Journal of Graph Algorithms and Applications

```
http://www.cs.brown.edu/publications/jgaa/
```

vol. 5, no. 4, pp. 1-27 (2001)

Computing an optimal orientation of a balanced decomposition tree for linear arrangement problems

Reuven Bar-Yehuda

Computer Science Dept.
Technion
Haifa, Israel
http://www.cs.technion.ac.il/ reuven/
reuven@cs.technion.ac.il
Guy Even
Dept. of Electrical Engineering-Systems
Tel-Aviv University
Tel-Aviv, Israel
http://www.eng.tau.ac.il/ guy/
guy@eng.tau.ac.il
Jon Feldman
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA, USA
http://theory.lcs.mit.edu/ jonfeld/
jonfeld@theory.lcs.mit.edu
Joseph (Seffi) Naor
Computer Science Dept.
Technion
Haifa, Israel
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/facultynew.cgi?Naor.Joseph naor@cs.technion.ac.il

Abstract

Divide-and-conquer approximation algorithms for vertex ordering problems partition the vertex set of graphs, compute recursively an ordering of each part, and "glue" the orderings of the parts together. The computed ordering is specified by a decomposition tree that describes the recursive partitioning of the subproblems. At each internal node of the decomposition tree, there is a degree of freedom regarding the order in which the parts are glued together.

Approximation algorithms that use this technique ignore these degrees of freedom, and prove that the cost of every ordering that agrees with the computed decomposition tree is within the range specified by the approximation factor. We address the question of whether an optimal ordering can be efficiently computed among the exponentially many orderings induced by a binary decomposition tree.

We present a polynomial time algorithm for computing an optimal ordering induced by a binary balanced decomposition tree with respect to two problems: Minimum Linear Arrangement (minla) and Minimum Cutwidth (mincw). For $1 / 3$-balanced decomposition trees of bounded degree graphs, the time complexity of our algorithm is $O\left(n^{2.2}\right)$, where n denotes the number of vertices.

Additionally, we present experimental evidence that computing an optimal orientation of a decomposition tree is useful in practice. It is shown, through an implementation for MINLA, that optimal orientations of decomposition trees can produce arrangements of roughly the same quality as those produced by the best known heuristic, at a fraction of the running time.

Communicated by T. Warnow; submitted July 1998; revised September 2000 and June 2001.

[^0]Bar-Yehuda et al., Orientation of Decomposition Trees, JGAA, 5(4) 1-27 (2001)3

1 Introduction

The typical setting in vertex ordering problems in graphs is to find a linear ordering of the vertices of a graph that minimizes a certain objective function [GJ79, A1.3,pp. 199-201]. These vertex ordering problems arise in diverse areas such as: VLSI design [HL99], computational biology [K93], scheduling and constraint satisfaction problems [FD], and linear algebra [R70]. Finding an optimal ordering is usually NP-hard and therefore one resorts to polynomial time approximation algorithms.

Divide-and-conquer is a common approach underlying many approximation algorithms for vertex ordering problems [BL84, LR99, Ha89, RAK91, ENRS00, RR98]. Such approximation algorithms partition the vertex set into two or more sets, compute recursively an ordering of each part, and "glue" the orderings of the parts together. The computed ordering is specified by a decomposition tree that describes the recursive partitioning of the subproblems. At each internal node of the decomposition tree, there is a degree of freedom regarding the order in which the parts are glued together. We refer to determining the order of the parts as assigning an orientation to an internal decomposition tree node since, in the binary case, this is equivalent to deciding which child is the left child and which child is the right child. We refer to orderings that can be obtained by assigning orientations to the internal nodes of the decomposition trees as orderings that agree with the decomposition tree.

Approximation algorithms that use this technique ignore these degrees of freedom, and prove that the cost of every ordering that agrees with the computed decomposition tree is within the range specified by the approximation factor. The questions that we address are whether an optimal ordering can be efficiently computed among the orderings that agree with the decomposition tree computed by the divide-and-conquer approximation algorithms, and whether computing this optimal ordering is a useful technique in practice.

Contribution. We present a polynomial time algorithm for computing an optimal orientation of a balanced binary decomposition tree with respect to two problems: Minimum Linear Arrangement (minla) and Minimum Cutwidth (MINCW). Loosely speaking, in these problems, the vertex ordering determines the position of the graph vertices along a straight line with fixed distances between adjacent vertices. In minla, the objective is to minimize the sum of the edge lengths, and in MINCW, the objective is to minimize the maximum cut between a prefix and a suffix of the vertices.

The corresponding decision problems for these optimization problems are NP-Complete [GJ79, problems GT42,GT44]. For binary 1/3-balanced decomposition trees of bounded degree graphs, the time complexity of our algorithm is $O\left(n^{2.2}\right)$, and the space complexity is $O(n)$, where n denotes the number of vertices.

This algorithm also lends itself to a simple improvement heuristic for both minla and mincw: Take some ordering π, build a balanced decomposition tree from scratch that agrees with π, and find its optimal orientation. In the context of heuristics, this search can be viewed as generalizing local searches in which only swapping of pairs of vertices is allowed [P97]. Our search space allows swapping of blocks defined by the global hierarchical decomposition of the vertices. Many local searches lack quality guarantees, whereas our algorithm finds the best ordering in an exponential search space.

The complexity of our algorithm is exponential in the depth of the decomposition tree, and therefore, we phrase our results in terms of balanced decomposition trees. The requirement that the binary decomposition tree be balanced does not incur a significant setback for the following reason. The analysis of divide-and-conquer algorithms, which construct a decomposition tree, attach a cost to the decomposition tree which serves as an upper bound on the cost of all orderings that agree with the decomposition tree. Even et al. [ENRS00] presented a technique for balancing binary decomposition trees. When this balancing technique is applied to minla the cost of the balanced decomposition tree is at most three times the cost of the unbalanced decomposition tree. In the case of the cutwidth problem, this balancing technique can be implemented so that there is an ordering that agrees with the unbalanced and the balanced decomposition trees.

Interestingly, our algorithm can be modified to find a worst solution that agrees with a decomposition tree. We were not able to prove a gap between the best and worst orientations of a decomposition tree, and therefore the approximation factors for these vertex ordering problems has not been improved. However, we were able to give experimental evidence that for a particular set of benchmark graphs the gap between the worst and best orientations is roughly a factor of two.

Techniques. Our algorithm can be interpreted as a dynamic programming algorithm. The "table" used by the algorithm has entries $\langle t, \alpha\rangle$, where t is a binary decomposition tree node, and α is a binary string of length depth (t), representing the assignments of orientations to the ancestors of t in the decomposition tree. Note that the size of this table is exponential in the
depth of the decomposition tree. If the decomposition tree has logarithmic depth (i.e. the tree is balanced), then the size of the table is polynomial.

The contents of a table entry $\langle t, \alpha\rangle$ is as follows. Let M denote the set of leaves of the subtree rooted at t. The vertices in M constitute a contiguous block in every ordering that agrees with the decomposition tree. Assigning orientations to the ancestors of t implies that we can determine the set L of vertices that are placed to the left of M and the set R of vertices that are placed to the right of M. The table entry $\langle t, \alpha\rangle$ holds the minimum local cost associated with the block M subject to the orientations α of the ancestors of t. This local cost deals only with edges incident to M and only with the cost that these edges incur within the block M. When our algorithm terminates, the local cost of the root will be the total cost of an optimal orientation, since M contains every leaf of the tree.

Our ability to apply dynamic programming relies on a locality property that enables us to compute a table entry $\langle t, \alpha\rangle$ based on four other table entries. Let t_{1} and t_{2} be the children of t in the decomposition tree, and let $\sigma \in\{0,1\}$ be a possible orientation of t. We show that it is possible to easily compute $\langle t, \alpha\rangle$ from the four table entries $\left\langle t_{i}, \alpha \cdot \sigma\right\rangle$, where $i \in\{1,2\}$, $\sigma \in\{0,1\}$.

The table described above can viewed as a structure called an orientations tree of a decomposition tree. Each internal node $\widehat{t}=\langle t, \alpha\rangle$ of this orientations tree corresponds to a node t of the decomposition tree, and a string α of the orientations of the ancestors of t in the decomposition tree. The children of \hat{t} are the four children described above, so the value of each node of the orientations tree is locally computable from the value of its four children. Thus, we perform a depth-first search of this tree, and to reduce the space complexity, we do not store the entire tree in memory at once.

Relation to previous work. For minla, Hansen [Ha89] proved that decomposition trees obtained by recursive α-approximate separators yields an $O(\alpha \cdot \operatorname{logn})$ approximation algorithm. Since Leighton and Rao presented an $O(\log n)$-approximate separator algorithm, an $O\left(\log ^{2} n\right)$ approximation follows. Even et al. [ENRS00] gave an approximation algorithm that achieves an approximation factor of $O(\log n \log \log n)$. Rao and Richa [RR98] improved the approximation factor to $O(\log n)$. Both algorithms rely on computing a spreading metric by solving a linear program with an exponential number of constraints. For the cutwidth problem, Leighton and Rao [LR99] achieved an approximation factor of $O\left(\log ^{2} n\right)$ by recursive separation. The approximation algorithms of [LR99, Ha89, ENRS00] compute binary 1/3-
balanced decomposition trees so as to achieve the approximation factors.
The algorithm of Rao and Richa [RR98] computes a non-binary nonbalanced decomposition tree. Siblings in the decomposition tree computed by the algorithm of Rao and Richa are given a linear order which may be reversed (i.e. only two permutations are allowed for siblings) . This means that the set of permutations that agree with such decomposition trees are obtained by determining which "sibling orderings" are reversed and which are not. When the depth of the decomposition tree computed by the algorithm of Rao and Richa is super-logarithmic and the tree is non-binary, we cannot apply the orientation algorithm since the balancing technique of [ENRS00] will create dependencies between the orientations that are assigned to roots of disjoint subtree.

Empirical Results. Our empirical results build on the work of Petit [P97]. Petit collected a set of benchmark graphs and experimented with several heuristics. The heuristic that achieved the best results was Simulated Annealing. We conducted four experiments as follows. First, we computed decomposition trees for the benchmark graphs using the HMETIS graph partitioning package [GK98]. Aside from the random graphs in this benchmark set, we showed a gap of roughly a factor of two between worst and best orientations of the computed decomposition trees. This suggests that finding optimal orientations is practically useful. Second, we computed several decomposition trees for each graph by applying HMETIS several times. Since HMETIS is a random algorithm, it computes a different decomposition each time it is invoked. Optimal orientations were computed for each decomposition tree. This experiment showed that our algorithm could be used in conjunction with a partitioning algorithm to compute somewhat costlier solutions than Simulated Annealing at a fraction of the running time. Third, we experimented with the heuristic improvement algorithm suggested by us. We generated a random decomposition tree based on the ordering computed in the second experiment, then found the optimal orientation of this tree. Repeating this process yielded improved the results that were comparable with the results of Petit. The running time was still less that Simulated Annealing. Finally, we used the best ordering computed as an initial solution for Petit's Simulated Annealing algorithm. As expected, this produced slightly better results than Petit's results but required more time due to the platform we used.

Organization. In Section 2, we define the problems of minla and mincw as well as decomposition trees and orientations of decomposition trees. In Section 3, we present the orientation algorithm for MINLA and mincw. In Section 4 we propose a design of the algorithm with linear space complexity and analyze the time complexity of the algorithm. In Section 5 we describe our experimental work.

2 Preliminaries

2.1 The Problems

Consider a graph $G(V, E)$ with non-negative edge capacities $c(e)$. Let $n=$ $|V|$ and $m=|E|$. Let $[i . . j]$ denote the set $\{i, i+1, \ldots, j\}$. A one-toone function $\pi: V \rightarrow[1 . . n]$ is called an ordering of the vertex set V. We denote the cut between the first i nodes and the rest of the nodes by $\mathrm{cut}_{\pi}(i)$, formally,

$$
\operatorname{cut}_{\pi}(i)=\{(u, v) \in E: \pi(u) \leq i \text { and } \pi(v)>i\} .
$$

The capacity of $\operatorname{cut}_{\pi}(i)$ is denoted by $c\left(\operatorname{cut}_{\pi}(i)\right)$. The cutwidth of an ordering π is defined by

$$
c w(G, \pi)=\max _{i \in[1 . . n-1]} c\left(\operatorname{cut}_{\pi}(i)\right) .
$$

The goal in the Minimum Cutwidth Problem (mincw) is to find an ordering π with minimum cutwidth.

The goal in the Minimum Linear Arrangement Problem (minla) is to find an ordering that minimizes the weighted sum of the edge lengths. Formally, the the weighted sum of the edge lengths with respect an ordering π is defined by:

$$
l a(G, \pi)=\sum_{(u, v) \in E} c(u, v) \cdot|\pi(u)-\pi(v)| .
$$

The weighted sum of edge lengths can be equivalently defined as:

$$
l a(G, \pi)=\sum_{1 \leq i<n} c\left(\operatorname{cut}_{\pi}(i)\right)
$$

2.2 Decomposition Trees

A decomposition tree of a graph $G(V, E)$ is a rooted binary tree with a mapping of the tree nodes to subsets of vertices as follows. The root is mapped to V, the subsets mapped to every two siblings constitute a partitioning of
the subset mapped to their parent, and leaves are mapped to subsets containing a single vertex. We denote the subset of vertices mapped to a tree node t by $V(t)$. For every tree node t, let $T(t)$ denote the subtree of T, the root of which is t. The inner cut of an internal tree node t is the set of edges in the cut $\left(V\left(t_{1}\right), V\left(t_{2}\right)\right)$, where t_{1} and t_{2} denote the children of t. We denote the inner cut of t by in_cut (t).

Every DFS traversal of a decomposition tree induces an ordering of V according to the order in which the leaves are visited. Since in each internal node there are two possible orders in which the children can be visited, it follows that 2^{n-1} orderings are induced by DFS traversals. Each such ordering is specified by determining for every internal node which child is visited first. In "graphic" terms, if the first child is always drawn as the left child, then the induced ordering is the order of the leaves from left to right.

2.3 Orientations and Optimal Orientations

Consider an internal tree node t of a decomposition tree. An orientation of t is a bit that determines which of the two children of t is considered as its left child. Our convention is that when a DFS is performed, the left child is always visited first. Therefore, a decomposition tree, all the internal nodes of which are assigned orientations, induces a unique ordering. We refer to an assignment of orientations to all the internal nodes as an orientation of the decomposition tree.

Consider a decomposition tree T of a graph $G(V, E)$. An orientation of T is optimal with respect to an ordering problem if the cost associated with the ordering induced by the orientation is minimum among all the orderings induced by T.

3 Computing An Optimal Orientation

In this section we present a dynamic programming algorithm for computing an optimal orientation of a decomposition tree with respect to minLA and mincw. We first present an algorithm for minla, and then describe the modifications needed for MINCW.

Let T denote a decomposition of $G(V, E)$. We describe a recursive algorithm $\operatorname{orient}(t, \alpha)$ for computing an optimal orientation of T for minla. A say that a decomposition tree is oriented if all its internal nodes are assigned orientations. The algorithm returns an oriented decomposition tree isomorphic to T. The parameters of the algorithm are a tree node t and an assignment of orientations to the ancestors of t. The orientations of the
ancestors of t are specified by a binary string α whose length equals $\operatorname{depth}(t)$. The i th bit in α signifies the orientation of the i th node along the path from the root of T to t.

The vertices of $V(t)$ constitute a contiguous block in every ordering that is induced by the decomposition tree T. The sets of vertices that appear to the left and right of $V(t)$ are determined by the orientations of the ancestors of t (which are specified by α). Given the orientations of the ancestors of t, let L and R denote the set of vertices that appear to the left and right of $V(t)$, respectively. We call the partition $(L, V(t), R)$ an ordered partition of V.

Consider an ordered partition $(L, V(t), R)$ of the vertex set V and an ordering π of the vertices of $V(t)$. Algorithm $\operatorname{orient}(t, \alpha)$ is based on the local cost of edge (u, v) with respect to $(L, V(t), R)$ and π. The local cost applies only to edges incident to $V(t)$ and it measures the length of the projection of the edge on $V(t)$. Formally, the local cost is defined by
local_cost $_{L, V(t), R, \pi}(u, v)= \begin{cases}c(u, v) \cdot|\pi(u)-\pi(v)| & \text { if } u, v \in V(t) \\ c(u, v) \cdot \pi(u) & \text { if } u \in V(t) \text { and } v \in L \\ c(u, v) \cdot(|V(t)|-\pi(u)) & \text { if } u \in V(t) \text { and } v \in R \\ 0 & \text { otherwise. }\end{cases}$
Note that the contribution to the cut corresponding to $L \cup V(t)$ is not included.

Algorithm $\operatorname{orient}(t, \alpha)$ proceeds as follows:

1. If t is a leaf, then return $T(t)$ (a leaf is not assigned an orientation).
2. Otherwise (t is not a leaf), let t_{1} and t_{2} denote children of t. Compute optimal oriented trees for $T\left(t_{1}\right)$ and $T\left(t_{2}\right)$ for both orientations of t. Specifically,
(a) $T^{0}\left(t_{1}\right)=\operatorname{orient}\left(t_{1}, \alpha \cdot 0\right)$ and $T^{0}\left(t_{2}\right)=\operatorname{orient}\left(t_{2}, \alpha \cdot 0\right)$.
(b) $T^{1}\left(t_{1}\right)=\operatorname{orient}\left(t_{1}, \alpha \cdot 1\right)$ and $T^{1}\left(t_{2}\right)=\operatorname{orient}\left(t_{2}, \alpha \cdot 1\right)$.

3 . Let π_{0} denote the ordering of $V(t)$ obtained by concatenating the ordering induced by $T^{0}\left(t_{1}\right)$ and the ordering induced by $T^{0}\left(t_{2}\right)$. Let $\operatorname{cost}_{0}=\sum_{e \in E}$ local_cost $_{L, V(t), R, \pi_{0}}(e)$.
4. Let π_{1} denote the ordering of $V(t)$ obtained by concatenating the ordering induced by $T^{1}\left(t_{2}\right)$ and the ordering induced by $T^{1}\left(t_{1}\right)$. Let $\operatorname{cost}_{1}=\sum_{e \in E}$ local_cost $_{L, V(t), R, \pi_{1}}(e)$. (Note that here the vertices of $V\left(t_{2}\right)$ are placed first.)

Bar-Yehuda et al., Orientation of Decomposition Trees, JGAA, 5(4) 1-27 (2001)10
5. If $\operatorname{cost}_{0}<\operatorname{cost}_{1}$, the orientation of t is 0 . Return the oriented tree T^{\prime} the left child of which is the root of $T^{0}\left(t_{1}\right)$ and the right child of which is the root of $T^{0}\left(t_{2}\right)$.
6. Otherwise ($\operatorname{cost}_{0} \geq \operatorname{cost}_{1}$), the orientation of t is 1 . Return the oriented tree T^{\prime} the left child of which is the root of $T^{1}\left(t_{2}\right)$ and the right child of which is the root of $T^{1}\left(t_{1}\right)$.

The correctness of the orient algorithm is summarized in the following claim which can be proved by induction.

Claim 1: Suppose that the orientations of the ancestors of t are fixed as specified by the string α. Then, Algorithm orient (t, α) computes an optimal orientation of $T(t)$. When t is the root of the decomposition tree and α is an empty string, Algorithm orient (t, α) computes an optimal orientation of T.

An optimal orientation for MINCW can be computed by modifying the local cost function. Consider an ordered partition $(L, V(t), R)$ and an ordering π of $V(t)$. Let $V_{i}(t)$ denote that set $\{v \in V(t): \pi(v) \leq i\}$. Let $E(t)$ denote the set of edges with at least one endpoint in $V(t)$. Let $i \in[0 .|V(t)|]$. The i th local cut with respect to $(L, V(t), R)$ and an ordering π of $V(t)$ is the set of edges defined by,
local_cut $_{(L, V(t), R), \pi}(i)=\left\{(u, v) \in E(t): u \in L \cup V_{i}(t)\right.$ and $\left.v \in\left(V(t)-V_{i}(t)\right) \cup R\right\}$.
The local cutwidth is defined by,

$$
\text { local_cw }((L, V(t), R), \pi)=\max _{i \in[0 . \mid V(t)]]} \sum_{e \in \text { local_cut }_{(L, V(t), R), \pi}(i)} c(u, v) .
$$

The algorithm for computing an optimal orientation of a given decomposition tree with respect to MINCW is obtained by computing $\operatorname{cost}_{\sigma}=$ local_cw $\left((L, V(t), R), \pi_{\sigma}\right)$ in steps 3 and 4 for $\sigma=0,1$.

4 Designing The Algorithm

In this section we propose a design of the algorithm that has linear space complexity. The time complexity is $O\left(n^{2.2}\right)$ if the graph has bounded degree and the decomposition tree is $1 / 3$-balanced.

4.1 Space Complexity: The Orientation Tree

We define a tree, called an orientation tree, that corresponds to the recursion tree of Algorithm orient (t, α). Under the interpretation of this algorithm as a dynamic program, this orientation tree represents the table. The orientation tree \widehat{T} corresponding to a decomposition tree T is a "quadary" tree. Every orientation tree node $\widehat{t}=\langle t, \alpha\rangle$ corresponds to a decomposition tree node t and an assignment α of orientations to the ancestors of t. Therefore, every decomposition tree node t has $2^{\text {depth }(t)}$ "images" in the orientations tree. Let t_{1} and t_{2} be the children of t in the decomposition tree, and let $\sigma \in\{0,1\}$ be a possible orientation of t. The four children of $\langle t, \alpha\rangle$ are $\left\langle t_{i}, \alpha \cdot \sigma\right\rangle$, where $i \in\{1,2\}, \sigma \in\{0,1\}$. Figure 1 depicts a decomposition tree and the corresponding orientation tree.

The time complexity of the algorithm presented in Section 3 is clearly at least proportional to the size of the orientations tree. The number of nodes in the orientations tree is proportional to $\sum_{v \in V} 2^{\operatorname{depth}(v)}$, where the $\operatorname{depth}(v)$ is the depth of v in the decomposition tree. This implies the running time is at least quadratic if the tree is perfectly balanced. If we store the entire orientations tree in memory at once, our space requirement is also at least quadratic. However, if we are a bit smarter about how we use space, and never store the entire orientations tree in memory at once, we can reduce the space requirement to linear.

The recursion tree of Algorithm orient $(\operatorname{root}(T), \phi)$ is isomorphic to the orientation tree \widehat{T}. In fact, Algorithm $\operatorname{orient}(\operatorname{root}(T), \alpha)$ assigns local costs to orientation tree nodes in DFS order. We suggest the following linear space implementation. Consider an orientation tree node $\widehat{t}=\langle t, \alpha\rangle$. Assume that when $\operatorname{orient}(t, \alpha)$ is called, it is handed a "workspace" tree isomorphic to $T(t)$ which it uses for workspace as well as for returning the optimal orientation. Algorithm orient (t, α) allocates an "extra" copy of $T(t)$, and is called recursively for each of it four children. Each call for a child is given a separate "workspace" subtree within the two isomorphic copies of $T(t)$ (i.e. within the workspace and extra trees). Upon completion of these 4 calls, the two copies of $T(t)$ are oriented; one corresponding to a zero orientation of t and one corresponding to an orientation value of 1 for t. The best of these trees is copied into the "workspace" tree, if needed, and the "extra" tree is freed. Assuming that one copy of the decomposition tree is used throughout the algorithm, the additional space complexity of this implementation satisfies the following recurrence:

$$
\operatorname{space}(\hat{t})=\operatorname{sizeof}(T(t))+\max _{t^{\prime} \text { child of } \hat{t}} \operatorname{space}\left(t^{\prime}\right) .
$$

Figure 1: A decomposition tree and the corresponding orientation tree. The four node decomposition tree is depicted as a gray shadow. The corresponding orientation tree is depicted in the foreground. The direction of each non-root node in the orientation tree corresponds to the orientation of its parent (i.e. a node depicted as a fish swimming to the left signifies that its parent's orientation is left). The label of an edge entering a node in the orientation tree signifies whether the node is a left child or a right child and the orientation of its parent.

Since $\operatorname{sizeof}(T(t)) \leq 2^{\operatorname{depth}(T(t))}$, it follows that

$$
\text { space }(\hat{t}) \leq 2 \cdot 2^{\operatorname{depth}(T(t))} .
$$

The space complexity of the proposed implementation of $\operatorname{orient}(T, \alpha)$ is summarized in the following claim.

Claim 2: The space complexity of the proposed implementation is $O\left(2^{\operatorname{depth}(T)}\right)$. If the decomposition tree is balanced, then space $(\operatorname{root}(T))=O(n)$.

4.2 Time Complexity

Viewing Algorithm $\operatorname{orient}(t, \alpha)$ as a DFS traversal of the orientation tree $\widehat{T}(t)$ corresponding to $T(t)$ also helps in designing the algorithm so that each visit of an internal orientation tree node requires only constant time. Suppose that each child of t is assigned a local cost (i.e. $\operatorname{cost}(\operatorname{left}(\sigma)), \operatorname{cost}(\operatorname{right}(\sigma))$, for $\sigma=0,1)$. Let t_{1} and t_{2} denote the children of t. Let $(L, V(t), R)$ denote the ordered partition of V induced by the orientations of the ancestors of t specified by α. The following equations define cost_{0} and cost_{1} :

$$
\begin{align*}
{\cos t_{0}}= & \operatorname{cost}(l \text { left }(0))+\operatorname{cost}(\operatorname{right}(0)) \tag{1}\\
& +\left|V\left(t_{2}\right)\right| \cdot c\left(V\left(t_{1}\right), R\right)+\left|V\left(t_{1}\right)\right| \cdot c\left(L, V\left(t_{2}\right)\right) \\
{\cos t_{1}}= & \operatorname{cost}(l e f t(1))+\operatorname{cost}(\operatorname{right}(1)) \\
& +\left|V\left(t_{1}\right)\right| \cdot c\left(V\left(t_{2}\right), R\right)+\left|V\left(t_{2}\right)\right| \cdot c\left(L, V\left(t_{1}\right)\right)
\end{align*}
$$

We now describe how Equation 1 can be computed in constant time. Let in_cut (t) denote the cut $\left(V\left(t_{1}\right), V\left(t_{2}\right)\right)$. The capacity of $i_{-} c u t(t)$ can be pre-computed by scanning the list of edges. For every edge (u, v), update in_cut (lca $(u, v))$ by adding $c(u, v)$ to it.

We now define outer cuts. Consider the ordered partition $(L, V(t), R)$ corresponding to an orientation tree node \widehat{t}. The left outer cut and the right outer cut of \hat{t} are the cuts $(L, V(t))$ and $(V(t), R)$, respectively. We denote the left outer cut by left_cut (\hat{t}) and the right out cut by right_cut (\hat{t}).

We describe how outer cuts are computed for leaves and for interior nodes. The capacity of the outer cuts of a leaf \hat{t} are computed by considering the edges incident to t (since t is a leaf we identify it with a vertex in V). For every edge (t, u), the orientation of the orientation tree node along the path from the root to \hat{t} that corresponds to lca(t,u) determines whether the edge belongs to the left outer cut or to the right outer cut. Since the least common ancestors in the decomposition tree of the endpoints of every edge
are precomputed when the inner cuts are computed, we can compute the outer cuts of a leaf \widehat{t} in $O(\operatorname{deg}(t))$ time.

The outer cuts of a non-leaf \hat{t} can be computed from the outer cuts of its children as follows:

$$
\begin{aligned}
c(\text { left_cut }(\hat{t})) & =c(\text { left_cut }(\text { left }(0)))+c(\text { left_cut }(\text { right }(0)))-c(\text { in_cut }(t)) \\
c(\text { right_cut }(\widehat{t})) & =c(\text { right_cut }(\text { left }(0)))+c(\text { right_cut }(\text { right }(0)))-c(\text { in_cut }(t))
\end{aligned}
$$

Hence, the capacities of the outer cuts can be computed while the orientation tree is traversed. The following reformulation of Equation 1 shows that cost_{0} and cost $_{1}$ can be computed in constant time.

$$
\begin{align*}
\operatorname{cost}_{0}= & \operatorname{cost}(l \text { left }(0))+\operatorname{cost}(\text { right }(0)) \tag{2}\\
& \left.\left.+\left|V\left(t_{2}\right)\right| \cdot c\left(\text { right_cut }\left(\widehat{t}_{1}\right)\right)\right)+\left|V\left(t_{1}\right)\right| \cdot c\left(\text { left_cut }\left(\widehat{t}_{2}\right)\right)\right) \\
\cos _{1}= & \operatorname{cost}(l \text { left }(1))+\operatorname{cost}(\text { right }(1)) \\
& +\left|V\left(t_{1}\right)\right| \cdot c\left(\text { right_cut }\left(\widehat{t}_{2}\right)\right)+\left|V\left(t_{2}\right)\right| \cdot c\left(\text { left_cut }\left(\widehat{t}_{1}\right)\right)
\end{align*}
$$

Minimum Cutwidth. An adaptation of Equation 1 for mincw is given below:

$$
\begin{array}{ll}
\text { cost }_{0}=\max & \left\{\text { local_c }^{2}\left(L, V\left(t_{1}\right), V\left(T_{2}\right) \cup R\right)+c\left(L, V\left(t_{2}\right)\right),\right. \tag{3}\\
& \text { local_cw } \left.\left(L \cup V\left(t_{1}\right), V\left(T_{2}\right), R\right)+c\left(V\left(t_{1}\right), R\right)\right\} \\
\text { cost }_{1}=\max & \left\{\text { local_cw }^{2}\left(L, V\left(t_{2}\right), V\left(T_{1}\right) \cup R\right)+c\left(L, V\left(t_{1}\right)\right),\right. \\
& \text { local_cw } \left.\left.^{2} \cup V\left(t_{2}\right), V\left(T_{1}\right), R\right)+c\left(V\left(t_{2}\right), R\right)\right\} .
\end{array}
$$

These costs can be computed in constant time using the same technique described for minla.

Now we analyze the time complexity of the proposed implementation of Algorithm orient (t, α). We split the time spent by the algorithm into two parts: (1) The pre-computation of the inner cuts and the least common ancestors of the edges, (2) the time spent traversing the orientation tree \widehat{T} (interior nodes as well as leaves).

Precomputing the inner cuts and least common ancestors of the edges requires $O(m \cdot \operatorname{depth}(T))$ time, where $\operatorname{depth}(T)$ is the maximum depth of the decomposition tree T. Assume that the least common ancestors are stored and need not be recomputed.

The time spent traversing the orientation tree is analyzed as follows. We consider two cases: Leaves - the amount of time spent in a leaf \widehat{t} is linear in
the degree of t. Interior Nodes - the amount of time spent in an interior node \widehat{t} is constant. This implies that the complexity of the algorithm is linear in

$$
|\widehat{T}-\operatorname{leaves}(\widehat{T})|+\sum_{\widehat{t} \in \operatorname{leaves}(\widehat{T})} \operatorname{deg}(t)
$$

Every node $t \in T$ has $2^{\text {depth }(t)}$ "images" in \widehat{T}. Therefore, the complexity in terms of the decomposition tree T equals

$$
\sum_{t \in T-\operatorname{leaves}(T)} 2^{\operatorname{depth}(t)}+\sum_{t \in \operatorname{leaves}(T)} 2^{\operatorname{depth}(t)} \cdot \operatorname{deg}(t) .
$$

If the degrees of the vertices are bounded by a constant, then the complexity is linear in

$$
\sum_{t \in T} 2^{\operatorname{depth}(t)}
$$

This quantity is quadratic if T is perfectly balanced, i.e. the vertex subsets are bisected in every internal tree node. We quantify the balance of a decomposition tree as follows:

Definition 1: A binary tree T is ρ-balanced if for every internal node $t \in T$ and for every child t^{\prime} of t

$$
\rho \cdot|V(t)| \leq\left|V\left(t^{\prime}\right)\right| \leq(1-\rho) \cdot|V(t)|
$$

The following claim summarizes the time complexity of the algorithm.
Claim 3: If the decomposition tree T is ρ balanced, then

$$
\sum_{t \in T} 2^{\operatorname{depth}(t)} \leq n^{\beta},
$$

where β is the solution to the equation

$$
\begin{equation*}
\frac{1}{2}=\rho^{\beta}+(1-\rho)^{\beta} \tag{4}
\end{equation*}
$$

Observe that if $\rho \in(0,1 / 2]$, then $\beta \geq 2$. Moreover, β increases as ρ increases. Proof: The quantity which we want to bound is the size of the orientation tree. This quantity satisfies the following recurrence:

$$
f(T(t)) \triangleq \begin{cases}1 & \text { if } t \text { is a leaf } \\ 2 f\left(T\left(t_{1}\right)\right)+2 f\left(T\left(t_{2}\right)\right) & \text { otherwise }\end{cases}
$$

Define the function $f_{\rho}^{*}(n)$ as follows

$$
f_{\rho}^{*}(n)=\max \{f(T): \mathrm{T} \text { is } \alpha \text {-balanced and has } n \text { leaves }\} .
$$

The function $f_{\rho}^{*}(n)$ satisfies the following recurrence:
$f_{\rho}^{*}(n) \triangleq \begin{cases}1 & \text { if } n=1 \\ \max \left\{2 f_{\rho}^{*}\left(n^{\prime}\right)+2 f_{\rho}^{*}\left(n-n^{\prime}\right): n^{\prime} \in[\lceil\rho n\rceil . .(n-\lceil\rho n\rceil)]\right\} & \text { otherwise }\end{cases}$
We prove that $f_{\rho}^{*}(n) \leq n^{\beta}$ by induction on n. The induction hypothesis, for $n=1$, is trivial. The induction step is proven as follows:

$$
\begin{aligned}
f_{\rho}^{*}(n) & =\max \left\{2 f_{\rho}^{*}\left(n^{\prime}\right)+2 f_{\rho}^{*}\left(n-n^{\prime}\right): n^{\prime} \in[\lceil\rho n\rceil . .(n-\lceil\rho n\rceil)]\right\} \\
& \leq \max \left\{2\left(n^{\prime}\right)^{\beta}+2\left(n-n^{\prime}\right)^{\beta}: n^{\prime} \in[\lceil\rho n\rceil . .(n-\lceil\rho n\rceil)]\right\} \\
& \leq \max \left\{2(x)^{\beta}+2(n-x)^{\beta}: x \in[\rho n, n-\rho n]\right\} \\
& =2(\rho n)^{\beta}+2(n-\rho n)^{\beta} \\
& =2 n^{\beta} \cdot\left(\rho^{\beta}+(1-\rho)^{\beta}\right) \\
& =n^{\beta}
\end{aligned}
$$

The first line is simply the recurrence that $f_{\rho}^{*}(n)$ satisfies; the second line follows from the induction hypothesis; in the third line we relax the range over which the maximum is taken; the fourth line is justified by the convexity of $x^{\beta}+(n-x)^{\beta}$ over the range $x \in[\rho n, n-\rho n]$ when $\beta \geq 2$; in the fifth line we rearrange the terms; and the last line follows from the definition of β.

We conclude by bounding the time complexity of the orientation algorithm for $1 / 3$-balanced decomposition trees.

Corollary 4: If T is a $1 / 3$-balanced decomposition tree of a bounded degree, then the orientation tree \widehat{T} of T has at most $n^{2.2}$ leaves.

Proof: The solution of Equation (4) with $\rho=1 / 3$ is $\beta<2.2$.
For graphs with unbounded degree, this algorithm runs in time $O(m$. $\left.2^{\text {depth }(T)}\right)$ which is $O\left(m \cdot n^{1 / \log _{2}(1 / 1-\rho)}\right)$. Alternatively, a slightly different algorithm gives a running time of n^{β} in general (not just for constant degree), but the space requirement of this algorithm is $O(n \log n)$. It is based on computing the outer cuts of a leaf of the orientations tree on the way down the recursion. We omit the details.

5 Experiments And Heuristics

Since we are not improving the theoretical approximation ratios for the minla or mincw problems, it is natural to ask whether finding an optimal orientation of a decomposition tree is a useful thing to do in practice. The most comprehensive experimentation on either problem was performed for the minla problem by Petit [P97]. Petit collected a set of benchmark graphs and ran several different algorithms on them, comparing their quality. He found that Simulated Annealing yielded the best results. The benchmark consists of 5 random graphs, 3 "regular" graphs (a hypercube, a mesh, and a binary tree), 3 graphs from finite element discretizations, 5 graphs from VLSI designs, and 5 graphs from graph drawing competitions.

5.1 Gaps between orientations

The first experiment was performed to check if there is a significant gap between the costs of different orientations of decomposition trees. Conveniently, our algorithm can be easily modified to find the worst possible orientation; every time we compare two local costs to decide on an orientation, we simply take the orientation that achieves the worst local cost. In this experiment, we constructed decomposition trees for all of Petit's benchmark graphs using the balanced graph partitioning program HMETIS [GK98]. HMETIS is a fast heuristic that searches for balanced cuts that are as small as possible. For each decomposition tree, we computed four orientations:

1. Naive orientation - all the decomposition tree nodes are assigned a zero orientation. This is the ordering you would expect from a recursive bisection algorithm that ignored orientations.
2. Random orientation - the orientations of the decomposition tree nodes are chosen randomly to be either zero or one, with equal probability.
3. Best orientation - computed by our orientation algorithm.
4. Worst orientation - computed by a simple modification of our algorithm.

The results are summarized in Table 1. On all of the "real-life" graphs, the best orientation had a cost of about half of the worst orientation. Furthermore, the costs on all the graphs were almost as low as those obtained by Petit (Table 5), who performed very thorough and computationally-intensive experiments.

Notice that the costs of the "naive" orientations do not compete well with those of Petit. This shows that in this case, using the extra degrees of freedom afforded by the decomposition tree was essential to achieving a good quality solution. These results also motivated further experimentation to see if we could achieve comparable or better results using more iterations, and the improvement heuristic alluded to earlier.

5.2 Experiment Design

We ran the following experiments on the benchmark graphs:

1. Decompose \& Orient. Repeat the following two steps k times, and keep the best ordering found during these k iterations.
(a) Compute a decomposition tree T of the graph. The decomposition is computed by calling the HMETIS graph partitioning program recursively [GK98]. HMETIS accepts a balance parameter ρ. HMETIS is a random algorithm, so different executions may output different decomposition trees.
(b) Compute an optimal orientation of T. Let π denote the ordering induced by the orientation of T.
2. Improvement Heuristic. Repeat the following steps k^{\prime} times (or until no improvement is found during 10 consecutive iterations):
(a) Let π_{0} denote the best ordering π found during the Decompose \& Orient step.
(b) Set $i=0$.
(c) Compute a random ρ-balanced decomposition tree T^{\prime} based on π_{i}. The decomposition tree T^{\prime} is obtained by recursively partitioning the blocks in the ordering π_{i} into two contiguous sub-blocks. The partitioning is a random partition that is ρ-balanced.
(d) Compute an optimal orientation of T^{\prime}. Let π_{i+1} denote the ordering induced by the orientation of T^{\prime}. Note that the cost of π_{i+1} is not greater than the cost of the ordering π_{i}. Increment i and return to Step 2c, unless $i=k^{\prime}-1$ or no improvement in the cost has occurred for the last 10 iterations.
3. Simulated Annealing. We used the best ordering found by the Heuristic Improvement stage as an input to the Simulated Annealing program of Petit [P97].

Preliminary experiments were run in order to choose the balance parameter ρ. In graphs of less than 1000 nodes, we simply chose the balance parameter that gave the best ordering. In bigger graphs, we also restricted the balance parameter so that the orientation tree would not be too big. The parameters used for the Simulated Annealing program were also chosen based on a few preliminary experiments.

5.3 Experimental Environment

The programs have been written in C and compiled with a gcc compiler. The programs were executed on a dual processor Intel P-III 600 MHz computer running under Red Hat Linux. The programs were only compiled for one processor, and therefore only ran on one of the two processors.

5.4 Experimental Results

The following results were obtained:

1. Decompose \& Orient. The results of the Decompose \& Orient stage are summarized in Table 2. The columns of Table 2 have the following meaning: "UB Factor" - the balance parameter used when HMETIS was invoked. The relation between the balance parameter ρ and the UB Factor is $(1 / 2-\rho) \cdot 100$. "Avg. OT Size" - the average size of the orientation tree corresponding to the decomposition tree computed by HMETIS. This quantity is a good measure of the running time without overheads such as reading and writing of data. "Avg. L.A. Cost" - the average cost of the ordering induced by an optimal orientation of the decomposition tree computed by HMETIS. "Avg. HMETIS Time (sec)" - the average time in seconds required for computing a decomposition tree, "Avg. Orienting Time (sec)" - the average time in seconds required to compute an optimal orientation, and "Min L.A. Cost" the minimum cost of an ordering, among the computed orderings.
2. Heuristic Improvement. The results of the Heuristic Improvement stage are summarized in Table 3. The columns of Table 3 have the following meaning: "Initial solution" - the cost of the ordering computed by the Decompose \& Orient stage, "10 Iterations" - the cost of the ordering obtained after 10 iterations of Heuristic Improvements, "Total Iterations" - The number iterations that were run until there was no improvement for 10 consecutive iterations, "Avg. Time per Iteration" - the average time for each iteration (random decomposition
and orientation), and "Final Cost" - the cost of the ordering computed by the Heuristic Improvement stage.
The same balance parameter was used in the Decompose \& Orient stage and in the Heuristic Improvement stage. Since the partition is chosen randomly in the Heuristic Improvement stage such that the balance is never worse than ρ, the decomposition trees obtained were shallower. This fact is reflected in the shorter running times required for computing an optimal orientation.
3. Simulated Annealing. The results of the Simulated Annealing program are summarized in Table 4.

5.5 Conclusions

Table 5 summarizes our results and compares them with the results of $\mathrm{Pe}-$ tit [P97]. The running times in the table refer to a single iteration (the running time of the Decompose \& Orient stage refers only to orientation not including decomposition using HMETIS). Petit ran 10-100 iterations on an SGI Origin 2000 computer with 32 MIPS R10000 processors.

Our main experimental conclusion is that running our Decompose \& Orient algorithm usually yields results within $5-10 \%$ of Simulated Annealing, and is significantly faster. The results were improved to comparable with Simulated Annealing by using our Improvement Heuristic. Slightly better results were obtained by using our computed ordering as an initial solution for Simulated Annealing.

5.6 Availability of programs and results

Programs and output files can be downloaded from
http://www.eng.tau.ac.il/~guy/Projects/Minla/index.html.

Graph	Naive	Random	Worst	Best	Best/Worst
randomA1	1012523	1010880	1042034	980631	0.94
randomA2	6889176	6908714	6972740	6842173	0.98
randomA3	14780970	14767044	14826303	14709068	0.99
randomA4	1913623	1907549	1963952	1866510	0.95
randomG4	210817	220669	282280	157716	0.56
hc10	523776	523776	523776	523776	1.
mesh33x33	55727	55084	62720	35777	0.57
bintree10	4850	5037	9021	3742	0.41
3elt	720174	729782	887231	419128	0.47
airfoil1	521014	524201	677191	337237	0.5
whitaker3	2173667	2423313	3233350	1524974	0.47
c1y	91135	86362	141034	64365	0.46
c2y	122838	108936	172398	81952	0.48
c3y	152993	160114	262374	131612	0.5
c4y	146178	166764	246104	120799	0.49
c5y	121191	137291	203594	103888	0.51
gd95c	733	702	953	555	0.58
gd96a	132342	136973	177945	121140	0.68
gd96b	2538	2475	2899	1533	0.53
gd96c	695	719	868	543	0.63
gd96d	3477	3663	4682	2614	0.56

Bar-Yehuda et al., Orientation of Decomposition Trees, JGAA, 5(4) 1-27 (2001)22

Graph Properties			Decompose \& Orient Iterations					
Graph	Nodes	Edges	UB Factor	Avg. OT Size	Avg. L.A. Cost	Average HMETIS Time (sec)	Average Orienting Time (sec)	Min L.A Cost
randomA1	1000	4974	15	1689096	976788	15.08	5.32	956837
randomA2	1000	24738	10	1430837	6829113	31.46	17.89	6791813
randomA3	1000	49820	15	2682997	14677190	51.71	70.89	14621489
randomA4	1000	8177	15	1868623	1870265	17.41	8.22	1852192
randomG4	1000	8173	15	1952092	157157	18.07	8.28	156447
hc10	1024	5120	10	699051	523776	13.72	1.98	523776
mesh33x33	1089	2112	10	836267	35880	10.45	1.15	35728
bintree10	1023	1022	10	913599	3741	7.52	0.87	3740
3elt	4720	13722	15	34285107	423225	54.93	60.93	414051
airfoil1	4253	12289	16	30715196	328936	48.45	53.30	325635
whitaker3	9800	28989	10	110394027	1462858	114.50	192.50	1441887
c1y	828	1749	10	709463	68458	7.51	1.51	63803
c2y	980	2102	15	1456839	82615	9.40	5.63	81731
c3y	1327	2844	10	1902661	133027	12.46	4.24	130213
c4y	1366	2915	10	1954874	120899	13.24	3.97	119016
c5y	1202	2557	10	1528117	100990	12.39	3.59	99772
gd95c	62	144	20	7322	520	0.51	0	512
gd96a	1096	1676	10	1151024	117431	9.36	2.08	112551
gd96b	111	193	20	38860	1502	0.77	0.14	1457
gd96c	65	125	20	4755	544	0.49	0	533
gd96d	180	228	15	48344	2661	1.16	0.11	2521

Table 2: Results of the Decompose \& Orient stage. 100 iterations were executed for all the graphs, except for 3elt and airfoil1 - 60 iterations, and whitaker3-25 iterations.

Bar-Yehuda et al., Orientation of Decomposition Trees, JGAA, 5(4) 1-27 (2001)23

Graph Properties	Heuristic Improvement Iterations						
Graph	Initial solution	10 Iterations	20 Iterations	30 Iterations	Total Iterations	Avg. Time / Iteration (sec)	Final Cost
randomA1	956837	947483	941002	935014	1048	2.63	897910
randomA2	6791813	6759449	6736868	6717108	500	9.84	6604738
randomA3	14621489	14576923	14537348	14506843	200	23.73	14365385
randomA4	1852192	1833589	1821592	1812344	557	3.73	1761666
randomG4	156447	150477	149456	149243	76	3.53	149185
hc10	523776	523776	-	-	10	2.00	523776
mesh33x33	35728	35492	35325	35212	152	1.28	34845
bintree10	3740	3724	3720	3718	47	0.75	3714
3elt	414051	400469	395594	392474	724	46.49	372107
airfoil1	325635	313975	309998	307383	630	36.94	292761
whitaker3	1441887	1408337	1393045	1381345	35	149.43	1376511
c1y	63803	63283	63085	62973	80	0.73	62903
c2y	81731	81094	80877	80679	171	1.19	80109
c3y	130213	129255	128911	128650	267	1.91	127729
c4y	119016	118109	117690	117438	160	2.14	116621
c5y	99772	99051	98813	98661	182	1.72	98004
gd95c	512	506	-	-	14	0.00	506
gd96a	112551	110744	109605	108887	977	1.07	102294
gd96b	1457	1427	1424	1417	38	0.02	1417
gd96c	533	520	520	-	20	0.00	520
gd96d	2521	2463	2454	2449	62	0.03	2436

Table 3: Results of the Heuristic Improvement stage. Balance parameters equal the UB factors in Table 2.

	SA results		
Graph	Initial solution	Total Running Time (sec)	Final Cost
randomA1	897910	2328.14	884261
randomA2	6604738	191645	6576912
randomA3	14365385	58771.8	14289214
randomA4	1761666	10895.6	1747143
randomG4	149185	8375.88	146996
hc10	523776	2545.16	523776
mesh33x33	34845	278.037	33531
bintree10	3714	59.782	3762
3elt	372107	5756.52	363204
airfoil1	292761	4552.14	289217
whitaker3	1376511	29936.8	1200374
c1y	62903	204.849	62333
c2y	80109	298.844	79571
c3y	127729	553.064	127065
c4y	116621	579.751	115222
c5y	98004	445.604	96956
gd95c	506	1.909	506
gd96a	102294	268.454	99944
gd96b	1417	2.923	1422
gd96c	520	1.175	519
gd96d	2436	4.163	2409

Table 4: Results of the Simulated Annealing program. The parameters were $\mathrm{t} 0=4, \mathrm{tl}=0.1$, alpha $=0.99$ except for whitacker3, airfoil1 and 3elt for which alpha $=0.975$ and randomA3 for which $\mathrm{tl}=1$ and alpha $=0.8$

Bar-Yehuda et al., Orientation of Decomposition Trees, JGAA, 5(4) 1-27 (2001)25

Graph	Petit's Results [P97]		Decompose \& Orient stage			Heuristic Improvement stage			Simulated Annealing stage		
	cost	$\begin{aligned} & \hline \text { time } \\ & (\mathrm{sec}) \\ & \hline \end{aligned}$	cost	\% diff.	$\begin{aligned} & \hline \text { time } \\ & (\mathrm{sec}) \\ & \hline \end{aligned}$	cost	\% diff.	$\begin{aligned} & \hline \text { time } \\ & (\mathrm{sec}) \\ & \hline \end{aligned}$	cost	\% diff.	$\begin{aligned} & \hline \text { time } \\ & (\mathrm{sec}) \\ & \hline \end{aligned}$
randomA1	900992	317	956837	6.20\%	5	897910	-0.34\%	3	884261	-1.86\%	2328
randomA2	6584658	481	6791813	3.15\%	18	6604738	0.30\%	10	6576912	-0.12\%	191645
randomA3	14310861	682	14621489	2.17\%	71	14365385	0.38\%	24	14289214	-1.51\%	58771
randomA4	1753265	346	1852192	5.64\%	8	1761666	0.48\%	4	1747143	-0.35\%	10896
randomG4	150490	346	156447	3.96\%	8	149185	-0.87\%	4	146996	-2.32\%	8376
hc10	548352	335	523776	-4.48\%	2	523776	-4.48\%	2	523776	-4.48\%	2545
mesh33x33	34515	336	35728	3.51\%	1	34845	0.96\%	1	33531	-2.85\%	278
bintree10	4069	291	3740	-8.09\%	1	3714	-8.72\%	1	3762	-7.54\%	60
3elt	375387	6660	414051	10.30\%	61	372107	-0.87\%	46	363204	-3.25\%	5757
airfoil1	288977	5364	325635	12.69\%	53	292761	1.31\%	37	289217	0.08\%	4552
whitaker3	1199777	3197	1441887	20.18\%	193	1376511	14.73\%	149	1200374	0.05\%	29937
c1y	63854	196	63803	-0.08\%	2	62903	-1.49\%	1	62333	-2.38\%	205
c2y	79500	277	81731	2.81\%	6	80109	0.77\%	1	79571	0.09\%	299
c3y	124708	509	130213	4.41\%	4	127729	2.42\%	2	127065	1.89\%	553
c4y	117254	535	119016	1.50\%	4	116621	-0.54\%	2	115222	-1.73\%	580
c5y	102769	416	99772	-2.92\%	4	98004	-4.64\%	2	96956	-5.66\%	446
gd95c	509	1	512	0.59\%	0	506	-0.59\%	0	506	-0.59\%	2
gd96a	104698	341	112551	7.50\%	2	102294	-2.30\%	1	99944	-4.54\%	268
gd96b	1416	3	1457	2.90\%	0	1417	0.07\%	0	1422	0.42\%	3
gd96c	519	1	533	2.70\%	0	520	0.19\%	0	519	0.00\%	1
gd96d	2393	8	2521	5.35\%	0	2436	1.80\%	0	2409	0.67\%	4

Table 5: Comparison of results and running times. Note (a) Time of Decompose \& Orient and Heuristic Improve-
ment are given per iteration. (b) Decompose \& Orient time does not include time for recursive decomposition.

6 Acknowledgments

We would like to express our gratitude to Zvika Brakerski for his help with using HMETIS, running the experiments, generating the tables, and writing scripts.

References

[BL84] S.N. Bhatt and F.T. Leighton, "A framework for solving VLSI graph layout problems", JCSS, Vol. 28, pp. 300-343, (1984).
[ENRS00] G. Even, J. Naor, S. Rao, and B. Schieber, "Divide-and-Conquer Approximation Algorithms via Spreading Metrics", Journal of the ACM, Volume 47, No. 4, pp. 585-616, Jul. 2000.
[ENRS99] G. Even, J. Naor, S. Rao, and B. Schieber, "Fast approximate graph partitioning algorithms", SIAM Journal on Computing. Volume 28, Number 6, pp. 2187-2214, 1999.
[FD] Frost, D., and Dechter, R. "Maintenance scheduling problems as benchmarks for constraint algorithms" To appear in Annals of Math and AI.
[GJ79] M.R. Garey and D.S. Johnson, "Computers and intractability: a guide to the theory of NP-completeness", W. H. Freeman, San Francisco, California, 1979.
[GK98] G. Karypis and V. Kumar, "hMeTiS - a hypergraph partitioning package", http://wwwusers.cs.umn.edu/~karypis/metis/hmetis/files/manual.ps.
[Ha89] M. Hansen, "Approximation algorithms for geometric embeddings in the plane with applications to parallel processing problems," 30th FOCS, pp. 604-609, 1989.
[HL99] Sung-Woo Hur and John Lillis, "Relaxation and clustering in a local search framework: application to linear placement", Proceedings of the 36th ACM/IEEE conference on Design Automation Conference, pp. 360-366, 1999.
[K93] Richard M. Karp, "Mapping the genome: some combinatorial problems arising in molecular biology", Proceedings of the twenty-

Bar-Yehuda et al., Orientation of Decomposition Trees, JGAA, 5(4) 1-27 (2001)27
fifth annual ACM Symposium on Theory of Computing, pp. 278285, 1993
[LR99] F.T. Leighton and S. Rao, "Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms", Journal of the ACM, Volume 46, No. 6, pp. 787-832, Nov. 1999.
[P97] J. Petit, "Approximation Heuristics and Benchmarkings for the MinLA Problem", Tech. Report LSI-97-41-R, Departament de Llenguatges i Sistemes Informàtics. Universitat Politècnica de Catalunya, http://www.lsi.upc.es/dept/techreps/html/R9741.html, 1997.
[RR98] S. Rao and A. W. Richa, "New approximation techniques for some ordering problems", Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, 1998, pp. 211-218.
[RAK91] R. Ravi, A. Agrawal and P. Klein, "Ordering problems approximated: single processor scheduling and interval graph completion", 18th ICALP, pp. 751-762, 1991.
[R70] D. J. Rose, "Triangulated graphs and the elimination process", J. Math. Appl., 32 pp. 597-609, 1970.

[^0]: Guy Even was supported in part by Intel Israel LTD and Intel Corp. under a grant awarded in 2000. Jon Feldman did part of this work while visiting Tel-Aviv University.

