
A Detailed Description of our Tools

In following we give a detailed description of the tools which can be used to verify the proof of
Theorem 2. Moreover, we exemplify how the tools can be used. Even though our C++ code
is platform-independent, we assume that the reader uses a Unix/Linux operating system and
only give usage examples for this particular setup. (We ran our experiments in Fedora 27 and
openSUSE 15.)

A.1 Enumerating Abstract Order Types

extend order type We provide a C++ program extend_order_type which reads all abstract
order types on a fixed number of points n from the input file, extends it in all possible ways,
and writes all so-obtained abstract order types on n + 1 points to an output file (without du-
plicates). The program (see the folder cprogram/scripts/extend_order_type/) can be built
using qmake1 and make. The following bash command builds the program:

$ qmake && make

The File Format Concerning the file format, we have to explain a little more theory: An
abstract order type can be encoded by its triple orientations

Λi,j,k ∈ {−1, 0,+1} for each 1 ≤ i, j, k ≤ n.

Since encoding this “big lambda matrix” uses a cubic amount of bits, it is more efficient to
encode the “small lambda matrix”, which has the following entries:

λi,j := |{k ∈ {1, . . . , n} \ {i, j} : Λi,j,k > 0}| for each 1 ≤ i, j, k ≤ n.

Diagonal elements λi,i are omitted (or can be set to zero). This data structure was first introduced
by Goodman and Pollack [GP83].

Small lambda matrices of (non-degenerated) abstract order types fulfill λi,j + λj,i = n − 2
(i.e., for each two fixed points i, j, any other point either lies on the left or on the right side of
the directed line through i and j), hence only entries λi,j with 1 ≤ i < j ≤ n need to be stored.
Moreover, the first point can be assumed to lie on the boundary of the convex hull, and other
points can be assumed to be sorted around the first point. Such a labeling of points is called
“natural labeling” and yields Λ1,i,j = + for 1 < i < j ≤ n and λ1,j = j − 1 for all 1 < j ≤ n.
Consequently, elements from the first row of the small lambda matrix need not to be stored.
Note that the lexicographically minimal small lambda matrix (over all labelings) – which we
compute to distinguish different order types – is also naturally labeled.

Altogether, we encoded the entries λi,j for 1 < i < j ≤ n as 8-bit (1-byte) integers in
lexicographic order, i.e,

λ2,3, λ2,4, . . . , λ2,n, λ3,4, λ3,5, . . . , λn−1,n.

For more information we again refer to the articles by Aurenhammer, Aichholzer, and Krasser
[AAK02, AK06], and the dissertation of Krasser [Kra03].

1In fact, no Qt-specific features are used. Alternatively to qmake one could also use cmake or just use a
stand-alone Makefile
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Usage of the Program The program extend_order_type can be used as follows:

./extend_order_type [n] [order types file] [parts] [from part] [to part]

The following describes the parameters.

• “n” is the number of points in the abstract order types from the input file,

• “order types file” is the path to the input file,

• “parts” is the number of threads in total,

• “from part” is the id of the first thread to be run, and

• “to part” is the id of the first thread not to be run.

The difference “to part”-“from part” is precisely the number of threads to be started on the local
machine. As an example, to start a computation on 4 machines with 4 threads each (16 threads
in total), one can simply run one of the following commands on each of the machines:

./extend_order_type [n] [order types file] 16 0 4

./extend_order_type [n] [order types file] 16 4 8

./extend_order_type [n] [order types file] 16 8 12

./extend_order_type [n] [order types file] 16 12 16

We also provide our python script create_jobs.py, which we used to automatically create job
files for the parallel computations on the cluster.

Complete Enumeration To generate all abstract order types, we start with a binary file
n3_order_types.bin with content “0x00” (one byte) – this encodes the unique order type on 3
points, which is described by the small lambda matrix

- 0 1

1 - 0*

0 1 -

The entry λ23 = 0, which is marked with a star (*), is the one entry which is actually encoded
as “0x00” in the file. This file is also available in the folder data/order_types/.

The following command now enumerates all abstract order types on 4 points:

$ xxd n3_order_types.bin

00000000: 00 .

$ ./extend_order_type 3 n3_order_types.bin 1 0 1

n: 3

starting threads: 1

[0/1] started

[0/1] n 3 ct 0 extensions 0

[0/1] finished

all threads done.

total solutions: 2/1

$ xxd n3_order_types.bin.ext0_1.bin

00000000: 0001 0001 0001
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The command xxd displays a hex dump of the given file. The generated output file
n3_order_types.bin.ext0_1.bin contains 6 bytes in total, encoding the two order types on 4
points (with 3 bytes each). The first three bytes encode the order type of 4 points in convex
position, which has the following small lambda matrix:

- 0 1 2

2 - 0* 1*

1 2 - 0*

0 1 2 -

The remaining three bytes encode the other order type of 4 points, which has a triangular convex
hull and one interior point. Its small lambda matrix is the following:

- 0 1 2

2 - 1* 0*

1 1 - 1*

0 2 1 -

When renaming the file n3_order_types.bin.ext0_1.bin to n4_order_types.bin, one can
now analogously enumerate all order types of 5, 6, . . . points with

./extend_order_type 4 n4_order_types.bin 1 0 1

./extend_order_type 5 n5_order_types.bin 1 0 1

...

A.2 Enumerating Triangulations

Plantri Having the graph generator plantri [BM99]2 installed, it can be run with parameters
“[number of points] -g”, to enumerate all triangulations on the specified number of points in
graph6 format. With the additional parameter “-c4”, only 4-connected triangulations are enu-
merated. As an example, following command enumerates all 4-connected triangulations on 8
vertices:

$ ./plantri 8 -g -c4

./plantri 8 -g -c4

G|tJH{

G|thXs

2 triangulations written to stdout; cpu=0.00 sec

To store graphs in files, one can simply pipe the standard output to the desired file:

$ ./plantri 8 -g -c4 > n8c4.g6

./plantri 8 -g -c4

2 triangulations written to stdout; cpu=0.00 sec

Filter Triangulations Having the mathematics software system SageMath [S+18] installed,
we used the Sage-scripts filter_3tree.sage and filter_maxdeg.sage to filter stacked trian-
gulations and triangulations with maximum degree |V | − 1, respectively.

2Plantri is available from https://users.cecs.anu.edu.au/~bdm/plantri/. For more information on plantri,
we refer to https://users.cecs.anu.edu.au/~bdm/plantri/plantri-guide.txt, and for more information on the
graph6 format, we refer to https://users.cecs.anu.edu.au/~bdm/data/formats.html.
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The script filter_3tree_relabel.sage is a slight modification of filter_3tree.sage,
which relabels the vertices of the given graph in a way, such that the vertices 0, 1, and 2
span the initial triangle, and the k-th vertex is stacked into a triangular face of the subgraph
induced by the vertices 0, 1, . . . , k − 1.

The triangulations enumerated by plantri do not necessarily fulfill this property. The tri-
angulations shown in Listings 3 and 4 were relabed using filter_3tree_relabel.sage. The
respective files are available in the folder data/triangulations/.

The scripts filter_property1.sage and filter_property2.sage can be used to filter tri-
angulations which fulfill Properties 1 and 2 from Section 4.4.

Edge-List Encoding We have chosen a different plain text format, which is easier to load in
C++: We encode a graph by its edge list. For each graph, we write the start and end vertices
of the edges {u1, v1}, . . . , {um, vm} simply as “u1 v1 u2 v2 . . .um vm” in a line, followed by a
line-break. The following example gives an illustration (continues with the 4-connected 8-vertex
triangulations from before):

$ sage encode.sage n8c4.g6

0 1 0 2 0 3 0 4 1 2 1 4 1 5 1 6 2 3 2 6 2 7 3 4 3 7 4 5 4 7 5 6 5 7 6 7

0 1 0 2 0 3 0 4 1 2 1 4 1 5 2 3 2 5 2 6 2 7 3 4 3 7 4 5 4 6 4 7 5 6 6 7

This encoding can be performed using the Sage-script encode.sage.

Drawing Graphs Last but not least, we provide the script draw.sage which we used to
automatically generate drawings for stacked triangulations; see Listings 3 and 4. The idea is to
start with a Tutte embedding and then use global optimization heuristics3 to optimize a certain
quality function, which simultaneously maximizes edge lengths and vertex-edge distances.

A.3 Testing n-Universality

test universal sets We provide a C++ program test_universal_sets to find n-universal
point sets. The program (see the folder cprogram/scripts/test_universal_sets/) can be
built analogously to extend_order_type (using qmake and make), except that Minisat is re-
quired to be build as a library first.

Building the Minisat Library As described in the README file delivered with Minisat
[ES03]4 (cf. cprogram/minisat-2.2.0), one needs to set the MROOT variable. This can be
done for example with the following command:

$ export MROOT=$PWD

In the simp folder from Minisat, one then can run

$ make lib_release.a

to build the library. Having the lib_release.a built, we are now ready to build our pro-
gram test_universal_sets. Note that, if minisat-2.2.0 is not placed inside the basis di-
rectory (where the otlib.pro is located), one might need to slightly adapt the project file
test_universal_sets.pro so that the minisat headers and library are found. In particular, the
following two lines might need to be adapted:

3Cf. http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
4Available from http://minisat.se/MiniSat.html
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INCLUDEPATH += $$OTLIBDIR/minisat-2.2.0

LIBS += $$OTLIBDIR/minisat-2.2.0/simp/lib_release.a

Usage of the Program

./test_universal_sets [n] [order types file] [graphs file] [phase]

[parts] [from part] [to part]

The parameters can be described as follows:

• “n” is the number of points in the abstract order types from the input file,

• “order types file” is the path to the input file for abstract order types,

• “graphs file” is the path to the input file for graphs,

• “phase” specifies the actions which should be performed (see below),

• “parts” is the number of threads in total,

• “from part” is the id of the first thread to be run, and

• “to part” is the id of the first thread not to be run.

Abstract order types are again encoded by their small lambda matrix as described above. For the
graph file we have chosen the plain-text edge-list format described above. The phase parameter
describes, what the program should test:

• If the program is ran with parameter “phase=1”, then point sets are filtered out which do
not fulfill the necessary conditions described in Phase 1 of Section 4.

• If the program is ran with parameter “phase=2”, then for each point set all graphs from
the list are tested for simultaneous embeddability. As described in Phase 2 of Section 4,
we stop as soon as one graph is not embeddable, and we use a priority queue to speedup
the computations.

The parameter “phase=2” is also used to test Phase 4 of Section 4.

• If the program is ran with parameter “phase=3”, then all pairs of order types and graphs
are tested for embeddability. Unlike for the computations of Phase 2, we do not change the
order of the list of graphs. For each given order type from the input file, a line of zeros and
ones is written to a plain-text output file, where the j-th zero/one in the i-th line encodes
whether the j-th graph can be embedded on the i-th point set. In the following we refer
to this file as “stat”-file.

The parameter “phase=3” is also used to test Phase 5 of Section 4.

For Phase 6 of Section 4 one can simply concatenate the stat-files obtained in Phases 3 and 5,
and run CPLEX/Gurobi – no additional computations with our C++ program are necessary.
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Loading Realizations from the Order Type Database It is also possible to load files from
the order type database [Aic], which provide point set realizations of all order types. To do so,
one simply needs to change the line

// #define REALIZATIONS

to

#define REALIZATIONS

in the source file test_universal_sets.cpp. In the binary files otypes04.b08, . . . , otypes08.b08
(available at [Aic]) each order type of n = 4, . . . , 8 points is encoded by one of its realizing point
sets: the points (x1, y1), . . . , (xn, yn) are encoded as “x1y1 . . . xnyn” using 1 byte per coordinate
(values inbetween 0 and 255). For n = 9, n = 10, and n = 11, each coordinate is encoded using
2 bytes (values inbetween 0 and 65536).

A.4 Integer Programming

Gurobi Having Gurobi/Gurobipy installed [Gur18]56, we used the script test_min_cover.py
to create a (Mixed) Integer Linear Programming instance from a stat-file (created from our C++
program). The script parses the input file, writes the instance to an “lp” file, and then starts
the Gurobi solver to find an (optimal) solution. An instance, which is stored in an lp-file, can
also be read and solved on a different machine for example via the following command:

$ gurobi

...

gurobi> m=read("n11_phase5_statistic_stacked.txt.instance.lp")

gurobi> m.optimize()

Optimize a model with 17533 rows, 423 columns and 1031205 nonzeros

...

Explored 295 nodes (25169 simplex iterations) in 69.54 seconds

Thread count was 6 (of 6 available processors)

Solution count 5: 12 13 14 ... 50

Optimal solution found (tolerance 1.00e-04)

Best objective 1.200000000000e+01, best bound 1.200000000000e+01, gap 0.0000%

When solving an instance using Gurobi (also with CPLEX), the current upper and lower
bound on the optimal value is printed to the console every few seconds. When aborting the
solving process (CTRL+C), the currently best solution is printed.

CPLEX An instance, which is stored in an lp-file, can be read and solved via the CPLEX
Interactive Optimizer [IBM18]7 as exemplified in the following:

CPLEX> read instance.lp

...

CPLEX> optimize

...

5Cf. Section 12 “Python Interface” from http://www.gurobi.com/documentation/8.1/quickstart_linux.pdf
6For information on free academic versions, checkout http://www.gurobi.com/academia/academia-center
7For information on free academic versions, checkout http://www.ibm.com/developerworks/community/blogs/

jfp/entry/CPLEX_Is_Free_For_Students
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