Special Issue on Selected Papers from the 13th International Conference and Workshops on Algorithms and Computation, WALCOM 2019 Weighted Upper Edge Cover: Complexity and Approximability Kaveh Khoshkhah, Mehdi Khosravian Ghadikolaei, Jérôme Monnot, and Florian Sikora Vol. 24, no. 2, pp. 65-88, 2020. Regular paper. Abstract Optimization problems consist of either maximizing or minimizing an objective function. Instead of looking for a maximum solution (resp. minimum solution), one can find a minimum maximal solution (resp. maximum minimal solution). Such "flipping" of the objective function was done for many classical optimization problems. For example, ${\rm M{\small INIMUM}}$ ${\rm V{\small ERTEX}}$ ${\rm C{\small OVER}}$ becomes ${\rm M{\small AXIMUM}}$ ${\rm M{\small INIMAL}}$ ${\rm V{\small ERTEX}}$ ${\rm C{\small OVER}}$, ${\rm M{\small AXIMUM}}$ ${\rm I{\small NDEPENDENT}}$ ${\rm S{\small ET}}$ becomes ${\rm M{\small INIMUM}}$ ${\rm M{\small AXIMAL}}$ ${\rm I{\small NDEPENDENT}}$ ${\rm S{\small ET}}$ and so on. In this paper, we propose to study the weighted version of Maximum Minimal Edge Cover called ${\rm U{\small PPER}}$ ${\rm E{\small DGE}}$ ${\rm C{\small OVER}}$, a problem having application in genomic sequence alignment. It is well-known that ${\rm M{\small INIMUM}}$ ${\rm E{\small DGE}}$ ${\rm C{\small OVER}}$ is polynomial-time solvable and the "flipped" version is NP-hard, but constant approximable. We show that the weighted ${\rm U{\small PPER}}$ ${\rm E{\small DGE}}$ ${\rm C{\small OVER}}$ is much more difficult than ${\rm U{\small PPER}}$ ${\rm E{\small DGE}}$ ${\rm C{\small OVER}}$ because it is not $O(\frac{1}{n^{1/2-\varepsilon}})$ approximable, nor $O(\frac{1}{\Delta^{1-\varepsilon}})$ in edge-weighted graphs of size $n$ and maximum degree $\Delta$ respectively. Indeed, we give some hardness of approximation results for some special restricted graph classes such as bipartite graphs, split graphs and $k$-trees. We counter-balance these negative results by giving some positive approximation results in specific graph classes. Submitted: April 2019. Reviewed: June 2019. Revised: July 2019. Accepted: August 2019. Final: January 2020. Published: February 2020. Communicated by Krishnendu Mukhopadhyaya and Shin-ichi Nakano article (PDF) BibTeX