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Abstract

Recently, we presented a new practical method for upward crossing mini-
mization [8], which clearly outperformed existing approaches for drawing hier-
archical graphs in that respect. The outcome of this method is an upward planar
representation (UPR), a planarly embedded graph in which crossings are repre-
sented by dummy vertices. However, straight-forward approaches for drawing
such UPRs lead to quite unsatisfactory results. In this paper, we present a new
algorithm for drawing UPRs that greatly improves the layout quality, leading
to good hierarchal drawings with few crossings. We analyze its performance on
well-known benchmark graphs and compare it with alternative approaches.
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1 Introduction

The visualization of hierarchical graphs representing some natural flow of information
is one of the key topics in graph drawing. It has numerous practical applications and
has received a lot of scientific attention since the very beginning of graph drawing.
Formally, we are given a directed acyclic graph (DAG) G and we want to find an
upward drawing of G, i.e., a drawing of G in which all arcs are drawn as curves
monotonically increasing in the vertical direction.

In 1981, Sugiyama et al. [20] proposed their well-known three-phase framework
for creating such drawings, which is still widely used:

1. Layer assignment: Assign nodes to layers such that arcs point from lower to
higher layers; split long arcs spanning several layers by creating dummy nodes.

2. Node Ordering/Crossing reduction: Order nodes on the layer to reduce
the number of arc crossings.

3. Coordinate assignment: Assign coordinates to original nodes and dummy
nodes (bend points) such that we get few bend points and short arcs.

A vast number of modifications and alternatives for the individual steps have been
proposed; e.g., Gansner et al. [13] give an LP-based formulation for layer and coor-
dinate assignment. Their layer assignment computes a layering which minimizes the
sum of the vertical edge lengths (i.e., the number of layers an edge spans). Their coor-
dinate assignment minimizes the objective function

∑
e=(u,v)∈A w(e) · |X(u)−X(v)|,

where w(e) gives the priority for drawing e vertically and A is the arc set after split-
ting long arcs. Brandes and Köpf [4] propose an approach which is simpler and faster,
but nevertheless it computes coordinate assignments with similar quality. Branke et
al. [5] investigate the computational complexity of the width-restricted graph layering
problem. They prove that width-restricted graph layering is NP-hard when taking
the dummy nodes into account. Healy and Nikolov give an experimental analysis of
existing layering algorithms for DAGs [16]. They also present an ILP formulation and
a branch-and-cut algorithm for layering a DAG with a minimum number of dummy
nodes, where in addition, upper bounds for the width and height of the layering are
given [15].

However, a major drawback of Sugiyama’s framework could not be solved by any
of these modifications: Since layer assignment and crossing reduction are realized
as independent steps, the resulting drawing might have many unnecessary crossings
caused by an unfortunate layer assignment. A main challenge is to perform cross-
ing reduction without any layer assignment. First steps to adapt the planarization
approach for undirected graphs [1, 14] have been presented in [2, 9]; Eiglsperger et
al. [12] presented the more advanced mixed upward planarization approach. How-
ever, even the latter approach still needs some kind of layering. Experimental results
suggested that this approach produces considerably fewer crossings than Sugiyama’s
algorithm. Previously [8], we presented a novel approach for upward planarization
that does not require any layering. We could experimentally show that this new ap-
proach clearly outperforms Eiglsperger’s mixed upward planarization and Sugiyama’s
algorithm with respect to crossing reduction.

The output of an upward planarization procedure is an upward planar represen-
tation, i.e., a representation of the original digraph, in which crossings are replaced
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Figure 1: Instance g.29.16 (North DAGs) with 29 nodes and 38 arcs.

by dummy vertices (crossing dummies) and a planar embedding with designated ex-
ternal face is given. In our case, the upward planar representation will always be
a single-source, single sink embedded digraph; if the input digraph contains multi-
ple sources we introduce a super-source ŝ connected to all sources and do not count
crossings with arcs incident to ŝ.

A simple method to draw a DAG by applying upward planarization consists of
using Sugiyama’s coordinate assignment phase for drawing the upward planar rep-
resentation, where we use a straight-forwardly obtained layering and the ordering of
the nodes on each layer implied by the upward-planar representation and embedding.
However, this method (denoted by UPSugiyama in the following) produces quite
unsatisfactory drawings with too many layers and much too long arcs. The main ob-
jective of this paper is to significantly improve on this simple method, by enhancing
the computation of layers and node orderings and taking the special roles of crossing
dummies into account. This will allow us to reduce the heights of the drawings and
lengths of the arcs substantially, resulting in much more pleasant drawings.

Since upward planarization yields an upward planar representation, we can al-
ternatively use drawing methods for upward planar digraphs to draw it, cf. [9]. We
consider two such algorithms in our experimental study:

Dominance drawings: The linear-time algorithm by Di Battista et al. [11] draws
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planar st-digraphs with small area on a grid. We apply this algorithm by aug-
menting the upward planar representation to a planar st-digraph and omitting
the augmenting arcs in the final drawing.

Visibility representations: We use the algorithm by Rosenstiehl and Tarjan [19]
for computing a visibility representation on the grid. This algorithm is based on
bipolar orientations implied by an st-numbering. By augmenting the upward
planar representation to an st-planar digraph, we obtain a bipolar orientation
such that the resulting drawing is upward planar. Again, we omit augmenting
edges in the final drawing.

Fig. 1 shows a relatively small digraph, where the benefits of the new upward
planarization approach can be easily seen: While the classical Sugiyama approach
leads to few layers, our approach can expand the layout of the subgraph that looks
very congested otherwise.

Overview of the Frameworks. We give here an overview of the drawing algo-
rithms we encountered in our experiments (cf. Fig. 2). They are: the classical
Sugiyama framework (Sugiyama), our new upward planarization layout (UPL), the
straight-forward approach (UPSugiyama), and the dominance and visibility drawing
approaches (Dominance and Visibility). An example drawing of each approach is
given in Fig. 3.

When considering the layer assignment as a sub-step of coordinate assignment,
the drawing frameworks based on upward planarization can be properly divided into
two main phases: The crossing minimization and the coordinate assignment phase.
The coordinate assignment phase of UPL and UPSugiyama can further be divided
into two sub-steps: the layering/node ordering step and final coordinate assignment.

Upward Planarization. We briefly sketch the upward planarization approach pro-
posed in [8]. It can be divided into two phases: the feasible subgraph computation
and the reinsertion phase. In the first phase the input DAG G is transformed into a
single-source digraph G′ by adding an artificial super source ŝ and connecting it to
the sources of G. Then we compute a spanning tree T of G′ and iteratively try to
insert the remaining arcs into T . Thereby, we perform a subgraph feasibility test after
each inserted arc e: we not only test upward planarity but also if all remaining edges
can potentially still be inserted (with crossings) in an upward fashion. If the resulting
digraph is not feasible in this sense, we add e to a set of deleted arcs B instead. By
applying these operations, we obtain an embedded feasible upward planar subgraph
U .

In the second phase, the arcs in B are reinserted into U one after another such that
few crossings arise. Thereby, the crossings caused by the reinsertion are replaced by
crossing dummies. As a result, we obtain an upward planar representation of G′. This
representation is a single-source, but usually not a single-sink digraph. By adding
additional arcs (sink-arcs) for each internal face using a so called face-sink graph [3]
and by adding an additional super sink t̂ that is connected with the former sinks
on the external face (cf.Fig. 4), the representation becomes an upward embedded
single-source, single-sink digraph R.
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Figure 2: Overview of the frameworks: the classical drawing framework by Sugiyama
et al. (Sugiyama); our new upward planarization layout approach (UPL); the straight-
forward application of the Sugiyama framework on the upward planar representation
(UPSugiyama); the dominance and visibility approach (Dominance and Visibility).
For the latter three drawing algorithms we use the layer free upward crossing min-
imization approach (LFUP) by Chimani et al. [8] for obtaining an upward planar
representation.

The runtime of the first phase is O(|A|2) and the runtime for the second phase
O(|A|5). Therefore, an upward planarized representation for any connected DAG
G = (V,A) can be computed in time O(|A|5).

In the following, an upward planar representation is always an augmented embed-
ded graph R. Let v and e be a node and an arc in G, respectively. We denote the
corresponding node and arc in R by vR and eR, respectively.

Organization of the Paper. In Sect. 2, we show how to perform layer, node
order, and coordinate assignment using an upward planar representation, as well as
some further beautifications. In Sect. 3, we experimentally evaluate our algorithm
and compare it with existing approaches and in Sect. 4 we give a conclusion on the
new drawing method. Sect. 5 shows some example drawings, comparing the results
obtained by our approach with drawings produced by applying the classical Sugiyama
framework.

2 Upward Planarization Layout Algorithm

Let R be an upward planar representation of a DAG G. Let D∗ be an upward drawing
induced by R such that all crossing dummy nodes are replaced by crossings and all
auxiliary arcs and nodes are omitted. A drawing D is a realization of R if for each
node v of G, the arc order of v induced by D coincides with the arc order induced by
D∗ and the crossings arising in D are the ones modeled by R.

The crucial starting point of our algorithm can be stated as follows:
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Figure 3: Layout of instance g.10.19 (North DAGs): (a) Dominance; (b) Visibility;
(c) Sugiyama; (d) UPSugiyama; (e) UPL; the drawings (a), (b), (d) and (e) are based
on a common upward planar representation produced by [8].
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Figure 4: Illustration of the upward planarization approach by Chimani et al. [8]:
(a) input DAG G augmented to G′ via the artificial super source ŝ; (b) embedded
feasible subgraph U of G′ obtained by deleting the arcs (10, 13), (2, 14), (4, 3), (6, 5);
(c) upward planar representation R of G after reinserting the deleted arcs (dashed
line). R contains five crossing dummies. By adding sink-arcs (drawn with hollow
arrow heads) and the super sink t̂, R becomes a single-source, single-sink digraph.

Proposition 1 Given an upward planar representation R of a DAG G, there exists
a layering of the nodes of G, a node order per layer, and a node placement including
bend points, such that the thereby induced drawing of G realizes R.

We observe that a realizing drawing of G hence follows Sugiyama’s framework, but
the individual steps do not simply optimize their respective objectives but follow the
overall goal of simulating R. Our algorithm hence divides naturally into the three
steps known from Sugiyama’s framework, whereby the first two steps are closely
related.

As sketched in Sect. 1 (and investigated in the experimental comparison; see
Sect. 3.1), it is easy to find some solution that realizes R. Yet, even if G is only
of moderate size, R can become much larger due to the number of inserted dummy
nodes. This causes weak runtime performance, many layers, and overall unsatisfac-
tory drawings. Hence our algorithm aims at minimizing the required layers, thereby
also reducing the necessary dummy nodes resulting from splitting long arcs.

2.1 Layer Assignment and Node Ordering

Layer Assignment. Let H be a copy of G that we will use to obtain a valid layering
for G; cf. Fig. 5. For any two nodes u, v ∈ V (G), we add an auxiliary arc (u, v) to
H, i.e., H = H + (u, v) if: (a) there exists no directed path from u to v in G and in
H, but (b) there exists a directed path from uR to vR in R. Part (a) prohibits the
unnecessary generation of transitive arcs; part (b), in conjunction with the sink-arcs
and the single-source, single-sink property of R, ensures that the hierarchical order
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Figure 5: Layer Assignment and Node Ordering

of R is mapped to H. Since G and R are DAGs, H is also acyclic and we can use any
existing layering algorithm on H. Let L = 〈L1, L2, ..., L`〉 be a layering for H, and

therefore also for G; i.e.,
⋃̇

1≤i≤`Li = V (G). We can extend this layering naturally,
by splitting any arc that spans more than one layer into a chain of arc segments by
introducing dummy nodes (long-arc dummies).

Node Ordering. Considering the layering L, we now have to arrange the nodes
on each layer according to the order induced by R. For this purpose, we consider the
order of the arcs around each node, as given by R. In particular, we can recognize
the left incoming arc for any node v, which is the embedding-wise left-most arc with
target v. Note that this arc is defined for each node except for the super source.

Now consider any two distinct nodes u and v on the same layer. We can decide
their correct order using the following strategy: we construct a left path pu from ŝ
to uR from back to front, i.e., starting at uR we select its left incoming arc e as the
end of pu and proceed from the source node of e, choosing its left incoming arc as
the second to last arc in pu, and so on. The construction of pu ends when we reach
the super source, which will always happen as R is a single-sink DAG. Analogously,
we construct the left path pv from ŝ to vR.

The paths pu and pv may share a common subpath starting at ŝ; let cR be the last
common node of pu and pv, and let eu and ev be the first different arcs, respectively.
We determine the ordering of u and v directly by the order of eu and ev at cR. For
example in Fig. 5, if u and v are the nodes ‘4’ and ‘12’ respectively (layer 5), then
node ‘ŝ’ is the last common node of their corresponding left paths in R (see Fig. 4(c)),
and hence v is left of u.

Algorithmically, we can consider each layer independently. Introducing an auxil-
iary digraph A, the above relationship between two nodes on the same layer can be
modeled as an arc between these two nodes in A. We can construct a correct ordering
for the layer by computing the topological order in A. Note that therefore we do not
have to compute the arc direction for all node pairs, but only for the ones that are
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not already “solved” by other arcs through transitivity. We obtain a final layering
realizing R.

The height of a layering L is the number of layers of L. Our layering algorithm
above has the following property:

Lemma 1 Let R be an upward planar representation of a single-source DAG G and
L a layering realizing R such that L is obtained by applying a longest path algorithm
on H. Let h be the height of L. Then for any layering L′ with height h′, h ≤ h′ holds.

Proof:
Let p be a directed path from uR to vR in R such that there is no corresponding

directed path from u to v in G and H (condition (a)). For convenience we identify p
with a sequence of arcs e1, . . . , ek. Notice that an arc ei of p cannot be adjacent to
the super sink t̂ of R, since t̂ is not a node of G. Also, ei is not associated with an arc
added for connecting the super source with the sources of G, since G is a single-source
digraph.

We prove by induction over k that adding an auxiliary arc a = (u, v) to H is
necessary in order to ensure the hierarchy order between node u and v. In particular,
a cannot be omitted if the layering L shall realize R.

Induction basis (k = 1): p contains only one arc e1 = (uR, vR). Since uR and vR
are not crossing dummies, e1 is not an arc segment of any arc. (An arc segment arises
by splitting an arc during the upward planarization.) Also, e1 does not correspond
to a “real” arc of G due to condition (a); thus e1 is a sink-arc. u is a sink (sink-
switch) and v is the topmost node (top-sink-switch) of an inner face f of an upward
planar drawing of R. Obviously, v must be drawn higher than u in a realization of
R. Therefore adding arc a to H ensures the hierarchy order between u and v.

Induction step: We assume that the hierarchy order of the nodes of p′ = e1, . . . , ej
with j < k is mapped to H by adding some auxiliary arcs to it.

Let p = e1, . . . , ek with ek = (xR, vR). There are three possible cases:

(i) ek is a sink-arc: The fact that x is layered higher than u is already mapped
to H (induction assumption). Since ek is a sink-arc, v must be layered higher
than x (see induction basis), and therefore higher than u. Adding arc a to H
ensures the hierarchy order.

(ii) There is a “real” arc (x, v) in G corresponding to ek: By the induction as-
sumption the hierarchy order between u and x is mapped to H by adding some
auxiliary arcs. Hence there is a path from u to x in H and, since H is a copy
of G, there is also a path from u to v. Due to condition (a) no auxiliary arcs
are added to H.

(iii) ek is an arc segment: xR is a crossing dummy and the target node of arc ek−1.
We have two sub-cases:

Case ek−1 and ek are arc segments of a common arc b = (w, v), b ∈ G: By the
induction assumption, the hierarchy order between node u and w is mapped to
H. Since w must be layered higher than u and since the arc b = (w, v) exists,
v must be layered higher than w and therefore higher than u. Adding arc a to
H ensures this fact.
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Figure 6: An example of a layering with unnecessary layers: (a) input DAG G which
is augmented to an sT -graph; (b) an upward planar representation R of G; (c) a
layering of G realizing R obtained by our layering and node ordering approach. The
number of layers can be reduced by one if we assign node ‘1’ to layer 2 (as the right
neighbor of node ‘2’), node ‘3’ and ‘4’ to layer 3, and node ‘5’ to layer 4.

Case ek−1 and ek are not arc segments of a common arc: Let ek−1 be an arc
segment of arc d = (w, ·) and ek be an arc segment of arc b = (·, v). The crossing
dummy xR models the crossing ξ between arc b and arc d. Therefore ξ must be
drawn higher than w in an upward drawing D and v must be drawn higher than
ξ; otherwise the line segment from ξ to v in D would not point monotonically
increasing in the vertical direction. Thus v must be layered higher than u. We
have to add the arc a to H to reflect this fact.

The induction proof reveals that no additional auxiliary arcs of H can be omitted;
otherwise the hierarchy order of the nodes may not be mapped to H correctly. Hence
a layering L with respect to R obtained by applying a longest path algorithm to H
contains no unnecessary layers. After computing the node order and rearranging the
nodes of L, L is a realization of R.

�

Unfortunately, our layer assignment approach can compute a layering with un-
necessary layers for DAGs with multiple sources. Fig. 6 gives an example for such a
case. The path from node ‘2’ to node ‘1’ arises in the representation due to the arc
(ŝ, 1). Therefore, node ‘1’ is layered higher than actually necessary.

2.1.1 Long-Arc Dummy Reduction

A dominated subgraph of G w.r.t. a node s is the subgraph induced by the nodes v for
which G contains a directed path from s to v. Most layering algorithms—in particular
also the optimal LP-based approach [13]—will put the nodes on the lowest possible
layer. While this is generally a good idea, this approach can be counter-productive
in the context of the super source node that will be removed from the final drawing:
Since every source node s in G is attached to the super source node ŝ (which is on
the lowest layer), s may end up very low in the drawing, even though most of its
dominated subgraph requires higher layers, hence introducing long arcs.
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Figure 7: A drawing of graph grafo2379.35 (Rome graphs): (left) without postpro-
cessing, (right) after applying source repositioning (white node) and long-arc dummy
reduction (black node).

We tackle this problem using an approach similar to the promotion node method
by Nikolov and Tarassov [17] by re-layering parts of the dominated subgraphs after
the removal of ŝ, without modifying the hierarchical order induced by R. Layers that
become empty by these operations can be removed afterwards:

For Each source s in G (in decreasing order of their layer index j):

(a) Mark the subgraph dominated by s. Let Mi be the marked nodes on layer
Li (1 ≤ i ≤ `).

(b) For i = j + 1 To `:

If Mi are all long-arc dummies Then

(i) Remove the nodes Mi and lift the marked subgraph on the layers
below Li by one layer.

(ii) If the new layering causes more edge crossings Or more long-arc
dummies Then Undo step (i) and Break (continue with next
source)

2.1.2 Repositioning the Sources

Since our upward planarization algorithm considers G augmented with ŝ and inserts
additional arcs considering a fixed embedding, the final upward planar representation
may contain artifacts in the form of seemingly unnecessary crossings; see, e.g., the
white node in Fig. 7. To overcome this, we sift each source s through all possible
positions on its layer and choose the position where it causes the fewest crossings.
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Figure 8: A drawing of graph grafo159.24 (Rome graphs) with random node sizes:
without (left) and with (right) our bending arcs method and individual layer distance
assignment.

2.2 Coordinate Assignment

After the previous steps we get a correct layering and node ordering realizing R.
Conceptually, we can use any coordinate assignment strategy (e.g., [6, 13]) known for
Sugiyama’s layout algorithm; it will always preserve the given number of crossings.
All these methods assign horizontal coordinates to the nodes while preserving the
given node ordering on each layer. The aim is to generate drawings such that the
subdivided long arcs are drawn as vertical straight lines for their most part.

Yet, when considering the hard-to-measure “beauty” or “readability” of the re-
sulting drawings, we realize that we can improve on traditional coordinate assignment
strategies as they usually do not accommodate the following two drawing problems:

• node-arc crossings: A line segment connecting nodes or bend points between
layer Li and Li+1 may cross through some nodes of these two layers. This
can easily happen when node sizes are relatively large compared to the layer
distance.

• long-line segments: The general direction of upward drawings should naturally
be along the vertical direction. Yet, there can be arc segments between some
layers Li and Li+1 which are very long since they span a large horizontal dis-
tance. Such arcs can make Sugiyama-style drawings hard to read.

Fig. 8 shows the benefit of the two strategies described below. Note that these
strategies are not only applicable to our layout algorithm, but to any Sugiyama-style
layout.

2.2.1 Vertical Coordinates

Usually, the vertical coordinates for the nodes on layer Li are simply given by δ · i,
where δ is the minimal layer distance. Yet, often we may prefer larger distances
between layers in order to improve readability: larger distances counter both above
problems, but in our context we are in particular interested in long-line segments—we
will discuss how to tackle node-arc crossings in Sect. 2.2.2.

Buchheim et al. [6] propose a solution for variable layer distances depending on
the gradient of the line segments. However, our experimental results show that draw-
ing DAGs using upward planarization tends to produce drawings with large height.
Therefore we use a different approach which limits the maximal layer distance to 3δ.
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Figure 9: Avoiding node–line overlapping by introducing new bend points into an arc
e (top); horizontal coordinates of bend points must all be distinct, even if all involved
arcs require a bend (bottom).

Let σi be the number of arcs between Li and Li+1 whose lengths are at least
3δ. We set the vertical distance between these two layers to (1 + min{σi/4, 2})δ
(empirically evaluated).

2.2.2 Bending Arcs

While enlarging the layer distance also helps to prevent node–line crossings, the
required increase in height is usually not worth it—from the readability perspective.
We therefore propose a strategy that allows trading additional bend points for layer
distance. The strategy can be parameterized to find one’s favorite trade-off between
these two measures, namely, increase the layer distances to reduce the number of
bend points or keep the layer distances small, instead introduce new bend points to
avoid node–line crossings.

Let X(v) and Y (v) denote the horizontal and vertical coordinates of a node v,
respectively. An arc (or line segment) e = (v, w) is pointing upward from left to
right (right to left) if X(v) < X(w) (X(v) > X(w), resp.). Since purely vertical line
segments cannot cross through nodes, we distinguish four cases: e is pointing upward
from right to left (or left to right) and v (or w) is a node on layer i. In all these
cases, e has to bend if it overlaps some nodes of Li. However, bending e might cause
additional crossings. To avoid this, we also have to bend the line segments that cross
the just bended line. W.l.o.g., we only discuss the case X(v) > X(w) with v ∈ Li.
The other cases can be solved analogously.

Let width(v) and height(v) denote the width and height of the bounding box of
a node v. Let a be the node on layer Li with the highest bounding box, and let
α := height(a)/2. If v is a bend point and not shifted downwards before, then we do
not need to introduce an additional bend. Instead we move v upwards by α. If v was
already shifted downwards before due to one of our other cases, then we bend e by
introducing a new bend point b and set X(b) := X(v) and Y (b) := Y (v) + 2α. We
observe: By setting Y (v) to α or in the latter case, setting the new bend point b to
Y (v) + 2α, we ensure that e cannot overlap any nodes on layer Li.

Assume v is not a bend point. Then we have to introduce a bend point along
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e. Thereby we have to consider that other arcs might also get rerouted and so we
must accommodate enough space for them as well, such that no two bend points may
coincide. In particular, it might be that the arcs leaving v’s left neighbor to the right
might also require additional bend points (cf. Fig. 9). Let u be the left neighbor
of v on Li and d := X(v) − X(u) − width(v)/2 − width(u)/2 their inner distance.
Let r be the number of line segments adjacent to v and pointing from right to left;
among these, assume that e is the j-th segment when counting from left to right.
Let q be the number of line segments adjacent to u and pointing from left to right.
Then, ∆ := d

q+r+1 gives the distances between the potential bend points, and the
coordinates of the new bend point b are:

X(b) := X(u) +
width(u)

2
+ ∆ · (j + min{q, j − 1})

Y (b) := Y (v) + α

In the worse case we have to introduce a new bend point for each line segment in
order to prevent overlapping of the bend points and to prevent newly arising crossings
(cf. Fig. 9 (bottom)). Therefore the number of newly introduced bend points for a
layer Li is bounded by the number of line segments connecting the nodes or bend
points of Li and Li+1.

3 Experiments

We investigate the quality of our new algorithm in comparison with known algo-
rithms. We first compare different approaches to draw a computed upward planar
representation, i.e., if the crossing number is the most important factor in our draw-
ing. Afterwards, we also compare our approach to Sugiyama’s traditional framework.

All algorithms are implemented in the free and open-source (GPL) Open Graph
Drawing Framework (OGDF) [18]. The experiments were conducted on an Intel
Pentium 4 3.4Ghz PC with 2GB of RAM. All data points of the diagrams represent
average values for the corresponding node or density group respectively. We use the
following benchmark sets:

Rome Graphs: The Rome graphs [10] are a widely used benchmark set in graph
drawing, which was obtained from a basic set of 112 real-world graphs. It
contains 11528 instances with 10–100 nodes and 9–158 edges. Although the
graphs are originally undirected, they have been used as directed graphs by
artificially directing the edges according to the node order given in the input
files [12, 8].

North DAGs: The North DAGs1 have been introduced in an experimental com-
parison of algorithms for drawing DAGs [9]. The set consists of 1277 DAGs
collected by Stephen North.

Since the North DAGs are a collection of heterogeneous digraphs, that is, the
density of the digraphs with same number of nodes may vary from very dense
to very sparse, we decided to group the DAGs into 9 sets, where the first set
contains digraphs with 10 to 20 nodes and the i-th set contains digraphs with
10i+ 1 to 10(i+ 1) nodes for i = 2, . . . , 9.

1www.graphdrawing.org/data/index.html
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Random DAGs: The real-world origin of the above benchmarks results in sets
where, e.g., the relative graph densities (i.e., the ratio |A|/|V | for a digraph
G = (V,A)) are not uniformly distributed over the different graph sizes; in
particular larger graphs tend to have lower densities. For a deeper investiga-
tion of our algorithm regarding graphs with high densities, we use a set of 200
random DAGs previously generated by us [7]. Each DAG has 100 nodes and
each potential arc occurs with uniform probability p. The DAGs are grouped
in 10 subsets such that each subset is generated with a certain p corresponding
to the expected density % = |A|/|V | ∈ {1.5, 2, 2.5, . . . , 6}.
Although most real-world graphs have a density below 2–3, evaluating the draw-
ing algorithms for these random DAGs can reveal some theoretical insight into
the behavior of these algorithms.

3.1 Planarization Layouts

As outlined in the introduction, there are various other possibilities to draw an upward
planar representation R of a digraph. Therefore, we use R also as input for alternative
drawing algorithms. After computing the drawing, we can replace the dummy nodes
by usual arc crossings and remove the sink-arcs and the super source/sink. By this
approach we guarantee that the resulting drawing realizes the specified representation.

We compare the new drawing algorithm UPL to the dominance drawing style [11]
(Dominance), the visibility representation drawing style [19] (Visibility), and a straight-
forward application of Sugiyama’s framework (UPSugiyama). For the latter, we use
an optimal ranking [13] for layering, extract the node orders directly from the upward
planar representation, and apply the coordinate assignment algorithm by Buchheim
et al. [6].

Fig. 10 and Fig. 11 show the average heights and widths of the resulting drawings
for the Rome graphs, the North DAGs, and the random graphs, respectively. The
average aspect ratios (i.e., the ratio width/height) of the drawings are given in Fig. 12.
For a fair comparison between the different approaches, we want to disregard any
differences which are only due to spacing parameters. Therefore, we use the following
conventions: The height of a drawing is simply the number of required layers (in
case of UPL and UPSugiyama) or the number of vertical grid coordinates (in case
of Dominance and Visibility), respectively. The width of a drawing is the maximum
number of elements per layer or horizontal grid line, respectively, where the elements
on a layer or grid line ` are the nodes on ` as well as the edge lines crossing `.

For a fair runtime comparison, we use the same coordinate assignment algo-
rithm [6] for UPL and UPSugiyama. This choice is due to the fact that the alternative
LP-based approach [13] requires too much time for UPSugiyama, because it has to
consider very large digraphs due to the crossing and long-arc dummies. Note that
the height and width measures defined above are invariant under the choice of the
coordinate assignment algorithm. The average runtimes (in seconds) are shown in
Fig. 13. We omit showing runtimes for the linear-time algorithms Dominance and
Visibility, since they are usually below any measurable threshold. Instead, we give
their average and maximum runtime values in Table 1.

We observe that our new approach clearly outperforms all other approaches with
respect to drawing height. Except for the North DAGs, the heights of the drawings
increase with increasing number of nodes. This is not surprising, since with increasing
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Figure 10: Drawing upward planar representations: average heights of the drawings.
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Rome graphs North DAGs random DAGs
Algorithm avg max avg max avg max

Visibility 0.00067 0.016 0.00032 0.016 0.138 0.438
Dominance 0.00055 0.060 0.00039 0.032 0.122 0.390

Table 1: Average and maximal runtime of Visibility and Dominance in seconds.

number of nodes the length of the longest path also increases. The diagram for the
North DAGs (Fig. 10(b)) contains an unusual break at node group 71–80. The
reason is that this group is the group with the shortest average longest path and the
lowest average density. Furthermore, we observe that the heights of the drawings
increase when the graphs becoming denser. Also the gap between UPL and the other
planarization algorithms decreases; see Fig. 10(c). As the density increases, the height
converges to the maximal possible height (see Fig. 10 (c)). Concerning drawing width
UPL is clearly the winner on the Rome and North graphs benchmark sets, while all
algorithms perform nearly the same on the random DAGs. As expected, the width
increases when the instances becoming denser or when the number of nodes increases.
This is due to the fact that digraphs with high numbers of nodes “need” more layers,
and thus there are more arcs spanning more than one layer. Hence, the number of
long arc dummies on a layer increases. If a digraph has a high density then more
long arc dummies occur and the width also increases. For the same reason the aspect
ratio of the random DAGs increase when the instances becoming denser. Regarding
the runtime UPL is the clear winner compared to UPSugiyama (cf. Fig. 13).

3.2 Comparison with Traditional Sugiyama

Finally, we can investigate how much the requirement of having a drawing with few
crossings costs in terms of other quality measures. Therefore we compare UPL to a
traditional Sugiyama approach that is not bound to a specific upward planar repre-
sentation. For the latter we use the experimentally most competitive algorithms for
the individual steps: We use the optimal LP-based approach for layering [13], the
barycenter heuristic for the crossing reduction step (with best of 5 randomized runs),
and assign the coordinates via the exact LP-based approach [13]. For a fair compari-
son, UPL also applies the LP-based coordinate assignment algorithm. This time, the
runtime of UPL includes also the computation of the upward planar representation,
because this step is not necessary for Sugiyama. We remark that the implementation
of the planarization was vastly improved compared to previous results [8].

Clearly, the number of crossings in the pure Sugiyama approach is much higher
(Fig. 14), which complies with the findings in [8]. As shown in Fig. 15, UPL’s drawings
are of course higher than Sugiyama’s by construction. Like for the planarization
layouts, the width and height of Sugiyama drawings increases when the number of
nodes or the density of the graphs increases. While UPL produces often drawings with
smaller widths for the Rome and North graphs (see Fig. 15 (a) and (b)), Sugiyama
achieved better results for the random DAGs. This is due to the lower height of
Sugiyama drawings. The Sugiyama approach requires fewer long arc dummies than
UPL, which becomes more noticeable as the density is increasing. Yet we observe
that the difference is not as large as expected, and UPL seems to be a good fit also
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Figure 14: Comparison with Sugiyama’s algorithm: number of crossings.
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Figure 16: Comparison with Sugiyama’s algorithm: aspect ratio.
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with respect to this measure if a small number of crossings is an important issue.
UPL has certain advantages over Sugiyama’s approach: A strong packing into few

layers as produced by the Sugiyama approach will usually require a wider drawing
than our planarization approach. Furthermore, such few layers can in fact be coun-
terproductive regarding readability of the drawings; see, e.g., Fig. 1. Overall, we can
observe that UPL obtains a more balanced aspect ratio than Sugiyama’s approach;
see Fig. 16.

In terms of running time (Fig. 17), we see that while Sugiyama’s approach is
generally faster, UPL is not too slow either, requiring below 1.5 seconds for the large
instances of the Rome and North graphs. However, as the density of the graphs
increases the gap between Sugiyama and UPL increases rapidly.

4 Conclusion

Traditional methods for drawing DAGs consider the number of crossings only as a
second order priority. If it is of highest priority, one has to use algorithms based on
upward planar representations. Our algorithm constitutes the first such algorithm
that takes the special crossing nodes into account. As our experiments show, it
generates drawings that are preferable over alternative methods for drawing upward
planar representations. Furthermore, the new drawing algorithm is also compara-
ble to Sugiyama’s approach with respect to other quality measures, while offering a
significantly smaller number of crossings.

We conclude with two interesting open problems:

1. Regarding Lemma 1, can we archive a similar result for general (instead of only
single-source) DAGs?

2. As shown by our experiments, there is a gap between Sugiyama’s and our UPL
approach regarding the height of the drawings. Clearly, this gap cannot be
eliminated completely, but how can we reduce this gap? This problem includes
the problem of finding a suitable upward planar representation R of the input
DAG G for a compact realization.

5 Drawings

In this section we give some example drawings produced by our new algorithm UPL
and the Sugiyama algorithm. For both drawing methods we use the LP-based layering
and coordinate assignment algorithms proposed by Gansner et al. [13]. UPL uses the
randomized upward crossing minimization (best of 20 runs) by Chimani et al. [8] and
Sugiyama uses a barycenter heuristic for the crossing minimization step (best of 20
runs). All nodes in the drawings in Fig. 18 and Fig. 19 have the same sizes, while
the nodes sizes in the drawings in Fig. 20 are set randomly.
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Figure 18: Comparison of drawings where all nodes have the same size.
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(c) UPL drawing of instance
grafo8087.84 (Rome graphs) with
41 crossings.
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(d) Sugiyama drawing of instance
grafo8087.84 (Rome graphs) with
134 crossings.

Figure 20: Comparison of drawings where the nodes have random size.
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