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Abstract

A directed path whose edges are assigned labels “up”, “down”, “right”,
or “left” is called four-directional, and three-directional if at most three
out of the four labels are used. A direction-consistent embedding of an
n-vertex three- or four-directional path P on a set S of n points in the
plane is a straight-line drawing of P where each vertex of P is mapped to
a distinct point of S and every edge points to the direction specified by
its label. We study planar direction-consistent embeddings of three- and
four-directional paths and provide a complete picture of the problem for
convex point sets.
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1 Introduction

In 1974, Rosenfeld proved that every tournament has a spanning antidirected
path [16] and conjectured that there exists an integer n0 such that every tour-
nament with more than n0 vertices contains every oriented path as a spanning
subgraph. A tournament is a digraph whose underlying undirected structure is
a complete graph and an oriented path is a digraph whose underlying undirected
structure is a simple path. An oriented path is directed if all its edges are ori-
ented the same way. It is antidirected if the orientations of its edges alternate.
During the following decade several simplifications of Rosenfeld’s conjecture had
been shown to be true. Alspach and Rosenfeld [3] and Straight [17] settled the
conjecture for oriented paths with either a single source or a single sink. For-
cade [11] proved the conjecture to be true for every tournament whose size is
a power of two. Reid and Wormald[15] showed that any tournament of size n
contains every oriented path of size 2n/3 and Zhang [19] improved this result
to n− 1. Finally, in 1986, the conjecture was established by Thomason [18].

More than two decades later, with the expansion of Geometric Graph The-
ory and Graph Drawing, a geometric counterpart of Rosenfeld’s conjecture was
considered. The subject of this study is an upward geometric tournament, that
is, a tournament drawn on the plane with straight-line edges so that each edge
points in the upward direction. It was asked whether an upward geometric
tournament contains a planar copy of any oriented path [8]. Despite several
independent approaches to attack the problem by different research groups, this
question is still unsolved. However, it was answered in the affirmative for sev-
eral special cases of paths and tournaments. We use the following definitions
to list these results. A vertex of a digraph which is either a source or a sink
is called a switch. An oriented path whose edges are all oriented in the same
direction is called monotone. For the following cases it was shown that every
upward tournament contains a planar copy of each oriented path: the vertices
of the tournament are in convex position [8], the oriented path has at most
3 switches [8], the oriented path has at most 5 switches and at least two of
its maximal monotone subpaths consist of a single edge [4], the oriented path
where every sink is directly followed by a source [8]. It was also shown that each
oriented path of size n is contained in any upward geometric tournament of size
n2k−2, where k is the number of switches [4]. This result was later improved to
(n−1)2+1 in [14]. Recently, with the help of a computer, we could verify that
every upward geometric tournament of size 10 contains a planar copy of any
oriented path as a spanning subgraph. This was done by exhaustive testing of
all distinct directed order types, that is, all order types [2] with an additional
combinatorial upward direction.

The question whether every upward geometric tournament contains a planar
copy of every oriented path was originally stated in terms of so-called point
set embeddings. Here we are given a set S of n points in the plane and a
planar n-vertex graph G, and we are asked to determine whether G has a planar
straight-line drawing where each vertex of G is mapped to a distinct point
of S. This problem has been extensively studied and many exciting facts were
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established, see for example [5, 7, 9, 10, 12]. In the upward counterpart of
point set embeddings, G is an upward planar digraph and the obtained drawing
is additionally required to be upwards oriented. Such a drawing, if it exists,
is called an upward point set embedding. Upward point set embeddings have
been studied for different classes of digraphs [4, 6, 8, 13]. Observe that the
question whether any upward geometric tournament contains a planar copy of
any oriented path is equivalent to asking whether any oriented path has an
upward planar embedding on any set of n points. We will refer to the latter as
the oriented path question.

The number of distinct plane embeddings of an (undirected) spanning path
on a point set could provide us some additional evidence for the oriented path
question. It is not difficult to see that if S is a set of n points in convex position,
then it admits n2n−3 distinct plane spanning path embeddings. Further it
is known that this is the minimum number of distinct plane spanning path
embeddings that a point set can admit, i.e., convex point sets minimize this
number [1]. Comparing this lower bound with the number of distinct oriented
paths, which is 2n−1, it sounds even surprising that every oriented path has an
upward planar embedding on every convex point set [8]. In order to approach
the oriented path question in its general form, we aim to understand better how
the nature of the problem changes when in addition to planarity of a path one
requires its upwardness. To this end, we generalize the oriented path problem
with respect to the number of considered directions (see Section 2 for a rigorous
definition). Observe that, instead of considering an oriented path, one can
consider a monotone path with labels on edges that declare whether an edge
is required to point up or down. In this work we study monotone paths with
four possible labels on the edges: up, down, left, and right. We call such paths
four-directional, and three-directional if at most three out of the four labels are
used. An embedding of such a path on a point set where each edge points into
the direction specified by its label is called direction-consistent. We study planar
direction-consistent embeddings of three- and four-directional paths on convex
point sets. Recall that convex point sets are extremal in the sense that they
minimize the number of plane embeddings of (undirected) spanning paths. We
provide a complete picture regarding four-directional paths and convex point
sets. Our results are as follows:

• Every three-directional path admits a planar direction-consistent embed-
ding on any convex point set.

• There exists a four-directional path P and a one-sided1 convex point
set S such that P does not admit a planar direction-consistent embed-
ding on S. On the other hand, a four-directional path always admits a
planar direction-consistent embedding for special cases of one-sided point
sets, namely so-called quarter-convex point sets.

• Given a four-directional path P and a convex point set S, it can be decided

1A convex point set is called one-sided if all of its points lie on the same side of the line
through its bottommost and topmost points.
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in O(n2) time whether P admits a planar direction-consistent embedding
on S.

Our study is also motivated by applications similar to those of upward point
set embeddings, i.e., any situation where a hierarchical structure must be rep-
resented and additional constraints on the positions of vertices are given. Our
scenario, where instead of two directions the edges can point into four directions,
allows for a more detailed control over a drawing.

The remainder of the paper is organized as follows. In Section 2, we give the
necessary definitions. In Section 3, we prove several preliminary results which
are utilized in our main Section 4, where the existence of a planar direction-
consistent embedding of a three-directional path on a convex point set is shown.
All results on four-directional paths are concentrated in Section 5.

2 Definitions

Graphs The graphs we study in this paper are directed and we denote by
(u, v) an edge directed from u to v. A directed edge when drawn as a straight-
line segment is said to point up or being upward, if its source is below its sink.
Similarly we define the notions of pointing down, left, and right.

Our study concentrates on directed paths with vertices v1, . . . , vn and edges
(vi, vi+1), 1 ≤ i ≤ n − 1. Each edge is assigned one of four labels U,D,L,R,
which means that (when the path is embedded on a point set) this edge is
required to point up, down, left, or right, respectively. For simplicity, we will
denote such a path by P = d1, . . . , dn−1, where di ∈ {U,D,L,R}, 1 ≤ i ≤ n−1.
Let T ⊆ {U,D,L,R}. If di ∈ T , 1 ≤ i ≤ n − 1, then P is called T -path and
|T |-directional path in order to emphasize the number of directions it contains.
We denote by Pi,j = di, . . . , dj , 1 ≤ i ≤ j ≤ n− 1, a subpath of P . In addition,
we define Pi,i−1 = vi.

Point sets We say that a set S of points in the plane is in general position if
no three points are collinear and no two points have the same x- or y-coordinate.
All point sets mentioned in this paper are in general position. Let S be a convex
point set. We denote by `(S), r(S), t(S), b(S) the leftmost, the rightmost,
the topmost, and the bottommost point of S, respectively (see Figure 1(a)).
A subset of points of S is called (clockwise) consecutive if its points appear
consecutively as we (clockwise) traverse the convex hull of S.

A convex point set S is called left-sided (resp. right-sided) if t(S) and b(S)
(resp. b(S), t(S)) are clockwise consecutive on S (see Figure 1(b)). Further, S is
called one-sided if S is left-sided or right-sided. Finally, S is called strip-convex
if (i) the points b(S) and `(S) are either consecutive or coincide, and (ii) the
points t(S) and r(S) are either consecutive or coincide (see Figure 1(c)). For
p, q ∈ S, the points of S which lie between the vertical lines through p and q
(including them) are said to be vertically between p and q.
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t(S)

b(S)

r(S)

`(S)

(a)

t(S)

b(S)

(b)

t(S) = r(S)

`(S)

b(S)

(c)

Figure 1: Definitions for point sets: (a) A convex point set with a consecutive
subset indicated in gray. (b) A left-sided point set. (c) A strip-convex point set.

Embeddings Let P be an n-vertex path (labeled) with vertex set V (P ) and
let S be a set of n points in general position. An embedding of P on S is an
injective function E : V (P )→ S. If the edges of P are drawn as straight-line seg-
ments connecting corresponding end-vertices, the embedding E yields a drawing
of P . We say that the embedding E is planar if this drawing is planar. We say
that E is direction-consistent if each edge points to the direction corresponding
to its label. Planar direction-consistent embeddings are abbreviated by PDCE.
During the construction of an embedding, a point p is called used if a vertex has
already been mapped to it. Otherwise, p is called free. Throughout the paper
we consider embeddings of n-vertex paths on sets of n points, unless explicitly
stated differently.

Operations with paths, point sets, and embeddings Let
T ⊆ {U,D,R,L} and consider a T -path P = d1d2 . . . dn−1. Let S be a set of
n points and let E be a direction-consistent embedding of P on S. Observe
that E describes a direction-consistent embedding of another path P I on the
same point set S. Path P I is called the reverse path of P , and is constructed
by reversing the directions of the edges of P and changing the labels to their
opposite. Thus, formally P I = I(dn−1) . . . I(d2)I(d1), where I(U) = D,
I(D) = U , I(R) = L, and I(L) = R. This embedding of P I on S is denoted
by EI . For example, if P = UUDRL, then P I = RLUDD. Observe also that
(P I)I = P .

Observation 1 Let E be a PDCE of a path P on a point set S. Then EI is a
PDCE of P I on the same point set S.

Let P , S, and E be as above. The embedding E yields a straight-line drawing
Γ of P . Consider the rotation of Γ counterclockwise by π/2. This rotated
drawing represents a direction-consistent embedding, denoted by R(E), of a
new path, denoted by R(P ), on the rotated point set, denoted by R(S). This
new path R(P ) is formally defined as follows: R(P ) = R(d1)R(d2) . . .R(dn−1),
where R(U) = L, R(D) = R, R(R) = U , and R(L) = D. We use the notation
Rk for k applications of R. Thus, R4(P ) = P and R4(S) = S. Also, if P is a
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{U,D,L}-path and S is a right-sided point set then R2(P ) is a {U,D,R}-path
and R2(S) is a left-sided point set. Note that P I 6= R2(P ).

Observation 2 Let E be a PDCE of a path P on a point set S. Then Rk(E)
is a PDCE of Rk(P ) on the point set Rk(S).

Finally, we define the operation of mirroring. Let P , S, E , and Γ be as before.
Consider a vertical mirroring of Γ through a vertical line not separating the
points of S. This mirrored drawing represents a direction-consistent embedding,
denoted by M(E), of a new path, denoted by M(P ), on the mirrored point
set, denoted by M(S). This new path M(P ) is formally defined as follows:
M(P ) = M(d1)M(d2) . . .M(dn−1), where M(U) = U , M(D) = D, M(R) =
L, and M(L) = R.

Observation 3 Let E be a PDCE of a path P on a point set S. Then M(E)
is a PDCE ofM(P ) on the point setM(S).

3 Preliminaries

In this work we prove that every n-vertex three-directional path P admits a
PDCE on any set of n points in convex position. As an overview, we sketch
the basic idea of the proof. First, we show that it is possible to construct
a PDCE of a {U,D,R}-path on a one-sided point set, while controlling the
position of one of its end-points (Lemma 2 and Lemma 3). Then we show
that we can embed a two-directional {U,R}-path on a strip-convex point set S
while controlling the positions of both end vertices of the path (Lemma 4). We
use these results to show that a {U,D,R}-path admits an embedding on any
convex point set (Lemma 5). For this, we separate a given convex point set
into one-sided point sets and a strip-convex point set and go through a case
distinction on the labels of the edges which correspond to the separation of the
point set. Finally, we show that an embedding of any three-directional path
can be reduced to the embedding of a {U,D,R}-path (Theorem 1). We discuss
the direction-consistency of constructed embeddings in detail in the flow of the
proofs. However, the planarity of the embedding always follows from a single
simple principle that is described by the following lemma and which is based on
Lemma 3 of Binucci et al. [8].

Lemma 1 An embedding of an n-vertex path on a convex point set is planar if
and only if for each i, 1<i<n, path P1,i is mapped to a consecutive subset of S.

Proof: Let E be an embedding of P on S. Lemma 3 in [8] states that if E
is planar then for any i, 1 < i < n, both P1,i−2 and Pi+1,n−1 are mapped to
consecutive subsets of S.

For the reversed direction, assume for the sake of contradiction that E is not
planar. This means that there exists a smallest j such that (vj , vj+1) is crossed
by another edge (vk, vk+1), for k > j. Vertex v1 lies on S either between vk
and vj or between vj and vk+1, since j is the smallest index such that (vj , vj+1)
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Algorithm 1: Backward Embedding

Input: {U,D,L,R}-path P = d1, . . . , dn−1, convex point set S of size n
Output: Function E : V (P )→ S

1 for i← n− 1 downto 1 do
2 switch di do
3 case U : E(vi+1)← t(S);
4 ;
5 case D: E(vi+1)← b(S);
6 ;
7 case L: E(vi+1)← `(S);
8 ;
9 case R: E(vi+1)← r(S);

10 ;

11 S ← S\{E(vi+1)};
12 E(v1)← v ∈ S //S contains only one element;
13 return E ;

is crossed. In both cases, E(P1,j) is not a consecutive subset of S, which is a
contradiction. �

We next show that Algorithm Backward Embedding is able to accomplish
two tasks: to construct a PDCE of a {U,D,R}-path on a left-sided point set,
and to construct a PDCE of a {U,R}-path on a strip-convex point set. The
algorithm traverses the path backwards and places the vertex vi, 1 < i ≤ n, so
that, wherever vertex vi−1 is placed, edge (vi−1, vi) is guaranteed to be direction-
consistent. The algorithm is a generalization of the algorithm constructing a
PDCE of a {U,D}-path [8].

Lemma 2 Let S be a left-sided point set and let P = d1, . . . , dn−1 be a
{U,D,R}-path. Algorithm Backward Embedding computes a PDCE E of
P on S such that E(vn) is t(S), b(S), or r(S) ∈ {t(S), b(S)}, dependent on
whether dn−1 is U , D, or R, respectively.

Proof: Observe that the algorithm traverses the path backwards and decides
the placement of vertex vi+1 based on the label of the edge (vi, vi+1), i.e., di.
If di = U (resp. D, L, R), vertex vi+1 is placed on the topmost (resp. bottom-
most, leftmost, rightmost) of the currently free points. Hence, when vertex vi
is placed at the next step on any other free point, edge (vi, vi+1) is guaranteed
to be direction-consistent.

For the planarity, observe that the procedure of picking the rightmost, the
topmost, and the bottommost points of a left-sided point set, creates a consec-
utive subset of S. Thus, for any i, 1 ≤ i ≤ n − 1, path Pi,n−1 (and therefore
also P1,i−1) is mapped to a consecutive subset of S. Hence, by Lemma 1, the
created embedding is also planar. �
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Lemma 3 A {U,D,R}-path P = d1, . . . , dn−1 admits a PDCE on any right-
sided point set S such that E(v1) is b(S), t(S), or `(S) ∈ {t(S), b(S)}, dependent
on whether d1 is U, D, or R, respectively.

Proof: Observe that the point set R2(S), i.e., S rotated by π, is a left-sided
point set. Observe also that R2(P ) is a {U,D,L}-path. The reverse of R2(P ),
i.e., R2(P )I , is again a {U,D,R}-path. Let E be a PDCE of R2(P )I on R2(S),
which exists by Lemma 2, such that the last vertex of R2(P )I is mapped to
t(R2(S)), b(R2(S)), or r(R2(S)) if the last edge of R2(P )I has label U , D,
or R, respectively. By Observation 1, EI is a PDCE of R2(P ) on R2(S) and
finally, by Observation 2, R2(EI) is a PDCE of P on S. Moreover, observe that
the first vertex of P is the last vertex of R2(P )I and that the first edge of P and
the last edge of R2(P )I have the same label. Observe also that the topmost
(resp. bottommost, leftmost) point of S is the bottommost (resp. topmost,
rightmost) point of R2(S). Hence, we infer that R2(EI)(v1) = b(S) if d1 = U ,
R2(EI)(v1) = t(S) if d1 = D, and R2(EI)(v1) = `(S) if d1 = R. �

Lemma 4 Let S be a strip-convex point set and let P = d1, . . . , dn−1 be a
{U,R}-path. Algorithm Backward Embedding computes a PDCE E of P
on S such that (i) E(v1) is b(S) or l(S), and (ii) E(vn) is t(S) or r(S), dependent
on whether dn−1 is U or R, respectively.

Proof: Direction consistency of the embedding can be seen similarly to the
first part of the proof of Lemma 2. For the planarity recall that since S is a
strip-convex point set, its rightmost and topmost points are either consecutive
or coincide. Since P is a {U,R}-path, Algorithm Backward Embedding picks
at every step either the rightmost or the topmost point of the remaining free
points. Thus, the set of used points is a consecutive subset of S, and, by
Lemma 1, the embedding is planar. The position of vn follows trivially. For
the position of v1 we observe the following. If the algorithm picks b(S) (resp.
`(S)) when searching for the topmost (resp. rightmost) free point then all other
points of S have already been used and therefore all the remaining vertices of P
except for v1 have already been placed. Hence, v1 is then placed on b(S) (resp.
`(S)). Otherwise, if the algorithm picks `(S) (resp. b(S)) when searching for
the topmost (resp. rightmost) point of S, then the point which is clockwise
after `(S) (before b(S)) has already been used, since it is higher than `(S)
(resp. to the right of b(S)). Therefore, after `(S) (resp. b(S)) has been used,
b(S) (resp. `(S)) becomes the leftmost (resp. bottommost) free point. Being
simultaneously the leftmost and the bottommost free point, b(S) (resp. `(S))
will be used as the last point by the algorithm. �

4 Three-directional paths

The following lemma is the key ingredient for the proof of a main result of this
paper. We postpone its proof until we have seen how the lemma is used.
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t(S)

b(S) = vm+1

P1,m

Pm+1,n−1

(a)

Pm+1,n−1

b(S)

t(S) = vm

P1,m

(b)

va = t(S)

vb+1 = b(S)

Pa,b

P1,a−1

Pb+1,n−1

A

B

C

(c)

Figure 2: Illustration of the proof of Lemma 5: The construction in Cases 1-3.

Lemma 5 Let S be a convex point set with the property that t(S) is to the right
of b(S). Any {U,D,R}-path admits a PDCE on S.

Theorem 1 Any three-directional path admits a PDCE on a convex point set.

Proof: Consider the four different possibilities of a 3-directional path P .
Case 1: P is a {U,D,R}-path. Since S is in general position, t(S) is either to
the right or to the left of b(S). In the former case a PDCE of P on S exists
by Lemma 5. For the latter case, observe that in M(S), point t(M(S)) is to
the right of b(M(S)). Moreover, P I is a {U,D,L}-path, andM(P I) is again a
{U,D,R}-path. By Lemma 5, there exists a PDCE E of M(P I) on M(S). By
Observation 3, M(E) is a PDCE of P I on S. Due to Observation 1, M(E)I is
a PDCE of P on S.

Case 2: P is a {U,D,L}-path. Observe that P I is a {U,D,R}-path. Let E be
a PDCE of P I on S, which exists by Case 1. Then EI is a PDCE of P on S.

Case 3: P is a {U,L,R}-path. Thus, R(P ) is a {U,D,L}-path. Due to Case 2,
there exists a PDCE E of R(P ) on R(S). By Observation 2, R3(E) is a PDCE
of P on S.

Case 4: P is a {D,L,R}-path. Notice that R(P ) is a {U,D,R}-path. Thus,
for a PDCE E of R(P ) on R(S), which exists due to Case 1, R3(E) is a PDCE
of P on S. This concludes the proof of the theorem. �

Proof of Lemma 5: Let S` denote the subset of S containing all points on
the left of the line through b(S) and t(S), and let m = |S`|. We distinguish
several cases based on the labels dm and dm+1.
Case 1: dm = D, dm+1 ∈ {U,R} (see Figure 2(a) for an illustration). We embed
P1,m on Sl ∪ {b(S)} using Algorithm Backward Embedding. By Lemma 2,
vertex vm+1 is mapped to b(S). Then, we embed Pm+1,n−1 on Sr ∪{t(S), b(S)}
in the way given by Lemma 3. Since `(Sr∪{t(S), b(S)}) = b(Sr∪{t(S), b(S)}) =
b(S) and dm+1 ∈ {U,R}, vertex vm+1 is mapped to b(S). Thus, the union of
these embeddings is a PDCE of P on S.

Case 2: dm ∈ {U,R}, dm+1 = D (see Figure 2(b)). We embed P1,m on
Sl∪{t(S)} using Algorithm Backward Embedding. By Lemma 2, vertex vm+1

is mapped to t(S) since r(Sl∪{t(S)}) = t(Sl∪{t(S)}) = t(S) and dm ∈ {U,R}.
Due to Lemma 3, we can embed Pm+1,n−1 on Sr ∪{t(S), b(S)} such that vertex
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{U,D,R}-path
vi−1

{U,R}-path
vj+1vi

di−1 = D

{U,D,R}-path
vj+2

dj+1 = D

va vb+1

db+1 = R/D

{U,D,R}-path
vi−1

{U,R}-path
va−1vi

di−1 = D

{U}-path

da−1 = R

{U,D,R}-path
vb+2

(a)

t(S) = vj+1

b(S) = vi

P1,i−1

Pj+1,n−1

Pi,j

A

C

B

(b)

Figure 3: Illustration of the proof of Lemma 5: (a) Structure of the path in
Cases 4A (above) and 4B (below). (b) Construction in Case 4A.

vm+1 is mapped to t(S), since t(Sr ∪{t(S), b(S)}) = t(S) and dm+1 = D. Thus,
the union of these embeddings is a PDCE of P on S.

Case 3: dm = D, dm+1 = D (see Figure 2(c)). Let Pa,b, 1 ≤ a ≤ m <
m + 1 ≤ b ≤ n − 1, be the maximal subpath of P containing dm, dm+1 and
only D labels. Let A be the a highest points of Sl ∪ {t(S)}. Observe that
A exists since a ≤ m. We embed P1,a−1 on A using Algorithm Backward
Embedding. By Lemma 2, vertex va is mapped to t(S), since da−1 ∈ {U,R}
and r(A) = t(A) = t(S). Let C be the n − b lowest points of Sr ∪ {b(S)}.
Since |Sr ∪ {b(S)}| = n − m − 1, and b ≥ m + 1, thus n − b ≤ n − m − 1,
and therefore C exists. By Lemma 3, we can embed Pb+1,n−1 on C such that
vb+1 is mapped to b(S) since `(C) = b(C) = b(S) and db+1 ∈ {U,R}. Let B be
(S\(A ∪ C)) ∪ {t(S), b(S)}. We embed the D-path Pa,b on B, starting with va
at t(S) and ending with vb+1 at b(S), by sorting the points of B by decreasing
y-coordinate. Merging the PDCEs for P1,a−1, Pa,b, and Pb+1,n−1, we obtain a
PDCE of P on S.

Case 4: dm, dm+1 ∈ {U,R}. Let Pi,j where 1 ≤ i ≤ m < m + 1 ≤ j ≤ n − 1
be the maximal subpath of P containing dm, dm+1 and only U/R-labels. Thus
di−1 =dj+1 =D, if they exist. Let α (resp. β) denote the number of points of S
lying to the left of b(S) (resp. t(S), including t(S)). We consider several cases
based on how the indices i, j are related to the indices α, β. The intuition behind
this is to distinguish whether or not the points that are vertically between b(S)
and t(S) are enough to embed Pi,j .

Case 4A: i > α and j < β, i.e., the points vertically between b(S) and t(S)
are enough to embed Pi,j (see Figure 3).
Let A be the i lowest points of Sl ∪ {b(S)}; A exists since i ≤ m. By
Lemma 2, we can embed P1,i−1 on A such that vi is mapped to b(S). Let
C be the n− j highest points of Sr ∪{t(S)}; C exists since n− j < n−m.
By Lemma 3, we can embed Pj+1,n−1 on C such that vj+1 is mapped to
t(S) since dj+1 = D. Let B be (S\(A ∪ C)) ∪ {b(S), t(S)}. Since i > α,
`(B) = b(B) = b(S), and since j < β, r(B) = t(B) = t(S). Thus, B is
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t(S) = vb+1

b(S) = vi

P1,i−1

Pb+1,n−1

Pi,a−2

va

Pa,b

va−1

C

B

D

A

(a)

t(S) = vj+1

b(S) = va

P1,a−1

Pj+1,n−1Pa,b

Pb+2,j

vb+1

vb+2

A

B
D

C

(b)

t(S) = ve+1

b(S) = va

P1,a−1

Pe+1,n−1

Pa,b

vc

Pc,e

vb+1
B

E

D

Pb+2,c−2

C

vb+2 vc−1

A

(c)

Figure 4: Illustration of the proof of Lemma 5: Constructions for (a) Case 4B,
(b) Case 4C, and (c) Case 4D when Pb+2,c−2 is non-empty (if c = b+ 2 the set
C is empty; if a = c and b = e the sets B and D are not distinguished).

a strip-convex point set. By Lemma 4, we can embed the {U,R}-path
Pi,j on B such that vi lies on b(S) and vj+1 lies on t(S). By merging the
constructed embeddings of P1,i−1, Pi,j , and Pj+1,n−1, we obtain a PDCE
of P on S.

For the following cases, it can happen that i− 1 = α and dα = R or j + 1 = β
and dβ = R or both. To avoid repetitions, we note that in those situations,
the embedding can be constructed identically to Case 4A. In particular, in case
that dα = R, vertex vi is mapped to r(A) = b(S). In case that dβ = R, vertex
vj+1 is mapped to `(C) = t(S). Thus, these embeddings can be merged with
the above embedding of Pi,j on B.

Case 4B: i > α and j ≥ β. In this case dβ ∈ {U,R}. If dβ = R then the
embedding is constructed as explained at the end of Case 4A. In the
following we assume dβ = U .
Let Pa,b, i ≤ a ≤ β ≤ b ≤ j be the maximal subpath of P containing
dβ and only U -edges; see Figure 3(a)(below) for the structure of the
constructed path. If a > i, da−1 = R. Otherwise, if a = i then da−1 = D,
i.e., the {U,R}-path Pi,a−2 is empty. Let A be the i lowest points of
Sl ∪ {b(S)} (see Figure 4(a)). Notice that A is a left-sided point set and
b(A) = b(S). We can embed P1,i−1 on A by Lemma 2 such that vertex vi
is mapped to b(S). Let D be the n− b highest points of Sr ∪ {t(S)}. By
Lemma 3, we can embed Pb+1,n−1 on D such that vertex vb+1 is mapped
to t(S). Let B be the a − i leftmost points of (S\A) ∪ {b(S)}. If a = i
then B is empty. Otherwise, since i > α, `(B) = b(B) = b(S) and since
a ≤ β, the points t(B) and r(B) are consecutive in B. Thus, B is a
strip-convex point set and by Lemma 4 we can embed the {U,R}-path
Pi,a−2 on B such that vertex vi is mapped to b(S) and vertex va−1 is
mapped to either t(B) or r(B). Let C = S\(A ∪ B ∪ D) ∪ {t(S)}. We
embed Pa,b on C by sorting the points by increasing y-coordinate. Thus,
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vertex va is mapped to b(C) and vertex vb+1 is mapped to t(S). If a = i,
vertex vi = va is already mapped to b(S), thus at this step we only
embed the vertices of the {U}-path Pa+1,b.
Next we merge the constructed PDCEs of P1,i−1, Pi,a−2, Pa,b, and
Pb+1,n−1. If a = i, the edge di points upward since vi is mapped to b(S).
Otherwise, since va−1 is mapped to t(B) or r(B), va is mapped to b(C),
B and C are separable by a vertical line, and edge (va−1, va) points to
the right and does not cross the remaining drawing.
Recall that this case considers the situation where i > α. In case i ≤ α,
we know that dα ∈ {U,R}. If it happens that dα = R, the construction
can be accomplished identically by considering index α+ 1 everywhere in
place of i. Here, Lemma 2 guarantees a mapping of P1,α with vα+1 on
b(S) since it is the rightmost point of A and dα = R.

Case 4C: i ≤ α and j < β. This case is symmetric to Case 4B. If dα = R
the embedding is constructed as explained at the end of Case 4A. Other-
wise dα = U and we again identify the maximal {U}-subpath Pa,b of P
containing dα. The structure of the path in this case is shown in Figure 5
and the embedding in Figure 4(b).
Also, similar to Case 4B, we can use this construction to embed a path
where j ≥ β and dβ = R. For that, consider the illustration of Fig-
ure 4(b). We set D to contain only points to the right of t(S) and t(S),
i.e., |D| = n−β+1. We embed Pβ,n−1 on D. By Lemma 3, we can map vβ
to t(S), since dβ = R and t(S) is the leftmost point of D. The remaining
construction is identical.

vb+2 vj+1

dj+1 = D

{U,D,R}-path
va−1

{U,R}-path
vb+1va

da−1 = R/D

{U}-path

db+1 = R

{U,D,R}-path
vj+2

vb+2 vc−1

dc−1 = R

{U,D,R}-path
va−1

{U,R}-path
vb+1va

da−1 = R/D

{U}-path

db+1 = R

{U}-path
vc

de+1 = D/R

{U,D,R}-path
ve+2ve+1

Figure 5: Illustration of the proof of Lemma 5: Structure of the path in Cases 4C
(above) and 4D (below).

Case 4D: i ≤ α and j ≥ β, dα = dβ = U . Let Pa,b, a ≤ α ≤ b, be the maximal
{U}-subpath of P containing dα. Similarly, let Pc,e, c ≤ β ≤ e, be the
maximal {U}-subpath of P containing dβ . If there is no R-edge between
dα and dβ then a = c and b = e. If there is a single R-edge between them
then c = b + 2. Otherwise, Pb+2,c−2 is a {U,R}-path containing at least
one vertex; see Figure 5 for this case.
We embed the {U,D,R}-path P1,a−1 on the a lowest points, denoted by A,
of S` ∪ {b(S)}. By Lemma 2, we can map va to b(S), since the rightmost
point of A is b(S) and da−1 ∈ {D,R}. By Lemma 3, we can embed
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Pe+1,n−1 on the n − e − 1 highest points, denoted by E, of Sr ∪ {t(S)},
such that ve+1 is mapped to t(S), since it is the leftmost point of E and
de+1 ∈ {D,R}. Figure 4(c) shows the case where Pb+2,c−2 is non-empty.
However, it presents the idea of the embedding in the remaining cases as
well.
If a = c and b = e then Pa,e is a {U}-path. We embed it on S \ (A ∪
E) ∪ {b(S), t(S)}, by sorting the points by increasing y-coordinate. This
completes the construction of a PDCE of P on S. Otherwise, we let B
(resp. D) be the b − a + 2 leftmost (resp. e − c + 2 rightmost) points of
S \ (A∪E)∪ {b(S), t(S)}. We embed Pa,b (resp. Pc,e) on B (resp. D) by
sorting its points by y-coordinates.
If c = b + 2, the {U}-paths Pa,b and Pc,e are joined by a single R-edge.
Since vb+1 is to the left of vb+2 = vc, the constructed embedding yields a
direction-consistent embedding of the edge (vb+1, vb+2) and this completes
the construction of a PDCE of P on S. Otherwise, Pb+2,c−2 is a {U,R}-
path that contains at least one vertex and db+1 = dc−1 = R. We embed
Pb+2,c−2 on the remaining free points, i.e., on the point set C = S \
(A ∪ B ∪ D ∩ E). By construction of B and D, the set C is separated
from the remaining points by vertical lines. Thus, `(C) and b(C) are
either consecutive or coincide. Similarly, points t(C) and r(C) are either
consecutive or coincide. Thus, C is a strip-convex point set. By Lemma 4,
we can embed Pb+2,c−2 on C such that vb+2 is mapped to one of `(C) or
b(C), and vc−1 to one of t(C) or r(C). Recall that vb+1 is mapped to the
highest point of B, which lies next to the vertical line separating B and
C. Therefore the edge (vb+1, vb+2) does not cross the remaining drawing.
Similarly, vc is mapped to the lowest point of D, which lies next to the
vertical line separating D and C and therefore the edge (vc−1, vc) does not
cross the remaining drawing. Since db+1 = dc−1 = R and by the fact that
C is separated from B and D by vertical lines, the edges (vb+1, vb+2) and
(vc−1, vc) are direction-consistent. This concludes the proof of the lemma.

�

5 Four-directional paths

The proof of the following theorem is based on the counterexample showing that
the path P = LULRDR does not admit a PDCE on the convex point set shown
in Figure 6(a).

Theorem 2 There exists a one-sided point set S and a {U,D,L,R}-path P
such that there is no PDCE of P on S.

Proof: Consider the path P = LULRDR and the left-sided point set S of
Figure 6(a). Lemma 1 states that in order to obtain a planar embedding of P
on S, a subpath of P must be mapped to consecutive points of S. Figure 6(b)
illustrates a complete case analysis based on this principle and shows that there
is no PDCE of P on S. �
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E(v1) : a b c d e f g

b gE(v2) :

E(v3) :

E(v4) :

E(v5) :

E(v6) :

c

E(v7) :

d

d

d

e e

e

e

f

f

f

f
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g

g

d

a

a

c

c
g

f
e

d
c

b a

(b)(a)

Figure 6: (a)The path P = LULRDR does not admit a PDCE on this point
set. (b) Illustration of the case analysis of the proof of Theorem 2.

A one-sided point set S is a special case of a convex point set, such that
b(S) and t(S) are consecutive. However, as Theorem 2 states, such a point set
does not always admit a PDCE of every four-directional path. On the other
hand, consider a one-sided convex point set S where one of the following pairs
represents a clockwise consecutive subset of S: (i) t(S) and `(S), (ii) r(S) and
t(S), (iii) b(S) and r(S), (iv) `(S) and b(S). Such a point set is called quarter-
convex. It can be easily seen that every quarter-convex point set admits a PDCE
of any four-directional path. Actually, in case (i) an edge pointing right always
points up and an edge pointing left always points down. Thus, the problem of
embedding a {U,D,R,L}-path is reduced to embedding a {U,D}-path, which
always admits a PDCE on any convex point set [8]. Similar reductions can be
made for any other type of a quarter-convex point set. Therefore, we state the
following:

Observation 4 Any {U,D,L,R}-path has a PDCE on any quarter-convex
point set.

Based on Lemma 1, it is easy to derive a dynamic programming algorithm
to decide whether a four-directional path admits a PDCE on a convex point
set. This is formalized in the following theorem. A similar algorithm, described
in [13], tests whether an upward planar digraph admits an upward planar em-
bedding on a convex point set.

Theorem 3 Let P be an n-vertex four-directional path and let S be a convex
point set. It can be decided in O(n2) time whether P admits a PDCE on S.

Proof: Let v1, . . . , vn be the vertices of P and let t(S) = p1, . . . , pn be the points
of S in counterclockwise order. Our dynamic programming algorithm stores
values E[i, j], which are all possible positions of vertex vi in a PDCE of P1,i−1
(the subpath of P including the first i vertices) on the points pj , . . . , pj+i−1,
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vi−1

P1,i−1

pj+1

pj = vi
P1,i

(a)

vi−1

P1,i−1pj

pj+i−1 = vi

P1,i

(b)

Figure 7: Proof of Theorem 3: (a) Case when E[i, j] = j. (b) Case when
E[i, j] = j + i− 1.

where j + i− 1 is taken modulo n if it is greater than n. Notice that E[i, j] can
contain at most two values, j and j + i − 1, since these are the only positions
for vi such that the path P1,i−2 satisfies the necessary condition of Lemma 1.

We compute the set E[i, j] as follows. We add j to E[i, j] if E[i− 1, j+ 1] is
non-empty and for at least one of the positions of vi−1 given by E[i−1, j+1] the
edge (vi−1, vi) is direction-consistent when vi is placed on pj (see Figure 7(a) for
an illustration of this case). Similarly, we add j + i− 1 to E[i, j] if E[i− 1, j] is
non-empty and for at least one of the positions of vi−1 given by E[i−1, j] the edge
(vi−1, vi) is direction-consistent when vi is placed on pj+i−1 (see Figure 7(b)).

The path P admits a PDCE on S if and only if at least one of the values
E[n, j], 1 ≤ j ≤ n is non-empty. Finally, we observe that we need O(n2) time
to compute all the values E[i, j], 1 ≤ i, j ≤ n. �

6 Conclusion

We considered the question of finding a planar direction-consistent embedding
on a convex point set for any given four-directional path. We have shown that
this is always possible for paths that are restricted to at most three out of the
four directions. To the contrary, we have provided an example showing that for
paths using all four directions, this is not always possible. We also presented an
O(n2) time algorithm to decide embeddability for a given four-directional path
and convex point set.

The most challenging open problem is to determine whether any two- or
three-directional path always admits a planar direction-consistent embedding
on any point set in general position.

Acknowledgements

We thank Alexander Pilz for valuable discussions.



JGAA, 0(0) 0–0 (0) 15

References

[1] O. Aichholzer, T. Hackl, C. Huemer, F. Hurtado, H. Krasser, and
B. Vogtenhuber. On the number of plane geometric graphs. Graphs and
Comb., 23(1):67–84, 2007. doi:10.1007/s00373-007-0704-5.

[2] O. Aichholzer and H. Krasser. The point set order type data base: A
collection of applications and results. In 13th Annual Canadian Conference
on Computational Geometry (CCCG’01), pages 17–20, 2001.

[3] B. Alspach and M. Rosenfeld. Realization of certain generalized paths
in tournaments. Discrete Math., 34:199 – 202, 1981. doi:10.1016/

0012-365X(81)90068-6.

[4] P. Angelini, F. Frati, M. Geyer, M. Kaufmann, T. Mchedlidze, and
A. Symvonis. Upward geometric graph embeddings into point sets. In
U. Brandes and S. Cornelsen, editors, 18th International Symposium on
Graph Drawing (GD ’10), volume 6502 of LNCS, pages 25–37, 2010.
doi:10.1007/978-3-642-18469-7_3.

[5] M. J. Bannister, Z. Cheng, W. E. Devanny, and D. Eppstein. Superpatterns
and universal point sets. J. Graph Alg. Appl., 18(2):177–209, 2014. doi:

10.7155/jgaa.00318.

[6] M. J. Bannister, W. E. Devanny, and D. Eppstein. Small superpatterns for
dominance drawing. CoRR, abs/1310.3770, 2013. URL: http://arxiv.
org/abs/1310.3770.

[7] T. Biedl and M. Vatshelle. The point-set embeddability problem for plane
graphs. In 28th Annual Symposium on Computational Geometry(SoCG
’12), ACM, pages 41–50, 2012. doi:10.1145/2261250.2261257.

[8] C. Binucci, E. Di Giacomo, W. Didimo, A. Estrella-Balderrama, F. Frati,
S. Kobourov, and G. Liotta. Upward straight-line embeddings of directed
graphs into point sets. Computat. Geom. Th. Appl., 43:219–232, 2010.
doi:10.1016/j.comgeo.2009.07.002.

[9] S. Cabello. Planar embeddability of the vertices of a graph using a fixed
point set is NP-hard. J. Graph Alg. Appl., 10(2):353–366, 2006. doi:

10.7155/jgaa.00132.

[10] S. Durocher and D. Mondal. On the hardness of point-set embeddability.
In M. S. Rahman and S. ichi Nakano, editors, Workshop on Algorithms
and Computation(WALCOM’12), volume 7157 of LNCS, pages 148–159.
Springer, 2012. doi:10.1007/978-3-642-28076-4_16.

[11] R. Forcade. Parity of paths and circuits in tournaments. Discrete Math.,
6(2):115 – 118, 1973. doi:10.1016/0012-365X(73)90041-1.

http://dx.doi.org/10.1007/s00373-007-0704-5
http://dx.doi.org/10.1016/0012-365X(81)90068-6
http://dx.doi.org/10.1016/0012-365X(81)90068-6
http://dx.doi.org/10.1007/978-3-642-18469-7_3
http://dx.doi.org/10.7155/jgaa.00318
http://dx.doi.org/10.7155/jgaa.00318
http://arxiv.org/abs/1310.3770
http://arxiv.org/abs/1310.3770
http://dx.doi.org/10.1145/2261250.2261257
http://dx.doi.org/10.1016/j.comgeo.2009.07.002
http://dx.doi.org/10.7155/jgaa.00132
http://dx.doi.org/10.7155/jgaa.00132
http://dx.doi.org/10.1007/978-3-642-28076-4_16
http://dx.doi.org/10.1016/0012-365X(73)90041-1


16 Aichholzer et al. Embedding Four-directional Paths on Convex Point Sets

[12] P. Gritzmann, B. Mohar, J. Pach, and R. Pollack. Embedding a planar tri-
angulation with vertices at specified points. The American Math. Monthly,
98(2):165–166, 1991.

[13] M. Kaufmann, T. Mchedlidze, and A. Symvonis. On upward point set
embeddability. Comput. Geom., 46(6):774–804, 2013. doi:10.1016/j.

comgeo.2012.11.008.

[14] T. Mchedlidze. Upward planar embedding of an n-vertex oriented path

on O(n2) points. Comp. Geom.: Theory and Appl., 47(3):493–498, 2014.
doi:10.1016/j.comgeo.2013.11.007.

[15] K. Reid and N. Wormald. Embedding oriented n-trees in tournaments.
Studia Sci. Math. Hungarica, 18:377 – 387, 1983.

[16] M. Rosenfeld. Antidirected hamiltonian circuits in tournaments. Jour-
nal of Comb. Theory, Ser. B, 16(3):234 – 242, 1974. doi:10.1016/

0095-8956(74)90069-0.

[17] J. Straight. The existence of certain type of semi-walks in tournaments.
Congr. Numer., 29:901 – 908, 1980.

[18] A. Thomason. Paths and cycles in tournaments. Trans. of
the American Math. Society, 296(1):167–180, 1986. doi:10.1090/

S0002-9947-1986-0837805-6.

[19] C.-Q. Zhang. Some results on tournaments. J.Qufu Teachers College, (1):51
– 53, 1985.

http://dx.doi.org/10.1016/j.comgeo.2012.11.008
http://dx.doi.org/10.1016/j.comgeo.2012.11.008
http://dx.doi.org/10.1016/j.comgeo.2013.11.007
http://dx.doi.org/10.1016/0095-8956(74)90069-0
http://dx.doi.org/10.1016/0095-8956(74)90069-0
http://dx.doi.org/10.1090/S0002-9947-1986-0837805-6
http://dx.doi.org/10.1090/S0002-9947-1986-0837805-6

	Introduction
	Definitions
	Preliminaries
	Three-directional paths
	Four-directional paths
	Conclusion

