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Abstract

An old open problem in graph drawing asks for the size of a universal
point set, a set of points that can be used as vertices for straight-line draw-
ings of all n-vertex planar graphs. We connect this problem to the theory
of permutation patterns, where another open problem concerns the size
of superpatterns, permutations that contain all patterns of a given size.
We generalize superpatterns to classes of permutations determined by for-
bidden patterns, and we construct superpatterns of size n2/4 + Θ(n) for
the 213-avoiding permutations, half the size of known superpatterns for
unconstrained permutations. We use our superpatterns to construct uni-
versal point sets of size n2/4−Θ(n), smaller than the previous bound by a
9/16 factor. We prove that every proper subclass of the 213-avoiding per-
mutations has superpatterns of size O(n logO(1) n), which we use to prove
that the planar graphs of bounded pathwidth have near-linear universal
point sets.
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1 Introduction

Fary’s theorem tells us that every planar graph can be drawn with its edges
as non-crossing straight line segments. As usually stated, this theorem allows
the vertex coordinates of the drawing to be drawn from an uncountable and
unbounded set, the set of all points in the plane. It is natural to ask how tightly
we can constrain the set of possible vertices. In this direction, the universal
point set problem asks for a sequence of point sets Un ⊆ R2 such that every
planar graph with n vertices can be straight-line embedded with vertices in Un
and such that the size of Un is as small as possible.

So far the best known upper bounds for this problem have considered sets
Un of a special form: the intersection of the integer lattice with the interior
of a convex polygon. In 1988 de Fraysseix, Pach and Pollack showed that a
triangular set of lattice points within a rectangular grid of (2n − 3) × (n − 1)
points forms a universal set of size n2−O(n) [9,10], and in 1990 Schnyder found
more compact grid drawings within the lower left triangle of an (n−1)× (n−1)
grid [26], a set of size n2/2 − O(n). Using the method of de Fraysseix et al.,
Brandenburg found that a triangular subset of a 4

3n× 2
3n grid, of size 4

9n
2+O(n),

is universal [7]. Until now his bound has remained the best known.

On the other side, Dolev, Leighton, and Trickey [13] used the nested triangles
graph to show that rectangular grids that are universal must have size at least
n/3× n/3, and that grids that are universal for drawings with a fixed choice of
planar embedding and outer face must have size at least 2n/3 × 2n/3. Thus,
if we wish to find subquadratic universal point sets we must consider sets not
forming a grid. However, the known lower bounds that do not make this grid
assumption are considerably weaker. In 1988 de Fraysseix, Pach and Pollack
proved the first nontrivial lower bounds of n+Ω(

√
n) for a general universal point

set [10]. This was later improved to 1.098n − o(n) by Chrobak and Payne [9].
Finally, Kurowski improved the lower bound to 1.235n [20], which is still the
best lower bound known.1

With such a large gap between these lower bounds and Brandenburg’s upper
bound, obtaining tighter bounds remains an important open problem in graph
drawing [11].

Universal point sets have also been considered for subclasses of planar graphs.
For instance, every set of n points in general position (no three collinear) is uni-
versal for the n-vertex outerplanar graphs [17]. Simply-nested planar graphs
(graphs that can be decomposed into nested induced cycles) have universal
point sets of size O

(
n(log n/ log logn)2

)
[1], and planar 3-trees have universal

point sets of size O(n3/2 log n) [16]. Based in part on the results in this paper,
the graphs of simple line and pseudoline arrangements have been shown to have
universal point sets of size O(n log n) [14].

In this paper we provide a new upper bound on universal point sets for gen-
eral planar graphs, and improved bounds for certain restricted classes of planar
graphs. We approach these problems via a novel connection to a different field

1The validity of this result was questioned by Mondal [23], but later confirmed.
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of study than graph drawing, the study of patterns in permutations.2 A per-
mutation σ is said to contain the pattern π (also a permutation) if σ has a (not
necessarily contiguous) subsequence with the same length as π, whose elements
are in the same relative order with respect to each other as the corresponding
elements of π. The permutations that contain none of the patterns in a given
set F of forbidden patterns are said to be F -avoiding ; we define Sn(F ) to be the
set of length-n permutations that avoid F . Researchers in permutation patterns
have defined a superpattern to be a permutation that contains all length-n per-
mutations among its patterns, and have studied bounds on the lengths of these
patterns [2,15], culminating in a proof by Miller that there exist superpatterns
of length n2/2+Θ(n) [22]. We generalize this concept to an Sn(F )-superpattern,
a permutation that contains all possible patterns in Sn(F ); we prove that for
certain sets F , the Sn(F )-superpatterns are much shorter than Miller’s bound.

As we show, the existence of small Sn(213)-superpatterns leads directly to
small universal point sets for arbitrary planar graphs. In the same way, the
existence of small Sn(F )-superpatterns for forbidden pattern sets F that contain
213 leads to small universal point sets for subclasses of the planar graphs. Our
method constructs a universal set U that has one point for each element of the
superpattern σ. It uses two different traversals of a depth-first-search tree of a
canonically oriented planar graph G to derive a permutation cperm(G) from G,
and it uses the universality of σ to find cperm(G) as a pattern in σ. Then, the
positions of the elements of this pattern in σ determine the assignment of the
corresponding vertices of G to points in U , and we prove that this assignment
gives a planar drawing of G.

Specifically our contributions include proving the existence of:

• superpatterns for 213-avoiding permutations of size n2/4 + Θ(n);

• universal point sets for planar graphs of size n2/4−Θ(n);

• superpatterns for every proper subclass of the 213-avoiding permutations
of size O(n logO(1) n);

• universal point sets for graphs of bounded pathwidth of size O(n logO(1) n);
and

• universal point sets for simply-nested planar graphs of size O(n log n).

In addition, we prove that every superpattern for {213, 132}-avoiding permu-
tations has length Ω(n log n), which in turn implies that every superpattern
for 213-avoiding permutations has length Ω(n log n). It was known that Sn-
superpatterns must have quadratic length—otherwise they would have too few
length-n subsequences to cover all n! permutations [2]—but such counting argu-
ments cannot provide nonlinear bounds for Sn(F )-superpatterns due to the now-
proven Stanley–Wilf conjecture that Sn(F ) grows singly exponentially [21]. In-

2A different connection between permutation patterns and graph drawing is being pur-
sued independently by Bereg, Holroyd, Nachmanson, and Pupyrev, in connection with bend
minimization in bundles of edges that realize specified permutations [5].
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stead, our proof finds an explicit set of {213, 132}-avoiding permutations whose
copies within a superpattern cannot share many elements.

A similar but simpler reduction uses Sn-superpatterns to construct universal
point sets for dominance drawings of transitively reduced st-planar graphs. In
subsequent work [4], we study dominance drawings based on superpatterns for
321-avoiding permutations and their subclasses, and we relate these subclasses
to natural classes of st-planar graphs and nonplanar Hasse diagrams of width-2
partial orders.

2 Preliminaries

2.1 Permutation patterns

Let Sn denote the set of all permutations of the numbers from 1 to n. We will
normally specify a permutation as a sequence of numbers: for instance, the six
permutations in S3 are 123, 132, 213, 231, 312, and 321. If π is a permutation,
then we write πi for the element in the ith position of π, and |π| for the number
of elements in π. The inverse of a permutation π is a permutation π−1 such
that πi = j if and only if (π−1)j = i for all 1 ≤ i, j ≤ |π|.

Definition 1 A permutation π is a pattern of a permutation σ of length n if
there exists a sequence of integers 1 ≤ `1 < `2 < · · · < `|π| ≤ n such that πi < πj
if and only if σ`i < σ`j for every 1 ≤ i, j ≤ |π|. In other words, π is a pattern
of σ if π is order-isomorphic to a subsequence of σ. We say that a permutation
σ avoids a permutation φ if σ does not contain φ as a pattern.

Definition 2 A permutation class is a set of permutations with the property
that all patterns of all permutations in the class also belong to the class.

Every permutation class may be defined by a set of forbidden patterns, the
minimal permutations that do not belong to the class; however, this set might
not be finite.

Definition 3 Sn(φ1, . . . , φk) denotes the set of all length-n permutations that
avoid all of the (forbidden) patterns φ1, . . . , φk.

Definition 4 A P -superpattern, for a set of permutations P ⊆ Sn, is a per-
mutation σ with the property that every π ∈ P is a pattern of σ.

One of the most important permutation classes in the study of permutation
patterns is the class of stack-sortable permutations [25], the permutations that
avoid the pattern 231. Knuth’s discovery that these are exactly the permutations
that can be sorted using a single stack [19] kicked off the study of permutation
patterns. The 213-avoiding permutations that form the focus of our research
are related to the 231-avoiding permutations by a simple transformation, the
replacement of each value i in a permutation by the value n + 1− i, that does
not affect the existence or size of superpatterns.
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2.2 Chessboard representation

Definition 5 A run of a permutation is a contiguous monotone subsequence of
the permutation. A block of a permutation is a set of consecutive integers that
appear contiguously (but not necessarily in order) in π. For instance, 135 is a
run in 21354 and {3, 4, 5} is a block in 14352.

Definition 6 Given a permutation π, a column of π is a maximal ascending
run of π and a row of π is a maximal ascending run in π−1.

A slightly different definition of rows and columns was used by Miller [22].
For our definition, the intersection of a row and column is a block that could
contain more than one element, whereas in Miller’s definition a row and column
necessarily intersect in at most one element.

Definition 7 The chessboard representation of a permutation π is an r × c
matrix

M = chessboard(π),

where r is number of rows in π and c is the number of columns in π, such that
M(i, j) is the number of points in the intersection of the ith column and the jth

row of π.

An example of a chessboard representation can be seen in Figure 1. To
recover a permutation from its chessboard representation, start with the lowest
row and work upwards assigning an ascending subsequence of values to the
squares of each row in left to right order within each row. If a square has label
i, allocate i values for it. Then, after this assignment has been made, traverse
each column in left-to-right order, within each column listing in ascending order
the values assigned to each square of the column. The sequence of values listed
by this column traversal is the desired permutation.

1

2

1

1

1

1

1

1

1

2

1

Figure 1: The permutation π = 1 4 5 8 6 13 12 7 9 11 2 3 10 represented by its
scatterplot (the points (i, πi)) with lines separating its rows and columns (left),
and by chessboard(π) (right).
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2.3 Subsequence majorization

Several of our results use the fact that every sequence of positive integers can
be majorized (termwise dominated) by a subsequence of another sequence with
slowly growing sums, as we detail in this section.

Definition 8 Let ξ be the sequence of numbers ξi (i = 1, 2, 3, . . . ) given by the
expression ξi = i⊕ (i− 1), where ⊕ denotes bitwise binary exclusive or.

This gives the sequence

1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 31, . . .

in which each value is one less than a power of two. This sequence has a recursive
doubling construction: for any power of two, say q, the first 2q − 1 values of ξ
consist of two repetitions of the first q− 1 values, separated by the value 2q− 1.
We confirm a conjecture of Klaus Brockhaus from 20033 by proving that, for all
n, the sum of the first n values of ξ is asymptotic to n log2 n.

Lemma 9 Let ζn =
∑n
i=1 ξn. Then n log2 n− 2n < ζn ≤ n log2 n+ n.

Proof: It follows from the recursive construction of sequence ξ that, when n is
a power of two,

ζn = 2ζn/2 − (n− 1) + (2n− 1) = 2ζn/2 + n = n(log2 n+ 1).

More generally, let the binary representation of n be n =
∑k
i=0 bi2

i for bi ∈
{0, 1}, where k = blog2 nc. Then combining the evaluation of ζn at powers of
two with the recursive construction of sequence ξ gives a formula for ζn in terms
of the binary representation of n,

ζn =

k∑
i=0

ζ2ibi =

k∑
i=0

2i(i+ 1)bi,

from which it follows that

ζn ≤
k∑
i=0

(log2 n+ 1)bi2
i = n log2 n+ n.

In the other direction,

ζn =

k∑
i=0

(i+ 1)bi2
i =

k∑
i=0

((k + 1)bi − (k − i)bi) 2i

≥
k∑
i=0

((k + 1)bi − (k − i)) 2i = n(blog2 nc+ 1)− 2k
k∑
i=0

(k − i)2i−k

> n log2 n− n
∞∑
j=0

j

2j
= n log2 n− 2n. �

3See sequence A080277 in the Online Encyclopedia of Integer Sequences, http://oeis.

org/A080277

http://oeis.org/A080277
http://oeis.org/A080277
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Lemma 10 Let the finite sequence α1, α2, . . . αk of positive integers have sum
n. Then there is a subsequence β1, β2, . . . βk of the first n terms of ξ such that,
for all i, αi ≤ βi.

Proof: We use induction on n. Let q be the largest power of two that is less
than or equal to n; then ξq = 2q − 1 ≥ n ≥ maxi αi. Let i be the smallest
index for which the first i values of α sum to at least q. We choose βi = ξq
and continue recursively for the two subsequences of α on either side of αi and
the two subsequences of ξ on either side of ξq. The sum of each of the two
subsequences of α is strictly less than q and each of the two subsequences of
ξ coincides with ξ itself for q − 1 terms, so by the induction hypothesis each
of these two subproblems has a solution that can be combined with the choice
βi = q to form a solution for the given input. �

3 From superpatterns to universal point sets

In this section, we show how 213-avoiding superpatterns can be turned into
universal point sets for planar graphs. Let G be a planar graph. We assume
G is maximal planar, meaning that no additional edges can be added to G
without breaking its planarity; this is without loss of generality, because a point
set that is universal for maximal planar graphs is universal for all planar graphs.
Additionally, we assume that G has a fixed plane embedding; for maximal planar
graphs, such an embedding is determined by the choice of which of the triangles
of G is to be the outer face, and by the orientation of the outer triangle. With
this choice fixed, we say that G is a maximal plane graph.

3.1 Canonical representation

As in the grid drawing method of de Fraysseix, Pach and Pollack [10], we use
canonical representations of planar graphs:

Definition 11 A canonical representation of a maximal plane graph G is a
sequence v1, v2, . . . vn of the vertices of G such that G can be embedded with the
following three properties:

• v1v2vn is the outer triangle of the embedding, and is embedded in the
clockwise order v1, vn, v2.

• For 3 ≤ k ≤ n, the subgraph Gk induced by {v1, . . . , vk} is 2-connected
and the boundary Ck of its induced embedding is a cycle containing the
edge v1v2.

• For 4 ≤ k ≤ n, vk is on the outer face of Gk−1 and its earlier neighbors
induce a path in Ck−1 \ v1v2 with at least two elements.

As de Fraysseix, Pach and Pollack proved, every embedded maximal planar
graph has at least one canonical representation. For the rest of this section,
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we will assume that the vertices vi of the given maximal plane graph G are
numbered according to such a representation.

Definition 12 Given a canonically represented graph G, let

parent(v2) = parent(v3) = v1,

and for i ≥ 4, let parent(vi) be the neighbor of vi closest to v1 on Ci−1\v1v2. By
following a path of edges from vertices to their parents, every vertex can reach
v1, so these edges form a tree ctree(G) having v1 as its root.

The same tree ctree(G) may also be obtained by orienting each edge of
G from lower to higher numbered vertices, and then performing a depth-first
search of the resulting oriented graph that visits the children of each vertex in
clockwise order, starting from v1. Although we do not use this fact, ctree(G) is
also part of a Schnyder decomposition of G, the other two trees of which are a
second tree rooted at v2 that connects each vertex to its most counterclockwise
earlier neighbor and a third tree rooted at vn that connects each vertex to the
later vertex whose addition removes it from Ck.

Definition 13 For each vertex vi of G, let pre(vi) be the position of vi in a
pre-order traversal of ctree(G) that visits the children of each node in clockwise
order, and let post(vi) be the position of vi in a sequence of the nodes of ctree(G)
formed by reversing a post-order clockwise traversal.

See Figure 2 for an example. Note that post(vi) is also the position of vi in a
pre-order traversal in counter-clockwise order.

These two numbers may be used to determine the ancestor-descendant rela-
tionships in ctree(G): a node vi is an ancestor of a node vj if and only if both
pre(vi) < pre(vj) and post(vi) < post(vj) [12].

Lemma 14 For every 3 ≤ k ≤ n, the clockwise ordering of the vertices along
the cycle Ck is in sorted order by the values of pre(vi).

Proof: The statement on the ordering of the vertices of Ck follows by induction,
from the fact that vk has a larger value of pre(·) than its earliest incoming neigh-
bor (its parent in ctree(G)) and a smaller value than all of its other incoming
neighbors. �

Lemma 15 Let G be a maximal plane graph together with a canonical repre-
sentation v1, . . . , vn, and renumber the vertices of G in order by their values
of post(vi). Then the result is again a canonical representation of the same
embedding of G.

Proof: The fact that post(vi) gives a canonical representation comes from
the fact that it is a reverse postorder traversal of a depth-first search tree. A
reverse postorder traversal gives a topological ordering of every directed acyclic
graph [28], from which it follows that every vertex in G has the same set of
earlier neighbors when ordered by post(vi) as it did in the original ordering. �
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v2v1

v10
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v4

v9

v8
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v5

(10,2)(1,1)

(2,10)

(8,3)

(3,5)

(4,9)

(7,8)

(6,7)

(5,6)
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Figure 2: Left: a maximally planar graph G with canonically ordered vertices.
Right: ctree(G) is shown in red, and the label around each vertex v indicates
pre(v) and post(v).

Lemma 16 Let v1, . . . , vn be the canonical representation given by the post
values of a maximal plane graph G. Suppose pre(vh) < pre(vi) < pre(vj), vh
and vj are neighbors, and l = max{h, j} > i, then vi is not on Cl.

Proof: Suppose h > j. Then by Lemma 14, the vertices along Ch−1 and Ch
are sorted by their pre values. If vi is not on Ch−1, then certainly it is not on
Ch. If vi is on Ch−1, then vh must be adjacent to a vertex on Ch−1 earlier than
vi in order to maintain the sorted pre values on Ch. Moreover, vh is adjacent
to vj , which must appear on Ch−1 later than vi. Therefore, vi must be in the
interior of Gh and not on Ch. The case j < h is proved analogously. �

Definition 17 Let cperm(G) be the permutation in which, for each vertex vi,
the permutation value in position pre(vi) is post(vi). That is, cperm(G) is the
permutation given by traversing ctree(G) in preorder and listing for each vertex
of the traversal the number post(vi).

Lemma 18 For every canonically-represented maximal planar graph G, the
permutation π = cperm(G) is 213-avoiding.

Proof: Let i < j < k be an arbitrary triple of indices in the range from 1 to
n, corresponding to the vertices ui, uj and uk. Recall that a vertex a is the
ancestor of b in ctree(G) if and only if pre(a) < pre(b) and post(a) < post(b).
If πj is not the smallest of these three values, then πi, πj , and πk certainly do
not form a 213 pattern. If πj is the smallest of these three values, then ui is
not an ancestor or descendant of uj , and uj is an ancestor of uk. Therefore ui
is also not an ancestor or descendant of uk, from which it follows that πi > πk
and the pattern formed by πi, πj , and πk is 312 rather than 213. Since the
choice of indices was arbitrary, no three indices can form a 213 pattern and π
is 213-avoiding. �
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We observe that cperm(G) has some additional structure, as well: its first
element is 1, its second element is n, and its last element is 2.

3.2 Stretching a permutation

It is natural to represent a permutation σ by the points with Cartesian coordi-
nates (i, σi), but for our purposes we need to stretch this representation in the
vertical direction; we use a transformation closely related to one used by Bukh,
Matoušek, and Nivasch [8] for weak epsilon-nets, and by Fulek and Tóth [16]
for universal point sets for plane 3-trees.

Definition 19 Letting q = |σ|, we define

stretch(σ) =
{

(i, qσi) | 1 ≤ i ≤ q
}
.

Let σ be an arbitrary permutation with q = |σ|, and let pi denote the point
in stretch(σ) corresponding to position i in σ.

Lemma 20 Let i and j be two indices with σi < σj, and let m be the absolute
value of the slope of line segment pipj. Then qσj−1 ≤ m < qσj .

Proof: The minimum value of m is obtained when |i−j| = q−1 and σi = σj−1,
for which qσj−1 = m. The maximum value of m is obtained when |i − j| = 1
and σi = 1, for which m = qσj − q < qσj . �

Lemma 21 Let i, j, and k be three indices with max{σi, σj} < σk and i < j.
Then the clockwise ordering of the three points pi, pj, and pk is pi, pk, pj.

Proof: The result follows by using Lemma 20 to compare the slopes of the two
line segments pipj and pipk. �

Lemma 22 Let h, i, j, and k be four indices with max{σh, σi, σj} < σk and
h < j. Then line segments phpj and pipk cross if and only if both h < i < j
and max{σh, σj} > σi.

Proof: A crossing occurs between two line segments if and only if the endpoints
of every segment are on opposite sides of the line through the other segment. The
endpoints of pipk are on opposite sides of line phpj if and only if the two triangles
phpipj and phpkpj have opposite orientations; analogously, the endpoints of phpj
are on opposite sides of line pipk if and only if the two triangles piphpk and pipjpk
have opposite orientations. Note that by Lemma 21 and the assumption that
σk is the largest, phpipj and phpkpj having opposite orientations implies that
σi is not the second largest, and piphpk and pipjpk having opposite orientations
implies that h < i < j. Therefore, if the line segments cross, then the two
conditions h < i < j and max{σh, σj} > σi are satisfied. Conversely, if the
two conditions are satisfied, then the same lemma implies that the two pairs of
triangles have opposite orientations, and the line segments must cross. �
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3.3 Universal point sets

Definition 23 If σ is any permutation, we define augment(σ) to be a permu-
tation of length |σ| + 3, in which the first element is 1, the second element is
|σ|+ 3, the last element is 2, and the remaining elements form a pattern of type
σ.

It follows from Lemma 18 that, if σ is an Sn−3(213)-superpattern and if G
is an arbitrary n-vertex maximal plane graph, then cperm(G) is a pattern in
augment(σ).

Theorem 1 Let σ be an Sn−3(213)-superpattern, and let

Un = stretch(augment(σ)).

Then Un is a universal point set for planar graphs on n vertices.

Proof: Let G be an n-vertex maximal plane graph and v1, v2, . . . vn be the
canonical representation of G given by the post values. Let xi denote a se-
quence of positions in augment(σ) that form a pattern of type cperm(G), with
position xi in augment(σ) corresponding to position pre(vi) in cperm(G). Let
q = | augment(σ)|, and for each i, let yi = qj where j is the value of augment(σ)
at position xi. Embed G by placing vertex vi at the point (xi, yi) ∈ Un.

Let vhvj and vivk be two edges ofG, where we assume without loss of general-
ity that post(vk) is larger than the post value of the other three vertices. If these
two edges crossed in the embedding of G, then by Lemma 22 we would necessar-
ily have pre(vh) < pre(vi) < pre(vj), and post(vi) < max{post(vh),post(vj)}.
By Lemma 16, vi would not be on the outside face of the graph induced by the
vertices with post values at most max{post(vh),post(vj)}, and could not be a
neighbor of vk. This contradiction shows that no crossing is possible, so the
embedding is planar. �

4 Superpatterns for Sn(213)

In this section we construct a Sn(213)-superpattern of size n2/4 +n+ ((−1)n−
1)/8 and then use these superpatterns to find small superpatterns for the family
of all n-vertex planar graphs.

We verified using computer searches that this size is minimal for n ≤ 6. For
n ≤ 5, this verification was done by exhaustively searching all permutations up
to the given size. For n = 6, for which the optimal superpattern size is 15, we
used a slightly more sophisticated search strategy: we exhaustively generated all
length-13 permutations, formed the subset of length-13 S5(213)-superpatterns,
and then verified for each of these that there was no way of adding one more
element to form an S6(213)-superpattern.

Our construction begins with a lemma demonstrating the recursive structure
of Sn(213)-superpatterns that have exactly n rows and n columns. The Sn(213)-
superpattern that we construct will have this property. Note that an Sn(213)-
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1
1

1
1

. . .

. . .
1

1

π

n− j

i− 1

Figure 3: The permutation τ constructed from π in the proof of Lemma 24

superpattern must have at least n rows and n columns in order to embed the
pattern consisting of a single decreasing run.

Lemma 24 If σ is a Sn(213)-superpattern and has n rows and n columns, then
the permutation described by the intersection of columns n− j + 1 to n− i+ 1
and rows i to j of σ is a Sj−i+1(213)-superpattern, for every 1 ≤ i ≤ j ≤ n.

Proof: Let π be an arbitrary 213-avoiding permutation of length j − i+ 1 and
consider the n-element 213-avoiding permutation

τ = n(n−1) . . . (j+1)(π1+i−1)(π2+i−1) . . . (πj−i+1+i−1)(i−1)(i−2) . . . 321.

(See Fig. 3.) By the assumption that σ is a superpattern, τ has an embedding
into σ. Because there are n− j descents in τ before the first element of the form
πk+ i−1, this embedding cannot place any element πk+ i−1 into the first n−j
columns of σ. Similarly because there are i descents in τ after the last element
of the form πk + i− 1, this embedding cannot place any element πk + i− 1 into
the last i− 1 columns of σ. By a symmetric argument, the elements of the form
πk + i− 1 cannot be embedded into the i− 1 lowest rows nor the n− j highest
rows of σ. Therefore these elements, which form a pattern of type π, must be
embedded into σ between column n− j+ 1 and column n− i+ 1 (inclusive) and
between row i and row j (inclusive). Since π was arbitrary, this part of σ must
be universal for permutations of length j − i+ 1, as claimed. �

We define a permutation µn, which we will show to be a Sn(213)-super-
pattern, by describing chessboard(µn) = Mn. Recall that in a chessboard rep-
resentation M , M(i, j) denotes the cell at the ith column (from left to right)
and jth row (from bottom to top) of the chessboard. In our construction, Mn

will have exactly n columns and n rows. The bottom two rows of Mn will have
Mn(n, 1) = 1, Mn(i, 2) = 1 for all 1 ≤ i ≤ n − 2, Mn(n − 1, 2) = 2, and all
other values in these two rows will be zero. The values in the top n − 2 rows
are given recursively by Mn(1 :n− 2, 3:n) = Mn−2, again with all values out-
side this submatrix being zero. The base cases of µ1 and µ2 and the inductive
definition with an example are shown in Figure 4.
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Mn−2

Mn

1 1 1 1 21 11 1

M10

1

1 1 1 1 21 1
1

1 1 1 1 2
1

1 1 2
1

2
1

1 1 21 1
1

1

2
1

M1

M2

Figure 4: The base cases, chessboard(µi) for i = 1, 2, and the inductive con-
struction of chessboard(µn) from chessboard(µn−2). Cells of the matrices con-
taining zero are shown as blank.

Theorem 2 The permutation µn is a Sn(213)-superpattern. Thus there exists
a Sn(213)-superpattern whose size is n2/4 + n+ ((−1)n − 1)/8.

Proof: It can be easily verified that µn is a Sn(213)-superpattern when 1 ≤
i ≤ 2. Let π be an arbitrary 213-avoiding permutation of length n > 2. We will
show that π can be embedded into µn. We have two cases, depending on the
value of the last element of π.

Case 1: πn = 1

Let πi1 . . . πik be the second lowest row of π. Observe that ik = n− 1 and
πi1 = 2. We claim that πij = j + 1 for all 2 ≤ j ≤ k. Indeed, in one
direction, πij ≥ j + 1, since πij is larger than all j − 1 preceding elements
on the second lowest row, and every such preceding element has value at
least 2. In the other direction, πij ≤ j + 1, for otherwise, there is some
l < ij−1 such that πl = j + 1, forming a 213-pattern with πlπij−1

πij .

In this case, we embed the bottom two rows of π by mapping πn to the
bottom right element of µn and πij to the ij-th position of the second
lowest row of µn.

Case 2: πn 6= 1

Let πi1 . . . πik be the lowest row of π. Similarly to Case 1, ik = n, and
because π is 213-avoiding, πij = j for all 1 ≤ j ≤ n. We embed this
bottom row of π by mapping πij to the ij-th position of the second lowest
row of µn (in the case k = n, the in−1-th and in-th positions are both at
the cell Mn(n− 1, 2) of µn).

To finish the embedding, the remaining elements need to be embedded into
the copy of µn−2. Recall that a block of a permutation is a contiguous subse-
quence formed by a set of consecutive integers. Because π is 213-avoiding, the
remaining elements of π form disjoint blocks that fit in the columns between
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1 1 1 1 1 1 1 1 1 1 1 1
1

Si1−1(213)

Si2−i1−1(213)

Si4−i3−1(213)

· · ·

i2 − i1 − 1

1
1

µn−2

i1 − 1 i4 − i3 − 1

· · ·

Figure 5: A partial embedding of the red elements, showing where the remaining
blocks can be fit into the columns of µn−2. The run of length 2 in the bottom
right of the chessboard has been expanded for clarity.

the elements embedded so far. If one block is to the right of another in π, then
every element in that block has a smaller value than every element in the block
to the left. Let πi1 be the leftmost element that has been embedded on the
second row of µn. Then there are i1 − 1 elements to the left of πi1 in π and
i1 − 1 columns to the left of the column where πi1 was embedded in µn. By
Lemma 24, these elements can fit into the top i1 − 1 rows of these columns.
Now let πij and πij+1

be two adjacent elements embedded in the second lowest
row of µn. Between these two there are ij+1− ij − 1 columns of µn−2 available:
from the column above πij to the column before πij+1 . So again by Lemma 24,
the ij+1 − ij − 1 elements between πij and πij+1 can be fit into rows n− ij + 1
to n− ij+1 of those columns (see Fig. 5). Because ik = n− 1 in Case 1 and n in
Case 2, there is no block after πik . Therefore π can be embedded into µn and
µn is a Sn(213)-superpattern.

It remains to compute the size of µn. We have |µ1| = 1, |µ2| = 3 and from
the recursive definition of µn

|µn| = (n+ 1) + |µn−2|
= (n+ 1) + (n− 2)2/4 + (n− 2) + ((−1)n−2 − 1)/8

= (n+ 1) + (n2/4− n+ 1) + (n− 2) + ((−1)n−2 − 1)/8

= n2/4 + n+ ((−1)n − 1)/8,

proving the size claimed in the theorem by induction on n. �
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Combining Theorem 2 with Theorem 1, the following is immediate:

Theorem 3 The n-vertex planar graphs have universal point sets of size n2/4−
Θ(n).

5 Specific subclasses of 213-avoiding permuta-
tions

In this section we investigate the size of superpatterns for certain permutation
classes (defined by forbidden patterns) that are strict subsets of the 213-avoiding
permutations. For each of these permutation classes, we prove that there exist
superpatterns of linear or near-linear size. Each of these permutation classes
corresponds to a subfamily of the planar graphs (although not necessarily a
natural subfamily): the graphs for which the permutation given by our algorithm
to map maximal plane graphs to permutations happens to be in the given class.
It follows by the same stretching construction as for our main result that these
subfamilies of planar graphs have universal point sets of near-linear size.

Our results in this section include the strongest lower bound we currently
know on the size of Sn(213)-superpatterns. Additionally, the upper bounds
in this section will serve as a warm-up for the more general upper bounds in
Section 6 for all subclasses of 213-avoiding permutations.

5.1 Superpatterns for Sn(213, 312)

A permutation is in Sn(213, 312) if and only if it is unimodal : all its ascents must
occur earlier than all of its descents. There are exactly 2n−1 such permutations:
each permutation in this family of permutations is determined by the set of
elements that are earlier than the largest element [27]. A superpattern π for
Sn(213, 312) must have at least 2n− 1 elements, because it must allow the two
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1

1

1

1

1

1

Figure 6: The S6(213, 312)-superpattern
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permutations 123 . . . n and n(n − 1)(n − 2) . . . 1 to both be embedded into π,
and their embeddings can only share a single element. This bound is tight:

Theorem 4 Sn(213, 312) has a minimal superpattern of length 2n− 1.

Proof: The permutation

135 . . . (2n− 1)(2n− 2)(2n− 4) . . . 642

is a superpattern for Sn(213, 312) and has length exactly 2n− 1. �

5.2 Superpatterns for Sn(213, 132)

A permutation is in Sn(213, 132) if and only if its chessboard notation has
nonzero entries only on the diagonal from upper left to lower right of the chess-
board; that is, if it is a descending sequence of ascending subsequences [27].
For instance, 789564123 is a descending sequence of the four ascending subse-
quences 789, 56, 4, and 123; its chessboard notation has the lengths of these
subsequences (3, 2, 1, 3) in the diagonal entries. Such a permutation is deter-
mined by a single bit of information for each pair of consecutive values: do they
belong to the same ascending subsequence or not? Therefore, there are exactly
2n−1 such partitions [25], equinumerous with Sn(213, 312). However, as we
will see, the minimum size of a superpattern for Sn(213, 132) is asymptotically
different from the 2n− 1 bound on this size for Sn(213, 312).

Theorem 5 Sn(213, 132) has a superpattern of size at most n log2 n+ n.

Proof: We form a superpattern that is itself {213, 132}-avoiding, by construct-
ing a permutation whose chessboard notation has the sequence ξ1, ξ2, . . . , ξn
on its main diagonal and zeros elsewhere (Figure 7). The result follows from
Lemma 10 and from the bounds of Lemma 9 for the partial sums of ξ. �

1

1

1

3

7

3

Figure 7: The S7(213, 132)-superpattern
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Theorem 6 Every Sn(213, 132)-superpattern has size Ω(n log n).

Proof: For simplicity, we assume that n is a power of two; the result extends
to arbitrary n by rounding n down to the next smaller power of two. Let π
be a Sn(213, 132)-superpattern and consider the patterns in Sn(213, 132) whose
chessboard representations have on their diagonals the sequences (n), (n/2, n/2),
(n/4, n/4, n/4, n/4), etc. Observe that each sequence length and the values
within the sequences are all powers of two, and that each sequence value is n
divided by the sequence length. Since π is a superpattern, it must be possible
to place each of these patterns somewhere in π; fix a choice of how to place
each pattern. Observe that, in this placement, each ascending subsequence of
one of these patterns can only have a nonempty intersection with at most one
ascending subsequence of another.

Consider the values i = 0, 1, 2, 3, . . . in ascending order by i. The ith of
the set of patterns described above consists of 2i ascending sequences of length
n/2i. For i = 0 we mark the single ascending sequence of length n. For i > 0,
we mark 2i−1 of these ascending sequences, among the ones whose placement is
disjoint from all previously marked sequences. This is always possible because
there are exactly 1 +

∑i−1
j=1 2j−1 = 2i−1 previously marked sequences and each

of them can prevent only one of the 2i length-(n/2i) ascending subsequences
from being marked.

The total number of distinct elements of π in the marked subsequences is

n+
n

2
+ 2

n

4
+ 4

n

8
+ · · · = n

2
log2 n+ n,

so π must have at least that many elements in total. �

Corollary 1 Every superpattern for Sn(213) must have size Ω(n log n).

5.3 Superpatterns for Sn(213, 3412)

Our next result depends on a structural characterization of the 213-avoiding
permutations in terms of their chessboard representations.

Definition 25 The chessboard graph of a permutation is a directed acyclic
graph that has a vertex for each nonzero square in the chessboard representation
of the permutation, and that has an edge between each pair of nonzero squares
if they belong to the same row or column of the representation and there is no
nonzero square between them. These edges are oriented upwards for squares of
the same column and rightwards for squares of the same row.

Definition 26 We say that a chessboard graph is a directed plane forest if
every vertex has at most one incoming neighbor, and the embedding of the graph
with respect to the chessboard (i.e., embedding each vertex at the corresponding
nonzero square of the chessboard) has no edge crossings.
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Figure 8: The chessboard of a permutation and its corresponding chessboard
graph.

Lemma 27 A permutation π is 213-avoiding if and only if (1) its chessboard
representation has the same number of rows and columns, (2) its chessboard
representation has nonzeros in each square of the diagonal from top left to bottom
right, and (3) its chessboard graph is a directed plane forest.

Proof: We first verify that a permutation meeting these conditions can have
no 213 pattern. In a chessboard representation meeting these conditions, the
squares above the diagonal must all be zero, for a minimal nonzero square above
the diagonal would be the target of two incoming edges from the diagonal, vio-
lating the directed forest condition. Additionally, every vertex of the chessboard
graph that is below the diagonal must have two outgoing edges, one upward and
one rightward, because its row and column have at least one more nonzero each,
on the diagonal itself. Suppose a 213 pattern existed, then the nonzero squares
of the chessboard corresponding to the 2 and 1 positions in this pattern would
necessarily be to the left and below the nonzero square corresponding to the 3
position. The nonzero square of the 3 position is at or below the diagonal, so a
nonzero square must exist on the same row as the 2 position and on a column
strictly to the left of the 1 position whose rightward path reaches the column
of the 3 position, and a nonzero square must exist on the same column as the 1
position and on a row strictly below the 2 position whose upward path reaches
the row of the 3 position. These two paths must cross or meet at a nonzero
square, violating the directed plane forest condition. Therefore, a 213 pattern
cannot exist.

It remains to show that a 213-avoiding permutation necessarily has a chess-
board representation that meets these conditions. Let π be such a permutation,
and let L be the set of indexes of a longest decreasing subsequence of π. Among
all such subsequences, choose L to be maximal, in the sense that there is no
index i ∈ L and i′ /∈ L with i′ > i and L \ {i} ∪ {i′} an equally long decreasing
subsequence. With this choice, there can be no i′ > i with π(i′) > π(i), for
such an i′ would either violate the assumption of maximality or would form a
213 pattern together with two members of L. Additionally, every column of π
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must be represented in L, for if the maximum value in a column did not belong
to L then it, the next element in the permutation, and the next element in L
would together form a 213 pattern. By a symmetric argument, every row of π
must be represented in L. Since L is a decreasing sequence, each element of L
is in a distinct row and distinct column. Therefore, the numbers of rows and
columns both equal L. Moreover, because L is maximal, each diagonal square
of the chessboard representation contains a member of L, so the diagonal is
nonzero. The chessboard graph of π must be a directed plane forest, because
if not it would contain two edges that either meet or cross, and in either case
the elements of the chessboard squares at the endpoints of these edges contain
a 213 pattern. �

The above proof also gives us the following:

Lemma 28 The chessboard representation of a 213-avoiding permutation has
zeros in every square above the diagonal.

We now characterize the chessboard representation and chessboard graph
of {213, 3412}-avoiding permutations. The characterization for the chessboard
representation will be used later to give a superpattern for this class of permu-
tations.

Lemma 29 A permutation is {213, 3412}-avoiding if and only if its chessboard
representation is a square, where the diagonal elements are all ones except for a
special square which may be greater than one, and the nonzero off-diagonal ele-
ments plus the special diagonal element (if it exists) form a sequence of squares
whose two coordinates are monotonically increasing.

Proof: Let π be a {213, 3412}-avoiding permutation. By Lemma 27, its chess-
board representation is square with nonzero diagonal elements. Call a diagonal
element special if it is greater than one. Consider the set S consisting of the
off-diagonal squares with nonzero elements and the special diagonal squares.
Suppose there are two squares in S, one at column i and one at column j > i,
such that the square at column j is below the one at column i. Then either
we have a 213 pattern formed by these two squares plus the diagonal square at
column j, or we have a 3412 pattern formed by the two squares and the diago-
nal squares in their columns (note that one of the squares may be special and
contributes two elements to the pattern). In either case, we get a contradiction,
so S must consist of a single sequence of squares with increasing coordinates.
Since the second coordinates of diagonal elements are decreasing, S contains at
most one diagonal square. This shows that π satisfies all the conditions in the
lemma.

Conversely, let π be a permutation whose chessboard representation satisfies
the conditions in the lemma. By Lemma 27, π has no 213 patterns. Moreover,
to embed a 3412 pattern in π, the square corresponding to the 3 must be an off-
diagonal square or the special diagonal square with value greater than one. In
either case, the only elements to the right and below the square corresponding
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Figure 9: The S5(213, 3412)-superpattern. The pattern inside the bolded box
is the base case S3-superpattern.

to the 3 are diagonal squares with value one, which can have no 12 patterns.
This shows that π has no 3412 patterns, and so is {213, 3412}-avoiding. This
completes the proof. �

Lemma 30 The chessboard graph of a {213, 3412}-avoiding permutation is a
disjoint union of caterpillars (trees in which there is a single path that contains
all non-leaf nodes).

Proof: In the chessboard representation, the neighbors of each off-diagonal
square are either diagonal squares or the next element in the increasing sequence
of squares. The diagonals squares are leaves of the chessboard graph, so each
nonleaf node can have at most one other nonleaf neighbor. This means that the
nonleaf nodes induce paths in the forest, as needed. �

Theorem 7 Sn(213, 3412) has a superpattern of length 3n− 4, for n ≥ 3.

Proof: As a base case, 25314 is a superpattern for S3(213, 3412), because it is
a superpattern more generally for S3. For larger n, construct the chessboard
representation for the superpattern σn as follows: start with a 2n − 3 by 2n −
3 chessboard, place a copy of the permutation 25314 in the central 3 by 3
portion of the grid, then put ones along the remaining main diagonal and the
diagonal from the bottom left to the center of the grid (Figure 9). To embed a
permutation π ∈ Sn(213, 3412) into σn, for n > 3, there are three cases based
on the characterization in Lemma 29: the smallest element of π may be its first
element, it may be its last element, or the largest element of π may be the first
element. In each case, the element matching the case may be covered by the
bottom row or leftmost column of σn, and the result follows by induction. �

Theorem 8 Every superpattern for Sn(213, 132, 3412, 4231), for n ≥ 2, has
length at least 3n− 4.
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Figure 10: Left: The permutations we use to prove our lower bound for
Sn(213, 132, 3412, 4231)-superpatterns. Right: The three sets of points we de-
scribe in the proof are shown respectively in blue, yellow, and green. The spine
is shown in red.

Proof: To show optimality, let π be a Sn(213, 132, 3412, 4231)-superpattern.
Consider embedding the permutations Lk = n (n−1) . . . (n−k+1) 1 2 . . . (n−k)
and Rk = (k+1) (k+2) . . . n k . . . 1 for k = 0 to n−2. Note that L0 = R0 is just
a length n increasing sequence and Ln = Rn a length n decreasing sequence.
Each of these permutations belongs to Sn(213, 132, 3412, 4231).

Consider the points where L0 is embedded in π. Call the line segments
connecting adjacent pairs of these points, with two rays of slope one tending
towards the infinities in the top right and bottom left, the spine (Figure 10).
We consider three (not necessarily disjoint) sets of points in π. The first set
consists of the points of π on the spine, and has size at least n.

For the second set, consider embedding Lk for k = 1 to n−2. There are two
cases for each Lk: (1) the decreasing sequence of Lk intersects the spine or has
a point to the right of the spine, or (2) the decreasing sequence is completely
to the left of the spine. Let L = {k : Lk satisfies case (1)}. If L is empty, then
the second set consists of the n − 2 points of the decreasing sequence of Ln−2,
which must be to the left of the spine, plus an arbitrary point on the spine. If
L is not empty, let i be the smallest index of an element of L. Here, the second
set consists of the i − 1 points in the decreasing sequence of Li−1, which must
be to the left of the spine, plus the n− i points in the increasing sequence of Li,
which must be to the right of the spine. In either case, the second set consists
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of n− 1 points, made up of j − 1 decreasing points to the left of the spine and
either one point on the spine (if j = n − 1) or n − j increasing points to the
right of the spine (if 1 ≤ j ≤ n− 2).

The third set is defined in the same way as the second one, by finding the
minimum index of a sequence Rk whose embedding intersects or is to the left
of the spine, and by selecting a descending set to the right of the spine and an
ascending set on or to the left of the spine whose total length adds up to n− 1.

The three sets have total size at least n + 2(n − 1) = 3n − 2. A short case
analysis based on the fact that an increasing sequence and a decreasing sequence
of points can intersect in at most one point shows that they can have at most
two points in common. Hence, the union of the three set have size at least
3n− 4. This shows that π must have at least 3n− 4 points, as claimed. �

Corollary 2 For every permutation class P with Sn(213, 132, 3412, 4231) ⊂
P ⊂ Sn(213, 3412) and n ≥ 3, the optimal length of a superpattern for P is
exactly 3n− 4.

6 General subclasses of 213-avoiding permuta-
tions and bounded-pathwidth graphs

The previous section described near-linear superpatterns for certain subclasses
of the 213-avoiding permutations. In this section we generalize these results to
all proper subclasses of the 213-avoiding permutations. As we show, all such
classes have superpatterns whose size is within a polylogarithmic factor of linear.
Our superpattern construction is recursive, and combines ideas from Section 5.2
(a majorizing sequence along the main diagonal of a chessboard representation)
and Section 5.3 (a tree with a long path, each node of which has descendants
on both sides of the path). This leads to near-linear universal sets for families
of planar graphs that include all planar graphs of bounded pathwidth.

6.1 Tree augmentations

Recall from Lemma 27 that if π is a 213-avoiding permutation, then the chess-
board graph of π may be a forest rather than a single tree, and the chessboard
representation of π may have some squares containing numbers greater than
one. However, both of these types of complication may be removed by adding
additional elements to π.

Definition 31 Let π be a 213-avoiding permutation of length n. Then a tree
augmentation of π is a 213-avoiding permutation σ that contains π, such that the
chessboard graph of σ is a tree and every square of its chessboard representation
is either zero or one.

An example of a tree augmentation is depicted in Figure 11.
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Figure 11: The chessboard of a permutation, its corresponding chessboard
graph, and its tree augmentation from Lemma 33. Real vertices are colored
red and blue, and fictitious vertices are colored green.

Definition 32 Let σ be a tree augmentation of a permutation π. Then nodes
in the chessboard graph of σ are called real if they correspond to elements of π
and fictitious if they were added in the augmentation process.

Lemma 33 Every 213-avoiding permutation π has a tree augmentation of length
at most 2n− 1.

Proof: For each chessboard square containing a number greater than one,
adding an additional element along the main diagonal of the chessboard repre-
sentation (creating an additional row and column) can split this nonzero into
two smaller numbers, while preserving π as a pattern. This adds k − 1 new
elements for each square with number k. Moreover, each tree in the chessboard
graph may be connected to another tree by adding one additional element, again
without affecting π as a pattern. This shows that at most n− 1 elements need
to be added to create a tree augmentation of π. �

6.2 Strahler number

Definition 34 The Strahler number of a node x in a directed tree T is a number
defined by a bottom-up calculation in the tree, as follows: if x is a leaf, its
Strahler number is one. Otherwise, let s be the largest Strahler number of a
child of x. If x has only one child with Strahler number s, its Strahler number
is also s, and if x has multiple children with Strahler number s, then its Strahler
number is s+ 1.

Equivalently, the Strahler number of x is the number of nodes on a root-to-leaf
path of the largest complete binary tree that may be obtained from the subtree
of T rooted at x by contracting edges (Figure 12).

Definition 35 If π is a 213-avoiding permutation, then we define the Strahler
number of π to be the minimum Strahler number of any tree that can be obtained
as the chessboard graph of a tree augmentation of π.
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Figure 12: A tree with nodes labeled by their Strahler number and one of the
underlying complete binary trees.

The only permutation with Strahler number one is the length-1 permutation.
For every longer permutation, every tree augmentation must contain a nonleaf
node; to prevent its subtree from collapsing into a single square of the chessboard
representation, this node must have Strahler number at least two.

Definition 36 Let π be a 213-avoiding permutation with Strahler number s.
A tree augmentation σ of π is called minimal if the root of every subtree in
the chessboard graph of σ has the smallest Strahler number among all possible
augmentations of elements of π in that subtree, and if the length of σ is the
least among all such augmentations. Note in particular, that the minimal tree
augmentation of π also has Strahler number s.

Lemma 37 Let σ be a minimal tree augmentation of a permutation π. Then
every fictitious leaf node must have a real parent in the chessboard graph of σ.

Proof: Suppose towards a contradiction that v is a fictitious leaf node with
a fictitious parent u in the chessboard graph of σ. Observe that u must have
another child w; otherwise, the chessboard collapses to create a square with
value greater than one. If u has no parent, then π must have length one and the
contradiction is obvious. Otherwise, either (1) deleting v and replacing u by w,
or (2) deleting u, moving w to the column of the parent of u, and moving v to
the row of the parent of u will produce a tree augmentation with both smaller
length and smaller Strahler number at a root, contradicting the assumption that
σ is minimal. �

Given a node v in a tree augmentation T we say that u is an immediate real
descendant of v if u is a descendant of v, a real node in T , and the path from v
to u contains only fictitious nodes.

Lemma 38 Let π be a 213-avoiding permutation and T be the tree obtained as
the chessboard graph of a minimal tree augmentation of π. Then every node in
T of Strahler number t ≥ 3 without a descendant of Strahler number t has at
least two immediate real descendants of Strahler number t− 1.
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v

u

Figure 13: Example of the augmentation in Lemma 38. Immediate real descen-
dants are colored red and the new fictitious nodes are colored green.

Proof: Let v be a node in T with Strahler number t ≥ 3 without any descen-
dants of Strahler number t. Note that v does not have any leaf children, so
by Lemma 37, every path from v to a leaf contains a real node. Let R be the
set of all immediate real descendants of v. Note that every node in R has a
distinct row and a distinct column in the chessboard; otherwise, a node would
have two parents and T could not be a tree. Let u be a node in R with the
largest Strahler number. Consider the following chessboard graph T ′ obtained
by modifying the subtree of T rooted at v: delete the fictitious nodes on every
path from v to a node of R, then add a fictitious node at (1) the intersection of
the column of v with every row containing a node of R from the row of v to the
row of u, and (2) the intersection of the row of u with every column containing
a node of R from the column of v to the column of u (see Figure 13).

The graph T ′ corresponds to a tree augmentation. For v to have Strahler
number t, at least two nodes in R must have Strahler number t− 1; otherwise,
v under T ′ would have Strahler number t − 1, contradicting that the original
tree augmentation is minimal. �

Lemma 39 If π has Strahler number s, then π contains a pattern whose chess-
board graph is a complete binary tree of height s− 2.

Proof: Let T be a tree obtained as the chessboard graph of the minimal tree
augmentation of π. By Lemma 38, T has a real node of Stahler number s−1 with
two real descendants of Strahler number s − 2. We may continue this process
recursively to construct a complete binary tree of height s− 2 as a minor of T
consisting of real nodes. The pattern of π associated with these nodes satisfies
the requirements of the lemma. �

6.3 Superpatterns for small Strahler number

If we parameterize the 213-avoiding permutations by their Strahler number,
then (as we show now) the permutations with bounded parameter values have
superpatterns of near-linear size. As we will also show, every proper subclass
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P (n− 1, s)

P (ξn)

P (ξn)

P (ξn−1)

P (ξn−1)

1 1

1

P (ξ1)

P (ξ1)

1

· · ·

· · ·

P (ξn)

P (ξn)

Figure 14: Chessboard representation of the superpattern P (n, s). Each P (ξi)
in the figure is P (ξi, s− 1), with the s− 1 omitted because of space constraints.

of the 213-avoiding permutations has bounded Strahler number. Therefore, the
same near-linear bound on superpattern size applies to every proper subclass of
the 213-avoiding permutations.

We construct our superpatterns by recursion. Let P (n, s) denote the recur-
sively constructed superpattern for minimally tree-augmented permutations of
length n and Strahler number at most s ≥ 2. If a tree-augmented permutation
has Strahler number 2 then its chessboard graph must be a caterpillar and the
permutation must avoid the pattern 3412. So for a base case we let P (n, 2) be
the superpattern from Theorem 7 of length 3n− 4.

Let P (0, s) be the empty permutation. Recursively define P (n, s) for n ≥ 1
and s ≥ 3 to be the permutation formed by taking the length-1 permutation
and adding above and to the right of it the three permutations P (ξn, s − 1),
P (n − 1, s) and P (ξn, s − 1), arranged so that the left-to-right order of these
permutations agrees with the top-to-bottom order. Figure 14 (left) depicts one
step of this construction, and Figure 14 (right) depicts the whole pattern P (n, s)
in terms of patterns constructed in the same way for smaller values of s.

Theorem 9 For every fixed positive integer s, the 213-avoiding permutations
with Strahler number at most s have superpatterns of length O(n logs−1 n).

Proof: Without loss of generality, we may consider solely the tree-augmented
permutations, since a superpattern for the minimal tree augmentation for π is
also a superpattern for π of the same asymptotic size.

Let π′ be a tree-augmented permutation of length n. Then π′ may be found
as a pattern in P (n, s) as follows: let p be a path from the root to a leaf of
the chessboard graph of π′ that contains all nodes of Strahler number s, let Ci
denote the subgraph of the chessboard graph consisting of the ith node (counting
starting from the leaf) on this path together with the child that is not on the
path and all descendants of this child, and let ci denote the number of elements
in Ci. Then

∑
ci = n, so we may apply Lemma 10 to find a subsequence ti of
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the sequence ξ with the property that, for all i, ci ≤ ti. Let Ti be the pattern
P (j, s) in our construction of P (n, s) corresponding to ti (namely, j is the index
of ti in ξ). We may find π′ as a pattern in P (n, s) by mapping the root node
of Ci to the length-1 permutation in Ti, and by mapping the elements in the
remaining subtree of Ci to one of the two copies of P (ti, s−1) (whichever copy is
on the correct side of the root node). This shows that P (n, s) is a superpattern
for all minimal tree augmentations of length n.

The length bound on these superpatterns follows by the following straight-
forward calculation,

|P (n, s)| = 1 + 2|P (ξn, s− 1)|+ |P (n− 1, s)|
= 1 +O(ξn logs−2 ξn) + |P (n− 1, s)|

=

n∑
k=1

O(ξk logs−2 ξk)

= O(n logs−1 n),

proving the theorem. �

Corollary 3 Let π be an arbitrary 213-avoiding permutation, and let h be the
number of nodes on the longest root-to-leaf path of a tree augmentation π′ of
π, with the augmentation chosen to minimize h. Then the {213, π}-avoiding
permutations have superpatterns of length O(n logh+1 n).

Proof: A {213, π}-avoiding permutation cannot have Strahler number h + 2
or greater, for if it did then by Lemma 39 it would contain a pattern whose
chessboard graph is a complete binary tree of height h. This pattern contains
π′, and therefore also π, as a pattern. The result follows from Theorem 9. �

6.4 Bounded pathwidth

The pathwidth of a graph G is one less than the size of a maximum clique in an
interval supergraph of G chosen to minimize this maximum clique size [6,18,24].
Pathwidth is closely related to treewidth, which may be defined in the same way
with chordal graphs in place of interval graphs. Both treewidth and pathwidth
are monotonic under graph minor operations (vertex and edge deletion, and
edge contraction). The pathwidth of a graph is therefore at least as large as the
treewidth, and is also at most O(log n) times the treewidth [6]. Examples of
graphs for which this O(log n) bound is tight include the complete binary trees,
for which the treewidth is one and the pathwidth is Ω(log n). As we show,
the fact that these trees have high pathwidth allows us to apply our results on
pattern-avoiding permutations to derive near-linear universal point sets for the
planar graphs of bounded pathwidth.

Lemma 40 Let G be a maximal planar graph together with a canonical repre-
sentation, and let T = ctree(G), πG = cperm(G) be respectively the canonical
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tree and permutation derived from that canonical representation, as in Section 3.
Let τ be a pattern in πG whose chessboard graph is another tree T ′. Then a tree
isomorphic to T ′ may be formed by contracting edges in T .

Proof: In T ′, an element y is a descendant of an element x if and only if y
is greater than x both in sequence order and in value order; this means that,
for the corresponding vertices in T , y is after x both in preorder and in reverse
postorder. Recall from Section 3 that this is only possible when y is also a
descendant of x in T as well as in T ′. To obtain T ′ from T , we need merely find
each node z that does not belong to T ′, contract the edge from z to its parent,
and if necessary contract one more edge to the root of T (if that node does not
belong to T ′). �

The following lemma allows us to deal with planar graphs of low pathwidth
that are not themselves maximal planar.

Lemma 41 Let G be a connected planar graph that is not maximal. Then
there exists a maximal planar supergraph G′ of G, on the same vertex set, and
a canonical representation of G′, such that if T = ctree(G′) is derived from the
canonical representation, then all edges of T that do not have v1 as an endpoint
belong to G.

Proof: We choose arbitrarily a base edge v1v2 in G. Next, we construct the su-
pergraph G′ and the canonical representation greedily, at each step maintaining
a canonical representation of a subset S of the vertices of G, and a supergraph
of G for which S induces a triangulated disk D having the base edge on its
boundary (D could be degenerate, consisting of only the subgraph induced by
v1 and v2). At each step of the construction, until S contains all of the vertices
of G, we choose one new vertex of G \ S to add to S.

We order the vertices around the boundary of D left-to-right from v1 to v2
along the path that does not include edge v1v2 (in the case D is degenerate,
we do include the edge v1v2). Each vertex u that does not belong to S but is
adjacent to S has a set of neighbors along that path that lie within some interval
from the leftmost neighbor to the rightmost neighbor (but possibly with vertices
interior to the interval that are not neighbors of u). If ui and uj are two different
vertices that do not belong to S but are adjacent to S, their intervals are either
disjoint or nested. We distinguish two cases:

• If there exist vertices in G\S that are adjacent to a vertex in S other than
v2, then choose u to be one such vertex whose rightmost neighbor vi 6= v2
is as far to the right as possible, and whose leftmost neighbor is also as
far to the right as possible (breaking ties arbitrarily). If u has at least
two neighbors in S, we add to G′ edges between u and all the vertices on
D between its leftmost and rightmost neighbors; this cannot cause G′ to
become nonplanar because the nesting property of the intervals ensures
that these vertices on D have no other neighbors outside of D. If u has
only vi as its neighbor, we add to G′ an edge from u to the next vertex
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to the right of vi on the boundary of D. Then, we add u to the canonical
representation.

• If all vertices in G \ S adjacent to S have only v2 as a neighbor, then
choose u arbitrarily among such vertices. We add to G′ an edge from u to
every other vertex on the boundary of D. Because only v2 has neighbors
outside of S, this again cannot cause G′ to become nonplanar. Then, we
add u to the canonical representation.

The result after either of these two cases is a canonical representation of a
triangulated disk with one more vertex than before. After repeating n−2 times,
all vertices must belong to the triangulated disk. We complete the remaining
graph to a maximal planar graph by adding edges from the final vertex vn to
all vertices that share a face with it.

Under the constructed canonical representation, ctree(G′) consists of the
leftmost incoming edge for every vertex other than v1. This edge either belongs
to G (if the vertex was added by the first case or is v2) or has v1 as an endpoint
(if the vertex was added by the second case or is vn). �

Theorem 10 For every constant w, the planar graphs of pathwidth w have
universal point sets of size O(n logO(1) n).

Proof: Let T be a complete binary tree of sufficiently large size that the path-
width of T is greater than w, and T ′ be a tree whose root has a single child
subtree isomorphic to T . Suppose G is a planar graph of pathwidth w. We
apply Lemma 41 to augment G to a maximal planar graph G′ with a canonical
representation having the property given in the lemma. Because pathwidth is
closed under minors, if G is a graph of pathwidth at most w, then it cannot
contain T as a minor. Moreover, ctree(G′) cannot have a minor isomorphic to
T ′, for if it did, then by removing the root edge (which might not belong to G),
G would have a minor isomorphic to T , which is not possible.

Let τ be the pattern whose chessboard graph is T ′. Since T ′ is not a minor
of G′, it follows from Lemma 40 that τ is not a pattern in cperm(G′). By
Corollary 3, the permutations that avoid both 213 and τ have a superpattern
σ of size O(n logO(1) n). Applying the same ideas as in the proof of Theorem 1,
stretch(augment(σ)) is a universal point set of the same asymptotic size for
planar graphs of pathwidth w. �

7 Simply-nested planar graphs

Angelini et al. [1] define a simply-nested planar graph to be a graph in which a
tree is surrounded by a sequence of chordless cycles, which form the levels of the
graph (the tree is level zero); additional edges are allowed connecting one level
to another. As they showed, if the number of vertices ni in the ith level is fixed,
for all i, then one can define a universal point set with 8

∑
ni vertices, consisting

of n concentric circles with 8ni equally spaced points on the ith circle and with
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carefully chosen radii. They use this result to prove an O
(
n(log n/ log log n)2

)
bound on the size of universal point sets for simply-nested planar graphs, which
we improve to O(n log n) using our results on subsequence majorization.

Theorem 11 There is a universal point set of size O(n log n) for the simply-
nested planar graphs.

Proof: We use the sequence of nested circles given by Angelini et al. for the
version of the problem with fixed values of ni, and for the assignment ni = ξi,
i = 1, 2, . . . n. The resulting point set has O(n log n) points by Lemma 9. For
an arbitrary n-vertex simply-nested planar graph, the numbers of vertices per
level can be majorized by a subsequence of ni, and the vertices of each level
can be assigned to the corresponding circle of the point set. Compared to the
vertex placement of Angelini et al., this vertex placement skips some of the
nested circles (the ones not used in the subsequence of ξi) and has more than
the necessary number of points on some circles, neither of which causes any
difficulty in the placement. �

Among the planar graphs covered by this result are the squaregraphs [3],
planar graphs that have an embedding in which each bounded face is a quadri-
lateral and each vertex is either on the outer face or has four or more neighbors.
For instance, the subset of the integer lattice on or inside any simple lattice cy-
cle (a polyomino) forms a graph of this type. Although they are not themselves
simply-nested, by Lemma 12.2 of Bandelt et al. [3], the squaregraphs can be
embedded as subgraphs of simply-nested planar graphs on the same vertex set
(possibly allowing some levels of the nesting structure to be degenerate cycles
with one or two vertices). Therefore, by Theorem 11, the squaregraphs have
universal point sets of size O(n log n).

8 Conclusion

In this paper we have constructed universal point sets of size n2/4 − Θ(n) for
planar graphs, and of subquadratic size for graphs of bounded pathwidth and
simply-nested planar graphs. In the process of building these constructions we
have provided a new connection between universal point sets and permutation
superpatterns. We have also, for the the first time, provided nontrivial upper
bounds and lower bounds on the size of superpatterns for restricted classes of
permutations. We leave the following problems open for future research:

• Which natural subclasses of planar graphs (beyond the bounded-pathwidth
graphs) can be represented by permutations in a proper subclass of Sn(213)?

• Can we reduce the gap between our O(n2) upper bound and Ω(n log n)
lower bound for Sn(213)-superpatterns?

• Our construction uses area exponential in n2; how does constraining the
area to a smaller bound affect the number of points in a universal point
set?
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