t. Fomin et al. [9] showed
that Cutting at Most k Vertices with Terminal is W[1]-hard with respect to k.

Construction: Let (G, s, k, t) be an instance of Cutting at Most k Vertices with Termi-
nal. Let G′ be the graph obtained by adding a universal vertex ū to graph G. In polynomial time
we compute the instance (G′, A := {s}, k′ := t+ 1, x := k − 1) of CNP-NDV in which |A| = 1.
Because of the universal vertex ū, the diameter of G′ is 2.

Correctness: Let (G, s, k, t) be a yes-instance of Cutting at Most k Vertices with Ter-
minal. Let S with |S| ≤ k be the vertex set such that s ∈ S and |N(S)| ≤ t. We define a
set C ⊆ V (G′) by C := N(S) ∪ {ū}. Thus, |C| ≤ t + 1. Furthermore, the connected component
of s in G′ − C contains at most |S| − 1 = k − 1 = x other vertices. Hence, there are at most x
vulnerable connections in G′ −C and C is a critical node cut. We conclude that (G′, A, k′, x) is a
yes-instance of CNP-NDV.

Conversely, let (G′, A, k′, x) be a yes-instance of CNP-NDV. Therefore, there exists a vertex
set C of size at most k′ = t + 1 such that in G′ − C there are at most x vulnerable connections.
Thus, there are at most x other vertices in the connected component of s in G′ − C. Now, we
distinguish between the cases that ū is in C or not.

Case 1: ū ∈ C. Define S as the connected component of s in G′ −C. It follows that S has size
at most x+ 1 and is a subset of V (G). The neighborhood of S in G is a subset of C \ {ū} of size
at most t. Thus, S is a solution of Cutting at Most k Vertices with Terminal.

Case 2: ū ̸∈ C. There are at most k′ + x+ 1 vertices in G′, because every vertex that has not
been cut is then in a vulnerable connection with x. Thus, G has at most k + t vertices and any
set S of size k is a solution of Cutting at Most k Vertices with Terminal, as long as s ∈ S.

In both cases we proved that (G, s, k, t) is a yes-instance of Cutting at Most k Vertices
with Terminal. □

3.2 A general FPT-Algorithm for k+ x

In the following, we provide an FPT-algorithm for CNP-V and CNP-NDV parameterized by k+x.
To unify the description, we consider the following more general problem. Roughly speaking, we
allow for a set of non-deletable vertices which do not have to be vulnerable.

CNP-VNDV
Input: A graph G = (V,E), two sets A,N , and two integers k, x ∈ N.
Question: Is there a vertex set C ⊆ V \N of size at most k such that the A-vulnerability
of G− C is at most x?

Observe that CNP-V is the special case of CNP-VNDV where N = ∅ and CNP-NDV is the
special case of CNP-VNDV where N = A.

Hermelin et al. [12] showed that CNP can be solved in O(3k+x · (xk+2 + n)) time. The idea
of this algorithm is to branch for each edge {u, v} whether one of u and v is deleted or whether
this is one of the x remaining connections. In the following, we use similar ideas to provide two
search tree algorithms for the more general CNP-VNDV. The first algorithm solves instances of
CNP-VNDV with A ⊆ N in O(2k+x · (n+m)) time. This implies that CNP-NDV can be solved
within the same running time. The second algorithm solves arbitrary instances of CNP-VNDV
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in O(3k+x · (n +m)) time, which implies that CNP-V can be solved in O(3k+x · (n +m)) time.
Moreover, since CNP is a special case of CNP-V this improves over the algorithm for CNP by
Hermelin et al. [12].

The first algorithm is based on the following branching rule. The idea of the rule is that for
each deletable vertex, we may either decide to delete the vertex, which reduces the deletion budget
by one, or to make this vertex non-deletable.

Branching Rule 1 Let I = (G,A,N, k, x) be an instance of CNP-VNDV and let v ∈ V (G) \N .
Then, I is a yes-instance of CNP-VNDV if and only if I1 = (G − {v}, A,N, k − 1, x) or I2 =
(G,A,N ∪ {v}, k, x) is a yes-instance of CNP-VNDV.

Lemma 5 Branching Rule 1 is correct.

Proof: Let I be a yes-instance of CNP-VNDV. Then, there is a set C ⊆ V \N such that |C| ≤ k
and G− C has A-vulnerability of at most x. If v ∈ C, then the instance I1 is also a yes-instance,
because the set C ′ = C \ {v} is a critical node cut of I1. Otherwise, if v /∈ C, then I2 is a
yes-instance, as C is also a critical node cut for I2.

Conversely, let I1 or I2 be a yes-instance of CNP-VNDV. First, suppose there exists a crit-
ical node cut C for the instance I1. Then, the set C ′ := C ∪ {v} is also a critical node cut
for I. Second, suppose that I2 be a yes-instance of CNP-VNDV and let C be the corresponding
critical node cut. It directly follows that C is also a critical node cut for I. □

The idea of the first algorithm, which works for the special case of CNP-VNDV with A ⊆ N ,
is now to apply Branching Rule 1 in such a way that in the second branch we increase the A-
vulnerability of the subgraph that is induced by the non-deletable vertices. This allows us to
bound the depth of the search tree.

Theorem 3 An instance I := (G,A,N, k, x) of CNP-VNDV with A ⊆ N can be solved in
time O(2k+x · (n+m)).

Proof: We use a search tree algorithm based on Branching Rule 1. Each node of the search
tree corresponds to an instance of CNP-VNDV with A ⊆ N . At each search tree node, we
perform the following steps. First, if k < 0 or the A-vulnerability of G[N ] is greater than x, we
return no. Second, if the A-vulnerability of G is at most x, we return yes. Third, we choose a
vertex v ∈ V (G) \ N which is connected to some vertex of A via a path containing only internal
vertices of N and branch on vertex v using Branching Rule 1 (see Figure 2 for an illustration).

The correctness of this algorithm can be seen as follows. The first two steps identify trivial no-
or yes-instances and are obviously correct. For the third step, observe that such a vertex v must
exist since 1) the A-vulnerability of G is larger than the A-vulnerability of G[N ] and every path
connecting a vertex from A with a vertex from V (G) \ N starts in N since A ⊆ N . Thus, the
correctness of the third step follows from Branching Rule 1.

The running time bound can be seen as follows. Branching is only performed while k ≥ 0
and x ≥ 0. Hence, the depth of the search tree is at most k + x: in the first branch deleting v
decreases k by one and in the second branch adding v to N increases the A-vulnerability of G[N ]
by at least one. Thus, the search tree has a size of O(2k+x). Also, note that the steps at each
search tree node can be performed in linear time. Hence, the overall running time follows. □

Corollary 1 CNP-NDV can be solved in O(2k+x · (n+m)) time.
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N
v

u

Figure 2: Illustration of the choice of the branching vertex in the proof of Theorem 3. Vulnerable
vertices are black. The algorithm chooses either u or v as branching vertex. For both choices,
adding the vertex to N increases the A-vulnerability of G[N ].

To provide an FPT-algorithm for the case when vulnerable vertices may be deleted, we make use
of another branching rule. This is necessary because we may face the situation that there is no
vertex in V (G) \N whose addition to N increases the A-vulnerability of G[N ]. For example, this
is the case when N = ∅. The new rule is applied on edges with at least one deletable vertex. It
considers all possibilities to either delete an endpoint of the edge or to add the endpoints to the
set of non-deletable vertices.

Branching Rule 2 Let I := (G = (V,E), A,N, k, x) be an instance of CNP-VNDV and let
{u, v} ∈ E be an edge of G with v /∈ N . Then, I is a yes-instance of CNP-VNDV if and only if

1. I1 := (G,A,N ∪ {u, v}, k, x) is a yes-instance of CNP-VNDV, or

2. I2 := (G− {v}, A,N, k − 1, x) is a yes-instance of CNP-VNDV, or

3. u ̸∈ N and I3 := (G− {u}, A,N, k − 1, x) is a yes-instance of CNP-VNDV.

Lemma 6 Branching Rule 2 is correct.

Proof: Let I be a yes-instance of CNP-VNDV and let C be a critical node cut. If v ∈ C,
then C \ {v} is a critical node cut for the instance (G − {v}, A,N, k − 1, x) and thus I2 is a yes-
instance. Now, if u ∈ C then u /∈ N . Consequently, the branching rule creates the instance I3.
The set C \ {u} is a critical node cut for the instance (G − {u}, A,N, k − 1, x) and thus I3 is a
yes-instance. Otherwise, if u, v /∈ C, then I1 is a yes-instance, as C is also a critical node cut for I1.

Conversely, suppose that I1 or I2 or I3 is a yes-instance of CNP-VNDV. First, assume that I1
is a yes-instance of CNP-VNDV and let C be a corresponding critical node cut. Then, C is
also a critical node cut for I. Second, if I2 is a yes-instance with a critical node cut C, then
because v /∈ N , the set C ∪ {v} is a critical node cut for I. Finally, if I3 is a yes-instance with a
critical node cut C, then because of the condition for creating the instance I3, we know that u /∈ N .
Thus, C ∪ {u} is is a critical node cut for I. □

Theorem 4 CNP-VNDV can be solved in O(3k+x · (n+m)) time.

Proof: We use a search tree algorithm based on Branching Rule 2. Each node of the search tree
corresponds to an instance of CNP-VNDV. Before branching, we exhaustively remove all degree-
0 vertices. This is correct since these vertices are irrelevant for computing the A-vulnerability of
any subgraph of G. At each search tree node, we perform the following steps. First, if k < 0 or
the A-vulnerability of G[N ] is greater than x, we return no. Second, if the A-vulnerability of G
is at most x, return yes. Third, we choose an edge {u, v} ∈ E(G) such that the A-vulnerability
of G[N ∪ {u, v}] is larger than the A-vulnerability of G[N ]. Observe that such an edge contains at
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N
u v

N
u v

Figure 3: Illustration of the choice of the edge {u, v} on which branching is performed in the proof
of Theorem 4. Vulnerable vertices are black. Left: The algorithm may choose a vulnerable vertex v
outside of N and some neighbor u. Right: If A ⊆ N , then the algorithm may choose any vertex v
with a neighbor u ∈ N that is connected in G[N ] to some vulnerable vertex.

least one node which is not contained in N . Hence, we may apply Branching Rule 2 on this edge
(see Figure 3 for an illustration).

The correctness of this algorithm can be seen as follows. The first two steps identify trivial no-
or yes-instances and are obviously correct. For the third step, we show that such an edge {u, v}
must exist. Then, the correctness of the third step follows from Branching Rule 2. If V (G) \ N
contains a vulnerable vertex v, then the edge {u, v} where u is any neighbor of v may be chosen.
Otherwise, A ⊆ N and there exists a vertex v in V (G) \ N which is connected to a vertex in A
via a path P whose other vertices are all from N , because the A-vulnerability of G[N ] is strictly
smaller than the A-vulnerability of G. We may branch on the edge {u, v}, where u is the neighbor
of v on P . Altogether, this shows the correctness of the algorithm.

The running time bound can be seen as follows. Branching is only performed while k ≥ 0
and x ≥ 0. Hence, the depth of the search tree is at most k+ x: In the first branch, adding {u, v}
to N increases the A-vulnerability of G[N ] by at least one; in the second and, possibly, third
branch the value of k is decreased by one. Thus, the search tree has a size of O(3k+x) since each
internal node has at most three children. Since the steps at each search tree node can be performed
in O(n+m) time, the overall running time follows. □

Corollary 2 CNP-V can be solved in O(3k+x · (n+m)) time.

Corollary 3 CNP can be solved in O(3k+x · (n+m)) time.

3.3 An Alternative FPT-Algorithm for Deletable Vulnerable Vertices

In the following, we provide an algorithm that solves CNP-V in O(( 43x + 2)k · (m + n)) time.
This running time is preferable when x is much larger than k. The idea of the algorithm is that
we search a set B of at most 4

3x + 2 vertices of G such that the A-vulnerability of G[B] is larger
than x. Then, if there exists a critical node cut C, at least one vertex of B is in C.

Theorem 5 An instance I := (G,A, k, x) of CNP-V can be solved in O(( 43x+2)k · (m+n)) time.

Proof: We use a search tree algorithm. Each node of the search tree corresponds to an instance
of CNP-V. At each search tree node, first exhaustively perform Reduction Rule 1 which removes
connected components that do not contribute to the A-vulnerability. Then, if k < 0, return
no. Otherwise, if the A-vulnerability of G is at most x, return yes. If all remaining connected
components have size at most 3, then return the result of the algorithm of Proposition 4.

Now, in the remaining case, compute a vertex set B on which we can branch as follows.
Let Z1, . . . , Zq denote the connected components of G that have size at least 4. If G[Z1 ∪ . . .∪Zq]
has A-vulnerability at most x, then set B := Z1 ∪ . . . ∪ Zq. Otherwise, let i ≤ q be the smallest
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number such that G[Z1 ∪ . . . ∪ Zi] has A-vulnerability at least x + 1. First, add Z1 ∪ . . . ∪ Zi−1

and some vulnerable vertex v of Zi to B. Then, add any vertex of Zi to B that has a neighbor
in B until G[B] has A-vulnerability at least x + 1. Afterwards, branch on B as follows: If Iv :=
(G−{v}, A, k−1, x) is a yes-instance of CNP-V for some vertex v of B, then return yes. Otherwise,
return no.

To show the correctness of the algorithm, it is sufficient to show that the above-described
branching is correct.

Claim 1 Let B be a vertex set computed as described above. Then, I is a yes-instance of CNP-V
if and only if there exists a vertex v ∈ B such that Iv is a yes-instance of CNP-V.

Proof. Suppose that I is a yes-instance. We show that I has some critical node cut C that
contains at least one vertex v of B. Then, Iv is a yes-instance. If the A-vulnerability of G[B] is
larger than x, then any critical node cut C of I must necessarily contain at least one vertex v
of B. Otherwise, B contains by construction all vertices that are in connected components of size
at least 4 in G. Let C be any critical node cut of I. Assume that C ∩ B = ∅. Then, C contains
only vertices of connected components of size at most 3. Let u be any vertex of C and let v be any
vulnerable vertex in B. Then, the set C ′ := (C ∪{v})\{u} is a critical node cut: The deletion of u
in G decreases the A-vulnerability by at most 3 and the deletion of v decreases the A-vulnerability
by at least 3, since v is vulnerable and in a connected component of size at least 4. Thus, C ′ is a
critical node cut of G that contains at least one vertex of B.

Conversely, assume that Iv is a yes-instance of CNP-V for some vertex v ∈ B and let C ⊆
V (G− {v}) be a critical node cut of Iv. Clearly, C

′ = C ∪ {v} is a critical node cut of I. ⋄

It remains to show the running time bound. At each search tree node, all steps until the
computation of B can be performed in O(n + m) time. Now, the set B can also be computed
in O(n+m) time: First, we can compute the A-vulnerability of all connected components Zj , 1 ≤
j ≤ q in total time O(n + m). From this, we can compute the index i and the A-vulnerability
of G[Z1 ∪ . . .∪Zi−1]. Now, for each vertex u of Zi that is added to B, we can compute in constant
time the increase in A-vulnerability that is obtained by adding u. We may attribute the time
needed to compute the instance Iv to the search tree node that is created by the recursive call for
searching Iv. Hence, the total running time spent at each search tree node is O(n+m).

To bound the size of the search tree, first observe that the search tree has depth at most k,
since one vertex is deleted in each recursive call and branching is only performed while k ≥ 0. The
number of recursive calls is |B| and thus it remains to bound |B|.

Let v1, . . . , vi denote the initial vulnerable vertices added from each Zi, and let D := B \
{v1, . . . , vi} denote the other vertices in B. Note that D may contain vulnerable as well as non-
vulnerable vertices. We have |D| ≤ x+ 1, since the addition of each element in D to B increases
the A-vulnerability of B by at least one. Thus, |B| ≤ i + x + 1. Now, since G[Z1 ∪ . . . ∪ Zi−1]
has A-vulnerability at most x, we have that |D \ Zi| ≤ x, that is, the first i − 1 components
contain at most x vertices from D. Each of these i− 1 connected components contains at least 3
vertices from D since we consider only connected components of size at least 4. Thus, i− 1 ≤ x/3.
Consequently |B| ≤ i+ x+ 1 = i− 1 + x+ 2 ≤ 4

3x+ 2.
Altogether, the size of the search tree is O(( 43x + 2)k). Thus, the overall running time of the

algorithm is O(( 43x+ 2)k · (m+ n)). □

After Reduction Rule 3 is applied, we can assume |A| > k for instances of CNP-V. Hence, we
also obtain the following.

Corollary 4 CNP-V has an FPT-algorithm for the parameter |A|+ x.
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4 Parameterization by the Decrease in Vulnerability

In this section, we consider the parametrization by y := ℓ − x, where ℓ is the A-vulnerability of
the input graph. In other words, y counts how many vulnerable connections shall be removed.

4.1 An FPT Algorithm for Deletable Vulnerable Vertices

CNP is fixed-parameter tractable with respect to y [12], based on the following observations: If
some connected component has more than y vertices, then we have a yes-instance, as we can
delete y vulnerable connections by removing a single vertex. Afterward, we may compute the
component information in O(2y ·y2 · (n+m)) time and combine it using the dynamic programming
algorithm presented also in Section 2. We now extend the FPT result to the more general CNP-V
problem. Moreover, we improve the running time to a subexponential running time in y.

Theorem 6 CNP-V can be solved in 2O(
√
y log y) · nO(1) time.

Proof: Let I := (G,A, k, x) be an instance of CNP-V and let Z1, . . . , Zt be the connected compo-
nents of G. Recall that we assume that I is reduced regarding Reduction Rule 1 and therefore each
connected component has a non-empty intersection with A. Moreover, we assume that k ≥ 1 since
otherwise we can solve I in polynomial time by computing the number of vulnerable connections
of G.

We first assume that there exists a connected component Zi of size at least y + 1. Since we
assume that every connected component of G contains some vertices from A, let v ∈ Zi ∩ A.
Since |Zi| ≥ y + 1, we can remove at least y vulnerable connections by deleting v. Together with
the fact that k ≥ 1 we conclude that I is a yes-instance. Throughout the rest of the proof, we
assume that |Zi| ≤ y for every connected component of G.

In the remainder of the proof, we show that a component table T of I can be computed
in 2O(

√
y log y) · nO(1) time. Recall that a component table T of I has entries of type T [i, k′]

with i ∈ [1, t] and k′ ∈ [0, k] such that T [i, k′] is the minimum number of vulnerable connections
in G[Zi] that remain after deleting exactly k′ vertices in Zi. With a component table at hand, we
can then solve CNP-V in polynomial time due to Lemma 4.

Let Zi be a connected component. We now describe how to compute all component informa-
tion T [i, k′] with k′ ∈ [0, k] in 2O(

√
y log y) · nO(1) time.

We first consider the case where k <
√
y. For each k′ ∈ [0, k], we compute T [i, k′] by iterating

over all subsets S ⊆ Zi and computing the vulnerability of G[Zi]−S. Note that for each k′ ∈ [0, k],

there are at most
(|Zi|

k′

)
≤ |Zi|k

′
subsets S ⊆ Zi of size k′. Since |Zi| ≤ y and k′ ≤ k <

√
y,

we can compute each component information T [i, k′] in y
√
y · nO(1) = 2O(

√
y log y) · nO(1) time.

Since k ≤ n in non-trivial instances, we can compute all component information T [i, k′] for k′ ∈
[0, k] in 2O(

√
y log y) · nO(1) time.

Next, let k ≥ √
y. For this, we first identify a further case, where I is a yes-instance.

Claim 2 If k ≥ √
y and there exists a connected component Zi such that |Zi| ≥

3
√
y+1

2 and |Zi ∩
A| ≥ √

y, then I is a yes-instance.

Proof. Since |Zi ∩ A| ≥ √
y and k ≥ √

y, we may delete
√
y vulnerable vertices from Zi. This

decreases the number of vulnerable connections by at least
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(√
y

2

)
︸ ︷︷ ︸
=:c1

+
√
y · (|Zi| −

√
y)︸ ︷︷ ︸

=:c2

,

where c1 corresponds to the vulnerable connections between the deleted vertices and c2 corresponds
to vulnerable connections between the deleted vertices and the remaining vertices in Zi. Then,

since |Zi| ≥
3
√
y+1

2 , the number of vulnerable connections is decreased by at least
(√

y
2

)
+

√
y ·(

3
√
y+1

2 −√
y
)
=

y−√
y

2 +
3y+

√
y

2 − y = y. Therefore, I is a yes-instance. ⋄

Since we assumed k ≥ √
y, we may immediately return yes if Zi satisfies the two constraints

stated in the claim. For the rest of the proof, we may assume that this is not the case. Consequently,

we have |Zi| <
3
√
y+1

2 or |Zi ∩A| < √
y. Consider the following cases.

Case 1: |Zi| <
3
√
y+1

2 . We can then compute the component information of the connected
component Zi by iterating over all subsets S ⊆ Zi and computing the number of vulnerable

connections in G[Zi] − S. Since |Zi| <
3
√
y+1

2 , there are at most 2
1
2 ·(3

√
y+1) ∈ 2O(

√
y) subsets.

Therefore, all component information T [i, k′] can be computed in 2O(
√
y log y) · nO(1) time.

Case 2: |Zi ∩A| < √
y. Then, since k ≥ √

y, we have T [i, k′] = 0 for all k′ ≥ |Zi ∩A| since one
may remove all vulnerable vertices in Zi and afterwards, no vertex of Zi is part of a vulnerable
connection anymore. It remains to compute component information T [i, k′] with k′ <

√
y. This is

done by iterating over every set S ⊆ Zi of size k
′ and computing the vulnerability ofG[Zi]−S. Since

there are at most |Zi|k
′
such subsets and |Zi| ≤ y, one component information T [i, k′] with k′ <

√
y

can be computed in yO(
√
y) · nO(1) = 2O(

√
y log y) · nO(1) time. Since k ≤ n in non-trivial instances,

we can compute all component information T [i, k′] for k′ ∈ [0, k] in 2O(
√
y log y) · nO(1) time.

By the above, we can compute the component table T of I in 2O(
√
y log y) ·nO(1). Together with

Lemma 4, we conclude that CNP-V can be solved within the claimed running time. □

4.2 Hardness for Non-Deletable Vulnerable Vertices

Now, we show that—in contrast to CNP-V—the CNP-NDV problem is W[1]-hard with respect
to the parameter k + y. In the algorithm for CNP-V behind Theorem 6, we exploit that we may
bound the size of a single connected component in the parameter y if one single vulnerable vertex
lies in that component. This relies on the fact that the deletion of this vertex provides a critical
node cut. Note that this is not possible in the case of CNP-NDV. We show that CNP-NDV is
W[1]-hard for k+ y even if the input graph consists of a single connected component with exactly
one vulnerable vertex. We reduce from Clique which has as input graph G and an integer ℓ,
and asks whether G contains a set of ℓ vertices that are pairwise adjacent. It is well-known that
Clique is W[1]-hard with respect to ℓ [5, 7].

The reduction follows the spirit of a reduction of Fomin et al. [9] that shows W[1]-hardness of
the Cutting at most k Vertices with Terminal problem. The reduction of Fomin et al. [9]
already shows W[1]-hardness of CNP-NDV with respect to the parameter k, even if |A| = 1. We
adapt the reduction to show hardness with respect to the larger parameter k + y.

Theorem 7 CNP-NDV is W[1]-hard with respect to the parameter k+ y, even if |A| = 1 and the
input graph has diameter 2.
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Figure 4: Construction of G′ in the proof of Theorem 7.

Proof: Construction: Let (G, ℓ) be an instance of Clique. We assume without loss of generality
that ℓ ≤ nG. We construct an instance (G′, A, k, x) of CNP-NDV as follows: We start with a
single vulnerable vertex d and set A := {d}. Then, we add ℓ + 1 neighbor-vertices to d and call
this set N . We add a set HV of nG vertices to G′ that corresponds to the vertex set V (G). We
add an edge between every vertex of HV and every vertex of N . Furthermore, we add for every
edge in G a vertex to G′ and name that vertex set HE . For every edge {u, v} of G, connect the
corresponding vertex of HE to the two vertices of HV that correspond to u and v. Finally, we add
a universal vertex ū that is connected to every vertex of G′. The construction of G′ is shown in
Figure 4.

We set k := ℓ + 1 and x := |N | + nG + mG + 1 − k −
(
ℓ
2

)
. Then, y =

(
ℓ
2

)
+ ℓ + 1 as we

are dealing with exactly one vulnerable vertex. Thus, k and y are polynomially bounded in ℓ.
Moreover, |A| = |{d}| = 1 and the diameter of G′ is 2 because of the universal vertex ū. The
construction can be computed in polynomial time.

Intuition: We constructed G′ so that there exists a vertex in G′ for every vertex and every edge
in G. The vertices of HV correspond to the nG vertices of G and the vertices of HE to the mG

edges of G. As we can add at most k vertices to a critical node cut, we cannot add all vertices
of N ∪ {ū} to a critical node cut. Consequently, the only vertices that can be separated from d
without being in the critical node cut are in the vertex set HE .

Correctness: Let (G, ℓ) be a yes-instance of Clique. Thus, there is a set of vertices X ⊆ V (G)
such that G[X] is a clique of size ℓ. Thus, G[X] contains

(
ℓ
2

)
edges. Let Y be the set of these

edges. We define the vertex set C that contains the ℓ vertices in HV that correspond to the vertices
of X and the universal vertex ū of G′. The size of the set C is ℓ + 1 = k. Then, the

(
ℓ
2

)
vertices

in HE that correspond to Y are isolated and thus no longer connected to d. It follows that C is a
critical node cut, because |Y |+ |C| = y vulnerable connections are deleted from G′ by cutting C.
Thus, (G′, A, k, x) is a yes-instance.

Conversely, let (G′, A, k, x) be a yes-instance of CNP-NDV. Let C be a corresponding crit-
ical node cut. It follows that |C| ≤ k = ℓ + 1 and cutting C from G′ deletes y vulnerable
connections. Let Q ⊆ V (G′) \ C be the set of vertices that are separated from d in G′ − C. We
observe that Q ⊆ HE , because the vertices of N ∪ {ū} are adjacent to d and every vertex of HV is
connected to d via more than k vertex-disjoint paths. Furthermore, a vertex of HE corresponding
to {u, v} is in Q, if and only if {u, v, ū} ⊆ C. Since |C|+ |Q| ≥ y = ℓ+1+

(
ℓ
2

)
and |C| ≤ ℓ+1, we

have |Q| ≥
(
ℓ
2

)
. Thus, the critical node cut C consists of ū and ℓ vertices of HV that are pairwise
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adjacent in G. Hence, G has a clique of size ℓ. □

The constructed graph G′ does not contain edges within N , within HV , or within HE . Thus,
removing ū makes G′ bipartite with vertex bipartition ({d} ∪ HV , N ∪ HE). Since ū is in every
critical node cut of the constructed instance (as shown in the backward direction of the proof),
removing ū and decreasing k by one gives an equivalent instance.

Corollary 5 CNP-NDV is W[1]-hard with respect to k+y, even on bipartite graphs and if |A| = 1.

We can also alter the construction of G′ in Theorem 7 by making the vertices of N ∪HV ∪{d, ū}
a clique. Then, the size of the neighborhood of A increases by |HV | and thus is not bounded in ℓ.
Then, G′ is a split graph (these are the graphs whose vertex sets can be partitioned into a clique
and an independent set); the correctness proof is analogous.

Corollary 6 CNP-NDV is W[1]-hard with respect to k + y for |A| = 1, even on split graphs of
diameter 2.

5 Parameters Related to the Vertex Cover Number

5.1 An FPT Algorithm for the Vertex Cover Number

First, we obtain an FPT-algorithm for both problems parameterized by the vertex cover number vc.
To unify the presentation, we present the algorithm for the more general CNP-VNDV problem,
it uses a combination of branching and dynamic programming. A subroutine in the algorithm will
be to compute optimal critical node cuts under the premise that the remaining graph is connected.
The following lemma shows that one can efficiently compute critical node cuts that are at least as
good as such connectivity-preserving critical node cuts.

Lemma 7 Given an instance (G,A,N, k, x) of CNP-VNDV, one can compute in O(m+n) time
a set D ⊆ (V (G) \N) of size at most k such that for every set C ⊆ (V (G) \N) of size at most k
where G− C is connected, the A-vulnerability of G−D is at most the A-vulnerability of G− C.

Proof: If V (G)\N contains at most k vertices, then we may simply delete all vertices in V (G)\N .
Otherwise, consider a set C such that G′ = G − C is connected and has minimal A-vulnerability
among all such graphs. The graph G′ then contains n′ = n− |C| vertices and the A-vulnerability
of G′ is

vul(G′) =

(
n′
A

2

)
+ n′

A · (n′ − n′
A) = n′

A · ((n′
A − 1)/2 + n′ − n′

A) = n′
A(−n′

A/2− 1/2 + n′)

where n′
A is the number of vertices of A that are contained in G′. Note that this value is minimal

when n′
A is minimal: the mapping n′

A 7→ n′
A(−n′

A/2 − 1/2 + n′) is a quadratic function reaching
its maximum at n′

A = n′ − 1/2. Consequently, the function is non-decreasing for increasing integer
values n′

A ∈ [0, n′]. Altogether, this shows that minimizing n′
A minimizes the A-vulnerability of G′.

Now consider the set D obtained by deleting vertices of A until all remaining vertices of A are
also contained in N and thus non-deletable. Formally, this means adding min(|A \N |, k) vertices
of A \ N to D and max(k − |A \ N |, 0) vertices of V (G) \ (N ∪ A) to D. The graph G − D
has n′ vertices and its A-vulnerability is thus at most(

n∗
A

2

)
+ n∗

A · (n′ − n∗
A)
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S′

Np(S
′)

S̃

∆(S̃) Np(S̃)

S′ \ S̃

Np(S
′ \ S̃)

Figure 5: Illustration of the recurrence for a table entry T [S′, k′]. The vertices of N are black and
all vertices are vulnerable. An optimal solution for G′ = G[Np[S

′]] and k′ = 3 is to delete the red

vertices. In the example, δ(S̃) = 1 because 1) the set ∆(S̃) contains one vertex and this vertex is
not contained in N and 2) there are no edges between S̃ and S′ \ S̃.

where n∗
A denotes the number of vertices of A contained in G−D. By construction of D, n∗

A ≤ n′
A

and, by the discussion above, the A-vulnerability of G − D thus is at most the A-vulnerability
of G− C. □

The general approach of the algorithm is to consider all possibilities to delete vertices in the vertex
cover. For each such possibility, we then solve the problem of finding an optimal critical node cut
when no vertices of the remaining vertex cover may be deleted. In the following, we describe an
algorithm for this subproblem and bound its running time.

Lemma 8 Let I = (G,A,N, k, x) be an instance of CNP-VNDV and let S be a given vertex cover
of G such that S ⊆ N . Then, one can solve I in 3|S| · nO(1) time.

Proof: We use dynamic programming over subsets of S. The dynamic programming table T
contains entries of the type T [S′, k′] where S′ is a subset of S and k′ ∈ [0, k]. To define the meaning
of a table entry, let Np(S

′), for S′ ⊆ S denote the private neighbors of S′ in the independent
set V (G) \S, that is, the vertices which have at least one neighbor in S′, no neighbor in S \S′ and
which are not in S. Formally, Np(S

′) = N(S′)\(N(S \S′)∪S). Moreover, let Np[S
′] = S′∪Np(S

′)
denote the union of the private neighborhood of S′ and the set S′ itself. Finally, let G′ := G[Np[S

′]]
denote the subgraph induced by S′ and its private neighborhood. A table entry T [S′, k′] contains
the minimum A-vulnerability of any graph that is obtained from G′ by deleting at most k′ vertices
that are not from N . Since S′ ⊆ N , the deleted vertices have to belong to Np(S

′) \ N . With
this definition, the value of T [S, k] then is the minimum A-vulnerability of any graph that can be
obtained from G by deleting at most k vertices which are not in N . Clearly, I is a yes-instance if
and only if this number is at most x.

Informally, the recurrence to compute the value of T [S′, k′] is obtained by the following consid-
erations (see also Figure 5 for an illustration). Recall that G′ = G[Np[S

′]] is the graph for which
an optimal critical node cut C ′ with at most k′ vertices needs to be computed at this table entry.
If all vertices of S′ end up in the same connected component of G′ −C ′, then G′ −C ′ is connected
and we may compute an optimal critical node cut using Lemma 7. Otherwise, there is a nonempty
subset S̃ of S′ that ends up in a different component of G′ − C ′ than the other vertices of S′. In
this case, all vertices that have at least one neighbor in S̃ and one in S′ \ S̃ have to be deleted to
separate S̃ from the other vertices in S′. Formally, this set is defined as

∆S′(S̃) := N(S̃) ∩N(S′ \ S̃) ∩Np(S
′).
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To avoid cluttered notation, we write ∆(S̃) instead of ∆S′(S̃) since S′ will be clear from con-
text. The deletion of ∆(S̃) splits the instance into two independent parts, one with the vertices
from Np[S̃], the other part containing the vertices from Np[S

′ \ S̃]. The two parts can then be
solved independently if we consider the optimal way to distribute the deletion budget between the
two parts.

To simplify the description, we define T [S′, k′] := +∞ for all k′ < 0. Moreover, we set T [∅, k′] :=
0 for all k′ ∈ [0, k]. This is correct since the empty graph has A-vulnerability 0. Furthermore, we
precompute an auxiliary table Q, where an entry Q[S′, k′] is a lower bound of the A-vulnerability
that we get when G(Np[S

′]) remains connected after the deletion of k′ vertices. More precisely,
let Q[S′, k′] be the A-vulnerability of G′ − D′ where D′ is computed by applying the algorithm
from Lemma 7 to G′. Then, any connected graph obtained from G′ by deleting at most k′ vertices
of Np(S

′) \N has vulnerability at least Q[S′, k′].
For nonempty S′, we now compute T [S′, k′] by the recurrence

T [S′, k′] = min
S̃⊆S′

min
k̃≤k′

(
Q[S̃, k̃] + T [S′ \ S̃, k′ − k̃ − δ(S̃)]

)
where δ(S̃) = |∆(S̃)| if

� ∆(S̃) contains no vertices of N and

� there are no edges with one endpoint in S̃ and one endpoint in S′ \ S̃,

and δ(S̃) = k + 1, otherwise. That is, δ counts the number of vertex deletions that are necessary
to disconnect S̃ and S′ \ S̃ in G′ if it is at all possible to disconnect the two sets without deleting
vertices in N . Otherwise, the value of δ is sufficiently large to ensure that the equation evaluates
to +∞.

To show the correctness of the recurrence, we prove the following two inequalities between the
right-hand side and left-hand side of the equation.

(≥) Consider T [S′, k′] and let C ′ ⊆ V (G′)\N be a set of size at most k′ such that G′−C ′ has A-
vulnerability T [S′, k′]. Let Z̃ be some connected component of G′ − C ′ and let S̃ := Z̃ ∩ S be the
set of the vertex cover nodes of Z̃. Since Z̃ is a connected component in G′−C ′, there are no edges
between S̃ and S′ \ S̃ and C ′ contains every vertex of G′ with one neighbor in S̃ and one in S′ \ S̃,
that is, every vertex of ∆(S̃). In G′−∆(S̃), the set Np[S̃] is one connected component. Let k̃ denote

the number of vertices from Np[S̃] that are deleted. Then, G′[Np[S̃]] − C ′ has A-vulnerability at

least Q[S̃, k̃] since this graph is exactly G′[Z̃] and therefore connected. Moreover, G′[Np[S
′\S̃]]−C ′

has A-vulnerability at least T [S′\S̃, k′− k̃−δ(S̃)], since C ′ contains at most k′− k̃−δ(S̃) vertices of
Np[S

′\S̃] and by the definition of T . Altogether, we have T [S′, k′] ≥ Q[S̃, k̃]+T [S′\S̃, k′−k̃−δ(S̃)]

for this particular choice of S̃ and k̃. Therefore, T [S′, k′] is also at least as large as the minimum
over all choices for S̃ and k̃.

(≤) Consider a set S̃ and a number k̃ minimizing Q[S̃, k̃] + T [S′ \ S̃, k′ − k̃− δ(S̃)] in the right-
hand side of the recurrence and observe that the value of the right-hand side is finite. Then, there
exist a set C̃ of at most k̃ vertices and a set Ĉ of at most k−k̃−δ(S̃) vertices such that G′[Np[S̃]]−C̃

has A-vulnerability at most Q[S̃, k̃] and G′[Np[S
′\S̃]]−Ĉ has A-vulnerability T [S′\S̃, k′−k̃−δ(S̃)].

Now, consider the set C ′ = C̃ ∪∆(S̃)∪ Ĉ. This set has size at most k̃+ δ(S̃)+(k′− k̃− δ(S̃)) = k′.
Then, the A-vulnerability of G′ − C ′ is at most Q[S̃, k̃] + T [S′ \ S̃, k′ − k̃ − δ(S̃)], since G′ − C ′

is the disjoint union of G′[Np[S̃]] − C̃ and G′[Np[S
′ \ S̃]] − Ĉ as 1) there are no edges between S̃

and S \ S̃ and 2) all vertices of G′ that are not in Np[S̃] or in Np[S
′ \ S̃] are contained in ∆(S̃).
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The running time for filling the tables can be bounded as follows. Table Q has O(2|S| · k)
entries, each of which can be computed in nO(1) time by Lemma 7. Table T has O(2|S| · k) entries
as well and the time needed for filling T is dominated by the total number of different terms over
which the minimum is taken. This number is 3|S| · nO(1) since each such term corresponds to a
3-partition of S into S \ S′, S′ \ S̃, and S̃. □

We can now use this algorithm to obtain a single-exponential FPT-algorithm for the vertex cover
number of the input graph.

Theorem 8 CNP-VNDV can be solved in 4vc · nO(1) time.

Proof: Let (G,A,N, k, x) be an instance of CNP-VNDV. The first step of the algorithm is to
compute a minimum vertex cover S of G. This can be done in O(2vc(n + m)) time using the
standard search tree algorithm [5]. Then, for each set D ⊆ (S \ N) of size at most k, we create
a branch where we assume that D is the set of vertex deletions in the vertex cover S. Consider
one such branch. Let G′ := G − D and let k′ := k − |D|. Observe that S′ := S \ D is a
vertex cover of G′. The question is now whether there is a vertex set C ′ of size at most k′ that
avoids N ∪ S′ such that G′ − C ′ has A-vulnerability at most x. This is equivalent to solving the
instance (G′, A,N ∪S′, k′, x) and can be done in 3|S

′| ·nO(1) time by Lemma 8. If |D| = i, then the
running time for solving the instance is therefore 3vc−i · nO(1). Consequently, the overall running
time for the branching is

∑vc
i=0

(
vc
i

)
·3vc−i ·nO(1). Using the binomial theorem, the overall running

time for all possibilities of D is thus 4vc · nO(1) time. □

5.2 On Problem Kernelization

Next, we show polynomial-size kernels for CNP-V parameterized by vc + x and for CNP-NDV
parameterized by vc + k + x. To this end, we first make a simple observation on k and the vertex
cover number of the input graph. Let (G,A, k, x) be an instance of CNP-V or CNP-NDV. For
the rest of the section, we fix a vertex set S which is a 2-approximation of a minimum vertex cover
of G, that is, |S| ≤ 2 · vc. Note that S can be computed in linear time.

Consider CNP-V. Removing S from G results in an edgeless graph and therefore, there are no
vulnerable connections in G − S. Thus, we may immediately return yes if k is at least as big as
the size of S.

Reduction Rule 5 Let (G,A, k, x) be an instance of CNP-V. Return yes, if k ≥ |S|.

After application of this rule, we may assume k < 2 · vc. Recall that we assume that the input
instance of CNP-V is reduced with respect to Reduction Rules 1 and 4 and therefore we may
assume that there are no isolated vertices and that |N(v) ∩ A| ≤ k +

√
2x for every vertex v. In

the following, we show that we can use these assumptions to bound the size of A in vc+x.

Lemma 9 After Reduction Rules 1, 4, and 5 have been applied exhaustively, in an instance
(G,A, k, x) of CNP-V, the set A contains less than 2 vc ·(2 vc+

√
2x+ 1) vertices.

Proof: Recall that S is a vertex cover of G with |S| ≤ 2 · vc. After Reduction Rule 1 has been
applied exhaustively, every vertex of G is either in the vertex cover, or a neighbor of S. Then, with
Reduction Rules 4 and 5 it follows that

|A| = |S ∩A|+ |N(S) ∩A|
Red. Rule 4

≤ 2 vc+2 vc ·(k +
√
2x)

Red. Rule 5
< 2 vc ·(2 vc+

√
2x+ 1).
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□

Next, we define a subset B of the vertices. We provide two different definitions for CNP-V
or CNP-NDV: For CNP-V, we define B := A∪S. For CNP-NDV, we define B := S. We call B
the base. We then have |B| ≤ 2 ·vc when we deal with an instance of CNP-NDV and by Lemma 9
we have |B| ≤ 2 vc ·(2 vc+

√
2x+2) when we deal with an instance of CNP-V. It remains to bound

the size of the set Y := V \ B. Note that Y is an independent set because B contains a vertex
cover. Moreover, Y does not contain isolated vertices since the instance is reduced with respect to
Reduction Rule 1. In the following, we provide a reduction rule that in instances of CNP-NDV
helps us to handle vulnerable vertices in the set Y . After the reduction rule has been applied
exhaustively, if a vertex v has a neighborhood of size at least k + x + 1, all neighbors of v are
non-vulnerable.

Reduction Rule 6 Let (G,A, k, x) be an instance of CNP-NDV with base B. If a vertex v ∈ B
has more than k + x neighbors of which one is vulnerable, then do the following:

1. If v ̸∈ A, then remove v from the graph and decrease k by one.

2. If v ∈ A, then return no.

Lemma 10 Reduction Rule 6 is safe and can be applied exhaustively in O(n2) time.

Proof: Safeness: Case 1: v ̸∈ A. We show that, if there is a critical node cut C for the in-
stance (G,A, k, x), then v ∈ C. Let d be a vulnerable neighbor of v. Assume towards a contradic-
tion that v ̸∈ C. Consequently, {d,w} is a vulnerable connection in G−C for every w ∈ N(v) \ C
with d ̸= w. Also, {d, v} is a vulnerable connection in G−C. By the requirements of the reduction
rule, |N(v)| > k + x. It follows that |(N(v) \ {d}) \ C| ≥ x. Together with {d, v} in G− C, there
are more than x vulnerable connections. We conclude that v ∈ C.

Case 2: v ∈ A. It directly follows from Case 1 that, if v ∈ A, there exists no critical node cut
for (G,A, k, x) that is disjoint from A. Hence, there is no critical node cut for (G,A, k, x) for the
instance of CNP-NDV. Thus, we can return no.

Running time: Since each application of Reduction Rule 6 removes a vertex, it can be applied
at most n times. For every vertex, we compute the size of the neighborhood and check whether
one vertex is vulnerable in O(n) time. Thus, this reduction rule can be applied exhaustively
in O(n2) time. □

This reduction rule can only be applied on instances of CNP-NDV, because, if v ̸∈ A, we know
that we have to add v to a critical node cut. However, in CNP-V there remain three options: we
can add the vulnerable vertex d, or the vertex v, or both to a critical node cut. Thus, in order to
avoid such a decision for instances of CNP-V, we added all vulnerable vertices to the base B.

In the last reduction rule, we use the Expansion Lemma. The Expansion Lemma was introduced
by Prieto-Rodŕıguez [14]. We use the formulation by Cygan et al. [5]. Let H be a bipartite graph
with vertex bipartition (R, T ). For a positive integer q, a set of edges M ⊆ E(H) is called a q-
expansion of R into T , if every vertex of R is incident with exactly q edges of M and the edges
in M are incident with exactly q · |R| vertices in T .

Lemma 11 (Expansion Lemma [5]) Let q ≥ 1 be a positive integer and H be a bipartite graph
with vertex bipartition (R, T ) such that |T | ≥ q · |R| and there are no isolated vertices in T . Then,
there exist nonempty vertex sets P ⊆ R and Q ⊆ T such that there is a q-expansion of P into Q
and NH(Q) ⊆ P . Furthermore, the sets P and Q can be found in time polynomial in the size of H.
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Since the Expansion Lemma can only be applied to bipartite graphs, in the next reduction rule
we define a bipartite graph that is an induced subgraph of G. We apply the Expansion Lemma on
the graph G′ which contains the vertices V ′ := V (G) and the set of edges E′ := E(G) \ E(G[B]).
This is a bipartite graph, because we do not consider the edges within B and, by definition, Y is
an independent set. Thus, G′ is a bipartite graph with vertex bipartition (B, Y ).

Now, we assume that Reduction Rules 1 and 6 are exhaustively applied.

Reduction Rule 7 If the set Y contains at least (k + x+ 2) · |B| vertices, then, in the graph G′

compute non-empty vertex sets P ⊆ B and Q ⊆ Y such that there is a k + x + 2-expansion of P
into Q. Remove an arbitrary vertex v ∈ Q from G.

Lemma 12 For an instance of CNP-V or CNP-NDV, Reduction Rule 7 is safe and can be
applied exhaustively in polynomial time.

Proof: Safeness: Let (G,A, k, x) be an instance of CNP-V or CNP-NDV with base B for which
the inequality |Y | ≥ (k + x+ 2) · |B| holds.

We start by showing that we can apply the Expansion Lemma. After Reduction Rule 1 has
been applied exhaustively, all vertices in Y are adjacent to at least one vertex in B. Thus, all
conditions for the Expansion Lemma are fulfilled. From the Expansion Lemma, we know that we
can then find non-empty vertex sets P ⊆ B and Q ⊆ Y such that there is a k + x+ 2-expansion
of P into Q in polynomial time. Also, the sets fulfill NG(Q) ⊆ P .

For the rest of the proof, let v be an arbitrary but fixed vertex of Q. We show that (G,A, k, x)
is a yes-instance of CNP-V or CNP-NDV, if and only if (G−{v}, A, k, x) is a yes-instance of the
same problem. Observe that v is non-vulnerable: In an instance of CNP-V we defined A ⊆ B and
thus A∩Y = ∅ and in particular A∩Q = ∅. In an instance of CNP-NDV, after Reduction Rule 6
has been applied exhaustively, a vertex of B with a neighbor in A∩Y has at most k+x neighbors.
Thus, a described k + x+ 2-expansion of P into Q cannot exist if A ∩Q ̸= ∅.

Because G−{v} is an induced subgraph of G, C \{v} is a critical node cut for (G−{v}, A, k, x)
if C is a critical node cut for (G,A, k, x).

Conversely, let (G − {v}, A, k, x) be a yes-instance of CNP-V or CNP-NDV and let C be a
corresponding critical node cut. From the Expansion Lemma, we know N(Q) ⊆ P . In (G−{v})−C
there is no vulnerable connection {d, u} with d ∈ A and u ∈ P : Otherwise, for all w ∈ (NG(u) ∩
Q) \ ({v} ∪ C) also {d,w} is a vulnerable connection in (G − {v}) − C. By the definition of P
and Q, the size of (NG(u) ∩ Q) is at least k + x + 1 and thus {u} ∪ ((NG(u) ∩ Q) \ ({v} ∪ C))
contains more than x vertices. This is a contradiction to C being a critical node cut. By the same
argument, the sets A and P \C are not connected in (G−{v})−C. It follows that in (G−{v})−C
the sets P \ C and Q \ C are in connected components that do not contain a vulnerable vertex.
Since NG(v) ⊆ P , the A-vulnerability of (G − {v}) − C is the A-vulnerability of G − C and C is
also a critical node cut for (G,A, k, x).

Clearly, the rule can be performed in polynomial time. □

It remains to give a bound on the size of the computed kernel. To this end, consider the
following lemma.

Lemma 13 An instance (G,A, k, x) of CNP-V or CNP-NDV contains less than |B| · (k+x+3)
vertices after Reduction Rule 7 has been applied exhaustively.

Proof: Let (G,A, k, x) be an instance that is reduced exhaustively by Reduction Rule 7. Then,
the set Y contains less than |B| · (k+x+2) vertices. As V (G) = B ∪Y , the graph G contains less
than |B|+ |B| · (k + x+ 2) = |B| · (k + x+ 3) vertices. □
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We next argue why the bound from the previous lemma implies that CNP-V admits a poly-
nomial kernel for parameterization by vc +x and that CNP-NDV admits a polynomial kernel for
parameterization by vc+x+ k. Recall that S is a 2-approximation of a vertex cover.

First, consider CNP-V. Recall that B = A∪ S in this case. Hence, B ≤ 2 vc ·(2 vc+
√
2x+ 2).

This implies that CNP-V admits a problem kernel with less than (2 vc (2 vc +
√
2x+2)) ·(k+x+3)

vertices. Furthermore, since the instance is reduced with respect to Reduction Rule 5, we conclude
that CNP-V admits a polynomial kernel for parameterization by vc + x.

Second, consider CNP-NDV. Recall that B = S in this case. Hence, |B| ≤ 2 vc in this case.
This implies a problem kernel with less than 2 · vc·(k+x+3) vertices for CNP-NDV. In summary,
we obtain the following

Theorem 9 a) CNP-V admits a problem kernel with less than 2 vc ·(2 vc+
√
2x+2) ·(2 vc +x+3)

vertices.

b) CNP-NDV admits a problem kernel with less than 2 · vc · (k + x+ 3) vertices.

6 Conclusion

We introduced two new critical node detection problems Critical Node Problem with Vul-
nerable Nodes (CNP-V) andCritical Node Problem with Non-Deletable Vulnerable
Nodes (CNP-NDV), that take into account that we may be only interested in the number of con-
nected pairs for a specified set of vulnerable vertices. We performed a parameterized complexity
analysis for some of the most natural parameters and their combinations.

We left open, however, the complexity of several natural parameterizations. For example, is
CNP-V FPT with respect to |A|? At the moment we only have an XP-algorithm for A and an
FPT-algorithm for |A|+x. Moreover, does either problem admit a polynomial kernel for the vertex
cover number vc?

A further interesting structural parameter is the feedback vertex number (fv) of the input
graph. That is the minimum number of vertices that need to be removed to obtain a graph
without cycles. Since fv never exceeds the vertex cover size, it is interesting to ask whether our
results on parameterization by vc be transferred to this smaller parameter. Moreover, the feedback
vertex number also measures the distance to a polynomial-time solvable case, since CNP-V and
CNP-NDV can be solved in polynomial time on acyclic graphs [15]. Thus, parameterization by fv
is a distance-from-triviality parameterization.

It is also open whether CNP-NDV is FPT or W[1]-hard for parameterization by treewidth (tw).
Recall that CNP is W[1]-hard for tw [2, 12] and thus, the more general CNP-V is W[1]-hard for
tw as well. However, this does not imply W[1]-hardness for CNP-NDV. Is it possible to adapt
the reductions for CNP-NDV [2, 12] so that they work for non-deletable vulnerable vertices or is
a fundamentally new approach required?

Besides considering CNP-V and CNP-NDV, it is interesting to introduce vulnerable vertices
for other natural critical node problems [13]. For example, instead of defining the A-vulnerability
via the number of vulnerable connections, one may consider centrality measures for vertex sets [3,
10] to assess how exposed the vulnerable vertices are. Moreover, one may consider edge deletions
instead of vertex deletions. For example, is it possible to adapt existing FPT results for related
edge deletion problems [8] to problem versions with vulnerable vertices?
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